
OPERATION MANUAL

Programmable
Controllers

SYSMAC
C1000H/C2000H

Cat. No. W140-E1-04

C1000H/C2000H
Programmable Controllers
Operation Manual
Revised May 2003

iv

!

!

!

v

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to the product.

 DANGER Indicates information that, if not heeded, is likely to result in loss of life or serious
injury.

WARNING Indicates information that, if not heeded, could possibly result in loss of life or
serious injury.

Caution Indicates information that, if not heeded, could result in relatively serious or mi-
nor injury, damage to the product, or faulty operation.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, means
“word” and is abbreviated “Wd” in documentation.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Indicates information of particular interest for efficient and convenient opera-
tion of the product.

Indicates lists of one sort or another, such as procedures, precautions, etc.

 OMRON, 1990
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

Note

1, 2, 3...

vi

vii

TABLE OF CONTENTS

SECTION 1
Introduction 1.

1-1 Overview 2.
1-2 Relay Circuits: The Roots of PC Logic 2.
1-3 PC Terminology 3.
1-4 OMRON Product Terminology 4.
1-5 Overview of PC Operation 4.
1-6 Peripheral Devices 5.
1-7 Available Manuals 7.

SECTION 2
Hardware Considerations 9.

2-1 Indicators 10.
2-2 PC Configuration 12.

SECTION 3
Memory Areas 15.

3-1 Introduction 16.
3-2 Data Area Structure 16.
3-3 IR (Internal Relay)Area 18.
3-4 SR (Special Relay) Area 23.
3-5 AR (Auxiliary Relay) Area 31.
3-6 DM (Data Memory) Area 36.
3-7 HR (Holding Relay) Area 37.
3-8 TC (Timer/Counter) Area 37.
3-9 LR (Link Relay) Area 38.
3-10 Program Memory 39.
3-11 File Memory 39.
3-12 Trace Memory 39.
3-13 TR (Temporary Relay) Area 39.

SECTION 4
Writing and Inputting the Program 41.

4-1 Basic Procedure 42.
4-2 Instruction Terminology 42.
4-3 Basic Ladder Diagrams 43.
4-4 The Programming Console 58.
4-5 Preparation for Operation 61.
4-6 Inputting, Modifying, and Checking the Program 75.
4-7 Controlling Bit Status 92.
4-8 Work Bits (Internal Relays) 93.
4-9 Programming Precautions 95.
4-10 Program Execution 97.

viii

SECTION 5
Instruction Set 99.

5-1 Notation 102.
5-2 Instruction Format 102.
5-3 Data Areas, Definer Values, and Flags 102.
5-4 Differentiated Instructions 104.
5-5 Coding Right-hand Instructions 104.
5-6 Ladder Diagram Instructions 107.
5-7 Bit Control Instructions 109.
5-8 INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03) 113.
5-9 JUMP and JUMP END – JMP(04) and JME(05) 115.
5-10 END – END(01) 116.
5-11 NO OPERATION – NOP(00) 116.
5-12 Timer and Counter Instructions 117.
5-13 Data Shifting 127.
5-14 Data Movement 135.
5-15 Data Comparison 142.
5-16 Data Conversion 148.
5-17 BCD Calculations 158.
5-18 Binary Calculations 174.
5-19 Logic Instructions 179.
5-20 Subroutines and Interrupt Control 182.
5-21 Block Programming Instructions 190.
5-22 Step Instructions 199.
5-23 Special Instructions 208.
5-24 Data Tracing (TRACE MEMORY SAMPLING – TRSM(45)) 211.
5-25 File Memory Instructions 214.
5-26 Intelligent I/O Instructions 217.
5-27 Network Instructions 219.

SECTION 6
Program Execution Timing 227.

6-1 Cycle Time 228.
6-2 Calculating Cycle Time 232.
6-3 Instruction Execution Times 235.
6-4 I/O Response Time 241.

SECTION 7
Program Debugging and Execution 243.

7-1 Debugging 244.
7-2 Monitoring Operation and Modifying Data 252.
7-3 File Memory Operations 266.
7-4 Program Backup and Restore Operations 276.

ix

SECTION 8
Error Processing 285.

8-1 Alarm Indicators 286.
8-2 Programmed Alarms and Error Messages 286.
8-3 Reading and Clearing Errors and Messages 286.
8-4 Error Messages 286.
8-5 Error Flags 289.
8-6 Troubleshooting 290.

Appendices 293.
A. Standard Models 293.
B. Programming Instructions 303.
C. Programming Console Operations 335.
D. Error and Arithmetic Flag Operation 349.
E. Data Areas 353.
F. I/O Assignment Records Sheets 357.
G. Program Coding Sheet 363.
H. Data Conversion Table 367.
I. Extended ASCII 369.

Glossary 371.

Index 389.

Revision History 395.

xi

About this Manual:

The OMRON C1000H and C2000H offer an effective way to automate processing. Manufacturing,
assembly, packaging, and many other processes can be automated to save time and money. Distrib-
uted control systems can also be designed to allow centralized monitoring and supervision of several
separate controlled systems. Monitoring and supervising can be done through a host computer, con-
necting the controlled system to a data bank. It is thus possible to have adjustments in system opera-
tion made automatically to compensate for requirement changes.

The C1000H and C2000H are Rack PCs, i.e., various Units are combined to produce the optimum
control system for each application, which can just as easily be expanded up to the maximum I/O ca-
pacity of the PC by adding additional Units in the future. Additional Units include dedicated Special
I/O Units that can be used for specific tacks and Link Units that can be used to build more highly inte-
grated systems, including an optical LAN.

The C1000H and C2000H are equipped with large programming instruction sets, data areas, and
other features to control processing directly or remotely. Programming utilizes ladder-diagram pro-
gramming methods, which are described in detail for those unfamiliar with them.

This manual describes the characteristics and abilities of the C1000H and C2000H, programming op-
erations and instructions, and other aspects of operation and preparation that demand attention. Be-
fore attempting to operate the PC, thoroughly familiarize yourself with the information contained
herein. Hardware information is provided in detail in the C1000H/C2000H Installation Guide. A table
of other manuals that can be used in combination with this manual is provided at the end of Section 1
Introduction.

Section 1 Introduction explains the background and some of the basic terms used in ladder-diagram
programming. It also provides an overview of the process of programming and operating a PC and
explains basic terminology used with OMRON PCs. Descriptions of peripheral devices used with the
C1000H and C2000H and a table of other manuals available to use with this manual for special PC
applications are also provided.

Section 2 Hardware Considerations explains basic aspects of the overall PC configuration and de-
scribes the indicators that are referred to in other sections of this manual.

Section 3 Memory Areas takes a look at the way memory is divided and allocated and explains the
information provided there to aid in programming. It also explains how I/O is managed in memory and
how bits in memory correspond to specific I/O points.

Section 4 Writing and Inputting the Programming explains the basics of ladder-diagram program-
ming and how the program is input into the PC using a Programming Console. The elements that
make up the ‘ladder’ part of a ladder-diagram program and how execution of this program is con-
trolled are explained. The user should be able to write and input a basic “input-output” program after
finishing this section.

Section 5 Instruction Set then goes on to describe individually all of the instructions used in pro-
gramming.

Section 6 Program Execution Timing explains the cycling process used to execute the program
and tells how to coordinate inputs and outputs so that they occur at the proper times.

Section 7 Program Debugging and Execution provides the Programming Console procedures
used to debug the program and to monitor and control operation.

Finally, Section 8 Troubleshooting provides information on error indications and other means of re-
ducing down time. Information in this section is also sometimes necessary when debugging a pro-
gram.

The appendices provide tables of standard OMRON products available for the C1000H and C2000H,
reference tables of instructions and Programming Console operations, and other information helpful in
PC operation.

xii

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

!

1

SECTION 1
Introduction

This section gives a brief overview of the history of Programmable Controllers and explains terms commonly used in
ladder-diagram programming. It also provides an overview of the process of programming and operating a PC and ex-
plains basic terminology used with OMRON PCs. Descriptions of peripheral devices used with the C1000H and
C2000H, and a table of other manuals available to use with this manual for special PC applications, are also provided.

1-1 Overview 2.
1-2 Relay Circuits: The Roots of PC Logic 2.
1-3 PC Terminology 3.
1-4 OMRON Product Terminology 4.
1-5 Overview of PC Operation 4.
1-6 Peripheral Devices 5.
1-7 Available Manuals 7.

2

1-1 Overview
A PC (Programmable Controller) is basically a CPU (Central Processing Unit)
containing a program and connected to input and output (I/O) devices. The
program controls the PC so that when an input signal from an input device
turns ON, the appropriate response is made. The response normally involves
turning ON an output signal to some sort of output device. The input devices
could be photoelectric sensors, pushbuttons on control panels, limit switches,
or any other device that can produce a signal that can be input into the PC.
The output devices could be solenoids, switches activating indicator lamps,
relays turning on motors, or any other devices that can be activated by sig-
nals output from the PC.

For example, a sensor detecting a passing product turns ON an input to the
PC. The PC responds by turning ON an output that activates a pusher that
pushes the product onto another conveyor for further processing. Another
sensor, positioned higher than the first, turns ON a different input to indicate
that the product is too tall. The PC responds by turning on another pusher
positioned before the pusher mentioned above to push the too-tall product
into a rejection box.

Although this example involves only two inputs and two outputs, it is typical of
the type of control operation that PCs can achieve. Actually even this exam-
ple is much more complex than it may at first appear because of the timing
that would be required, i.e., “How does the PC know when to activate each
pusher?” Much more complicated operations, however, are also possible.
The problem is how to get the desired control signals from available inputs at
appropriate times.

To achieve proper control, the C1000H and C2000H use a form of PC logic
called ladder-diagram programming. This manual is written to explain ladder-
diagram programming and to prepare the reader to program and operate the
C1000H and/or C2000H.

1-2 Relay Circuits: The Roots of PC Logic
PCs historically originate in relay-based control systems. And although the
integrated circuits and internal logic of the PC have taken the place of the
discrete relays, timers, counters, and other such devices, actual PC opera-
tion proceeds as if those discrete devices were still in place. PC control, how-
ever, also provides computer capabilities and accuracy to achieve a great
deal more flexibility and reliability than is possible with relays.

The symbols and other control concepts used to describe PC operation also
come from relay-based control and form the basis of the ladder-diagram pro-
gramming method. Most of the terms used to describe these symbols and
concepts, however, have come in from computer terminology.

The terminology used throughout this manual is somewhat different from re-
lay terminology, but the concepts are the same.

The following table shows the relationship between relay terms and the PC
terms used for OMRON PCs.

Relay term PC equivalent

contact input or condition

coil output or work bit

NO relay normally open condition

NC relay normally closed condition

Relay vs. PC Terminology

Relay Circuits: The Roots of PC Logic Section 1-2

3

Actually there is not a total equivalence between these terms. The term con-
dition is only used to describe ladder diagram programs in general and is
specifically equivalent to one of certain set of basic instructions. The terms
input and output are not used in programming per se, except in reference to
I/O bits that are assigned to input and output signals coming into and leaving
the PC. Normally open conditions and normally closed conditions are ex-
plained in 4-2 The Ladder Diagram.

1-3 PC Terminology
Although also provided in the Glossary at the back of this manual, the follow-
ing terms are crucial to understanding PC operation and are thus explained
here.

Because the C1000H and C2000H are Rack PCs, there is no one product
that is a C1000H or C2000H PC. That is why we talk about the configuration
of the PC, because a PC is a configuration of smaller Units.

To have a functional PC, you would need to have a CPU Rack with at least
one Unit mounted to it that provides I/O points. With a Duplex System, you
would also need an CPU I/O Rack to mount the I/O Unit, because the Duplex
CPU Rack does not provide slots for mounting other Units. When we refer to
the PC, however, we are generally talking about the CPU and all of the Units
directly controlled by it through the program. This does not include the I/O
devices connected to PC inputs and outputs.

If you are not familiar with the terms used above to describe a PC, refer to
2-2 Hardware Considerations for explanations.

A device connected to the PC that sends a signal to the PC is called an input
device; the signal it sends is called an input signal. A signal enters the PC
through terminals or through pins on a connector on a Unit. The place where
a signal enters the PC is called an input point. This input point is allocated a
location in memory that reflects its status, i.e., either ON or OFF. This mem-
ory location is called an input bit. The CPU, in its normal processing cycle,
monitors the status of all input points and turns ON or OFF corresponding
input bits accordingly.

There are also output bits in memory that are allocated to output points on
Units through which output signals are sent to output devices, i.e., an out-
put bit is turned ON to send a signal to an output device through an output
point. The CPU periodically turns output points ON or OFF according to the
status of the output bits.

These terms are used when describing different aspects of PC operation.
When programming, one is concerned with what information is held in mem-
ory, and so I/O bits are referred to. When talking about the Units that connect
the PC to the controlled system and the places on these Units where signals
enter and leave the PC, I/O points are referred to. When wiring these I/O
points, the physical counterparts of the I/O points, either terminals or connec-
tor pins, are referred to. When talking about the signals that enter or leave
the PC, one refers to input signals and output signals, or sometimes just in-
puts and outputs. It all depends on what aspect of PC operation is being
talked about.

The Control System includes the PC and all I/O devices it uses to control an
external system. A sensor that provides information to achieve control is an
input device that is clearly part of the Control System. The controlled system
is the external system that is being controlled by the PC program through

PC

Inputs and Outputs

Controlled System and
Control System

PC Terminology Section 1-3

4

these I/O devices. I/O devices can sometimes be considered part of the con-
trolled system, e.g., a motor used to drive a conveyor belt.

1-4 OMRON Product Terminology
OMRON products are divided into several functional groups that have ge-
neric names. Appendix A Standard Models list products according to these
groups. The term Unit is used to refer to all of the OMRON PC products. Al-
though a Unit is any one of the building blocks that goes together to form a
C1000H or C2000H PC, its meaning is generally, but not always, limited in
context to refer to the Units that are mounted to a Rack. Most, but not all, of
these products have names that end with the word Unit.

The largest group of OMRON products is the I/O Units. These include all of
the Rack-mounting Units that provide non-dedicated input or output points for
general use. I/O Units come with a variety of point connections and specifica-
tions.

Special I/O Units are dedicated Units that are designed to meet specific
needs. These include Position Control Units, High-speed Counter Units, and
Analog I/O Units. This group also includes some programmable Units, such
as the ASCII Unit, which is programmed in BASIC.

Link Units are used to create Link Systems that link more than one PC or
link a single PC to remote I/O points. Link Units include Remote I/O Units, PC
Link Units, SYSMAC NET Link Units, and Host Link Units.

Other product groups include Programming Devices, Peripheral Devices,
and DIN Rail Products.

1-5 Overview of PC Operation
The following are the basic steps involved in programming and operating a
C1000H or C2000H. Assuming you have already purchased one or more of
these PCs, you must have a reasonable idea of the required information for
steps one and two, which are discussed briefly below. This manual is written
to explain steps three through six, eight, and nine. The relevant sections of
this manual that provide more information are listed with each of these steps.

1, 2, 3... 1. Determine what the controlled system must do, in what order, and at
what times.

2. Determine what Racks and what Units will be required. Refer to the
C1000H/C2000H Installation Guide. If a Link System is required, refer to
the appropriate System Manual.

3. On paper, assign all input and output devices to I/O points on Units and
determine which I/O bits will be allocated to each. If the PC includes
Special I/O Units or Link Systems, refer to the individual Operation
Manuals or System Manuals for details on I/O bit allocation. (Section 3
Memory Areas)

4. Using relay ladder symbols, write a program that represents the se-
quence of required operations and their inter-relationships. Be sure to
also program appropriate responses for all possible emergency situ-
ations. (Section 4 Writing and Inputting the Program, Section 5 Instruc-
tion Set, Section 6 Program Execution Timing)

5. Input the program and all required operating parameters into the PC.
(Section 7 Program Input, Debugging, and Execution)

6. Debug the program, first to eliminate any syntax errors, and then to find
execution errors. (Section 7 Program Input, Debugging, and Execution
and Section 8 Troubleshooting)

Overview of PC Operation Section 1-5

5

7. Wire the PC to the controlled system. This step can actually be started
as soon as step 3 has been completed. Refer to the C1000H/C2000H
Installation Guide and to Operation Manuals and System Manuals for
details on individual Units.

8. Test the program in an actual control situation and carry out fine tuning
as required. (Section 4 Writing and Inputting the Program, Section 7
Program Debugging and Execution, and Section 8 Troubleshooting)

9. Record two copies of the finished program on masters and store them
safely in different locations. (Section 7 Program Debugging and Execu-
tion)

Designing the Control System is the first step in automating any process. A
PC can be programmed and operated only after the overall Control System is
fully understood. Designing the Control System requires, first of all, a thor-
ough understanding of the system that is to be controlled. The first step in
designing a Control System is thus determining the requirements of the con-
trolled system.

The first thing that must be assessed is the number of input and output points
that the controlled system will require. This is done by identifying each device
that is to send an input signal to the PC or which is to receive an output sig-
nal from the PC. Keep in mind that the number of I/O points available de-
pends on the configuration of the PC. Refer to 3-2 IR Area for details on I/O
capacity and the allocation of I/O bits to I/O points.

Next, determine the sequence in which control operations are to occur and
the relative timing of the operations. Identify the physical relationships be-
tween the I/O devices as well as the kinds of responses that should occur
between them.

For instance, a photoelectric switch might be functionally tied to a motor by
way of a counter within the PC. When the PC receives an input from a start
switch, it could start the motor. The PC could then stop the motor when the
counter has received a specified number of input signals from the photoelec-
tric switch.

Each of the related tasks must be similarly determined, from the beginning of
the control operation to the end.

The actual Units that will be mounted or connected to PC Racks must be de-
termined according to the requirements of the I/O devices. Actual hardware
specifications, such as voltage and current levels, as well as functional con-
siderations, such as those that require Special I/O Units or Link Systems will
need to be considered. In many cases, Special I/O Units, Intelligent I/O Units,
or Link Systems can greatly reduce the programming burden. Details on
these Units and Link Systems are available in appropriate Operation Manu-
als and System Manuals.

Once the entire Control System has been designed, the task of program-
ming, debugging, and operation as described in the remaining sections of
this manual can begin.

1-6 Peripheral Devices
The following peripheral devices can be used in programming, either to input/
debug/monitor the PC program or to interface the PC to external devices to
output the program or memory area data. Model numbers for all devices
listed below are provided in Appendix A Standard Models. OMRON product

Control System Design

Input/Output Requirements

Sequence, Timing, and
Relationships

Unit Requirements

Peripheral Devices Section 1-6

6

names have been placed in bold when introduced in the following descrip-
tions.

A Programming Console is the simplest form of programming device for OM-
RON PCs. Although a Programming Console Adapter is sometimes re-
quired, all Programming Consoles are connected directly to the CPU without
requiring a separate interface. The Programming Console also functions as
an interface to transfer programs to a standard cassette tape recorder.

Various types of Programming Console are available, including both
CPU-mounting and Hand-held models. Programming Console operations are
described later in this manual.

The GPC allows you to perform all the operations of the Programming Con-
sole as well as many additional ones. PC programs can be written on-screen
in ladder-diagram form as well as in mnemonic form. As the program is writ-
ten, it is displayed on a liquid crystal display, making confirmation and modifi-
cation quick and easy. Syntax checks may also be performed on the pro-
grams before they are downloaded to the PC. Many other functions are avail-
able, depending on the Memory Pack used with the GPC.

A Peripheral Interface Unit is required to interface the GPC to the PC.

The GPC also functions as an interface to copy programs directly to a stan-
dard cassette tape recorder. A PROM Writer, Floppy Disk Interface Unit, or
Printer Interface Unit can be directly mounted to the GPC to output pro-
grams directly to an EPROM chip, floppy disk drive, or printing device, re-
spectively.

LSS is designed to run on IBM AT/XT compatibles to enable all of the opera-
tions available on the GPC. Using an Optical Host Link Unit also enables the
use of optical fiber cable to connect the FIT to the PC. Wired Host Link Units
are available when desired. (Although FIT does not have optical connectors,
conversion to optical fiber cable is possible by using Converting Link
Adapters.)

A Host Link Unit is required to interface a computer running LSS to the PC.

The FIT is an OMRON computer with specially designed software that allows
you to perform all of the operations that are available with the GPC or LSS.
Programs can also be output directly to an EPROM chip, floppy disk drive, or
printing device without any additional interface. The FIT has an EPROM
writer and two 3.5” floppy disk drives built in.

A Peripheral Interface Unit or Host Link Unit is required to interface the
FIT to the PC. Using an Optical Host Link Unit also enables the use of optical
fiber cable to connect the FIT to the PC. Wired Host Link Units are available
when desired. (Although FIT does not have optical connectors, conversion to
optical fiber cable is possible by using Converting Link Adapters.)

Other than its applications described above, the PROM Writer can be
mounted to the PC’s CPU to write programs to EPROM chips.

Other than its applications described above, the Floppy Disk Interface Unit
can be mounted to the PC’s CPU to interface a floppy disk drive and write
programs onto floppy disks.

Other than its applications described above, the Printer Interface Unit can be
mounted to the PC’s CPU to interface a printer or X-Y plotter to print out pro-
grams in either mnemonic or ladder-diagram form.

Programming Console

Graphic Programming
Console:

Ladder Support Software:
LSS

Factory Intelligent Terminal:
FIT

PROM Writer

Floppy Disk Interface Unit

Printer Interface Unit

Peripheral Devices Section 1-6

7

1-7 Available Manuals
The following table lists other manuals that may be required to program and/
or operate the C1000H and C2000H. Operation Manuals and/or Operation
Guides are also provided with individual Units and are required for wiring and
other specifications.

Name Cat. No. Contents

C1000H/C2000H Operation Manual W140 Software specifications

GPC Operation Manual W84 Programming procedures for the GPC (Graphics
Programming Console)

FIT Operation Manual W150 Programming procedures for using the FIT (Factory
Intelligent Terminal

LSS Operation Manual W237 Programming procedures for using LSS (Ladder Support
Software)

Data Access Console Operation Guide W173 Data area monitoring and data modification procedures for
the Data Access Console

Printer Interface Unit Operation Guide W107 Procedures for interfacing a PC to a printer

PROM Writer Operation Guide W155 Procedures for writing programs to EPROM chips

Floppy Disk Interface Unit Operation Guide W119 Procedures for interfacing a PC to a floppy disk drive

Wired Remote I/O System Manual W120 Information on building a Wired Remote I/O System to
enable remote I/O capability

Optical Remote I/O System Manual W136 Information on building an Optical Remote I/O System to
enable remote I/O capability

PC Link System Manual W135 Information on building a PC Link System to automatically
transfer data between PCs

Host Link System Manual W143 Information on building a Host Link System to manage
PCs from a ‘host’ computer

SYSMAC NET Link System Manual W114 Information on building a SYSMAC NET Link System and
thus create an optical LAN integrating PCs with
computers and other peripheral devices

SYSMAC LINK System Manual W174 Information on building a SYSMAC LINK System to
enable automatic data transfer, programming, and
programmed data transfer between the PCs in the System

Available Manuals Section 1-7

9

SECTION 2
Hardware Considerations

This section provides information on hardware aspects of the C1000H and C2000H that are relevant to programming and
software operation. These include indicators on the CPU and Duplex Unit and basic PC configuration. This information
is covered in detail in the C1000H/C2000H Installation Guide.

2-1 Indicators 10.
2-2 PC Configuration 12.

10

2-1 Indicators
CPU and Duplex Unit indicators provide visual information on the general
operation of the PC. Although not substitutes for proper error programming
using the flags and other error indicators provided in the data areas of mem-
ory, these indicators provide ready confirmation of proper operation.

CPU indicators are shown below and are described in the following table.
Indicators are the same for both C1000H and C2000H.

Indicator Function

POWER Lights when power is supplied to the CPU.

RUN Lights when the CPU is operating normally.

ERR Lights when an error is discovered in error diagnosis operations.
When this indicator lights, the RUN indicator will go off, CPU
operation will be stopped, and all outputs from the PC will be
turned OFF.

ALARM Lights when an error is discovered in error diagnosis operations.
PC operation will continue.

OUT INHB Lights when the Output OFF bit, SR bit 25215, is turned ON. All
outputs from the PC will be turned OFF.

SYSMAC C2000H
PROGRAMMABLE CONTROLLER

POWER

RUN

ERR

ALARM

OUT INHB

CPU Indicators

Indicators Section 2-1

11

Duplex Unit indicators are shown and described below. Refer to the
C1000H/C2000H Installation Guide for details. Duplex operation is only avail-
able on C2000H Units.

Indicator Function

DUPLEX RUN Lights when the Duplex Unit is operating normally.

DUPLEX BUS
ERROR

Lights when an error has occurred in the Duplex Unit bus. The
DUPLEX RUN indicator will go out and the active CPU will switch
to simplex operation.

VERIFY
ERROR

Lights when the two CPUs do not contain the same program. The
DUPLEX RUN indicator will go out and the active CPU will switch
to simplex operation.

ACTIVE CPU Indicate which CPU is active.

CPU RUN Lights whenever the RUN indicators on the CPUs are lit.

WAITING Lights at the beginning of duplex operation until the programs
have been verified (1 to 20 seconds). Will remain lit if program
execution does not start properly or if an error occurs in starting
duplex operation.

PROGRAM Lights when the PCs are in PROGRAM mode.

CPU ERROR Lights when CPU errors occur in the CPUs. CPU operation will
stop and the CPU RUN indicator will go out.

MEMORY
ERROR

Lights when memory errors occur in the CPUs. CPU operation
will stop and the CPU RUN indicator will go out.

MEMORY ERROR

DPL01 DUPLEX UNIT

SYSTEM

CPU

LEFT RIGHT
ACTIVE CPU

CPU RUN
WAITING

PROGRAM

CPU ERROR

DUPLEX BUS ERROR

VERIFY ERROR

DUPLEX RUN

Duplex Unit Indicators

Indicators Section 2-1

12

2-2 PC Configuration
The basic PC configuration consists of either two or three types of Rack: a
CPU Rack and Expansion I/O Racks for C2000H Simplex Systems and the
C1000H, and a CPU Rack, a CPU I/O Rack, and Expansion I/O Racks for
C2000H Duplex Systems. The Expansion I/O Racks are not a required part
of the basic system. They are used to increase the number of I/O points. An
illustration of these Racks is provided in 3-2 IR Area. A fourth type of Rack,
called a Slave Rack, can be used when the PC is provided with a Remote I/O
System.

A C2000H Simplex CPU Rack or C1000H CPU Rack consists of four compo-
nents: (1) The CPU Backplane, to which the CPU, the Power Supply, and
other Units are mounted. (2) The CPU, which executes the program and con-
trols the PC. (3) Other Units, such as I/O Units, Special I/O Units, Link Units,
and Intelligent I/O Units, which provide the physical I/O terminals correspond-
ing to I/O points. (4) The Power Supply, which provides power to the CPU
Rack.

A C2000H Simplex or C1000H CPU Rack can be used alone or it can be
connected to other Racks to provide additional I/O points. The C1000H CPU
Rack provides five or eight slots to which these other Units can be mounted
depending on the backplane used; the C2000H Simplex CPU Rack provides
six slots.

A C2000H Duplex CPU Rack Consists of a Duplex CPU Backplane, two
CPUs connected by a Duplex Unit, and a Power Supply. A Duplex CPU Rack
is completely filled by these Units and does not provide any slots for other
Units.

In a Duplex System, one of the two CPUs is active and the other is on
standby as long as both are operating normally. Both CPUs must contain the
same size and type of Memory Unit, and the same program. If the active
CPU fails to operate normally, the standby CPU takes control with simplex
operation until normal duplex operation can be restored. If an error occurs in
the standby CPU or in the Duplex Unit, the active CPU switches to simplex
operation. The Duplex Unit coordinates these processes.

To provide slots for other Units in a C2000H Duplex System, a CPU I/O Rack
is connected to the CPU Rack. The CPU I/O Rack is built on a I/O Back-
plane, which provides eight slots for other Units. In a Duplex System, one
CPU Rack and one CPU I/O Rack are used in a pair. The CPU has no
means of sending and receiving I/O signals without an I/O Rack. The I/O
Rack is always connected to a C2000H Duplex CPU via the connectors on
the Backplanes, allowing communication between the two Racks.

An Expansion I/O Rack can be thought of as an extension of the PC because
it provides additional slots to which other Units can be mounted. It is built
onto an Expansion I/O Backplane to which a Power Supply and up to eight
other Units are mounted.

An I/O Interface Unit is also mounted to any Expansion I/O Rack to interface
the Rack to the CPU Rack. Also, an I/O Control Unit must be mounted to any
C1000H or C2000H Simplex CPU Rack to which one or more Expansion I/O
Racks are mounted. In a C2000H Duplex System the I/O Control Unit is
mounted to the CPU I/O Rack.

An Expansion I/O Rack is always connected to the CPU via the connectors
on the Backplanes, allowing communication between the two Racks. In a

CPU Racks

CPU I/O Racks

Expansion I/O Racks

PC Configuration Section 2-2

13

C1000H System, or in C2000H Simplex or Duplex Systems, up to seven Ex-
pansion I/O Racks can be connected in series to the CPU Rack or, in a
C2000H Duplex System, to the CPU I/O Rack.

Only I/O Units and Special I/O Units can be mounted to Slave Racks. All I/O
Units, Special I/O Units, Remote I/O Master Units, and I/O Link Units can be
mounted to any slot on all other Racks. All other Units, including Interrupt
Input Units, File Memory Units, and all other Link Units must be mounted
only to certain slots on specific Racks. All Units occupy only one slot except
for the PID Unit and some Position Control Units.

All Units that do not require specific slots can be mounted in any order. Units
that do require specific slots can be mounted in any order within the required
slots.

Refer to the C1000H/C2000H Installation Guide for details about which slots
can be used for which Units and other details about PC configuration. The
way in which I/O points on Units are allocated in memory is described in 3-2
IR Area.

Unit Mounting Position

PC Configuration Section 2-2

15

SECTION 3
Memory Areas

Various types of data are required to achieve effective and correct control. To facilitate managing this data, the PC is pro-
vided with various memory areas for data, each of which performs a different function. The areas generally accessible
by the user for use in programming are classified as data areas..

The other memory areas include the Program Memory, where the user’s program is actually stored, as well as Trace
Memory and File Memory. This section describes these areas individually and provides information that will be neces-
sary to use them. As a matter of convention, the TR area is described in this section, even though it is not strictly a
memory area.

3-1 Introduction 16.
3-2 Data Area Structure 16.
3-3 IR (Internal Relay)Area 18.
3-4 SR (Special Relay) Area 23.

3-4-1 Link System Flags and Control Bits 24.
3-4-2 Data Retention Control Bit 28.
3-4-3 Output OFF Bit 29.
3-4-4 FAL (Failure Alarm) Area 29.
3-4-5 Low Battery Flag 29.
3-4-6 Cycle Time Error Flag 29.
3-4-7 I/O Verification Error Flag 29.
3-4-8 First Cycle Flag 29.
3-4-9 Clock Pulse Bits 29.
3-4-10 Step Flag 30.
3-4-11 Duplex System Flags 30.
3-4-12 Instruction Execution Error Flag, ER 30.
3-4-13 Arithmetic Flags 31.

3-5 AR (Auxiliary Relay) Area 31.
3-5-1 SYSMAC LINK System Data Link Settings 33.
3-5-2 Active Node Flags 33.
3-5-3 SYSMAC LINK/SYSMAC NET Link System Service Time 34.
3-5-4 Tracing Flags and Control Bits 34.
3-5-5 File Memory Flags and Control Bits 34.
3-5-6 On-line Removal Bits 35.
3-5-7 Power-off Counter 35.
3-5-8 Network Parameter Flags 36.
3-5-9 Link Unit Mounted Flags 36.
3-5-10 CPU-mounting Device Flag 36.
3-5-11 FALS-generating Address 36.
3-5-12 Cycle Time Indicators 36.

3-6 DM (Data Memory) Area 36.
3-7 HR (Holding Relay) Area 37.
3-8 TC (Timer/Counter) Area 37.
3-9 LR (Link Relay) Area 38.
3-10 Program Memory 39.
3-11 File Memory 39.
3-12 Trace Memory 39.
3-13 TR (Temporary Relay) Area 39.

16

3-1 Introduction
Details, including the name, acronym, range, and function of each area are
summarized in the following table. All but the last three of these areas are
data areas. Data and memory areas are normally referred to by their acro-
nyms.

Area Acronym Range Function

Internal Relay IR Words: 000 to 236
Bits: 0000 to 23615

Used to control I/O points, other bits, timers,
and counters, and to temporarily store data.

Special Relay SR Words: 237 to 255
Bits: 23700 to 25515

Contains system clocks, flags, control bits, and
status information. Many words are dedicated
for use by Link Systems

Auxiliary Relay AR Words: AR 00 to AR 27
Bits: AR 00 to AR 2715

Contains flags and bits for special functions,
such as write-protecting the FM area.

Data Memory DM C1000H:
DM 0000 to DM 4095 (words only)
C2000H:
DM 0000 to DM 6655 (words only)

Used for internal data storage and
manipulation.

Holding Relay HR Words: HR 00 to HR 99
Bits: HR 0000 to HR 9915

Used to store data and to retain the data
values when the power to the PC is turned off.

Timer/Counter TC TC 000 to TC 511 (TC numbers used
to access other information)

Used to define timers and counters, and to
access completion flags, PV, and SV.

Link Relay LR Words: LR 00 to LR 63
Bits: LR 0000 to 6315

Used for inter-PC communication in PC Link
Systems.

Temporary Relay TR TR 00 to TR 07 (bits only) Used to temporarily store execution conditions.

Program Memory UM UM: Depends on Memory Unit used. Contains the program executed by the CPU.

File Memory FM FM: 0000 to 0999 or
0000 to 1999

Located in a File Memory Unit mounted to the
CPU Rack and used to store programs or data.

Trace Memory TM TM: Traces of 250 instructions Used to store results from traces of program
execution.

When some bits and words in certain data areas are not being used for their
intended purpose, they can be used in programming as required to control
other bits. Words and bits available for use in this fashion are called work
words and work bits. Most, but not all, unused bits can be used as work bits.
Those that can be used are described area-by-area in the remainder of this
section. Actual application of work bits and work words is described in Sec-
tion 4 Writing and Inputting the Program.

Some data areas contain flags and/or control bits. Flags are bits that are
automatically turned ON and OFF to indicate particular operation status. Al-
though some flags can be turned ON and OFF by the user, most flags are
read only; they cannot be controlled directly.

Control bits are bits turned ON and OFF by the user to control specific as-
pects of operation. Any bit given a name using the word bit rather than the
word flag is a control bit, e.g., Restart bits are control bits.

3-2 Data Area Structure
When designating a data area, the acronym for the area is always required
for any but the IR and SR areas. Although the acronyms for the IR and SR
areas are often given for clarity in text explanations, they are not required,
and not entered, when programming. Any data area designation without an
acronym is assumed to be in either the IR or SR area. Because IR and SR
addresses run consecutively, the word or bit addresses are sufficient to differ-
entiate these two areas.

Work Bits and Words

Flags and Control Bits

Data Area Structure Section 3-2

17

An actual data location within any data area but the TC area is designated by
its address. The address designates the bit or word within the area where the
desired data is located. The TC area consists of TC numbers, each of which
is used for a specific timer or counter defined in the program. Refer to 3-7 TC
Area for more details on TC numbers and to 5-11 Timer and Counter Instruc-
tions for information on their application.

The rest of the data areas (i.e., the IR, SR, HR, DM, AR, and LR areas) con-
sist of words, each of which consists of 16 bits numbered 00 through 15 from
right to left. IR words 000 and 001 are shown below with bit numbers. Here,
the content of each word is shown as all zeros. Bit 00 is called the rightmost
bit; bit 15, the leftmost bit.

The term least significant bit is often used for rightmost bit; the term most
significant bit, for leftmost bit. These terms are not used in this manual be-
cause a single data word is often split into two or more parts, with each part
used for different parameters or operands. When this is done, the rightmost
bits of a word may actually become the most significant bits, i.e., the leftmost
bits in another word,when combined with other bits to form a new word.

Bit number

IR word 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IR word 001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

The DM area is accessible by word only; you cannot designate an individual
bit within a DM word. Data in the IR, SR, HR, AR, and LR areas is accessible
either by word or by bit, depending on the instruction in which the data is be-
ing used.

To designate one of these areas by word, all that is necessary is the acronym
(if required) and the two-, three-, or four-digit word address. To designate an
area by bit, the word address is combined with the bit number as a single
four- or five-digit address. The following table show examples of this. The two
rightmost digits of a bit designation must indicate a bit between 00 and 15,
i.e., the rightmost digit must be 5 or less the next digit to the left, either 0 or 1.

The same TC number can be used to designate either the present value (PV)
of the timer or counter, or a bit that functions as the Completion flag for the
timer or counter. This is explained in more detail in 3-7 TC Area.

Area Word designation Bit designation

IR 000 00015 (leftmost bit in word 000)

SR 252 25200 (rightmost bit in word 252)

DM DM 1250 Not possible

TC TC 215 (designates PV) TC 215 (designates Completion Flag)

LR LR 12 LR 1200

Word data input as decimal values is stored in binary-coded decimal (BCD);
word data entered as hexadecimal is stored in binary form. Each four bits of
a word represents one digit, either a hexadecimal or decimal digit, numeri-
cally equivalent to the value of the binary bits. One word of data thus con-

Data Structure

Data Area Structure Section 3-2

18

tains four digits, which are numbered from right to left. These digit numbers
and the corresponding bit numbers for one word are shown below.

Bit number

Contents 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Digit number 3 2 1 0

When referring to the entire word, the digit numbered 0 is called the right-
most digit; the one numbered 3, the leftmost digit.

When inputting data into data areas, it must be input in the proper form for
the intended purpose. This is no problem when designating individual bits,
which are merely turned ON (equivalent to a binary value of 1) or OFF (a bi-
nary value of 0). When inputting word data, however, it is important to input it
either as decimal or as hexadecimal, depending on what is called for by the
instruction it is to be used for. Section 5 Instruction Set specifies when a par-
ticular form of data is required for an instruction.

Binary and hexadecimal can be easily converted back and forth because
each four bits of a binary number is numerically equivalent to one digit of a
hexadecimal number. The binary number 0101111101011111 is converted to
hexadecimal by considering each set of four bits in order from the right. Bi-
nary 1111 is hexadecimal F; binary 0101 is hexadecimal 5. The hexadecimal
equivalent would thus be 5F5F, or 24,415 in decimal (163 x 5 + 162 x 15 + 16
x 5 + 15).

Decimal and BCD are easily converted back and forth. In this case, each
BCD digit (i.e., each group of four BCD bits) is numerically equivalent of the
corresponding decimal digit. The BCD bits 0101011101010111 are converted
to decimal by considering each four bits from the right. Binary 0101 is deci-
mal 5; binary 0111 is decimal 7. The decimal equivalent would thus be 5,757.
Note that this is not the same numeric value as the hexadecimal equivalent
of 0101011101010111, which would be 5,757 hexadecimal, or 22,359 in deci-
mal (163 x 5 + 162 x 7 + 16 x 5 + 7).

Because the numeric equivalent of each four BCD binary bits must be nu-
merically equivalent to a decimal value, any four bit combination numerically
greater then 9 cannot be used, e.g., 1011 is not allowed because it is numeri-
cally equivalent to 11, which cannot be expressed as a single digit in decimal
notation. The binary bits 1011 are of course allowed in hexadecimal are a
equivalent to the hexadecimal digit C.

There are instructions provided to convert data either direction between BCD
and hexadecimal. Refer to 5-15 Data Conversion for details. Tables of binary
equivalents to hexadecimal and BCD digits are provided in the appendices
for reference.

Decimal points are used in timers only. The least significant digit represents
tenths of a second. All arithmetic instructions operate on integers only.

3-3 IR (Internal Relay)Area
The IR area is used both as data to control I/O points, and as work bits to
manipulate and store data internally. It is accessible both by bit and by word.
Those words that are used to control I/O points are called I/O words. Bits in
I/O words are called I/O bits.

The number of I/O words varies between the C1000H and C2000H as shown
in the following table. As shown, the remaining words for each PC are work

Converting Different Forms
of Data

Decimal Points

IR Area Section 3-3

19

words (work bits), which can be used in programming to manipulate data and
control other bits. IR area work bits are reset when power is interrupted or
PC operation is stopped.

PC I/O words I/O bits Work words Work bits

C1000H 000 through 063 00000 through 06315 064 through 236 06400 through 23615

C2000H 000 though 127 00000 though 12715 128 through 236 12800 through 23615

The maximum number of available I/O bits is 16 (bits/word) times the number
of I/O words, i.e., 1,024 bits for the C1000H; 2,048 for the C2000H. I/O bits
are assigned to input or output points as described later in this section (see
Word Allocations).

If a Unit brings inputs into the PC, the bit assigned to it is an input bit; if the
Unit sends an output from the PC, the bit is an output bit. To turn on an out-
put, the output bit assigned to it must be turned ON. When an input turns on,
the input bit assigned to it also turns ON. These facts can be used in the pro-
gram to access input status and control output status through I/O bits.

I/O bits that are not assigned to I/O points can be used as work bits.

Although normally not available as I/O words in the C1000H, IR 064 through
127 are used as I/O words by C1000H Remote I/O Systems to control I/O
points located on Remote I/O Units. Refer to the Optical Remote I/O and
Wired Remote I/O System Manuals for details on Remote I/O Systems.

Input bits can be used to directly input external signals to the PC and can be
used in any order in programming. Each input bit can also be used in as
many instructions as required to achieve effective and proper control. They
cannot be used in instructions that control bit status, e.g., the OUTPUT, DIF-
FERENTIATE UP, and KEEP instructions.

Output bits are used to output program execution results and can be used in
any order in programming. Because outputs are refreshed only once during
each cycle (i.e., once each time the program is executed), any output bit can
be used in only one instruction that controls its status, including OUT,
KEEP(11), DIFU(13), DIFD(14) and SFT(10). If an output bit is used in more
than one such instruction, only the status determined by the last instruction
will actually be output from the PC.

See 5-12 Shift Register – SFT(10) for an example that uses an output bit in
two ‘bit-control’ instructions.

I/O words in the IR area are allocated to Units mounted on Racks by per-
forming the I/O Table Registration operation. This operation creates in mem-
ory a table called an I/O table that records what words and how many words
are allocated to the Unit in each slot and whether these words are input or
output words. The actual procedure for this operation is described in Section
7 Program Input, Debugging, and Execution.

When the I/O Table Registration operation is performed, the system auto-
matically assigns word addresses to Units in the order in which they are
mounted left to right on the CPU Rack (or, in a Duplex System, on the CPU
I/O Rack) and then continuing left to right on any Expansion I/O Racks in the
order that the Expansion I/O Racks are connected. I/O words start from IR
000 for the first Unit and continue consecutively: IR 001, IR 002, etc.

Because different Units can require a different number of words, there are no
specific words associated with any particular slot. Rather, each Unit is as-

I/O Words

C1000H Remote I/O Words

Input Bit Usage

Output Bit Usage

Word Allocations

IR Area Section 3-3

20

signed the next word(s) following the word(s) assigned to the previous Unit. If
there are any empty slots, no words will be assigned. Words are only as-
signed when a Unit is mounted; all empty slots are skipped. The number of
I/O words allocated to each type of Unit is shown below.

Unit Words required

16-pt I/O Units 1 word

24- or 32-pt I/O Units 2 words

64-pt I/O Units 4 words

Interrupt Input Unit 1 word

Dummy I/O Unit Set to 1, 2, or 4 words

Analog I/O Units 2 or 4 words

High-speed Counter Units CT012 and CT041: 2 words; CT001: 4 words

MCR Units 4 words

PID Unit 4 words

I/O Interface Unit None

Cam Positioner 2 or 4 words

ASCII Unit 2 or 4 words

Host Link Unit None

PC Link Unit None (assigned LR words)

SYSMAC LINK Unit None (assigned LR and/or DM words)

SYSMAC NET Link Unit None (assigned LR and/or DM words)

Remote I/O Master Unit None*

Remote I/O Slave Unit None*

I/O Link Unit 1 or 2 words

File Memory Unit None

Position Control Units 2 or 4 words

I/O Control Unit None

ID Sensor Unit 5 words

*Remote I/O Systems are described briefly below.

Once the word(s) assigned to a Unit has been determined, the use of individ-
ual bits in the word(s) is determined by the type of Unit. If the Unit is a Spe-
cial I/O Unit, I/O Link Unit, or Intelligent I/O Unit, each bit will have a dedi-
cated function. Refer to Operation Manuals for the relevant Units for details.
With I/O Units, bits within a word are assigned to terminals starting at the top
of the I/O Unit with bit 00 and going sequentially to the bottom. If the first Unit
on the left of the first Rack (CPU Rack for all but C2000H Duplex Systems;
CPU I/O Rack for C2000H Duplex Systems) is an Input Unit, the top termi-
nals (i.e., the top input point) will be assigned IR 00000, the next terminals,
IR 00001, and so forth for all of the terminals on the Unit. The allocation or-

IR Area Section 3-3

21

der is illustrated below. Arrows indicate the order in which words are allo-
cated to Units.

C2000H CPU Rack C2000H Duplex CPU Rack

CPU I/O RackExpansion I/O Rack

Expansion I/O Rack Expansion I/O Rack

To other Expansion I/O Racks

Starting point

Starting point

I/O Control Unit

I/O Interface Unit

Empty slot (no words allocated)

I/O Control Unit

Duplex
Unit

CPU CPU CPU

I/O Interface Unit I/O Interface Unit

To other Expansion I/O Racks

Although a Remote I/O Master Unit (called a Master for short) mounted to a
Rack, and any Remote I/O Slave Units connected to it, are not allocated I/O
words, any Units on the Slave Racks or other Remote I/O Units connected to
the Master are allocated I/O words.

Units mounted to a Slave Rack are allocated words according to the slot
where the Master is mounted. If IR 16 is the last word allocated to the Unit to
the left of the Master, IR 17 would be allocated to the first Unit on the left end
of the first Slave Rack connected to the Master. Allocations would continue to
all of the Units on all Slave Racks before continuing to the Unit mounted to

Remote I/O Systems

IR Area Section 3-3

!

22

the right of the Master. If 18 words we required by the Units on the Slave
Racks, the first word allocated to the Unit to the right of the Master would be
IR 35.

I/O word allocations for other Remote I/O Units are not according to the
mounting order of their Master. They are determined, rather, by the word set-
ting on the Unit and the word multiplier set for the Master through which they
are controlled, according to the following equation.

Allocated word = word setting + (32 x word multiplier)

Word allocations for Remote I/O Systems are described in more detail in the
Wired and Optical Remote I/O System Manuals.

Once Units have been mounted and the I/O Table Registration operation has
been performed, a change to any Unit mounted to a Rack that affects the
type of I/O word, or the number of words, required by the Unit will cause an
I/O verification error to occur. This includes adding Units to previously un-
used slots or removing Units that have already been allocated word(s). A
Unit can, however, be replaced with another Unit that requires the same
number of input words and the same number of output words without gener-
ating an I/O verification error.

There are two ways to change the I/O table registered in memory. One is to
allocate words to a slot that is not currently being used. This method is de-
scribed below in Word Reservation.

The other way is to perform the I/O Table Registration operation again. When
this is done, all I/O words will be reallocated according to the Units mounted
to the Racks at the time. If the number of words allocated to any one slot
changes, all word allocations past that slot will also change, requiring that the
program be changed to allow for this.

Sometimes program changes can be avoided when a Unit is removed from a
Rack by reserving words. Although designed to enable slot reservations for
future use, a slot reservation can be left permanently to prevent what could
be extensive program changes.

Caution Always be sure to change word and bit addresses in the program whenever a
change to Units on a Rack affects word allocations. Failure to do so may cause
improper I/O operations.

Words can be reserved at a certain slot for future use either by mounting a
Dummy I/O Unit to the slot before performing the I/O Table Registration op-
eration or by performing an I/O Table Change operation after performing the
I/O Table Registration operation.

A Dummy I/O Unit provides settings to designate word types (input or output)
and length (one, two, or four words). After I/O Table Generation has been
performed and a Dummy I/O Unit has been allocated the words designated
by these settings, it can be replaced at any time with a Unit that requires the
same type and number of words, e.g., if a Dummy I/O Unit is set for two input
words, it can be replaced with any 24- or 32-point Input Unit or any other Unit
that requires two input words.

Once an I/O table has been registered, it can be changed using the I/O Table
Change operation described in Section 7 Program Input, Debugging, and
Execution. This operation can be used to reserve up to four input words, out-
put words, or non-defined words at a time. It cannot be used to reserve
words for Units in Remote I/O Systems or for Interrupt Input Units.The I/O

Rack Changes

Word Reservations

IR Area Section 3-3

23

Table Change operation must be performed after the I/O Table Registration
operation, otherwise all word reservations will be cancelled, and I/O Table
Change will have to be repeated.

3-4 SR (Special Relay) Area
The SR area contains flags and control bits used for monitoring PC opera-
tion, accessing clock pulses, and signalling errors. SR area word addresses
range from 247 through 255; bit addresses, from 24700 through 25515.

The following table lists the functions of SR area flags and control bits. Most
of these bits are described in more detail following the table. Descriptions are
in order by bit number except that Link System bits are grouped together.

Unless otherwise stated, flags are OFF until the specified condition arises,
when they are turned ON. Restart bits are usually OFF, but when the user
turns one ON then OFF, the specified Link Unit will be restarted. Other con-
trol bits are OFF until set by the user.

SR bits 25209 through 25215 are all control bits. They can be turned ON and
OFF from the program, i.e., they can be manipulated with the OUTPUT and
OUTPUT NOT instructions. Any of these bits not assigned specific functions
should be left OFF. Bits in words SR 237 through SR 251, only, can be used
as work bits if the Systems for which these bits are dedicated are not used by
the PC.

Word(s) Bit(s) Function

237 00 to 07 Completion code output area following execution of SEND(90)/RECV(98) for SYSMAC LINK
System or NET Link System

08 to 15 Not used.

238 to 241 00 to 15 Data link status output area for operating level 0 of SYSMAC LINK or SYSMAC NET Link
System

242 to 245 00 to 15 Data link status output area for operating level 1 of SYSMAC LINK or SYSMAC NET Link
System

246 00 to 15 Not used.

247 to 250 00 to 07 PC Link Unit Run Flags or data link status for operating level 1

08 to 15 PC Link Unit Error Flags or data link status for operating level 1

251 00 to 15 Remote I/O Error Flags

252 00 and 01 Not used.

02 Operating Level 0 Data Link Operating Flag

03 SEND(90)/RECV(98) Error Flag

04 SEND(90)/RECV(98) Enable Flag

05 Operating Level 1 Data Link Operating Flag

06 Rack-mounting Host Link Unit Level 1 Error Flag

07 Not used.

08 CPU-mounting Host Link Unit Error Flag

09 CPU-mounting Host Link Unit Restart Bit

10 Leave set to 0.

11 Not used.

12 Data Retention Control Bit

13 Rack-mounting Host Link Unit Restart Bit

14 Leave set to 0.

15 Output OFF Bit

SR Area Section 3-4

24

Word(s) FunctionBit(s)

253 00 to 07 FAL number output area.

08 Low Battery Flag

09 Cycle Time Error Flag

10 I/O Verification Error Flag

11 Rack-mounting Host Link Unit Level 0 Error Flag

12 Remote I/O Error Flag

13 Normally ON Flag

14 Normally OFF Flag

15 First Cycle

254 00 1-minute clock pulse bit

01 0.02-second clock pulse bit

02 to 06 Reserved for function expansion. Do not use.

07 Step Flag

08 to 12 Duplex System flags

13 to 15 Reserved for function expansion. Do not use.

255 00 0.1-second clock pulse bit

01 0.2-second clock pulse bit

02 1.0-second clock pulse bit

03 Instruction Execution Error (ER) Flag

04 Carry (CY) Flag

05 Greater Than (GR) Flag

06 Equals (EQ) Flag

07 Less Than (LE) Flag

3-4-1 Link System Flags and Control Bits
Use of the following SR bits depends on the configuration of any Link Sys-
tems to which your PC belongs. These flags and control bits are used when
Link Units, such as PC Link Units, SYSMAC LINK Units, Remote I/O Units,
SYSMAC NET Link Units, or Host Link Units, are mounted to the PC Racks
or to the CPU. For additional information, consult the System Manual for the
particular Units involved.

The following bits can be employed as work bits when the PC does not be-
long to the Link System associated with them.

Remote I/O Systems
Word 251 is used to indicate errors in Remote I/O Systems. The function of
each bit is described below. Refer to Optical and Wired Remote I/O System
Manuals for details.

If there are errors in more than one Remote I/O Unit, word 251 will error in-
formation for only the first one. Data for the remaining Units will be stored in
memory and can be accessed by turning the Error Check bit ON and OFF.
Be sure to record data for the first error, which will be cleared when data for
the next error is displayed.

Not used.

Bit 03 turns ON when an error has occurred in a Remote I/O Unit.

Bit 00 - Error Check Bit

Bits 01 and 02

Bit 03 - Remote I/O Error
Flag

SR Area Section 3-4

25

If the content of bits 12 through 15 is B, an error has occurred in a Remote
I/O Master or Slave Unit, and the content of bits 08 through 11 will indicate
the mounting order of the Master of the Remote I/O Subsystem involved.
These numbers are assigned to Masters in the order that they are mounted
to the CPU and Expansion I/O Racks. If the error is in the Master, bit 7 will be
ON. If the error is in a Slave, bit 07 will be OFF, and bits 04 through 06 will
provide the unit number of the Slave where the error occurred.

If the content of bits 12 through 15 is other than B, an error has occurred in
an Optical I/O Unit, I/O Link Unit, or Remote Terminal. Here, bits 08 through
15 will provide the word address that has been set on the Unit and bits 05
and 06 will provide the word multiplier of the Master of the Remote I/O Sub-
system to which the Unit belongs. The word address setting and word multi-
plier can be used to find the actual word allocated to the Unit as follows:

 Allocated word = Word setting + (word multiplier x 32)

When this Unit is an Optical I/O Unit, bit 04 will be ON if the Unit is assigned
leftmost word bits (08 through 15), and OFF if it is assigned rightmost word
bits (00 through 07).

Host Link Systems
Both Error flags and Restart bits are provided for Host Link Systems. Error
flags turn ON to indicate errors in Host Link Units. Restart bits are turned ON
and then OFF to restart a Host Link Unit. SR bits used with Host Link Sys-
tems are summarized in the following table. Rack-mounting Host Link Unit
Restart bits are not effective for the Multilevel Rack-mounting Host Link
Units. Refer to the Host Link System Manual for details.

Flag Bit

Rack-mounting Host Link Unit Level 1 Error Flag 25206

CPU-mounting Host Link Unit Error Flag 25208

CPU-mounting Host Link Unit Restart Bit 25209

Rack-mounting Host Link Unit Restart Bit 25213

Rack-mounting Host Link Unit Level 0 Error Flag 25311

SYSMAC NET Link and SYSMAC LINK Systems
SR 25203 turns ON when an error has occurred in data communications us-
ing SEND(90) or RECV(98) to transfer data in either a SYSMAC NET Link or
SYSMAC LINK System and SR 25204 is ON when SEND(90) or RECV(98)
are enable in these Systems. SR 25202 turns ON when a data link is active
in operating level 0 of either of these Systems and SR 25205 turns ON with a
data link is active in operating level 1. These flags and corresponding SR bits
are shown below.

Bit Flag

25202 Operating Level 0 Data Link Operating Flag

25203 SEND(90)/RECV(98) Error Flag

25204 SEND(90)/RECV(98) Enable Flag

25205 Operating Level 1 Data Link Operating Flag

When SEND(90) or RECV(98) is used in a SYSMAC LINK System, a com-
pletion code is output to SR 23700 through SR 23707a to indicate whether or
not the data transfer was completed successfully or not and to indicate the
nature of the error when communications are not completed successfully.
These error codes are as follows.

Bits 04 to 15

SYSMAC LINK
Communications
Completion Code

SR Area Section 3-4

26

Completion
code

Name Meaning

00 Normal end Data transfer was completed successfully.

01 Parameter error SEND(90)/RECV(98) instruction operands are not within specified
ranges.

02 Transmission impossible The System was reset during execution of the instruction or the
destination node is not in the System.

03 Destination not in System The destination node is not in the System.

04 Busy error The destination node is busy and cannot receive the transfer.

05 Response timeout A response was not received within the time limit.

06 Response error An error response was received from the destination node.

07 Communications controller error An error occurred in the communications controller.

08 Setting error The node address was set incorrectly.

09 CPU error A CPU error occurred in the PC of the destination node.

Data link status is output to SR 238 through SR 241 for the operating-level-0
data link in the SYSMAC NET Link or SYSMAC LINK System. Although link
status is always output to SR 242 through SR 245 for the SYSMAC LINK
System, the status of SW3-4 on the SYSMAC NET Link Unit determines the
words used for operating level 1 of the SYSMAC NET Link System, i.e., if
SW3-4 is ON, SR 242 through SR 245 are used; if SW3-4 is OFF, SR 247
through SR 250 are used. In the C2000H Duplex System, however, one one
SYSMAC NET Link Unit can be mounted and SR 247 through SR 250 are
always used for data link status.

The meaning of each bit in these areas differs depending on whether the
data link is in a SYSMAC LINK System or SYSMAC NET Link System, as
shown below. Note that SR 247 through SR 250 are also used for PC Link
Systems, as described in the next section.

SYSMAC LINK Systems

Level 0 Level 1 Bits

00 to 03 04 to 07 08 to 11 12 to 15

SR 238 SR 242 Node 1 Node 2 Node 3 Node 4

SR 239 SR 243 Node 5 Node 6 Node 7 Node 8

SR 240 SR 244 Node 9 Node 10 Node 11 Node 12

SR 241 SR 245 Node 13 Node 14 Node 15 Node 16

Each of the above sets of four bits operates as shown below.

Leftmost bit Middle bits Rightmost bit

ON when data link
is active.

ON when there is
a data
communications
error.

ON when there is
a PC error.

ON when PC is in
RUN mode

SYSMAC LINK/SYSMAC
NET Link Data Link Status

SR Area Section 3-4

27

SYSMAC NET Link Systems

Level 0 Level 1 Bit numbers in header/data link table entry numbers in table body

SW3-4 SW3-4 PC Error Flags PC Run Flags

 ON OFF 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

SR 238 SR 242 SR 247 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

SR 239 SR 243 SR 248 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16

SR 240 SR 244 SR 249 17 18 19 20 21 22 23 24 17 18 19 20 21 22 23 24

SR 241 SR 245 SR 250 25 26 27 28 29 30 31 32 25 26 27 28 29 30 31 32

PC Link Systems

When the PC belongs to a PC Link System, words 247 through 250 are used
to monitor the operating status of all PC Link Units connected to the PC Link
System. This includes a maximum of 32 PC Link Units. If the PC is in a Multi-
level PC Link System, half of the PC Link Units will be in a PC Link Subsys-
tem in operating level 0; the other half, in a Subsystem in operating level 1.
The actual bit assignments depend on whether the PC is in a Single-level PC
Link System or a Multilevel PC Link System. Refer to the PC Link System
Manual for details. Error and Run Flag bit assignments are described below.

Bits 00 through 07 of each word are the Run flags, which are ON when the
PC Link Unit is in RUN mode. Bits 08 through 15 are the Error flags, which
are ON when an error has occurred in the PC Link Unit. The following table
shows bit assignments for Single-Level and Multilevel PC Link Systems.

Single-level PC Link Systems

Flag type Bit no. SR 247 SR 248 SR 249 SR 250

Run flags 00 Unit #24 Unit #16 Unit #8 Unit #0

01 Unit #25 Unit #17 Unit #9 Unit #1

02 Unit #26 Unit #18 Unit #10 Unit #2

03 Unit #27 Unit #19 Unit #11 Unit #3

04 Unit #28 Unit #20 Unit #12 Unit #4

05 Unit #29 Unit #21 Unit #13 Unit #5

06 Unit #30 Unit #22 Unit #14 Unit #6

07 Unit #31 Unit #23 Unit #15 Unit #7

Error flags 08 Unit #24 Unit #16 Unit #8 Unit #0

09 Unit #25 Unit #17 Unit #9 Unit #1

10 Unit #26 Unit #18 Unit #10 Unit #2

11 Unit #27 Unit #19 Unit #11 Unit #3

12 Unit #28 Unit #20 Unit #12 Unit #4

13 Unit #29 Unit #21 Unit #13 Unit #5

14 Unit #30 Unit #22 Unit #14 Unit #6

15 Unit #31 Unit #23 Unit #15 Unit #7

PC Link Unit Error and Run
Flags

SR Area Section 3-4

28

Multilevel PC Link Systems

Flag type Bit no. SR 247 SR 248 SR 249 SR 250

Run flags 00 Unit #8,
level 1

Unit #0,
level 1

Unit #8,
level 0

Unit #0,
level 0

01 Unit #9,
level 1

Unit #1,
level 1

Unit #9,
level 0

Unit #1,
level 0

02 Unit #10,
level 1

Unit #2,
level 1

Unit #10,
level 0

Unit #2,
level 0

03 Unit #11,
level 1

Unit #3,
level 1

Unit #11,
level 0

Unit #3,
level 0

04 Unit #12,
level 1

Unit #4,
level 1

Unit #12,
level 0

Unit #4,
level 0

05 Unit #13,
level 1

Unit #5,
level 1

Unit #13,
level 0

Unit #5,
level 0

06 Unit #14,
level 1

Unit #6,
level 1

Unit #14,
level 0

Unit #6,
level 0

07 Unit #15,
level 1

Unit #7,
level 1

Unit #15,
level 0

Unit #7,
level 0

Error flags 08 Unit #8,
level 1

Unit #0,
level 1

Unit #8,
level 0

Unit #0,
level 0

09 Unit #9,
level 1

Unit #1,
level 1

Unit #9,
level 0

Unit #1,
level 0

10 Unit #10,
level 1

Unit #2,
level 1

Unit #10,
level 0

Unit #2,
level 0

11 Unit #11,
level 1

Unit #3,
level 1

Unit #11,
level 0

Unit #3,
level 0

12 Unit #12,
level 1

Unit #4,
level 1

Unit #12,
level 0

Unit #4,
level 0

13 Unit #13,
level 1

Unit #5,
level 1

Unit #13,
level 0

Unit #5,
level 0

14 Unit #14,
level 1

Unit #6,
level 1

Unit #14,
level 0

Unit #6,
level 0

15 Unit #15,
level 1

Unit #7,
level 1

Unit #15,
level 0

Unit #7,
level 0

If the PC is in a Multilevel PC Link System and the content of word 248 is
02FF, then PC Link Units #0 through #7 of in the PC Link Subsystem as-
signed operating level 1 would be in RUN mode, and PC Link Unit #1 in the
same Subsystem would have an error. The hexadecimal digits and corre-
sponding binary bits of word 248 would be as shown below.

Bit no 15 0

Binary 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1

Hex 0 2 F F

3-4-2 Data Retention Control Bit
SR bit 25212 can be turned ON to preserve the status of IR and LR bits
when shifting from PROGRAM to MONITOR or RUN mode or when shifting
from MONITOR or RUN mode to PROGRAM mode. If bit 25212 is OFF, IR
and LR bits will be turned OFF when switching between these modes.

The status of the Data Retention Control bit is maintained for power interrup-
tions or when PC operation is stopped.

Application Example

SR Area Section 3-4

29

3-4-3 Output OFF Bit

SR bit 25215 is turned ON to turn OFF all outputs from the PC. The OUT
INHB. indicator on the front panel of the CPU will light. When the Output OFF
Bit is OFF, all output bits will be refreshed in the usual way.

The status of the Output OFF bit is maintained for power interruptions or
when PC operation is stopped.

3-4-4 FAL (Failure Alarm) Area

A 2-digit BCD FAL code is output to bits 25300 to 25307 when the FAL or
FALS instruction is executed. These codes are user defined for use in error
diagnosis, although the PC also outputs FAL codes to these bits, such as one
caused by battery voltage drop.

This area can be reset by executing the FAL instruction with an operand of
00 or by performing a Failure Read Operation from the Programming Con-
sole.

3-4-5 Low Battery Flag

SR bit 25308 turns ON if the voltage of the CPU or File Memory backup bat-
tery drops. The warning indicator on the front of the CPU will also light.

This bit can be programmed to activate an external warning for a low battery
voltage.

3-4-6 Cycle Time Error Flag

SR bit 25309 turns ON if the cycle time exceeds 100 ms. The warning indica-
tor on the front of the CPU will also light. Program execution will not stop,
however, unless the maximum time limit set for the watchdog timer is ex-
ceeded. Timing may become inaccurate after the cycle time exceeds 100 ms.

3-4-7 I/O Verification Error Flag

SR bit 25310 turns ON when the Units mounted in the system disagree with
the I/O table registered in the CPU. The warning indicator on the front of the
CPU also lights, but PC operation will continue.

To ensure proper operation, PC operation should be stopped, Units checked,
and the I/O table corrected whenever this flag goes ON.

3-4-8 First Cycle Flag

SR bit 25315 turns ON when PC operation begins and then turns OFF after
one cycle of the program. The First Cycle Flag is useful in initializing counter
values and other operations. An example of this is provided in 5-11 Timer
and Counter Instructions.

3-4-9 Clock Pulse Bits

Five clock pulses are available to control program timing. Each clock pulse
bit is ON for the first half of the rated pulse time, then OFF for the second
half. In other words, each clock pulse has a duty factor of 50%.

SR Area Section 3-4

30

These clock pulse bits are often used with counter instructions to create tim-
ers. Refer to 5-11 Timer and Counter Instructions for an example of this.

Pulse width 1 min 0.02 s 0.1 s 0.2 s 1.0 s

 Bit 25400 25401 25500 25501 25502

Bit 25400
1-min clock pulse

Bit 25401
0.02-s clock pulse

Bit 25500
0.1-s clock pulse

Bit 25501
0.2-s clock pulse

Bit 25502
1.0-s clock pulse Caution:

Because the 0.1-second and
0.02-second clock pulse bits have ON
times of 50 and 10 ms, respectively,
the CPU may not be able to accu-
rately read the pulses if program
execution time is too long.

0.1 s

.05 s .05 s

1.0 s

0.5 s 0.5 s

0.2 s

0.1 s 0.1 s

1 min.

30 s 30 s

.02 s

.01 s .01 s

!

3-4-10 Step Flag
SR bit 25407 turns ON for one cycle when step execution is started with the
STEP(08) instruction.

3-4-11 Duplex System Flags
Five flags are provided in the SR area to monitor Duplex System operation.
These flags are used only with a C2000H Duplex System. The following table
summarizes Duplex System flags.

Name Bit Function

Bus Error Flag 25408 Turns ON when an error occurs in communications
between the CPUs. When this flag turns ON, one of
the CPUs will take over control and switch to
simplex operation.

Replacement
Enabled Flag

25409 Turns ON when the other CPU may be removed.

CPU Error Flag 25410 Turns ON when a CPU error has occurred in the
other CPU.

Memory Error
Flag

25411 Turns ON when a memory error has occurred in the
other CPU.

Run Flag 25412 Stays ON during normal duplex operation.

3-4-12 Instruction Execution Error Flag, ER
SR bit 25503 turns ON if an attempt is made to execute an instruction with
incorrect operand data. Common causes of an instruction error are non-BCD
operand data when BCD data is required, or an indirectly addressed DM

SR Area Section 3-4

!

!

31

word that is non-existent. When the ER Flag is ON, the current instruction
will not be executed.

3-4-13 Arithmetic Flags
The following flags are used in data shifting, arithmetic calculation, and com-
parison instructions. They are generally referred to only by their two-letter
abbreviations.

Caution These flags are all reset when the END instruction is executed, and therefore
cannot be monitored from a programming device.

Refer to 5-12 Data Shifting, 5-14 Data Comparison, 5-16 BCD Calculations,
and 5-17 Binary Calculations for details.

SR bit 25504 turns ON when there is a carry in the result of an arithmetic op-
eration or when a rotate or shift instruction moves a “1” into CY. The content
of CY is also used in some arithmetic operations, e.g., it is added or sub-
tracted along with other operands. This flag can be set and cleared from the
program using the SET CARRY and CLEAR CARRY instructions.

SR bit 25505 turns ON when the result of a comparison shows the second of
two operands to be greater than the first.

SR bit 25506 turns ON when the result of a comparison shows two operands
to be equal or when the result of an arithmetic operation is zero.

SR bit 25507 turns ON when the result of a comparison shows the second of
two operands to be less than the first.

Caution The previous four flags are cleared when END(01) is is executed.

3-5 AR (Auxiliary Relay) Area
The AR area consists of two parts. The first part, words AR 00 through AR 06
(bits AR 0000 through AR 0615), may be used by the user as work words or
work bits. The rest of the AR area, words AR 07 through AR 27 (bits AR 0700
through AR 2715), is dedicated for various flags, control bits, and operating
parameters.

AR 07 through AR 15 are used for the SYSMAC LINK System; AR 16 and
AR 17 are used for both the SYSMAC LINK System and the SYSMAC NET
Link System; and AR 19 through AR 21 are used with the File Memory Unit.
When not used for their prescribed purposes, these words may be used as
work bits.

The AR area retains status during power interruptions, when switching from
MONITOR or RUN mode to PROGRAM mode, or when PC operation is
stopped. Bit allocations are shown in the following table and described in the
following pages in order of bit number.

Carry Flag, CY

Greater Than Flag, GR

Equal Flag, EQ

Less Than Flag, LE

AR Area Section 3-5

32

AR Area Flags and Control Bits

Word(s) Bit(s) Function

07 00 to 03 Data Link setting for operating level 0 of SYSMAC LINK System

05 to 07 Data Link setting for operating level 1 of SYSMAC LINK System

08 to 15 Not used. May be used as work bits.

08 to 10 00 to 15 Active Node Flags for SYSMAC LINK System nodes of

11 00 to 13 operating level 0

11 14 Communications Controller Error Flag for operating level 0

15 EEPROM Error Flag for operating level 0

12 to 14 00 to 15 Node Active Flags for SYSMAC LINK System nodes of

15 00 to 13 operating level 1

15 14 Communications Controller Error Flag for operating level 1

15 EEPROM Error Flag for operating level 1

16 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating level 0 service time per cycle

17 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating level 1 service time per cycle

18 12 Trace Complete Flag

13 Tracing Flag

14 Trace Start Bit

15 Sampling Start Bit

19 00 File Memory Unit Error Reset Bit

01 FM Data Transfer Flag

02 FM Write/Read Flag

03 FM Blocks Different Error Flag

04 FM Write-protected Error Flag

05 Unsuccessful FM Write Flag

06 FM Checksum Error Flag

07 File Memory Unit Low Battery Flag

08 FM Blocks 0 to 249 Write-protect Bit

09 FM Blocks 250 to 499 Write-protect Bit

10 FM Blocks 500 to 749 Write-protect Bit

11 FM Blocks 750 to 999 Write-protect Bit

12 FM Blocks 1,000 to 1,249 Write-protect Bit

13 FM Blocks 1,250 to 1,499 Write-protect Bit

14 FM Blocks 1,500 to 1,749 Write-protect Bit

15 FM Blocks 1,750 to 1,999 Write-protect Bit

20 00 to 15 FM Blocks Counter

21 00 to 15 Remaining FM Blocks Counter

22 00 to 11 On-line Removal First Word Indicator

12 to 14 Number of Words Indicator for On-line Removal

15 On-line Removal Flag

23 00 to 15 Power-Off Counter

AR Area Section 3-5

33

Word(s) FunctionBit(s)

24 00 to 03 Leftmost digit of FALS-generating address

(AR 25 contains the other four digits)

04 and 05 Not used and not accessible by user.

06 Level 1 Network Parameter Flag

07 Level 0 Network Parameter Flag

08 to 10 Not used and not accessible by user.

11 PC Link Unit Level 1 Mounted Flag

12 PC Link Unit Level 0 or Single-level PC Link Unit Mounted Flag

13 SYSMAC NET Link Unit Mounted Flag

14 Rack-mounting Host Link Unit Mounted Flag

15 CPU-mounting Device Flag

25 00 to 15 Rightmost four digits of FALS-generating address
(AR 2400 to AR 2403 contain the fifth digit)

26 00 to 15 Maximum cycle time

27 00 to 15 Present cycle time

3-5-1 SYSMAC LINK System Data Link Settings
AR 0700 to AR 0703 and AR 0704 to AR 0707 are used to designate word
allocations for operating levels 0 and 1 of the SYSMAC LINK System. Alloca-
tion can be set to occur either according to settings from a Peripheral Device
(e.g., FIT) or automatically in the LR and/or DM areas. If automatic allocation
is designated, the number of words to be allocated to each node is also des-
ignated. These settings are shown below.

External/Automatic Allocation

Operating level 0 Operating level 1 Setting

AR 0700 AR 0701 AR 0704 AR 0705

0 0 0 0 Words set externally (e.g., FIT)

1 0 1 0 Automatic LR area only

0 1 0 1 allocation DM area only

1 1 1 1 LR and DM
areas

Words per Node
The following setting is necessary if automatic allocation is designated
above.

Operating level 0 Operating level 1 words per node Max. no.

AR 0702 AR 0703 AR 0706 AR 0707 LR area DM area of nodes

0 0 0 0 4 8 16

1 0 1 0 8 16 8

0 1 0 1 16 32 4

1 1 1 1 32 64 2

The above settings are read every cycle while the SYSMAC LINK System is
in operation.

3-5-2 Active Node Flags
AR 08 through AR 11 and AR 12 through AR 15 provide flags that indicate
which nodes are active in the SYSMAC LINK System at the current time.

AR Area Section 3-5

34

These flags are refreshed every cycle while the SYSMAC LINK System is
operating.

The body of the following table show the node number assigned to each bit.
If the bit is ON, the node is currently active.

 Level 0 Level 1 Bit (body of table shows node numbers)

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

AR 08 AR 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

AR 09 AR 13 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

AR 10 AR 14 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

AR 11 AR 15 49 50 51 52 53 54 55 56 57 58 59 60 61 62 * **

*Communication Controller Error Flag
**EEPROM Error Flag

3-5-3 SYSMAC LINK/SYSMAC NET Link System Service Time
AR 16 provides the time allocated to servicing operating level 0 of the SYS-
MAC LINK System and/or SYSMAC NET Link System during each cycle
when a SYSMAC LINK Unit and/or SYSMAC NET Link Unit is mounted to a
Rack.

AR 17 provides the time allocated to servicing operating level 1 of the SYS-
MAC LINK System and/or SYSMAC NET Link System during each cycle
when a SYSMAC LINK Unit and/or SYSMAC NET Link Unit is mounted to a
Rack.

These times are recorded in 4-digit BCD to tenths of a millisecond (000.0 ms
to 999.9 ms) and are refreshed every cycle.

Bits

15 to 12 11 to 08 07 to 04 03 to 00

102 101 100 10–1

3-5-4 Tracing Flags and Control Bits
AR 1812 through AR 1815 are used with trace operations, which are de-
scribed in 5-23 Data Tracing – TRSM(45). AR 1812 and AR 1813 are re-
freshed every cycle.

Sampling begins on the rising edge of the Sampling Start Bit, AR 1815. Ac-
tual tracing begins on the rising edge of the Trace Start Bit, AR 1814. The
Tracing Flag, AR 1813, turns ON then tracing has started. When tracing has
completed, the Tracing Flag turns OFF and the Trace Complete Flag, AR
1812, turns ON.

3-5-5 File Memory Flags and Control Bits
AR 19 through AR 21 are used with File Memory operations, which are de-
scribed in 5-24 File Memory Instructions.

The following table describes the flags and reset bits available for FM opera-
tions. The actual use of these is described in more detail in 5-24 File Memory
Instructions. AR 1903 through AR 1907 are refreshed every cycle when a
File Memory Unit is mounted.

Flags and Reset Bit

AR Area Section 3-5

35

Name Bit Function

File Memory Unit Error Reset Bit AR 1900 Turned ON from program to reset AR 1903 through AR 1906.

FM Data Transfer Flag AR 1901 ON while FM data is being transferred.

FM Write/Read Flag AR 1902 ON during transfers to FM; OFF during transfers from FM.

FM Blocks Different Error Flag AR 1903 Turns ON if attempt is made to read different types of FM block.

FM write-protected Error Flag AR 1904 Turns ON if attempt is made to write to a write-protected block.

Unsuccessful FM Write Flag AR 1905 Turns ON if a write operation to FM ends unsuccessfully.

FM Checksum Error Flag AR 1906 Turns ON if a checksum error occurs when reading from FM.

File Memory Unit Low Battery Flag AR 1907 Turns ON if the File Memory Unit battery voltage drops.

FM data can be write-protected in units of 250 blocks. To protect any part of
FM from being overwritten, turn ON the Write-protect bits of the blocks to be
protected. These are software protects. There are also switch settings on the
File Memory Unit that can be set to achieve the same purpose.

Bit Blocks

AR 1908 0 to 249

AR 1909 250 to 499

AR 1910 500 to 749

AR 1911 750 to 999

AR 1912 1000 to 1249

AR 1913 1250 to 1499

AR 1914 1500 to 1749

AR 1915 1750 to 1999

The FM Blocks Counter (AR 20) indicates the number of the block that is cur-
rently being transferred. The Remaining FM Blocks Counter (AR 21) indi-
cates the number of blocks remaining to be transferred. Both of these count-
ers provide data in 4-digit BCD and are refreshed each time transfer of a
block is completed.

Bits

15 to 12 11 to 08 07 to 04 03 to 00

103 102 101 100

3-5-6 On-line Removal Bits
AR 22 indicates when a Unit is being removed on-line and what words are
allocated to the Unit. AR 22 is refreshed every cycle while a Unit is being re-
moved on-line.

The On-line Removal Flag, AR 2215 turns ON when an on-line removal op-
eration is in progress. The On-line Removal First Word Indicator, AR 2200
through AR 2211, indicates the first word allocated to the Unit that is being
removed. This value is in 3-digit BCD.

The Number of Words Indicator, AR 2212 through AR 2214, indicates in bi-
nary the number of words allocated to the Unit that is being removed.

3-5-7 Power-off Counter
AR 23 provides in 4-digit BCD the number of times that the PC power has
been turned off. This counter can be reset as necessary using the PV

Write-protect Bits

Block Counters

AR Area Section 3-5

36

Change 1 operation from the Programming Console. (Refer to 7-6-3 Hex/
BCD Data Modification for details.) The Power-Off Counter is refreshed every
time power is turned on.

3-5-8 Network Parameter Flags
AR 2406 is ON when the actual setting of the network parameter for operat-
ing level 1 of the SYSMAC LINK System differs from the setting at the FIT.

AR 2407 is ON when the actual setting of the network parameter for operat-
ing level 0 of the SYSMAC LINK System differs from the setting at the FIT.

3-5-9 Link Unit Mounted Flags
The following flags indicate when the specified Link Units are mounted to the
Racks. (Refer to 3-5-7 CPU-mounting Device Flag for CPU-mounting Host
Link Units.) These flags are refreshed every cycle.

Name Bit Link Unit

PC Link Unit Level 1 Mounted Flag AR 2411 PC Link Unit in operating level 1

PC Link Unit Level 0 Mounted Flag AR 2412 PC Link Unit in operating level 0 or in Single-level System

SYSMAC NET Link Unit Mounted Flag AR 2413 SYSMAC NET Link Unit

Rack-mounting Host Link Unit AR 2414 Rack-mounting Host Link Unit

3-5-10 CPU-mounting Device Flag
AR 2415 turns ON when any device is mounted directly to the CPU. This in-
cludes CPU-mounting Host Link Units, Programming Consoles, and Interface
Units. This flag is refreshed every cycle.

3-5-11 FALS-generating Address
AR 2400 to AR 2403 and AR 25 contain the address generating a user-pro-
grammed FALS code or a system FALS code 9F (cycle time error). The ad-
dress is in 5-digit BCD with the leftmost digit given in AR 2400 to AR 2403
and the rightmost four digits given in AR 25. FALS codes are described in
5-22-1 Failure Alarm – FAL(06) and Severe Failure Alarm – FALS(07). The
address is refreshed every cycle when an FALS code has been generated.

3-5-12 Cycle Time Indicators
AR 26 contains the maximum cycle time that has occurred since program
execution was begun. AR 27 contains the present cycle time.

These times are recorded in 4-digit BCD to tenths of a millisecond (000.0 ms
to 999.9 ms) and are refreshed every cycle.

Bits

15 to 12 11 to 08 07 to 04 03 to 00

102 101 100 10–1

3-6 DM (Data Memory) Area
The DM area is used for internal data storage and manipulation and is acces-
sible only by word. Addresses range from DM 0000 through DM 4095 for the
C1000H; from DM 0000 through DM 6655 for the C2000H.

Although composed of 16 bits just like any other word in memory, DM words
cannot be specified by bit for use in instructions with bit-size operands, such

DM Area Section 3-6

37

as LD, OUT, AND, and OR, nor can DM words be used with the SHIFT in-
struction.

The DM area retains status during power interruptions.

Normally, when the content of a data area word is specified for an instruction,
the instruction is performed directly on the content of that word. For example,
suppose CMP(20) (COMPARE), with IR 005 as the first operand and DM
0010 as the second operand, is used in the program. When this instruction is
executed, the content of IR 005 is compared with that of DM 0010.

It is also possible, however, to use indirect DM addresses as operands for
instructions. If �DM 0100 is specified as the data for a programming instruc-
tion, the asterisk in front of DM indicates that it is an indirect address that
specifies another DM word which contains the actual operand data. If, in this
case, the content of DM 0100 is 0324, then �DM 0100 indicates DM 0324 as
the word that contains the desired data, and the content of DM 0324 is used
as the operand in the instruction. The following example shows this type of
indirect addressing with the MOVE instruction (MOV(21)).

MOV(21)

�DM 0100

LR 00

 Word Content
DM 0099 4C59
DM 0100 0324
DM 0101 F35A

DM 0324 5555
DM 0325 2506
DM 0326 D541

5555 moved
to LR 00.

Indicates
DM 0324.

Indirect
address

3-7 HR (Holding Relay) Area
The HR area is used to store/manipulate various kinds of data and can be
accessed either by word or by bit. Word addresses range from HR 00
through HR 99; bit addresses, from HR 0000 through HR 9915. HR bits can
be used in any order required and can be programmed as often as required.

The HR area retains status when the system operating mode is changed,
when power is interrupted, or when PC operation is stopped.

HR area bits and words can be used to to preserve data whenever PC op-
eration is stopped. HR bits also have various special applications, such as
creating latching relays with the KEEP instruction and forming self-holding
outputs. These are discussed in Section 4 Writing and Inputting the Program
and Section 5 Instruction Set.

When a SYSMAC LINK System is used, a certain number of HR bits is re-
quired for a routing table and monitor timer. These bits are taken from be-
tween HR 00 to HR 42. Refer to the SYSMAC LINK System Manual for de-
tails.

3-8 TC (Timer/Counter) Area
The TC area is used to create and program timers and counters and holds
the Completion flags, set values (SV), and present values (PV) for all timers
and counters. All of these are accessed through TC numbers ranging from
TC 000 through TC 511. Each TC number is defined as either a timer or
counter using one of the following instructions: TIM, TIMH, CNT, CNTR(12),

Indirect Addressing

TC Area Section 3-8

38

TIMW<13>, TMHW<15>, or CNTW<14>. No prefix is required when using a
TC number as a definer in a timer or counter instruction.

Once a TC number has been defined using one of these instructions, it can-
not be redefined elsewhere in the program either using the same or a differ-
ent instruction. If the same TC number is defined in more than one of these
instructions or in the same instruction twice, an error will be generated during
the program check. There are no restrictions on the order in which TC num-
bers can be used.

Once defined, a TC number can be designated as an operand in one or more
of certain set of instructions other than those listed above. When defined as a
timer, a TC number designated as an operand takes a TIM prefix. The TIM
prefix is used regardless of the timer instruction that was used to define the
timer. Once defined as a counter, the TC number designated as an operand
takes a CNT prefix. The CNT is also used regardless of the counter instruc-
tion that was used to define the counter.

TC numbers can be designated for operands that require bit data or for oper-
ands that require word data. When designated as an operand that requires
bit data, the TC number accesses the completion flag of the timer or counter.
When designated as an operand that requires word data, the TC number ac-
cesses a memory location that holds the PV of the timer or counter.

TC numbers are also used to access the SV of timers and counters from a
Programming Device. The procedures for doing so using the Programming
Console are provided in 7-6 Monitoring Operation and Modifying Data.

The TC area retains the SVs of both timers and counters during power inter-
ruptions. The PVs of timers are reset when PC operation is begun and when
reset in interlocked program sections. Refer to 5-7 Interlock and Interlock
Clear – IL(02) and ILC(03) for details on timer and counter operation in inter-
locked program sections. The PVs of counters are not reset at these times.

Note that in programming “TIM 000” is used to designate three things: the
Timer instruction defined with TC number 000, the completion flag for this
timer, and the PV of this timer. The meaning in context should be clear, i.e.,
the first is always an instruction, the second is always a bit, and the third is
always a word. The same is true of all other TC numbers prefixed with TIM or
CNT.

3-9 LR (Link Relay) Area
The LR area is used as a common data area to transfer information between
PCs. This data transfer is achieved through a PC Link System, a SYSMAC
LINK System, or a SYSMAC NET Link System. Certain words will be allo-
cated as the write words of each PC. These words are written by the PC and
automatically transferred to the same LR words in the other PCs in the Sys-
tem. The write words of the other PCs are transferred in as read words so
that each PC can access the data written by the other PCs in the PC Link
System. Only the write words allocated to the particular PC will be available
for writing; all other words may be read only. Refer to the PC Link System
Manual, SYSMAC LINK System Manual, or SYSMAC NET Link System Man-
ual for details.

The LR area is accessible either by bit or by word. LR area word addresses
range from LR 00 to LR 63; LR area bit addresses, from LR 0000 to LR
6315. Any part of the LR area that is not used by the PC Link System can be
used as work words or work bits.

LR area data is not retained when the power is interrupted, when the PC is
changed to PROGRAM mode, or when it is reset in an interlocked program

TC Area Section 3-8

39

section. Refer to 5-7 Interlock and Interlock Clear – IL(02) and ILC(03) for
details on interlocks.

3-10 Program Memory
Program Memory is where the user program is stored. The amount of Pro-
gram Memory available is either 8K,16K, 24K or 32K words, depending on
the type of Memory Unit mounted to the CPU. These memory capacities cor-
respond to approximately 7.7K, 15.4K, 23.1K and 30.8K instructions, but the
actual number of instructions will vary depending on the instructions actually
used.

Memory Units come in different types, such as RAM and ROM Units, and for
each type there are different sizes. (Refer to the Installation Guide for de-
tails.)

To store instructions in Program Memory, input the instructions through the
Programming Console, or download programming data from a FIT, floppy
disk, cassette tape, or host computer, or from a File Memory Unit if one is
mounted to the CPU Rack. Refer to the end of Appendix A Standard Prod-
ucts for information on FIT and other special products. Programming Console
operations, including those for program input, are described in Section 7 Pro-
gram Input, Debugging, and Execution.

3-11 File Memory
The File Memory (FM) is available only when a File Memory Unit is mounted
to the PC. This area, contained in RAM within the File Memory Unit, can be
used for data storage and retrieval. Program Memory and/or IR, SR, DM, LR,
HR, AR, and TC area data can be stored in or retrieved from FM.

The area is accessible in block units only. The block numbers are 4-digit
BCD, and each block consists of 128 words.

File Memory addresses are by block and range from 0000 through 0999 or
from 0000 through 1999, depending on the model of File Memory Unit that is
used. Refer to Appendix A Standard Models for File Memory Unit models
and to 5-24 File Memory Instructions for instructions to transfer data to and
from File Memory.

The File Memory retains data during power interruptions or when PC opera-
tion is stopped.

3-12 Trace Memory
The Trace Memory is used to store the results of execution traces. Trace op-
erations are explained in 5-23 Trace Operations.

3-13 TR (Temporary Relay) Area
The TR area provides eight bits that are used only with the LD and OUT in-
structions to enable certain types of branching ladder diagram programming.
The use of TR bits is described in Section 4 Writing and Inputting the Pro-
gram.

TR addresses range from TR 0 though TR 7. Each of these bits can be used
as many times as required and in any order required as long as the same LR
bit is not used twice in the same instruction block.

TR Area Section 3-13

41

SECTION 4
Writing and Inputting the Program

This section explains the basic steps and concepts involved in writing a basic ladder diagram program, inputting the pro-
gram into memory, and executing it. It introduces the instructions that are used to build the basic structure of the ladder
diagram and control its execution. The entire set of instructions used in programming is described in Section 5 Instruc-
tion Set.

4-1 Basic Procedure 42.
4-2 Instruction Terminology 42.
4-3 Basic Ladder Diagrams 43.

4-3-1 Basic Terms 43.
4-3-2 Mnemonic Code 44.
4-3-3 Ladder Instructions 45.
4-3-4 OUTPUT and OUTPUT NOT 48.
4-3-5 The END Instruction 48.
4-3-6 Logic Block Instructions 49.
4-3-7 Coding Multiple Right-hand Instructions 57.

4-4 The Programming Console 58.
4-4-1 The Keyboard 58.
4-4-2 PC Modes 59.
4-4-3 The Display Message Switch 61.

4-5 Preparation for Operation 61.
4-5-1 Entering the Password 61.
4-5-2 Clearing Memory 62.
4-5-3 Registering the I/O Table 64.
4-5-4 Clearing Error Messages 66.
4-5-5 Transferring the I/O Table 67.
4-5-6 Changing the I/O Table 67.
4-5-7 Changing I/O Units On-line (C2000H Only) 69.
4-5-8 Verifying the I/O Table 70.
4-5-9 Reading the I/O Table 71.

4-6 Inputting, Modifying, and Checking the Program 75.
4-6-1 Setting and Reading from Program Memory Address 75.
4-6-2 Entering or Editing Programs 76.
4-6-3 Checking the Program 79.
4-6-4 Displaying the Cycle Time 81.
4-6-5 Program Searches 82.
4-6-6 Inserting and Deleting Instructions 83.
4-6-7 Branching Instruction Lines 86.
4-6-8 Jumps 90.

4-7 Controlling Bit Status 92.
4-7-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN 92.
4-7-2 KEEP 92.
4-7-3 Self-maintaining Bits (Seal) 93.

4-8 Work Bits (Internal Relays) 93.
4-9 Programming Precautions 95.
4-10 Program Execution 97.

42

4-1 Basic Procedure
There are several basic steps involved in writing a program. Sheets that can
be copied to aid in programming are provided in Appendix F I/O Assignment
Sheets and Appendix G Program Coding Sheet.

1, 2, 3... 1. Obtain a list of all I/O devices and the I/O points that have been as-
signed to them and prepare a table that shows the I/O bit allocated to
each I/O device.

2. If the PC has any Units that are allocated words in data areas other than
the IR area or are allocated IR words in which the function of each bit is
specified by the Unit, prepare similar tables to show what words are
used for which Units and what function is served by each bit within the
words. These Units include Special I/O Units and Link Units.

3. Determine what words are available for work bits and prepare a table in
which you can allocate these as you use them.

4. Also prepare tables of TC numbers and jump numbers so that you can
allocate these as you use them. Remember, the function of a TC num-
ber can be defined only once within the program; jump numbers 01
through 99 can be used only once each. (TC number are described in
5-11 Timer and Counter Instructions; jump numbers are described later
in this section.)

5. Draw the ladder diagram.
6. Input the program into the CPU. When using the Programming Console,

this will involve converting the program to mnemonic form.
7. Check the program for syntax errors and correct these.
8. Execute the program to check for execution errors and correct these.
9. After the entire Control System has been installed and is ready for use,

execute the program and fine tune it if required.

The basics of ladder-diagram programming and conversion to mnemonic
code are described in 4-3 Basic Ladder Diagrams. Preparing for and input-
ting the program via the Programming Console are described in 4-4 The Pro-
gramming Console through 4-6 Inputting, Modifying, and Checking the Pro-
gram. The rest of Section 4 covers more advanced programming, program-
ming precautions, and program execution. All special application instructions
are covered in Section 5 Instruction Set. Debugging is described in Section 7
Debugging and Execution. Section 8 Troubleshooting also provides informa-
tion required for debugging.

4-2 Instruction Terminology
There are basically two types of instructions used in ladder-diagram pro-
gramming: instructions that correspond to the conditions on the ladder dia-
gram and are used in instruction form only when converting a program to
mnemonic code and instructions that are used on the right side of the ladder
diagram and are executed according to the conditions on the instruction lines
leading to them.

Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values, but are
usually the addresses of data area words or bits that contain the data to be
used. For instance, a MOVE instruction that has IR 000 designated as the
source operand will move the contents of IR 000 to some other location. The
other location is also designated as an operand. A bit whose address is des-
ignated as an operand is called an operand bit; a word whose address is
designated as an operand is called an operand word. If the actual value is
entered as a constant, it is preceded by # to indicate that it is not an address.

Instruction Terminology Section 4-2

43

Other terms used in describing instructions are introduced in Section 5 In-
struction Set.

4-3 Basic Ladder Diagrams
A ladder diagram consists of one line running down the left side with lines
branching off to the right. The line on the left is called the bus bar; the
branching lines, instruction lines or rungs. Along the instruction lines are
placed conditions that lead to other instructions on the right side. The logical
combinations of these conditions determine when and how the instructions at
the right are executed. A ladder diagram is shown below.

00000 06315

Instruction

Instruction

00403

00001

HR 0109 LR 250325208 24400

00501 00502 00503 00504

24401

00100 00002

00010

00011

00003 HR 0050 00007 TIM 001 LR 0515

21001 21002

00405

21005 21007

As shown in the diagram above, instruction lines can branch apart and they
can join back together. The vertical pairs of lines are called conditions. Con-
ditions without diagonal lines through them are called normally open condi-
tions and correspond to a LOAD, AND, or OR instruction. The conditions with
diagonal lines through them are called normally closed conditions and corre-
spond to a LOAD NOT, AND NOT, or OR NOT instruction. The number
above each condition indicates the operand bit for the instruction. It is the
status of the bit associated with each condition that determines the execution
condition for following instructions. The way the operation of each of the in-
structions corresponds to a condition is described below. Before we consider
these, however, there are some basic terms that must be explained.

Note When displaying ladder diagrams with a GPC, a FIT, or LSS, a second bus
bar will be shown on the right side of the ladder diagram and will be con-
nected to all instructions on the right side. This does not change the lad-
der-diagram program in any functional sense. No conditions can be placed
between the instructions on the right side and the right bus bar, i.e., all in-
structions on the right must be connected directly to the right bus bar. Refer
to the GPC, FIT, or LSS Operation Manual for details.

4-3-1 Basic Terms

Each condition in a ladder diagram is either ON or OFF depending on the
status of the operand bit that has been assigned to it. A normally open condi-
tion is ON if the operand bit is ON; OFF if the operand bit is OFF. A normally
closed condition is ON if the operand bit is OFF; OFF if the operand bit is
ON. Generally speaking, you use a normally open condition when you want

Normally Open and
Normally Closed
Conditions

Basic Ladder Diagrams Section 4-3

44

something to happen when a bit is ON, and a normally closed condition when
you want something to happen when a bit is OFF.

Instruction

Instruction

00000

00000
Instruction is executed
when IR bit 00000 is ON.

Instruction is executed
when IR bit 00000 is OFF.

Normally open
condition

Normally closed
condition

In ladder diagram programming, the logical combination of ON and OFF con-
ditions before an instruction determines the compound condition under which
the instruction is executed. This condition, which is either ON or OFF, is
called the execution condition for the instruction. All instructions other than
LOAD instructions have execution conditions.

The operands designated for any of the ladder instructions can be any bit in
the IR, SR, HR, AR, LR, or TC areas. This means that the conditions in a
ladder diagram can be determined by I/O bits, flags, work bits, timers/count-
ers, etc. LOAD and OUTPUT instructions can also use TR area bits, but they
do so only in special applications. Refer to 4-6-7 Branching Instruction Lines
for details.

The way that conditions correspond to what instructions is determined by the
relationship between the conditions within the instruction lines that connect
them. Any group of conditions that go together to create a logic result is
called a logic block. Although ladder diagrams can be written without actually
analyzing individual logic blocks, understanding logic blocks is necessary for
efficient programming and is essential when programs are to be input in mne-
monic code.

4-3-2 Mnemonic Code
The ladder diagram cannot be directly input into the PC via a Programming
Console; a GPC, a FIT, or LSS is required. To input from a Programming
Console, it is necessary to convert the ladder diagram to mnemonic code.
The mnemonic code provides exactly the same information as the ladder dia-
gram, but in a form that can be typed directly into the PC. Actually you can
program directly in mnemonic code, although it in not recommended for be-
ginners or for complex programs. Also, regardless of the Programming De-
vice used, the program is stored in memory in mnemonic form, making it im-
portant to understand mnemonic code.

Because of the importance of the Programming Console as a peripheral de-
vice and because of the importance of mnemonic code in complete under-
standing of a program, we will introduce and describe the mnemonic code
along with the ladder diagram. Remember, you will not need to use the mne-
monic code if you are inputting via a GPC, a FIT, or LSS (although you can
use it with these devices too, if you prefer).

The program is input into addresses in Program Memory. Addresses in Pro-
gram Memory are slightly different to those in other memory areas because
each address does not necessarily hold the same amount of data. Rather,
each address holds one instruction and all of the definers and operands (de-
scribed in more detail later) required for that instruction. Because some in-
structions require no operands, while others require up to three operands,
Program Memory addresses can be from one to four words long.

Execution Conditions

Operand Bits

Logic Blocks

Program Memory Structure

Basic Ladder Diagrams Section 4-3

45

Program Memory addresses start at 00000 and run until the capacity of Pro-
gram Memory has been exhausted. The first word at each address defines
the instruction. Any definers used by the instruction are also contained in the
first word. Also, if an instruction requires only a single bit operand (with no
definer), the bit operand is also programmed on the same line as the instruc-
tion. The rest of the words required by an instruction contain the operands
that specify what data is to be used. When converting to mnemonic code, all
but ladder diagram instructions are written in the same form, one word to a
line, just as they appear in the ladder diagram symbols. An example of mne-
monic code is shown below. The instructions used in it are described later in
the manual.

Address Instruction Operands

00000 LD HR 0001

00001 AND 00001

00002 OR 00002

00003 LD NOT 00100

00004 AND 00101

00005 AND LD 00102

00006 MOV(21)

000

DM 0000

00007 CMP(20)

DM 0000

HR 00

00008 LD 25505

00009 OUT 00501

00010 MOV(21)

DM 0000

DM 0500

00011 DIFU(13) 00502

00012 AND 00005

00013 OUT 00503

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For all other lines, the left two columns are left
blank. If the instruction requires no definer or bit operand, the operand col-
umn is left blank for first line. It is a good idea to cross through any blank
data column spaces (for all instruction words that do not require data) so that
the data column can be quickly scanned to see if any addresses have been
left out.

When programming, addresses are automatically displayed and do not have
to be input unless for some reason a different location is desired for the in-
struction. When converting to mnemonic code, it is best to start at Program
Memory address 00000 unless there is a specific reason for starting else-
where.

4-3-3 Ladder Instructions
The ladder instructions are those instructions that correspond to the condi-
tions on the ladder diagram. Ladder instructions, either independently or in
combination with the logic block instructions described next, form the execu-
tion conditions upon which the execution of all other instructions are based.

The first condition that starts any logic block within a ladder diagram corre-
sponds to a LOAD or LOAD NOT instruction. Each of these instruction re-
quires one line of mnemonic code. “Instruction” is used as a dummy instruc-

LOAD and LOAD NOT

Basic Ladder Diagrams Section 4-3

46

tion in the following examples and could be any of the right-hand instructions
described later in this manual.

00000

00000

A LOAD instruction.

A LOAD NOT instruction.

Address Instruction Operands

00000 LD 00000

00001 Instruction

00002 LD NOT 00000

00003 Instruction

When this is the only condition on the instruction line, the execution condition
for the instruction at the right is ON when the condition is ON. For the LOAD
instruction (i.e., a normally open condition), the execution condition would be
ON when IR 00000 was ON; for the LOAD NOT instruction (i.e., a normally
closed condition), it would be ON when 00000 was OFF.

When two or more conditions lie in series on the same instruction line, the
first one corresponds to a LOAD or LOAD NOT instruction; and the rest of
the conditions, to AND or AND NOT instructions. The following example
shows three conditions which correspond in order from the left to a LOAD, an
AND NOT, and an AND instruction. Again, each of these instructions requires
one line of mnemonic code.

00000 00100 LR 0000
Instruction

Address Instruction Operands

00000 LD 00000

00001 AND NOT 00100

00002 AND LR 0000

00003 Instruction

The instruction would have an ON execution condition only when all three
conditions are ON, i.e., when IR 00000 was ON, IR 00100 was OFF, and LR
0000 was ON.

AND instructions in series can be considered individually, with each taking
the logical AND of the execution condition (i.e., the total of all conditions up to
that point) and the status of the AND instruction’s operand bit. If both of these
are ON, an ON execution condition will be produced for the next instruction.
If either is OFF, the result will also be OFF. The execution condition for the
first AND instruction in a series is the first condition on the instruction line.

Each AND NOT instruction in a series would take the logical AND between
its execution condition and the inverse of its operand bit.

When two or more conditions lie on separate instruction lines running in par-
allel and then joining together, the first condition corresponds to a LOAD or
LOAD NOT instruction; the rest of the conditions correspond to OR or OR
NOT instructions. The following example shows three conditions which corre-

AND and AND NOT

OR and OR NOT

Basic Ladder Diagrams Section 4-3

47

spond in order from the top to a LOAD NOT, an OR NOT, and an OR instruc-
tion. Again, each of these instructions requires one line of mnemonic code.

Instruction

00100

LR 0000

00000

Address Instruction Operands

00000 LD 00000

00001 OR NOT 00100

00002 OR LR 0000

00003 Instruction

The instruction would have an ON execution condition when any one of the
three conditions was ON, i.e., when IR 00000 was OFF, when IR 00100 was
OFF, or when LR 0000 was ON.

OR and OR NOT instructions can be considered individually, each taking the
logical OR between its execution condition and the status of the OR instruc-
tion’s operand bit. If either one of these were ON, an ON execution condition
would be produced for the next instruction.

When AND and OR instructions are combined in more complicated dia-
grams, they can sometimes be considered individually, with each instruction
performing a logic operation on the execution condition and the status of the
operand bit. The following is one example. Study this example until you are
convinced that the mnemonic code follows the same logic flow as the ladder
diagram.

Instruction
00002 0000300000 00001

00200

Address Instruction Operands

00000 LD 00000

00001 AND 00001

00002 OR 00200

00003 AND 00002

00004 AND NOT 00003

00005 Instruction

Here, an AND is taken between the status of IR 00000 and that of IR 00001
to determine the execution condition for an OR with the status of IR 00200.
The result of this operation determines the execution condition for an AND
with the status of IR 00002, which in turn determines the execution condition
for an AND with the inverse (i.e., and AND NOT) of the status of IR 00003.

In more complicated diagrams, however, it is necessary to consider logic
blocks before an execution condition can be determined for the final instruc-
tion, and that’s where AND LOAD and OR LOAD instructions are used. Be-
fore we consider more complicated diagrams, however, we’ll look at the in-
structions required to complete a simple “input-output” program.

Combining AND and OR
Instructions

Basic Ladder Diagrams Section 4-3

48

4-3-4 OUTPUT and OUTPUT NOT
The simplest way to output the results of combining execution conditions is to
output it directly with the OUTPUT and OUTPUT NOT. These instructions are
used to control the status of the designated operand bit according to the ex-
ecution condition. With the OUTPUT instruction, the operand bit will be
turned ON as long as the execution condition is ON and will be turned OFF
as long as the execution condition is OFF. With the OUTPUT NOT instruc-
tion, the operand bit will be turned ON as long as the execution condition is
OFF and turned OFF as long as the execution condition is ON. These appear
as shown below. In mnemonic code, each of these instructions requires one
line.

00000

00201

00200

00001

Address Instruction Operands

00000 LD 00000

00001 OUT 00200

Address Instruction Operands

00000 LD 00001

00001 OUT NOT 00201

In the above examples, IR 00200 will be ON as long as IR 00000 is ON and
IR 00201 will be OFF as long as IR 00001 is ON. Here, IR 00000 and IR
00001 would be input bits and IR 00200 and IR 00201 output bits assigned to
the Units controlled by the PC, i.e., the signals coming in through the input
points assigned IR 00000 and IR 00001 are controlling the output points as-
signed IR 00200 and IR 00201, respectively.

The length of time that a bit is ON or OFF can be controlled by combining the
OUTPUT or OUTPUT NOT instruction with Timer instructions. Refer to Ex-
amples under 5-11-1 Timer – TIM for details.

4-3-5 The END Instruction
The last instruction required to complete a simple program is the END in-
struction. When the CPU scans the program, it executes all instruction up to
the first END instruction before returning to the beginning of the program and
beginning execution again. Although an END instruction can be placed at any
point in a program, which is sometimes done when debugging, no instruc-
tions past the first END instruction will be executed until it is removed. The
number following the END instruction in the mnemonic code is its function
code, which is used when inputted most instruction into the PC. These are
described later. The END instruction requires no operands and no conditions
can be placed on the same instruction line with it.

Instruction
00000 00001

END(01)
Program execution
ends here.

Address Instruction Operands

00500 LD 00000

00501 AND NOT 00001

00502 Instruction

00503 END(01) ---

If there is no END instruction anywhere in the program, the program will not
be executed at all.

Basic Ladder Diagrams Section 4-3

49

Now you have all of the instructions required to write simple input-output pro-
grams. Before we finish with ladder diagram basic and go onto inputting the
program into the PC, let’s look at logic block instruction (AND LOAD and OR
LOAD), which are sometimes necessary even with simple diagrams.

4-3-6 Logic Block Instructions
Logic block instructions do not correspond to specific conditions on the lad-
der diagram; rather, they describe relationships between logic blocks. The
AND LOAD instruction logically ANDs the execution conditions produced by
two logic blocks. The OR LOAD instruction logically ORs the execution condi-
tions produced by two logic blocks.

Although simple in appearance, the diagram below requires an AND LOAD
instruction.

Instruction
00002

00003

00000

00001

Address Instruction Operands

00000 LD 00000

00001 OR 00001

00002 LD 00002

00003 OR NOT 00003

00004 AND LD ---

The two logic blocks are indicated by dotted lines. Studying this example
shows that an ON execution condition will be produced when: either of the
conditions in the left logic block is ON (i.e., when either IR 00000 or IR 00001
is ON), and when either of the conditions in the right logic block is ON (i.e.,
when either IR 00002 is ON or IR 00003 is OFF).

The above ladder diagram cannot, however, be converted to mnemonic code
using AND and OR instructions alone. If an AND between IR 00002 and the
results of an OR between IR 00000 and IR 00001 is attempted, the OR NOT
between IR 00002 and IR 00003 is lost and the OR NOT ends up being an
OR NOT between just IR 00003 and the result of an AND between IR 00002
and the first OR. What we need is a way to do the OR (NOT)’s independently
and then combine the results.

To do this, we can use the LOAD or LOAD NOT instruction in the middle of
an instruction line. When LOAD or LOAD NOT is executed in this way, the
current execution condition is saved in special buffers and the logic process
is begun over. To combine the results of the current execution condition with
that of a previous “unused” execution condition, an AND LOAD or an OR
LOAD instruction is used. Here “LOAD” refers to loading the last unused ex-
ecution condition. An unused execution condition is produced by using the
LOAD or LOAD NOT instruction for any but the first condition on an instruc-
tion line.

Analyzing the above ladder diagram in terms of mnemonic instructions, the
condition for IR 00000 is a LOAD instruction and the condition below it is an
OR instruction between the status of IR 00000 and that of IR 00001. The
condition at IR 00002 is another LOAD instruction and the condition below is
an OR NOT instruction, i.e., an OR between the status of IR 00002 and the
inverse of the status of IR 00003. To arrive at the execution condition for the

AND LOAD

Basic Ladder Diagrams Section 4-3

50

instruction at the right, the logical AND of the execution conditions resulting
from these two blocks would have to be taken. AND LOAD does this. The
mnemonic code for the ladder diagram is shown below. The AND LOAD in-
struction requires no operands of its own, because it operates on previously
determined execution conditions. Here too, dashes are used to indicate that
no operands needs designated or input.

The following diagram requires an OR LOAD instruction between the top log-
ic block and the bottom logic block. An ON execution condition would be pro-
duced for the instruction at the right either when IR 00000 is ON and IR
00001 is OFF or when IR 00002 and IR 00003 are both ON. The operation of
and mnemonic code for the OR LOAD instruction is exactly the same as
those for a AND LOAD instruction except that the current execution condition
is ORed with the last unused execution condition.

Instruction
00000 00001

00002 00003

Address Instruction Operands

00000 LD 00000

00001 AND NOT 00001

00002 LD 00002

00003 AND 00003

00004 OR LD ---

Naturally, some diagrams will require both AND LOAD and OR LOAD instruc-
tions.

To code diagrams with logic block instructions in series, the diagram must be
divided into logic blocks. Each block is coded using a LOAD instruction to
code the first condition, and then AND LOAD or OR LOAD is used to logically
combine the blocks. With both AND LOAD and OR LOAD there are two ways
to achieve this. One is to code the logic block instruction after the first two
blocks and then after each additional block. The other is to code all of the
blocks to be combined, starting each block with LOAD or LOAD NOT, and
then to code the logic block instructions which combine them. In this case,
the instructions for the last pair of blocks should be combined first, and then
each preceding block should be combined, working progressively back to the
first block. Although either of these methods will produce exactly the same
result, the second method, that of coding all logic block instructions together,
can be used only if eight or fewer blocks are being combined, i.e., if seven or
fewer logic block instructions are required.

OR LOAD

Logic Block Instructions in
Series

Basic Ladder Diagrams Section 4-3

51

The following diagram requires AND LOAD to be converted to mnemonic
code because three pairs of parallel conditions lie in series. The two means
of coding the programs are also shown.

00000 00002 00004

00001 00003 00005

00500

Address Instruction Operands Address Instruction Operands

00000 LD 00000

00001 OR NOT 00001

00002 LD NOT 00002

00003 OR 00003

00004 AND LD —

00005 LD 00004

00006 OR 00005

00007 AND LD —

00008 OUT 00500

00000 LD 00000

00001 OR NOT 00001

00002 LD NOT 00002

00003 OR 00003

00004 LD 00004

00005 OR 00005

00006 AND LD —

00007 AND LD —

00008 OUT 00500

Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with
the first method.

The following diagram requires OR LOAD instructions to be converted to
mnemonic code because three pairs of conditions in series lie in parallel to
each other.

00000 00001

00002 00003

00040 00005

00501

The first of each pair of conditions is converted to LOAD with the assigned bit
operand and then ANDed with the other condition. The first two blocks can
be coded first, followed by OR LOAD, the last block, and another OR LOAD,
or the three blocks can be coded first followed by two OR LOADs. The mne-
monic code for both methods is shown below.

00000 LD 00000

00001 AND NOT 00001

00002 LD NOT 00002

00003 AND NOT 00003

00004 OR LD —

00005 LD 00004

00006 AND 00005

00007 OR LD —

00008 OUT 00501

00000 LD 00000

00001 AND NOT 00001

00002 LD NOT 00002

00003 AND NOT 00003

00004 LD 00004

00005 AND 00005

00006 OR LD —

00007 OR LD —

00008 OUT 00501

Address Instruction Operands Address Instruction Operands

Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with
the first method.

Both of the coding methods described above can also be used when using
AND LOAD and OR LOAD, as long as the number of blocks being combined
does not exceed eight.

Combining AND LOAD and
OR LOAD

Basic Ladder Diagrams Section 4-3

52

The following diagram contains only two logic blocks as shown. It is not nec-
essary to further separate block b components, because it can coded directly
using only AND and OR.

00000 00001 00002 00003

00201

00501

00004

Block
a

Block
b

Address Instruction Operands

00000 LD 00000

00001 AND NOT 00001

00002 LD 00002

00003 AND 00003

00004 OR 00201

00005 OR 00004

00006 AND LD —

00007 OUT 00501

Although the following diagram is similar to the one above, block b in the dia-
gram below cannot be coded without separating it into two blocks combined
with OR LOAD. In this example, the three blocks have been coded first and
then OR LOAD has been used to combine the last two blocks followed by
AND LOAD to combine the execution condition produced by the OR LOAD
with the execution condition of block a.

When coding the logic block instructions together at the end of the logic
blocks they are combining, they must, as shown below, be coded in reverse
order, i.e., the logic block instruction for the last two blocks is coded first, fol-
lowed by the one to combine the execution condition resulting from the first

Basic Ladder Diagrams Section 4-3

53

logic block instruction and the execution condition of the logic block third from
the end, and on back to the first logic block that is being combined.

00000 00001 00002 00003
00502

00004 00202

Block
a

Block
b

Block
b2

Block
b1

Address Instruction Operands

00000 LD NOT 00000

00001 AND 00001

00002 LD 00002

00003 AND NOT 00003

00004 LD NOT 00004

00005 AND 00202

00006 OR LD —

00007 AND LD —

00008 OUT 00502

When determining what logic block instructions will be required to code a dia-
gram, it is sometimes necessary to break the diagram into large blocks and
then continue breaking the large blocks down until logic blocks that can be
coded without logic block instructions have been formed. These blocks are
then coded, combining the small blocks first, and then combining the larger
blocks. Either AND LOAD or OR LOAD is used to combine the blocks, i.e.,
AND LOAD or OR LOAD always combines the last two execution conditions
that existed, regardless of whether the execution conditions resulted from a
single condition, from logic blocks, or from previous logic block instructions.

When working with complicated diagrams, blocks will ultimately be coded
starting at the top left and moving down before moving across. This will gen-
erally mean that, when there might be a choice, OR LOAD will be coded be-
fore AND LOAD.

The following diagram must be broken down into two blocks and each of
these then broken into two blocks before it can be coded. As shown below,
blocks a and b require an AND LOAD. Before AND LOAD can be used, how-

Complicated Diagrams

Basic Ladder Diagrams Section 4-3

54

ever, OR LOAD must be used to combine the top and bottom blocks on both
sides, i.e., to combine a1 and a2; b1 and b2.

00000 00001 00004 00005
00503

Block
a

Block
b

00006 00007

Block
b2

Block
b1

00002 00003

Block
a2

Block
a1

Blocks a1 and a2

Blocks b1 and b2

Blocks a and b

Address Instruction Operands

00000 LD 00000

00001 AND NOT 00001

00002 LD NOT 00002

00003 AND 00003

00004 OR LD —

00005 LD 00004

00006 AND 00005

00007 LD 00006

00008 AND 00007

00009 OR LD —

00010 AND LD —

00011 OUT 00503

The following type of diagram can be coded easily if each block is coded in
order: first top to bottom and then left to right. In the following diagram,
blocks a and b would be combined using AND LOAD as shown above, and
then block c would be coded and a second AND LOAD would be used to
combined it with the execution condition from the first AND LOAD. Then
block d would be coded, a third AND LOAD would be used to combine the
execution condition from block d with the execution condition from the sec-
ond AND LOAD, and so on through to block n.

Block
a

Block
b

00500

Block
n

Block
c

Basic Ladder Diagrams Section 4-3

55

The following diagram requires an OR LOAD followed by an AND LOAD to
code the top of the three blocks, and then two more OR LOADs to complete
the mnemonic code.

00002 00003

LR 0000

00000 00001

00004 00005

00006 00007

Address Instruction Operands

00000 LD 00000

00001 LD 00001

00002 LD 00002

00003 AND NOT 00003

00004 OR LD --

00005 AND LD --

00006 LD NOT 00004

00007 AND 00005

00008 OR LD --

00009 LD NOT 00006

00010 AND 00007

00011 OR LD --

00012 OUT LR 0000

Although the program will execute as written, this diagram could be drawn as
shown below to eliminate the need for the first OR LOAD and the AND
LOAD, simplifying the program and saving memory space.

00002 00003
LR 0000

00001

00000

00004 00005

00006 00007

Address Instruction Operands

00000 LD 00002

00001 AND NOT 00003

00002 OR 00001

00003 AND 00000

00004 LD NOT 00004

00005 AND 00005

00006 OR LD --

00007 LD NOT 00006

00008 AND 00007

00009 OR LD --

00010 OUT LR 0000

The following diagram requires five blocks, which here are coded in order
before using OR LOAD and AND LOAD to combine them starting from the
last two blocks and working backward. The OR LOAD at program address

Basic Ladder Diagrams Section 4-3

56

00008 combines blocks blocks d and e, the following AND LOAD combines
the resulting execution condition with that of block c, etc.

LR 0000

00000

00003 00004

00006 00007

00001 00002

00005

Block e

Block dBlock c

Block b

Block a

Address Instruction Operands

Blocks d and e

Block c with result of above

Block b with result of above

Block a with result of above

00000 LD 00000

00001 LD 00001

00002 AND 00002

00003 LD 00003

00004 AND 00004

00005 LD 00005

00006 LD 00006

00007 AND 00007

00008 OR LD --

00009 AND LD --

00010 OR LD --

00011 AND LD --

00012 OUT LR 0000

Again, this diagram can be redrawn as follows to simplify program structure
and coding and to save memory space.

00006 00007
LR 0000

00005

00001 00002

00003 00004 00000

Address Instruction Operands

00000 LD 00006

00001 AND 00007

00002 OR 00005

00003 AND 00003

00004 AND 00004

00005 LD 00001

00006 AND 00002

00007 OR LD --

00008 AND 00000

00009 OUT LR 0000

The next and final example may at first appear very complicated but can be
coded using only two logic block instructions. The diagram appears as fol-
lows:

00000 00001

00500

00002 00003

01000 01001

00004 00005

00500

00006

Block cBlock b

Block a

The first logic block instruction is used to combine the execution conditions
resulting from blocks a and b, and the second one is to combine the execu-

Basic Ladder Diagrams Section 4-3

57

tion condition of block c with the execution condition resulting from the nor-
mally closed condition assigned IR 00003. The rest of the diagram can be
coded with OR, AND, and AND NOT instructions. The logical flow for this
and the resulting code are shown below.

00000 00001

00500

00002 00003

01000 01001

00004 0000500500

00006

Block c

Block bBlock a

OR LD

LD 00000
AND 00001

OR 00500

AND 00002
AND NOT 00003

LD 01000
AND 01001

OR 00006

LD 00004
AND 00005

AND LD

Address Instruction Operands

00000 LD 00000

00001 AND 00001

00002 LD 01000

00003 AND 01001

00004 OR LD --

00005 OR 00500

00006 AND 00002

00007 AND NOT 00003

00008 LD 00004

00009 AND 00005

00010 OR 00006

00011 AND LD --

00012 OUT 00500

4-3-7 Coding Multiple Right-hand Instructions

If there is more than one right-hand instruction executed with the same exe-
cution condition, they are coded consecutively following the last condition on

Basic Ladder Diagrams Section 4-3

58

the instruction line. In the following example, the last instruction line contains
one more condition that corresponds to an AND with IR 00004.

00000 00003

00001

0000400002

HR 0000

HR 0001

00500

00506

Address Instruction Operands

00000 LD 00000

00001 OR 00001

00002 OR 00002

00003 OR HR 0000

00004 AND 00003

00005 OUT HR 0001

00006 OUT 00500

00007 AND 00004

00008 OUT 00506

4-4 The Programming Console
Once a program has been written, it must be input into the PC. This can be
done in graphic (ladder diagram) form using a GPC,a FIT, or LSS. The most
common way of inputting a program, however, is through a Programming
Console using mnemonic code. This and the next section describe the Pro-
gramming Console and the operation necessary to prepare for program in-
put. 4-6 Inputting, Modifying, and Checking the Program describes actual
procedures for inputting the program into memory.

Depending on the model of Programming Console used, it is either con-
nected to the CPU via a Programming Console Adapter and Connecting Ca-
ble or it is mounted directly to the CPU. If you are connecting to a C2000H
Duplex System, you can connect to either the active or passive CPU, but
writing operations to memory areas (including program writing to Program
Memory) and changes to data in memory areas will not be possible unless
connected to the active CPU.

4-4-1 The Keyboard
The keyboard of the Programming Console is functionally divided by key
color into the following four areas:

The ten white keys are used to input numeric program data such as program
addresses, data area addresses, and operand values. The numeric keys are
also used in combination with the function key (FUN) to enter instructions
with function codes.

The CLR key clears the display and cancels current Programming Console
operations. It is also used when you key in the password at the beginning of
programming operations. Any Programming Console operation can be can-
celled by pressing the CLR key, although the CLR key may have to be
pressed two or three times to cancel the operation and clear the display.

The yellow keys are used for writing and correcting programs. Detailed ex-
planations of their functions are given later in this section.

Except for the SHIFT key on the upper right, the gray keys are used to input
instructions and designate data area prefixes when inputting or changing a
program. The SHIFT key is similar to the shift key of a typewriter, and is used
to alter the function of the next key pressed. (It is not necessary to hold the
SHIFT key down; just press it once and then press the key to be used with
it.)

White: Numeric Keys

Red: CLR Key

Yellow: Operation Keys

Gray: Instruction and Data
Area Keys

The Programming Console Section 4-4

59

The gray keys other than the SHIFT key have either the mnemonic name of
the instruction or the abbreviation of the data area written on them. The func-
tions of these keys are described below.

Pressed before the function code when inputting an instruction
via its function code.

Pressed to enter SFT (the Shift Register instruction).

Input either after a function code to designate the differentiated
form of an instruction or after a ladder instruction to designate
an inverse condition.

Pressed to enter AND (the AND instruction) or used with NOT
to enter AND NOT.

Pressed to enter OR (the OR instruction) or used with NOT to
enter OR NOT.

Pressed to enter CNT (the Counter instruction) or to designate
a TC number that has already been defined as a counter.

Pressed to enter LD (the Load instruction) or used with NOT to
enter LD NOT. Also pressed to indicate an input bit.

Pressed to enter OUT (the Output instruction) or used with
NOT to enter OUT NOT. Also pressed to indicate an output bit.

Pressed to enter TIM (the Timer instruction) or to designate a
TC number that has already been defined as a timer.

Pressed before designating an address in the TR area.

Pressed before designating an address in the LR area.

Pressed before designating an address in the HR area.

Pressed before designating an address in the AR area.

Pressed before designating an address in the DM area.

Pressed before designating an indirect DM address.

Pressed before designating a word address.

Pressed before designating an operand as a constant.

Pressed before designating a bit address.

Pressed before function codes for block programming instruc-
tions, i.e., those placed between pointed parentheses <>.

4-4-2 PC Modes
The Programming Console is equipped with a switch to control the PC mode.
To select one of the three operating modes—RUN, MONITOR, or PRO-
GRAM—use the mode switch. The mode that you select will determine PC

The Programming Console Section 4-4

!

60

operation as well as the procedures that are possible from the Programming
Console.

RUN mode is the mode used for normal program execution. When the switch
is set to RUN and the START input on the CPU Power Supply Unit is ON, the
CPU will begin executing the program according to the program written in its
Program Memory. Although monitoring PC operation from the Programming
Console is possible in RUN mode, no data in any of the memory areas can
be input or changed.

MONITOR mode allows you to visually monitor in-progress program execu-
tion while controlling I/O status, changing PV (present values) or SV (set val-
ues), etc. In MONITOR mode, I/O processing is handled in the same way as
in RUN mode. MONITOR mode is generally used for trial system operation
and final program adjustments.

In PROGRAM mode, the PC does not execute the program. PROGRAM
mode is for creating and changing programs, clearing memory areas, and
registering and changing the I/O table. A special Debug operation is also
available within PROGRAM mode that enables checking a program for cor-
rect execution before trial operation of the system.

 DANGER Do not leave the Programming Console connected to the PC by an extension
cable when in RUN mode. Noise entering via the extension cable can enter the
PC, affecting the program and thus the controlled system.

When the PC is turned on, the mode it will be in is affected by any peripheral
device connected or mounted to the CPU, as follows:

1, 2, 3... 1. No Peripheral Device Connected
When power is applied to the PC without a Peripheral Device con-
nected, the PC is automatically set to RUN mode. Program execution is
then controlled through the CPU Power Supply Unit’s START terminal.

2. Programming Console Connected
If the Programming Console is connected to the PC when PC power is
applied, the PC is set to the mode set on the Programming Console’s
mode switch.

3. Other Peripheral Connected
If a Peripheral Interface Unit, a PROM Writer, a Printer Interface Unit, or
a Floppy Disk Interface Unit is attached to the PC when PC power is
turned on, the PC is automatically set to PROGRAM mode.

If the PC power supply is already turned on when a Peripheral Device is at-
tached to the PC, the PC will stay in the same mode it was in before the pe-
ripheral device was attached. The mode can be changed with the mode
switch on the Programming Console once the password has been entered. If
it is necessary to have the PC in PROGRAM mode, (for the PROM Writer,
Floppy Disk Interface Unit, etc.), be sure to select this mode before connect-
ing the peripheral device; or, alternatively, apply power to the PC after the
peripheral device is connected.

The mode will not change when a peripheral device is removed from the PC
after PC power is turned on.

Mode Changes

The Programming Console Section 4-4

!

61

Caution Always confirm that the Programming Console is in PROGRAM mode when
turning on the PC with a Programming Console connected unless another mode
is desired for a specific purpose. If the Programming Console is in RUN mode
when PC power is turned on, any program in Program Memory will be executed,
possibly causing a PC-controlled system to begin operation. If the START input
on the CPU Power Supply Unit is ON and there is no device connected to the
CPU, ensure that commencing operation is safe and appropriate before turning
on the PC.

4-4-3 The Display Message Switch
Next to the external connector for peripheral devices on the PC there is a
small switch for selecting either Japanese or English language messages for
display on the Programming Console. It is factory set to OFF, which causes
English language messages to be displayed.

4-5 Preparation for Operation
This section describes the procedures required to begin Programming Con-
sole operation. These include password entry, clearing memory, error mes-
sage clearing, and I/O table operations. I/O table operations are also neces-
sary at other times, e.g., when changes are to be made in Units used in the
PC configuration.

The following sequence of operations must be performed before beginning
initial program input.

1, 2, 3... 1. Confirm that all wiring for the PC has been installed and checked prop-
erly.

2. Confirm that a RAM Unit is mounted as the Memory Unit and that the
write-protect switch is OFF.

3. Connect the Programming Console to the PC. Make sure that the Pro-
gramming Console is securely connected or mounted to the CPU; im-
proper connection may inhibit operation.

4. Set the mode switch to PROGRAM mode.
5. Turn on PC power.
6. Enter the password.
7. Clear memory.
8. Register the I/O table.
9. Check the I/O table until the I/O table and system configuration are cor-

rect and in agreement.

Each of these operations from entering the password on is described in detail
in the following subsections. All operations should be done in PROGRAM
mode unless otherwise noted.

4-5-1 Entering the Password
To gain access to the PC’s programming functions, you must first enter the
password. The password prevents unauthorized access to the program.

The PC prompts you for a password when PC power is turned on or, if PC
power is already on, after the Programming Console has been connected to
the PC. To gain access to the system when the “Password!” message ap-
pears, press CLR and then MONTR. Then press CLR to clear the display.

If the Programming Console is connected to the PC when PC power is al-
ready on, the first display below will indicate the mode the PC was in before
the Programming Console was connected. Ensure that the PC is in PRO-
GRAM mode before you enter the password. When the password is en-

Preparation for Operation Section 4-5

62

tered, the PC will shift to the mode set on the mode switch, causing PC op-
eration to begin if the mode is set to RUN or MONITOR. The mode can be
changed to RUN or MONITOR with the mode switch after entering the pass-
word.

Indicates the mode set by the mode selector switch.

���������

��		
���

���������������

Immediately after the password is input or anytime immediately after the
mode has been changed, SHIFT and then the 1 key can be pressed to turn
on and off the beeper that sounds when Programming Console keys are
pressed. If BZ is displayed in the upper right corner, the beeper is operative.
If BZ is not displayed, the beeper is not operative.

This beeper also will also sound whenever an error occurs during PC opera-
tion. Beeper operation for errors is not affected by the above setting.

4-5-2 Clearing Memory
Using the Memory Clear operation it is possible to clear all or part of the Pro-
gram Memory, and the IR, HR, AR, DM and TC areas. Unless otherwise
specified, the clear operation will clear all of the above memory areas, pro-
vided that the Memory Unit attached to the PC is a RAM Unit or an EEPROM
Unit and the write-enable switch is ON. If the write-enable switch is OFF or
the Memory Unit is an EPROM Unit, Program Memory cannot be cleared.

Before beginning to programming for the first time or when installing a new
program, all areas should normally be cleared. Before clearing memory,
check to see if a program is already loaded that you need. If you need the
program, clear only the memory areas that you do not need, and be sure to
check the existing program with the program check key sequence before us-
ing it. The check sequence is provided later in this section. Further debug-
ging methods are provided in Section 7 Program Debugging and Execution.
To clear all memory areas press CLR until all zeros are displayed, and then
input the keystrokes given in the top line of the following key sequence. The
branch lines shown in the sequence are used only when performing a partial
memory clear, which is described below.

Memory can be cleared in PROGRAM mode only.

Beeper

Preparation for Operation Section 4-5

63

Key Sequence

Both AR and HR areas

TC area

DM area

Program Memory cleared
from designated address.

Retained if pressed

The following procedure is used to clear memory completely.

Continue pressing
the CLR key once for
each error message
until ”00000” appears
on the display

All clear

����������

�����������

�����

���������������

���������������

������������

���������������

�����

It is possible to retain the data in specified areas or part of the Program
Memory. To retain the data in the HR and AR, TC, and/or DM areas, press
the appropriate key after entering REC/RESET. HR is pressed to designate
both the HR and AR areas. In other words, specifying that HR is to be re-
tained will ensure that AR is retained also. If not specified for retention, both
areas will be cleared. CNT is used for the entire TC area. The display will
show those areas that will be cleared.

It is also possible to retain a portion of the Program Memory from the begin-
ning to a specified address. After designating the data areas to be retained,
specify the first Program Memory address to be cleared. For example, to
leave addresses 00000 to 00122 untouched, but to clear addresses from
00123 to the end of Program Memory, input 00123.

All Clear

Partial Clear

Preparation for Operation Section 4-5

64

To leave the TC area uncleared and retaining Program Memory addresses
00000 through 00122, input as follows:

�����

�����

�����

���������������

���������������

���������������

���������������

���������������

���������������

������������

���������������

4-5-3 Registering the I/O Table

The I/O Table Registration operation writes the types of I/O Units controlled
by the PC and the Rack locations of the I/O Units into the I/O table memory
area of the CPU (see Section 3-2 I/R Area). It also clears all I/O bits. The I/O
table must be registered before programming operations are begun. As the
I/O table remains in memory, a new I/O table must also be registered when-
ever I/O Units are changed.

Note If “I/OTBL WRIT DISABLED” is displayed, the I/O table cannot be written.
Check the number of Remote I/O Units, duplicate word settings, for Optical
I/O Units, terminators for Remote I/O Systems, or an excess of I/O units.
Check all I/O Units.

When Remote I/O Master Units connected to I/O Link Units, Optical I/O
Units, Remote Terminals, or I/O Terminals are included in the System, word
multipliers (see below) must be registered for the Masters to enable word
allocation.

I/O Table Registration can be performed only in PROGRAM mode.

The I/O verification error message, “I/O VER ERR”, will appear when starting
programming operations or after I/O Units have been changed. This error is
cleared by registering a new I/O table.

Key Sequence

Preparation for Operation Section 4-5

65

Initial I/O Table Registration

Register I/O table

Memory cleared completely

�����

�����

���� ��!

�����������

���"��#

�����������
���

����������������

�����������
���

������������$%��

�����������
���

�&

When Remote I/O Master Units in the system are connected to I/O Link
Units, Optical I/O Units, Remote Terminals, or I/O Terminals a word multiplier
between 0 and 3 must be assigned to each one of the Masters after register-
ing the I/O table. The same word multiplier can be assigned to more than one
Master in the same system as long as the same word is not allocated to
more than one unit. Word allocations to I/O Link Units, Optical I/O Units, and
Remote terminals, and I/O Terminals are computed from the words set on the
Units as follows:

(32 x word multiplier) + word setting on the Unit

Make sure that the lowest words allocated to I/O Link Units, Optical I/O Units,
Remote Terminals, or I/O Terminals connected to the Master with the lowest

Registering Word
Multipliers for Masters

Preparation for Operation Section 4-5

66

word multiplier, do not overlap with the highest I/O words on the last Expan-
sion I/O Rack.

Continue registering word multipliers
by entering them with the WRITE key.

Automatically checks
I/O table.

This operation takes about 2 s.

Indicates word multiplier not yet specified.

Once the word has been specified
and entered with the WRITE key,
proceed to the next master.

When a word has already been registered, it
will be displayed. Press the WRITE key to
continue without changing it, or input a new
multiplier before the WRITE key to change it.

Appears when all word multipliers have
been registered, completing the operation.

Requesting input of word multiplier.
Word multiplier not yet specified.

Master number (0 to 7).

Indicates a Master.

I/O slot number.

Rack number.

�����������
���

��������&��

�����������
���

���'%�#����()�

�����������
���

���'%�#����()�

�����������
���

���'��#����()�

�����������
���

���'*�#�����)�

�����������
���

�&

�����������
���

���"%�#����()�

4-5-4 Clearing Error Messages
After the I/O table has been registered, any error messages recorded in
memory should be cleared. It is assumed here that the causes of any of the
errors for which error messages appear have already been taken care of. If
the beeper sounds when an attempt is made to clear an error message,
eliminate the cause of the error, and then clear the error message (refer to
Section 8 Troubleshooting).

To display any recorded error messages, press CLR, FUN, and then
MONTR. The first message will appear. Pressing MONTR again will clear the
present message and display the next error message. Continue pressing
MONTR until all messages have been cleared.

Although error messages can be accessed in any mode, they can be cleared
only in PROGRAM mode.

Preparation for Operation Section 4-5

67

Key Sequence

4-5-5 Transferring the I/O Table
The I/O Table Transfer operation transfers a copy of the I/O table to RAM
program memory.This allows the user program and I/O table to be written
into EPROM together.

Note When power is applied to a PC which has a copy of an I/O table stored in its
program memory, the I/O table of the CPU will be overwritten. Changes
made in the I/O table do not affect the copy of the I/O table in program mem-
ory; I/O Table Transfer must be repeated to change the copy in program
memory.

The I/O Table Transfer operation will not work if:

1, 2, 3... 1. When the memory unit is not RAM, or
2. When the contents of program memory exceeds 31.7K words. (To find

out the capacity of program memory, do an instruction search for
END(01).)

I/O table transfer can only be done in PROGRAM mode.

Key Sequence

Example

The following indicates that the
I/O table cannot be transferred.

�����

�����

���� ��!

����������

���"��#

����������)���

���������������

����������)���

�����������$%��

����������)���

�&

����������)���

��	����

4-5-6 Changing the I/O Table
Use of this operation allows I/O Units to be added or removed without the
need to re-register the I/O table or amend the user program. The I/O Table

Preparation for Operation Section 4-5

68

Change operation allows you to register dummy I/O Units in the I/O table. By
reserving an entry in the I/O table with this operation, you can prevent word
number discrepancies when an I/O Unit is to be added to the System in the
future. A dummy I/O Unit can also be registered to prevent discrepancies
after an I/O Unit is removed.

When this operation is performed for the first time, the I/O verification error
message is displayed because the registered I/O table does not agree with
the actually mounted units. Disregard this error message. This message will
not be displayed for word reservations (3, see below).

Dummy I/O table entries can be made for Input Units (use the 1 key), Output
Units (use the 0 key), and for words (use the 3 key). Press the key once for
each Unit or word, e.g., pressing the 3 key twice before pressing WRITE will
reserve two words. Up to four words may be reserved for each slot.

Note An Input Unit reservation cannot be used for an Output Unit and vice versa.
Also, dummy I/O Units cannot be registered for Remote I/O Units, Optical I/O
Units, or Interrupt Units.

Key Sequence

I/O types 0: Output
1: Input
3: Word

I/O table read in progress

Preparation for Operation Section 4-5

69

Example

Reserves space for a
32-point Output Unit.

First registration generates this error.

Displayed when an I/O verification
error has already occurred.

Reading a slot with-
out a Unit mounted.

Reserves space for
a 16-point Input Unit.

Reserves 2 words.

��������������

���"*�#((((�((((

��������������

���"*�#((((���((

��������������

���������������

���"*�#��((����+

���������������

���"+�#((((�((((

��������������

���"+�#((((�((((

��������������

���"+�#�(((�((((

���������������

���"+�#�(((����%

���������������

���"��#((((

��������������

���"��#((((�((((

��������������

���"��#((((���((

���������������

���"��#��((�����

4-5-7 Changing I/O Units On-line (C2000H Only)
The On-line Unit Change operation allows mounting and/or removal of I/O
Units while the CPU is operating. Only 16-, 32-, and 64-point I/O Units can be
changed on-line. On-line changes are not possible on Racks containing Inter-
rupt Input Units, Special I/O Units, or Remote I/O Units. Regardless of
whether or not the On-line Unit change operation is used, do not mount a
Remote I/O Unit or a Special I/O Unit to a C2000-BI083 Backplane. Doing so
will result in an I/O bus error.

Removal or mounting can be done in RUN, MONITOR, or PROGRAM mode.
The entire operation must be repeated for each Unit individually, using the
following procedure to attach Units.

1, 2, 3... 1. Align the bottom of the I/O Unit on the hook on the Rack.
2. Pivoting the Unit on the hook, press in to insert the connector.
3. Tighten the screws at the bottom and top of the I/O Unit.

AR 22 is used to monitor the operation as follows:

Preparation for Operation Section 4-5

70

Monitoring via AR Bits

Bit Function

AR 2200 to AR 2211 A 3-digit BCD number indicating the first word of an I/O
Unit that is being changed on-line.

AR 2212 to AR 2214 A 3-bit number indicating the number of words occupied
by the I/O Unit that is being changed on-line.

AR 2215 On-line I/O Unit Change Flag.

Key Sequence

I/O table read in progress [I/O Unit removal]

[I/O Unit mounting]

Example

After mounting the I/O Unit

Indicates that the I/O
Unit can be changed.

Prior to I/O Unit removal

�����������,���

���'��#�(((�����

�����������,����

���'��#�(((�����

�������,��������

���'��#�(((�����

�����������,���

���'��#�(((����

�����������,���

���'��#�(((����

�����������,����

���'��#�(((����

�������,��������

���'��#�(((����

�����������,���

���'��#�(((�����

• The outputs of the I/O Unit will turn ON for an instant (causing the I/O Unit’s
LEDs to blink) when replacing an I/O Unit on-line. Be sure to disconnect the
terminal block before removing the Unit. After mounting the new I/O Unit,
be sure to reconnect the terminal block.

4-5-8 Verifying the I/O Table
The I/O Table Verification operation is used to check the I/O table registered
in memory to see if it matches the actual sequence of I/O Units mounted.
The first inconsistency discovered will be displayed as shown below. Every
subsequent pressing of VER displays the next inconsistency.

Preparation for Operation Section 4-5

71

Key Sequence

Example

(No errors)

(An error occurred)

Actual I/O words

Registered I/O table words

I/O slot number

Rack number

�����

�����

���� ��!

�����������

���"��#

���������������

�&

��������������

�"��#�(((��(((

Meaning of Displays

Duplication

Indicates a Remote I/O Unit
that has not been registered

��������������

��((#�("����("

��������������

("(�#((((�����(

4-5-9 Reading the I/O Table
The I/O Table Read operation is used to access the I/O table that is currently
registered in the CPU memory.

Preparation for Operation Section 4-5

72

Example of I/O Unit Mounting

Rack 0

Rack 1

Rack 2

Rack 3

Rack 4

Rack 5

Rack 6

Rack 7

Expansion
I/O Racks

Expansion
I/O Racks

Slot number
1 2 3 4 5 6 70

1 2 3 4 5 6 70

* In Duplex System

CPU Rack
or CPU I/O
Rack*

Key Sequence

[0 to 7] [0 to 9]

Rack
number

Slot
number

Preparation for Operation Section 4-5

73

Example

(When there is no I/O Unit with
the specified unit number)

���������������

��*"��#((((

���������������

��*"��#((((

�����

�����

���� ��!

������������

���"��#

������������

���"��#

������������

���"+�#

���������������

���"+�#�(((����+

���������������

���"*�#�(((����*

���������������

���"+�#�(((����+

Meaning of Displays

I/O Unit Designations for Displays

No. of points

16

32

64

Input Unit Output Unit

I/O Units, Special I/O Units, I/O Link Units

I/O word number

I/O type: I (input), O (output), or
N (reserved)

Unit number

Rack number

���������������

��("(�#((((��(((

Preparation for Operation Section 4-5

74

Remote I/O Master Unit

Word Multiplier (0 to 3)

Master number (0 to 7)

���������������

���"*�#���((

Remote I/O Slave Racks

I/O word number
I/O type: I (input), O (output), or

N (reserved)
I/O slot number

Remote I/O Slave Unit number (0 to 7)

Remote I/O Master Unit number (0 to 7)

Indicates a Remote I/O Rack

���������������

�(("(�#((((��(((

Interrupt Units

Interrupt Input Unit number

���������������

���"+�#��((

Optical I/O Units, I/O Link Units, Remote Terminals, and I/O Terminals

I/O word number (0 to 127)

I/O type: I (input), O (output), or
N (reserved)

Remote I/O Master Unit number (0 to 7)

Word (H: leftmost 8 bits; L: rightmost 8 bits)

���������������

�(((��#�("(

Preparation for Operation Section 4-5

75

4-6 Inputting, Modifying, and Checking the Program
Once a program is written in mnemonic code, it can be input directly into the
PC from a Programming Console. Mnemonic code is keyed into Program
Memory addresses from the Programming Console. Checking the program
involves a syntax check to see that the program has been written according
to syntax rules. Once syntax errors are corrected, a trial execution can begin
and, finally, correction under actual operating conditions can be made.

The operations required to input a program are explained below. Operations
to modify programs that already exist in memory are also provided in this
section, as well as the procedure to obtain the current cycle time.

Before starting to input a program, check to see whether there is a program
already loaded. If there is a program already loaded that you do not need,
clear it first using the program memory clear key sequence, then input the
new program. If you need the previous program, be sure to check it with the
program check key sequence and correct it as required. Further debugging
methods are provided in Section 7 Debugging and Execution.

4-6-1 Setting and Reading from Program Memory Address
When inputting a program for the first time, it is generally written to Program
Memory starting from address 00000. Because this address appears when
the display is cleared, it is not necessary to specify it.

When inputting a program starting from other than 00000 or to read or modify
a program that already exists in memory, the desired address must be desig-
nated. To designate an address, press CLR and then input the desired ad-
dress. Leading zeros of the address need not be input, i.e., when specifying
an address such as 00053 you need to enter only 53. The contents of the
designated address will not be displayed until the down key is pressed.

Once the down key has been pressed to display the contents of the desig-
nated address, the up and down keys can be used to scroll through Program
Memory. Each time one of these keys is pressed, the next or previous word
in Program Memory will be displayed.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status
of any displayed bit will also be shown.

Key Sequence

Inputting, Modifying, and Checking the Program Section 4-6

76

If the following mnemonic code has already been input into Program Memory,
the key inputs below would produce the displays shown.

�����

�����

����������������

����������������

����������������

����������������

����������������

����������������

�����

�����������-����

����������������

����������

Address Instruction Operands

00200 LD 00000

00201 AND 00001

00202 TIM 000

#0123

00203 LD 00100

4-6-2 Entering or Editing Programs
Programs can be entered or edited only in PROGRAM mode.

The same procedure is used to either input a program for the first time or to
edit a program that already exists. In either case, the current contents of Pro-
gram Memory is overwritten, i.e., if there is no previous program, the
NOP(00) instruction, which will be written at every address, will be overwrit-
ten.

To input a program, just follow the mnemonic code that was produced from
the ladder diagram, ensuring that the proper address is set before starting.
Once the proper address is displayed, input the first instruction word, press
WRITE. Next, input any operands required, and press WRITE after each, i.e.,
WRITE is pressed at the end of each line of the mnemonic code. When
WRITE is pressed, the designated instruction will be entered and the next
display will appear. If the instruction requires two or more words, the next
display will indicate the next operand required and provide a default value for
it. If the instruction requires only one word, the next address will be dis-
played. Continue inputting each line of the mnemonic code until the entire
program has been entered.

When inputting numeric values for operands, it is not necessary to input lead-
ing zeros. Leading zeros are required only when inputting function codes
(see below). When designating operands, be sure to designate the data area
for all but IR and SR addresses by pressing the corresponding data area key,
and to designate each constant by pressing CONT/# . CONT/# is not re-
quired for counter or timer SVs (see below). The AR area is designated by
pressing SHIFT and then HR. TC numbers as bit operands (i.e., completion
flags) are designated by pressing either TIM or CNT before the address, de-
pending on whether the TC number has been used to define a timer or a
counter. To designate an indirect DM address, press CH/� before the ad-
dress (pressing DM is not necessary for an indirect DM address).

The SV (set value) for a timer or counter is generally entered as a constant,
although inputting the address of a word that holds the SV is also possible.

Example

Inputting SV for Counters
and Timers

Inputting, Modifying, and Checking the Program Section 4-6

!

77

When inputting an SV as a constant, CONT/# is not required; just input the
numeric value and press WRITE. To designate a word, press CLR and then
input the word address as described above.

The most basic instructions are input using the Programming Console keys
provided for them. All other instructions are entered using function codes.
These function codes are always written after the instruction’s mnemonic. If
no function code is given, there should be a Programming Console key for
that instruction.

There are two types of function code: those for normal instructions and those
for block instructions. Function codes for block instructions are always written
between pointed parentheses <like this>. Both types of function code are
used in basically the same way, but SHIFT must be pressed before inputting
a block instruction function code.

To designate the differentiated form of an instruction, press NOT after the
function code.

To input an instruction using a function code, set the address, press FUN,
press SHIFT if a block instruction is being entered, input the function code
including any leading zeros, press NOT if the differentiated form of the in-
struction is desired, input any bit operands or definers required on the in-
struction line, and then press WRITE.

Caution Enter function codes with care and be sure to press SHIFT when required.

Key Sequence

[Address displayed] [Instruction word] [Operand]

Designating Instructions

Inputting, Modifying, and Checking the Program Section 4-6

78

The following program can be entered using the key inputs shown below.
Displays will appear as indicated.

�����

�����

�����

����������������

���������

���� ��!

�����

����������������

��������������

�����������-����

���������

�����������-����

���������

���� ��!

�����

���� ��!

�����

����� �+!�������

���������������

�����������-����

����������

�����������-�+��

���������

���� ��!

Address Instruction Operands

00200 LD 00002

00201 TIM 000

#0123

00202 TIMH(15) 001

#0500

The following error messages may appear when inputting a program. Correct
the error as indicated and continue with the input operation. The asterisks in

Example

Error Messages

Inputting, Modifying, and Checking the Program Section 4-6

79

the displays shown below will be replaced with numeric data, normally an
address, in the actual display.

Message Cause and correction

((((�������� An attempt was made to write to ROM or to write-protected RAM. Be sure a RAM
Unit is mounted and that its write-protect switch is set to OFF.

((((��������� The instruction at the last address in memory is not NOP(00). Erase all unnecessary
instructions at the end of the program or use a larger Memory Unit.

((((��������� An address was set that is larger than the highest memory in Program Memory. Input
a smaller address

((((���������� Data has been input in the wrong format or beyond defined limits, e.g., a
hexadecimal value has been input for BCD. Reinput the data. This error will generate
a FALS 00 error.

((((������.���� A data area address has been designated that exceeds the limit of the data area,
e.g., an address is too large. Confirm the requirements for the instruction and
re-enter the address.

4-6-3 Checking the Program
Once a program has been entered, it should be checked for syntax to be
sure that no programming rules have been violated. This check should also
be performed if the program has been changed in any way that might create
a syntax error.

To check the program, input the key sequence shown below. The numbers
indicate the desired check level (see below). When the check level is en-
tered, the program check will start. If an error is discovered, the check will
stop and a display indicating the error will appear. Press SRCH to continue
the check. If an error is not found, the program will be checked through to the
first END(01), with a display indicating when each 64 instructions have been
checked (e.g., display #1 of the example after the following table).

CLR can be pressed to cancel the check after it has been started, and a dis-
play like display #2, in the example, will appear. When the check has reached
the first END, a display like display #3 will appear.

A syntax check can be performed on a program only in PROGRAM mode.

Key Sequence

To check
up to END(01)

To abort

(0, 1, 2, Check levels)

Three levels of program checking are available. The desired level must be
designated to indicate the type of errors that are to be detected. The follow-
ing table provides the error types, displays, and explanations of all syntax
errors. Check level 0 checks for type A, B, and C errors; check level 1, for
type A and B errors; and check level 2, for type A errors only.

The address where the error was generated will also be displayed.

Many of the following errors are for instructions that have not been intro-
duced yet. Refer to 4-7 Controlling Execution or to Section 5 Instruction Set
for details on these.

Check Levels and Error
Messages

Inputting, Modifying, and Checking the Program Section 4-6

80

Type Message Meaning and appropriate response

Type A ����� The program has been lost. Re-enter the program.

���������	�� There is no END(01) in the program. Write END(01) at the final address in the program.

����������� The number of logic blocks and logic block instructions does not agree, i.e., either LD or
LD NOT has been used to start a logic block whose execution condition has not been used
by another instruction, or a logic block instruction has been used that does not have the
required number of logic blocks. Check your program.

�������� An instruction is in the wrong place in the program. Check instruction requirements and
correct the program.

���� The same jump number, block number, or subroutine number has been used twice.
Correct the program so that the same number is only used once for each. (Jump number
00 may be used as often as required.)

	�������� SBS(91) has been programmed for a subroutine number that does not exist. Correct the
subroutine number or program the required subroutine.

/��������� A JME(04) is missing for a JMP(05). Correct the jump number or insert the proper
JME(04).

����������� A constant entered for the instruction is not within defined values. Change the constant
so that it lies within the proper range.

	������� STEP(08) with a section number and STEP(08) without a section number have been used
correctly. Check STEP(08) programming requirements and correct the program.

���"���
���

BPRG(96) and BEND<01> have not been used in pairs. Correct the program so that each
BPRG(96) has one and only one BEND<01>.

��"�������� IF<02>, IF<02> NOT, ELSE<03>, and IEND<04> have not been used properly. Correct
the program so that each IF<02> and IF<02> NOT has a corresponding IEND<04>, and
so that ELSE<03>, when used, is located between them.

����"����
���

LOOP<09>, LEND<10>, and LOOP<10> NOT have not been used properly. Correct the
program so that loops are not nested, do not interrupt any IF<02>-IEND<04> program
sections, and are used in the proper order.

Type B ��"������� IL(02) and ILC(03) are not used in pairs. Correct the program so that each IL(02) has a
unique ILC(03). Although this error message will appear if more than one IL(02) is used
with the same ILC(03), the program will executed as written. Make sure your program is
written as desired before proceeding.

/��"/������ JMP(04) 00 and JME(05) 00 are not used in pairs. Although this error message will appear
if more than one JMP(04) 00 is used with the same JME(05) 00, the program will be
executed as written. Make sure your program is written as desired before proceeding.

	�"������� If the displayed address is that of SBN(92), two different subroutines have been defined
with the same subroutine number. Change one of the subroutine numbers or delete one
of the subroutines. If the displayed address is that of RET(93), RET(93) has not been used
properly. Check requirements for RET(93) and correct the program.

Type C /��������� JME(05) has been used with no JMP(04) with the same jump number. Add a JMP(04) with
the same number or delete the JME(05) that is not being used.

		������� A subroutine exists that is not called by SBS(91). Program a subroutine call in the proper
place, or delete the subroutine if it is not required.

��������� The same bit is being controlled (i.e., turned ON and/or OFF) by more than one instruction
(e.g., OUT, OUT NOT, DIFU(13), DIFD(14), KEEP(11), SFT(10), SET<07>). Although this
is allowed for certain instructions, check instruction requirements to confirm that the
program is correct or rewrite the program so that each bit is controlled by only one
instruction.

Inputting, Modifying, and Checking the Program Section 4-6

81

The following example shows some of the displays that can appear as a re-
sult of a program check.

Display #2

Display #3

Halts program check

Check continues until END(01)

When errors are found

Display #1

����0�������&���

������������&

���� ��! ��.1&
!

���%0�����������

����������������

���$1���������

����������������

�������"��������

���� ��!

�������������	��

���

�����

������������&

��&������ �"�!�

���1*�������&

4-6-4 Displaying the Cycle Time
Once the program has been cleared of syntax errors, the cycle time should
be checked. This is possible only in RUN or MONITOR mode while the pro-
gram is being executed. See Section 6 Program Execution Timing for details
on the cycle time.

To display the current average cycle time, press CLR then MONTR. The time
displayed by this operation is a typical cycle time. The differences in dis-
played values depend on the execution conditions that exist when MONTR is
pressed.

Example

�����

�����	��������

����������+*.��	

�����	��������

����������+�.$�	

Example

Inputting, Modifying, and Checking the Program Section 4-6

82

4-6-5 Program Searches
The program can be searched for occurrences of any designated instruction
or data area address used in an instruction. Searches can be performed from
any currently displayed address or from a cleared display.

To designate a bit address, press SHIFT, press CONT/#, then input the ad-
dress, including any data area designation required, and press SRCH. To
designate an instruction, input the instruction just as when inputting the pro-
gram and press SRCH. Once an occurrence of an instruction or bit address
has been found, any additional occurrences of the same instruction or bit can
be found by pressing SRCH again. SRCH’G will be displayed while a search
is in progress.

When the first word of a multiword instruction is displayed for a search opera-
tion, the other words of the instruction can be displayed by pressing the down
key before continuing the search.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status
of any bit displayed will also be shown.

Key Sequence

Inputting, Modifying, and Checking the Program Section 4-6

83

�����

�����

����������������

�����	���

����������������

�����

����������������

�1���	���

���� ��! �1.*&
!

�����

�����

�����

����������������

�����	���

����������������

��������������

�����������-����

�����

����������	���

���������������+

����������	���

���������������+

����������	���

���������������+

�1���

���� ��! �1.*&
!

4-6-6 Inserting and Deleting Instructions
In PROGRAM mode, any instruction that is currently displayed can be de-
leted or another instruction can be inserted before it. These are not possible
in RUN or MONITOR modes.

To insert an instruction, display the instruction before which you want the new
instruction to be placed, input the instruction word in the same way as when
inputting a program initially, and then press INS and the down key. If other
words are required for the instruction, input these in the same way as when
inputting the program initially.

Example:
Instruction Search

Example:
Bit Search

Inputting, Modifying, and Checking the Program Section 4-6

!

84

To delete an instruction, display the instruction word of the instruction to be
deleted and then press DEL and the up key. All the words for the designated
instruction will be deleted.

Caution Be careful not to inadvertently delete instructions; there is no way to recover
them without reinputting them completely.

Key Sequences

When an instruction is inserted or deleted, all addresses in Program Memory
following the operation are adjusted automatically so that there are no blank
addresses or no unaddressed instructions.

The following mnemonic code shows the changes that are achieved in a pro-
gram through the key sequences and displays shown below.

Original Program

Address Instruction Operands

00000 LD 00100

00001 AND 00101

00002 LD 00201

00003 AND NOT 00102

00004 OR LD -

00005 AND 00103

00006 AND NOT 00104

00007 OUT 00201

00008 END(01) -

0010500100 00103 0010400101

00201

END(01)

00102

00201

Delete

0010400100 00103

00105

00101

00201

END(01)

00102

00201

Before Insertion: Before Deletion:

The following key inputs and displays show the procedure for achieving the
program changes shown above.

Example

Inputting, Modifying, and Checking the Program Section 4-6

85

Find the address prior
to the insertion point

Insert the
instruction

Program After Insertion

Inserting an Instruction

�����

�����

����������������

�����

����������������

����%	���

����������������

����1����

���������������*

����1

����������������

����1

���������������+

����1��	����

���������������+

����%��	�������

���������������*

����1����

���������������+

Address Instruction Operands

00000 LD 00100

00001 AND 00101

00002 LD 00201

00003 AND NOT 00102

00004 OR LD -

00005 AND 00103

00006 AND 00105

00007 AND NOT 00104

00008 OUT 00201

00009 END(01) -

Find the instruction
that requires deletion.

Confirm that this is the
instruction to be deleted.

Program After Deletion

Deleting an Instruction

�����

�����

����������������

�����

����������������

����0	���

����������������

����%����

���������������*

����%��������

���������������*

����%����������

����������������

����1����

���������������+

Address Instruction Operands

00000 LD 00100

00001 AND NOT 00101

00002 LD 00201

00003 AND NOT 00102

00004 OR LD -

00005 AND 00103

00006 AND 00105

00007 AND NOT 00104

00008 OUT 00201

Inputting, Modifying, and Checking the Program Section 4-6

86

4-6-7 Branching Instruction Lines

When an instruction line branches into two or more lines, it is sometimes
necessary to use either interlocks or TR bits to maintain the execution condi-
tion that existed at a branching point. This is because instruction lines are
executed across to a right-hand instruction before returning to the branching
point to execute instructions one a branch line. If a condition exists on any of
the instruction lines after the branching point, the execution condition could
change during this time making proper execution impossible. The following
diagrams illustrate this. In both diagrams, instruction 1 is executed before
returning to the branching point and moving on to the branch line leading to
instruction 2.

Instruction 1

00002

00000

Instruction 2

Branching
point

Instruction 1

00002

00000

Instruction 2

Branching
point

Diagram B: Incorrect Operation

Diagram A: Correct Operation

00001

Address Instruction Operands

00000 LD 00000

00001 Instruction 1

00002 AND 00002

00003 Instruction 2

Address Instruction Operands

00000 LD 00000

00001 AND 00001

00002 Instruction 1

00003 AND 00002

00004 Instruction 2

If, as shown in diagram A, the execution condition that existed at the branch-
ing point cannot be changed before returning to the branch line (instructions
at the far right do not change the execution condition), then the branch line
will be executed correctly and no special programming measure is required.

If, as shown in diagram B, a condition exists between the branching point
and the last instruction on the top instruction line, the execution condition at
the branching point and the execution condition after completing the top in-
struction line will sometimes be different, making it impossible to ensure cor-
rect execution of the branch line.

There are two means of programming branching programs to preserve the
execution condition. One is to use TR bits; the other, to use interlocks
(IL(02)/IL(03)).

The TR area provides eight bits, TR 0 through TR 7, that can be used to tem-
porarily preserve execution conditions. If a TR bit is placed at a branching
point, the current execution condition will be stored at the designated TR bit.
When returning to the branching point, the TR bit restores the execution sta-
tus that was saved when the branching point was first reached in program
execution.

The previous diagram B can be written as shown below to ensure correct
execution. In mnemonic code, the execution condition is stored at the
branching point using the TR bit as the operand of the OUTPUT instruction.

TR Bits

Inputting, Modifying, and Checking the Program Section 4-6

87

This execution condition is then restored after executing the right-hand in-
struction by using the same TR bit as the operand of a LOAD instruction

Instruction 1

00002

00000

Instruction 2

Diagram B: Corrected Using a TR bit

00001
TR 0 Address Instruction Operands

00000 LD 00000

00001 OUT TR 0

00002 AND 00001

00003 Instruction 1

00004 LD TR 0

00005 AND 00002

00006 Instruction 2

In terms of actual instructions the above diagram would be as follows: The
status of IR 00000 is loaded (a LOAD instruction) to establish the initial ex-
ecution condition. This execution condition is then output using an OUTPUT
instruction to TR 0 to store the execution condition at the branching point.
The execution condition is then ANDed with the status of IR 00001 and in-
struction 1 is executed accordingly. The execution condition that was stored
at the branching point is then re-loaded (a LOAD instruction with TR 0 as the
operand), this is ANDed with the status of IR 00002, and instruction 2 is ex-
ecuted accordingly.

The following example shows an application using two TR bits.

Instruction 1

00003

00000 00002
TR 1

00005

TR 0
00001

00004

Instruction 2

Instruction 3

Instruction 4

Address Instruction Operands

00000 LD 00000

00001 OUT TR 0

00002 AND 00001

00003 OUT TR 1

00004 AND 00002

00005 OUT 00500

00006 LD TR 1

00007 AND 00003

00008 OUT 00501

00009 LD TR 0

00010 AND 00004

00011 OUT 00502

00012 LD TR 0

00013 AND NOT 00005

00014 OUT 00503

In this example, TR 0 and TR 1 are used to store the execution conditions at
the branching points. After executing instruction 1, the execution condition
stored in TR 1 is loaded for an AND with the status IR 00003. The execution
condition stored in TR 0 is loaded twice, the first time for an AND with the
status of IR 00004 and the second time for an AND with the inverse of the
status of IR 00005.

TR bits can be used as many times as required as long as the same TR bit is
not used more than once in the same instruction block. Here, a new instruc-
tion block is begun each time execution returns to the bus bar. If, in a single
instruction block, it is necessary to have more than eight branching points
that require the execution condition be saved, interlocks (which are described
next) must be used.

When drawing a ladder diagram, be careful not to use TR bits unless neces-
sary. Often the number of instructions required for a program can be reduced
and ease of understanding a program increased by redrawing a diagram that
would otherwise required TR bits. In both of the following pairs of diagrams,

Inputting, Modifying, and Checking the Program Section 4-6

88

the bottom versions require fewer instructions and do not require TR bits. In
the first example, this is achieved by reorganizing the parts of the instruction
block: the bottom one, by separating the second OUTPUT instruction and
using another LOAD instruction to create the proper execution condition for
it.

Note Although simplifying programs is always a concern, the order of execution of
instructions is sometimes important. For example, a MOVE instruction may
be required before the execution of a BINARY ADD instruction to place the
proper data in the required operand word. Be sure that you have considered
execution order before reorganizing a program to simplify it.

Instruction 1
00000

Instruction 2

00001
TR 0

Instruction 2

00000

Instruction 1
00001

Instruction 1

00000

Instruction 2

00003

TR 0
00001

00004

00002

00001 00003

00000

00004

00002

00001

Instruction 1

Instruction 2

Note TR bits are only used when programming using mnemonic code. They are
not necessary when inputting ladder diagrams directly, as is possible from a
GPC. The above limitations on the number of branching points requiring TR
bits, and considerations on methods to reduce the number of programming
instructions, still hold.

The problem of storing execution conditions at branching points can also be
handled by using the INTERLOCK (IL(02)) and INTERLOCK CLEAR
(ILC(03)) instructions to eliminate the branching point completely while allow-
ing a specific execution condition to control a group of instructions. The IN-
TERLOCK and INTERLOCK CLEAR instructions are always used together.

When an INTERLOCK instruction is placed before a section of a ladder pro-
gram, the execution condition for the INTERLOCK instruction will control the

Interlocks

Inputting, Modifying, and Checking the Program Section 4-6

89

execution of all instruction up to the next INTERLOCK CLEAR instruction. If
the execution condition for the INTERLOCK instruction is OFF, all right-hand
instructions through the next INTERLOCK CLEAR instruction will be ex-
ecuted with OFF execution conditions to reset the entire section of the ladder
diagram. The effect that this has on particular instructions is described in
5-11 INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03) .

Diagram B can also be corrected with an interlock. Here, the conditions lead-
ing up to the branching point are placed on an instruction line for the INTER-
LOCK instruction, all of lines leading from the branching point are written as
separate instruction lines, and another instruction line is added for the IN-
TERLOCK CLEAR instruction. No conditions are allowed on the instruction
line for INTERLOCK CLEAR. Note that neither INTERLOCK nor INTER-
LOCK CLEAR requires an operand.

Instruction 1

00002

00000

Instruction 2

00001

ILC(03)

IL(02) Address Instruction Operands

00000 LD 00000

00001 IL(02) ---

00002 LD 00001

00003 Instruction 1

00004 LD 00002

00005 Instruction 2

00006 ILC(03) ---

If IR 00000 is ON in the revised version of diagram B, above, the status of IR
00001 and that of IR 00002 would determine the execution conditions for in-
structions 1 and 2, respectively. Because IR 00000 is ON, this would produce
the same results as ANDing the status of each of these bits. If IR 00000 is
OFF, the INTERLOCK instruction would produce an OFF execution condition
for instructions 1 and 2 and then execution would continue with the instruc-
tion line following the INTERLOCK CLEAR instruction.

As shown in the following diagram, more than one INTERLOCK instruction
can be used within one instruction block; each is effective through the next
INTERLOCK CLEAR instruction.

Instruction 1

00000

Instruction 2

00001

ILC(03)

IL(02)

00004

Instruction 3

Instruction 4
00006

00005

00003

00002

IL(02)

Address Instruction Operands

00000 LD 00000

00001 IL(02) ---

00002 LD 00001

00003 Instruction 1

00004 LD 00002

00005 IL(02) ---

00006 LD 00003

00007 AND NOT 00004

00008 Instruction 2

00009 LD 00005

00010 Instruction 3

00011 LD 00006

00012 Instruction 4

00013 ILC(03) ---

If IR 00000 in the above diagram is OFF (i.e., if the execution condition for
the first INTERLOCK instruction is OFF), instructions 1 through 4 would be
executed with OFF execution conditions and execution would move to the
instruction following the INTERLOCK CLEAR instruction. If IR 00000 is ON,
the status of IR 00001 would be loaded as the execution condition for instruc-

Inputting, Modifying, and Checking the Program Section 4-6

90

tion 1 and then the status of IR 00002 would be loaded to form the execution
condition for the second INTERLOCK instruction. If IR 00002 is OFF, instruc-
tions 2 through 4 will be executed with OFF execution conditions. If IR 00002
is ON, IR 00003, IR 00005, and IR 00006 will determine the first execution
condition in new instruction lines.

4-6-8 Jumps
A specific section of a program can be skipped according to a designated
execution condition. Although this is similar to what happens when the exe-
cution condition for an INTERLOCK instruction is OFF, with jumps, the oper-
ands for all instructions maintain status. Jumps can therefore be used to con-
trol devices that require a sustained output, e.g., pneumatics and hydraulics,
whereas interlocks can be used to control devices that do not required a sus-
tained output, e.g., electronic instruments.

Jumps are created using the JUMP (JMP(04)) and JUMP END (JME(05))
instructions. If the execution condition for a JUMP instruction is ON, the pro-
gram is executed normally as if the jump did not exist. If the execution condi-
tion for the JUMP instruction is OFF, program execution moves immediately
to a JUMP END instruction without changing the status of anything between
the JUMP and JUMP END instruction.

All JUMP and JUMP END instructions are assigned jump numbers ranging
between 00 and 99. There are two types of jumps. The jump number used
determines the type of jump.

A jump can be defined using jump numbers 01 through 99 only once, i.e.,
each of these numbers can be used once in a JUMP instruction and once in
a JUMP END instruction. When a JUMP instruction assigned one of these
numbers is executed, execution moves immediately to the JUMP END in-
struction that has the same number as if all of the instruction between them
did not exist. Diagram B from the TR bit and interlock example could be re-
drawn as shown below using a jump. Although 01 has been used as the
jump number, any number between 01 and 99 could be used as long as it
has not already been used in a different part of the program. JUMP and
JUMP END require no other operand and JUMP END never has conditions
on the instruction line leading to it.

Instruction 1

00002

00000

Instruction 2

Diagram B: Corrected with a Jump

00001

JME(05) 01

JMP(04) 01 Address Instruction Operands

00000 LD 00000

00001 JMP(04) 01

00002 LD 00001

00003 Instruction 1

00004 LD 00002

00005 Instruction 2

00006 JME(05) 01

This version of diagram B would have a shorter execution time when 00000
was OFF than any of the other versions.

The other type of jump is created with a jump number of 00. As many jumps
as desired can be created using jump number 00 and JUMP instructions us-
ing 00 can be used consecutively without a JUMP END using 00 between
them. It is even possible for all JUMP 00 instructions to move program
execution to the same JUMP END 00, i.e., only one JUMP END 00
instruction is required for all JUMP 00 instruction in the program. When 00 is
used as the jump number for a JUMP instruction, program execution moves
to the instruction following the next JUMP END instruction with a jump num-

Inputting, Modifying, and Checking the Program Section 4-6

91

ber of 00. Although, as in all jumps, no status is changed and no instructions
are executed between the JUMP 00 and JUMP END 00 instructions, the pro-
gram must search for the next JUMP END 00 instruction, producing a slightly
longer execution time.

Execution of programs containing multiple JUMP 00 instructions for one
JUMP END 00 instruction is similar to that of interlocked sections. The follow-
ing diagram is the same as that used for the interlock example above, except
redrawn with jumps. The execution of this diagram would differ from that of
the diagram described above (e.g., in the previous diagram interlocks would
reset certain parts of the interlocked section, however, jumps do not affect
the status of any bit between the JUMP and JUMP END instructions).

Instruction 1

00000

Instruction 2

00001

JME(05) 00

JMP(04) 00

00004

Instruction 3

Instruction 4
00006

00005

00003

00002

JMP(04) 00

Address Instruction Operands

00000 LD 00000

00001 JMP(04) 00

00002 LD 00001

00003 Instruction 1

00004 LD 00002

00005 JMP(04) 00

00006 LD 00003

00007 AND NOT 00004

00008 Instruction 2

00009 LD 00005

00010 Instruction 3

00011 LD 00006

00012 Instruction 4

00013 JME(05) 00

Inputting, Modifying, and Checking the Program Section 4-6

92

4-7 Controlling Bit Status
There are five instructions that can be used generally to control individual bit
status. These are the OUTPUT, OUTPUT NOT, DIFFERENTIATE UP, DIF-
FERENTIATE DOWN, and KEEP instructions. All of these instructions ap-
pear as the last instruction in an instruction line and take a bit address for an
operand. Although details are provided in 5-6 Bit Control Instructions, these
instructions (except for OUTPUT and OUTPUT NOT, which have already
been introduced) are described here because of their importance in most
programs. Although these instructions are used to turn ON and OFF output
bits in the IR area (i.e., to send or stop output signals to external devices),
they are also used to control the status of other bits in the IR area or in other
data areas.

4-7-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN
DIFFERENTIATE UP and DIFFERENTIATE DOWN instructions are used to
turn the operand bit ON for one cycle at a time. The DIFFERENTIATE UP
instruction turns ON the operand bit for one cycle after the execution condi-
tion for it goes from OFF to ON; the DIFFERENTIATE DOWN instruction
turns ON the operand bit for one cycle after the execution condition for it
goes from ON to OFF. Both of these instructions require only one line of
mnemonic code.

00000

00001

DIFU(13) 00200

DIFD(14) 00201

Address Instruction Operands

00000 LD 00000

00001 DIFU(13) 00200

Address Instruction Operands

00000 LD 00001

00001 DIFD(14) 00201

Here, IR 00200 will be turned ON for one cycle after IR 00000 goes ON. The
next time DIFU(13) 00200 is executed, IR 00200 will be turned OFF, regard-
less of the status of IR 00000. With the DIFFERENTIATE DOWN instruction,
IR 00201 will be turned ON for one cycle after IR 00001 goes OFF (IR 00201
will be kept OFF until then), and will be turned OFF the next time DIFD(14)
00201 is executed.

4-7-2 KEEP
The KEEP instruction is used to maintain the status of the operand bit based
on two execution conditions. To do this, the KEEP instruction is connected to
two instruction lines. When the execution condition at the end of the first in-
struction line is ON, the operand bit of the KEEP instruction is turned ON.
When the execution condition at the end of the second instruction line is ON,
the operand bit of the KEEP instruction is turned OFF. The operand bit for the
KEEP instruction will maintain its ON or OFF status even if it is located in an
interlocked section of the diagram.

In the following example, HR 0000 will be turned ON when IR 00002 is ON
and IR 00003 is OFF. HR 0000 will then remain ON until either IR 00004 or
IR 00005 turns ON. With KEEP, as with all instructions requiring more than

Controlling Bit Status Section 4-7

93

one instruction line, the instruction lines are coded first before the instruction
that they control.

00002

00004

00003

00005
R: reset input

S: set input KEEP(11)

HR 0000

Address Instruction Operands

00000 LD 00002

00001 AND NOT 00003

00002 LD 00004

00003 OR 00005

00004 KEEP(11) HR 0000

4-7-3 Self-maintaining Bits (Seal)
Although the KEEP instruction can be used to create self-maintaining bits, it
is sometimes necessary to create self-maintaining bits in another way so that
they can be turned OFF when in an interlocked section of a program.

To create a self-maintaining bit, the operand bit of an OUTPUT instruction is
used as a condition for the same OUTPUT instruction in an OR setup so that
the operand bit of the OUTPUT instruction will remain ON or OFF until
changes occur in other bits. At least one other condition is used just before
the OUTPUT instruction to function as a reset. Without this reset, there would
be no way to control the operand bit of the OUTPUT instruction.

The above diagram for the KEEP instruction can be rewritten as shown be-
low. The only difference in these diagrams would be their operation in an in-
terlocked program section when the execution condition for the INTERLOCK
instruction was ON. Here, just as in the same diagram using the KEEP in-
struction, two reset bits are used, i.e., HR 0000 can be turned OFF by turning
ON either IR 00004 or IR 00005.

00002 00003

HR 0000

HR 0000

00004

00005

Address Instruction Operands

00000 LD 00002

00001 AND NOT 00003

00002 OR HR 0000

00003 AND NOT 00004

00004 OR NOT 00005

00005 OUT HR 0000

4-8 Work Bits (Internal Relays)
In programming, combining conditions to directly produce execution condi-
tions is often extremely difficult. These difficulties are easily overcome, how-
ever, by using certain bits to trigger other instructions indirectly. Such pro-
gramming is achieved by using work bits. Sometimes entire words are re-
quired for these purposes. These words are referred to as work words.

Work bits are not transferred to or from the PC. They are bits selected by the
programmer to facilitate programming as described above. I/O bits and other
dedicated bits cannot be used as works bits. All bits in the IR area that are
not allocated as I/O bits, and certain unused bits in the AR area, are avail-
able for use as work bits. Be careful to keep an accurate record of how and
where you use work bits. This helps in program planning and writing, and
also aids in debugging operations.

Work Bits Section 4-8

94

Work Bit Applications Examples given later in this subsection show two of the most common ways
to employ work bits. These should act as a guide to the almost limitless num-
ber of ways in which the work bits can be used. Whenever difficulties arise in
programming a control action, consideration should be given to work bits and
how they might be used to simplify programming.

Work bits are often used with the OUTPUT, OUTPUT NOT, DIFFERENTIATE
UP, DIFFERENTIATE DOWN, and KEEP instructions. The work bit is used
first as the operand for one of these instructions so that later it can be used
as a condition that will determine how other instructions will be executed.
Work bits can also be used with other instructions, e.g., with the SHIFT REG-
ISTER instruction (SFT(10)). An example of the use of work words and bits
with the SHIFT REGISTER instruction is provided in 5-13-1 SHIFT REGIS-
TER – SFT(10).

Although they are not always specifically referred to as work bits, many of the
bits used in the examples in Section 5 Instruction Set use work bits. Under-
standing the use of these bits is essential to effective programming.

Work bits can be used to simplify programming when a certain combination
of conditions is repeatedly used in combination with other conditions. In the
following example, IR 00000, IR 00001, IR 00002, and IR 00003 are com-
bined in a logic block that stores the resulting execution condition as the sta-
tus of IR 24600. IR 24600 is then combined with various other conditions to
determine output conditions for IR 00100, IR 00101, and IR 00102, i.e., to
turn the outputs allocated to these bits ON or OFF.

00000

00003

00001

00004

00002

00005

00004

00007

00006

0000524600

24600

24600

24600

00100

00101

00102

Address Instruction Operands

00000 LD 00000

00001 AND NOT 00001

00002 OR 00002

00003 OR NOT 00003

00004 OUT 24600

00005 LD 24600

00006 AND 00004

00007 AND NOT 00005

00008 OUT 00100

00009 LD 24600

00010 OR NOT 00004

00011 AND 00005

00012 OUT 00101

00013 LD NOT 24600

00014 OR 00006

00015 OR 00007

00016 OUT 00102

Differentiated Conditions Work bits can also be used if differential treatment is necessary for some, but
not all, of the conditions required for execution of an instruction. In this exam-

Reducing Complex
Conditions

Work Bits Section 4-8

95

ple, IR 00100 must be left ON continuously as long as IR 00001 is ON and
both IR 00002 and IR 00003 are OFF, or as long as IR 00004 is ON and IR
00005 is OFF. It must be turned ON for only one cycle each time IR 00000
turns ON (unless one of the preceding conditions is keeping it ON continu-
ously).

This action is easily programmed by using IR 22500 as a work bit as the op-
erand of the DIFFERENTIATE UP instruction (DIFU(13)). When IR 00000
turns ON, IR 22500 will be turned ON for one cycle and then be turned OFF
the next cycle by DIFU(13). Assuming the other conditions controlling IR
00100 are not keeping it ON, the work bit IR 22500 will turn IR 00100 ON for
one cycle only.

22500

DIFU(13) 22500

00000

00001 00002 00003

00004 00005

00100

Address Instruction Operands

00000 LD 00000

00001 DIFU(13) 22500

00002 LD 22500

00003 LD 00001

00004 AND NOT 00002

00005 AND NOT 00003

00006 OR LD ---

00007 LD 00004

00008 AND NOT 00005

00009 OR LD ---

00010 OUT 00100

4-9 Programming Precautions
The number of conditions that can be used in series or parallel is unlimited
as long as the memory capacity of the PC is not exceeded. Therefore, use as
many conditions as required to draw a clear diagram. Although very compli-
cated diagrams can be drawn with instruction lines, there must not be any
conditions on lines running vertically between two other instruction lines. Dia-
gram A shown below, for example, is not possible, and should be drawn as
diagram B. Mnemonic code is provided for diagram B only; coding diagram A
would be impossible.

Instruction 2

Instruction 1

00002

00003

00000

00001

00004

Diagram A

Instruction 1

00004

00003

00000

00001

Diagram B

00002

Instruction 2

0000400000

00001

Address Instruction Operands

00000 LD 00001

00001 AND 00004

00002 OR 00000

00003 AND 00002

00004 Instruction 1

00005 LD 00000

00006 AND 00004

00007 OR 00001

00008 AND NOT 00003

00009 Instruction 2

Programming Precautions Section 4-9

96

The number of times any particular bit can be assigned to conditions is not
limited, so use them as many times as required to simplify your program.
Often, complicated programs are the result of attempts to reduce the number
of times a bit is used.

Except for instructions for which conditions are not allowed (e.g., INTER-
LOCK CLEAR and JUMP END, see below), every instruction line must also
have at least one condition on it to determine the execution condition for the
instruction at the right. Again, diagram A , below, must be drawn as diagram
B. If an instruction must be continuously executed (e.g., if an output must
always be kept ON while the program is being executed), the Always ON
Flag (SR 25313) in the SR area can be used.

Instruction
25313

Instruction

Diagram A

Diagram B

Address Instruction Operands

00000 LD 25313

00001 Instruction

There are a few exceptions to this rule, including the INTERLOCK CLEAR,
JUMP END, and step instructions. Each of these instructions is used as the
second of a pair of instructions and is controlled by the execution condition of
the first of the pair. Conditions should not be placed on the instruction lines
leading to these instructions. Refer to Section 5 Instruction Set for details.

When drawing ladder diagrams, it is important to keep in mind the number of
instructions that will be required to input it. In diagram A, below, an OR LOAD
instruction will be required to combine the top and bottom instruction lines.
This can be avoided by redrawing as shown in diagram B so that no AND
LOAD or OR LOAD instructions are required. Refer to 5-5-2 AND LOAD and
OR LOAD for more details and 7-5 Inputting, Modifying and Checking the
Program for further examples.

00000

00001 00207

00207

00001

00000

00207
00207

Diagram A

Diagram B

Address Instruction Operands

00000 LD 00000

00001 LD 00001

00002 AND 00207

00003 OR LD ---

00004 OUT 00207

Address Instruction Operands

00000 LD 00001

00001 AND 00207

00002 OR 00000

00003 OUT 00207

Programming Precautions Section 4-9

97

4-10 Program Execution
When program execution is started, the CPU scans the program from top to
bottom, checking all conditions and executing all instructions accordingly as it
moves down the bus bar. It is important that instructions be placed in the
proper order so that, for example, the desired data is moved to a word before
that word is used as the operand for an instruction. Remember that an in-
struction line is completed to the terminal instruction at the right before exe-
cuting an instruction lines branching from the first instruction line to other ter-
minal instructions at the right.

Program execution is only one of the tasks carried out by the CPU as part of
the cycle time. Refer to Section 6 Program Execution Timing for details.

Program Execution Section 4-10

99

SECTION 5
Instruction Set

The C1000H and C2000H PC have large programming instruction sets that allow for easy programming of complicated
control processes. This section explains each instruction individually and provides the ladder diagram symbol, data areas,
and flags used with each.

The many instructions provided by the C1000H and C2000H are described in following subsections by instruction group.
These groups include Ladder Diagram Instructions, Bit Control Instructions, Timer and Counter Instructions, Data Shift-
ing Instructions, Data Movement Instructions, Data Comparison Instructions, Data Conversion Instructions, Binary Cal-
culation Instructions, BCD Calculation Instructions, Logic Instructions, Subroutines, Block Programming Instructions,
Special Instructions, Intellegent I/O Instructions, and SYSMAC NET Link/SYSMAC LINK System Instructions.

Some instructions, such as Timer and Counter instructions, are used to control execution of other instructions, e.g., a TIM
Completion Flag might be used to turn ON a bit when the time period set for the timer has expired. Although these other
instructions are often used to control output bits through the OUTPUT instruction, they can be used to control execution
of other instructions as well. The OUTPUT instructions used in examples in this manual can therefore generally be re-
placed by other instructions to modify the program for specific applications other than controlling output bits directly.

5-1 Notation 102.
5-2 Instruction Format 102.
5-3 Data Areas, Definer Values, and Flags 102.
5-4 Differentiated Instructions 104.
5-5 Coding Right-hand Instructions 104.
5-6 Ladder Diagram Instructions 107.

5-6-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT 108.
5-6-2 AND LOAD and OR LOAD 109.

5-7 Bit Control Instructions 109.
5-7-1 OUTPUT and OUTPUT NOT – OUT and OUT NOT 109.
5-7-2 DIFFERENTIATE UP and DIFFERENTIATE DOWN –

DIFU(13) and DIFD(14) 110.
5-7-3 KEEP – KEEP(11) 112.

5-8 INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03) 113.
5-9 JUMP and JUMP END – JMP(04) and JME(05) 115.
5-10 END – END(01) 116.
5-11 NO OPERATION – NOP(00) 116.
5-12 Timer and Counter Instructions 117.

5-12-1 TIMER – TIM 118.
5-12-2 HIGH-SPEED TIMER – TIMH(15) 121.
5-12-3 COUNTER – CNT 122.
5-12-4 REVERSIBLE COUNTER – CNTR(12) 125.

5-13 Data Shifting 127.
5-13-1 SHIFT REGISTER – SFT(10) 127.
5-13-2 REVERSIBLE SHIFT REGISTER – SFTR(84) 129.
5-13-3 ARITHMETIC SHIFT LEFT – ASL(25) 131.
5-13-4 ARITHMETIC SHIFT RIGHT – ASR(26) 132.
5-13-5 ROTATE LEFT – ROL(27) 132.
5-13-6 ROTATE RIGHT – ROR(28) 133.
5-13-7 ONE DIGIT SHIFT LEFT – SLD(74) 133.
5-13-8 ONE DIGIT SHIFT RIGHT – SRD(75) 134.
5-13-9 WORD SHIFT – WSFT(16) 134.

5-14 Data Movement 135.
5-14-1 MOVE – MOV(21) 135.
5-14-2 MOVE NOT – MVN(22) 136.

100

5-14-3 BLOCK SET – BSET(71) 136.
5-14-4 BLOCK TRANSFER – XFER(70) 138.
5-14-5 DATA EXCHANGE – XCHG(73) 138.
5-14-6 SINGLE WORD DISTRIBUTE – DIST(80) 139.
5-14-7 DATA COLLECT – COLL(81) 139.
5-14-8 MOVE BIT – MOVB(82) 140.
5-14-9 MOVE DIGIT – MOVD(83) 141.

5-15 Data Comparison 142.
5-15-1 COMPARE – CMP(20) 142.
5-15-2 BLOCK COMPARE – BCMP(68) 145.
5-15-3 TABLE COMPARE – TCMP(85) 146.

5-16 Data Conversion 148.
5-16-1 BCD-TO-BINARY – BIN(23) 148.
5-16-2 DOUBLE BCD-TO-DOUBLE BINARY – BINL(58) 148.
5-16-3 BINARY-TO-BCD – BCD(24) 149.
5-16-4 DOUBLE BINARY-TO-DOUBLE BCD – BCDL(59) 150.
5-16-5 4-TO-16 DECODER – MLPX(76) 150.
5-16-6 16-TO-4 ENCODER – DMPX(77) 152.
5-16-7 7-SEGMENT DECODER – SDEC(78) 154.
5-16-8 ASCII CONVERT – ASC(86) 157.

5-17 BCD Calculations 158.
5-17-1 INCREMENT – INC(38) 159.
5-17-2 DECREMENT – DEC(39) 159.
5-17-3 SET CARRY – STC(40) 159.
5-17-4 CLEAR CARRY – CLC(41) 159.
5-17-5 BCD ADD – ADD(30) 160.
5-17-6 DOUBLE BCD ADD – ADDL(54) 161.
5-17-7 BCD SUBTRACT – SUB(31) 162.
5-17-8 DOUBLE BCD SUBTRACT – SUBL(55) 164.
5-17-9 BCD MULTIPLY – MUL(32) 165.
5-17-10 DOUBLE BCD MULTIPLY – MULL(56) 166.
5-17-11 BCD DIVIDE – DIV(33) 167.
5-17-12 DOUBLE BCD DIVIDE – DIVL(57) 168.
5-17-13 FLOATING POINT DIVIDE – FDIV(79) 169.
5-17-14 SQUARE ROOT – ROOT(72) 172.

5-18 Binary Calculations 174.
5-18-1 BINARY ADD – ADB(50) 174.
5-18-2 BINARY SUBTRACT – SBB(51) 176.
5-18-3 BINARY MULTIPLY – MLB(52) 178.
5-18-4 BINARY DIVIDE – DVB(53) 179.

5-19 Logic Instructions 179.
5-19-1 COMPLEMENT – COM(29) 179.
5-19-2 AND WORD – ANDW(34) 180.
5-19-3 OR WORD – ORW(35) 180.
5-19-4 EXCLUSIVE OR – XORW(36) 181.
5-19-5 EXCLUSIVE NOR – XNRW(37) 182.

5-20 Subroutines and Interrupt Control 182.
5-20-1 Overview 182.
5-20-2 SUBROUTINE START and RETURN – SBN(92)/RET(93) 183.
5-20-3 SUBROUTINE ENTER – SBS(91) 183.
5-20-4 INTERRUPT CONTROL – INT(89) 185.

5-21 Block Programming Instructions 190.
5-21-1 Overview 190.
5-21-2 BLOCK PROGRAM BEGIN – BPRG(96) and

BLOCK PROGRAM END – BEND<01> 190.

101

5-21-3 SET – SET<07> and RESET – RSET<08> 191.
5-21-4 Block Branching–IF<02>, IF<02>NOT, ELSE<03>, and IEND<04> 191.
5-21-5 ONE CYCLE AND WAIT – WAIT<05> 193.
5-21-6 TIMER WAIT – TIMW<13> and

HIGH-SPEED TIMER WAIT – TMHW<15> 195.
5-21-7 COUNTER WAIT – CNTW<14> 196.
5-21-8 CONDITIONAL BLOCK EXIT – EXIT<06> and EXIT<06> NOT 197.
5-21-9 Block Loop Control–LOOP<09>, LEND<10>, and LEND<10> NOT 197.
5-21-10 BLOCK PROGRAM PAUSE – BPPS<11> and

BLOCK PROGRAM RESTART – BPRS<12> 198.
5-22 Step Instructions 199.

5-22-1 STEP DEFINE and STEP START–STEP(08)/SNXT(09) 199.
5-23 Special Instructions 208.

5-23-1 FAILURE ALARM – FAL(06) and
SEVERE FAILURE ALARM – FALS(07) 208.

5-23-2 DISPLAY MESSAGE – MSG(46) 209.
5-23-3 BIT COUNTER – BCNT(67) 210.
5-23-4 WATCHDOG TIMER REFRESH– WDT(94) 211.
5-23-5 I/O REFRESH – IORF(97) 211.

5-24 Data Tracing (TRACE MEMORY SAMPLING – TRSM(45)) 211.
5-25 File Memory Instructions 214.

5-25-1 FILE MEMORY READ – FILR(42) 215.
5-25-2 FILE MEMORY WRITE – FILW(43) 216.
5-25-3 EXTERNAL PROGRAM READ – FILP(44) 216.

5-26 Intelligent I/O Instructions 217.
5-26-1 I/O WRITE – WRIT(87) 218.
5-26-2 I/O READ – READ(88) 218.

5-27 Network Instructions 219.
5-27-1 NETWORK SEND – SEND(90) 219.
5-27-2 NETWORK RECEIVE – RECV(98) 221.
5-27-3 About SYSMAC NET Link/SYSMAC LINK Operations 222.

102

5-1 Notation
In the remainder of this manual, all instructions will be referred to by their
mnemonics. For example, the OUTPUT instruction will be called OUT; the
AND LOAD instruction, AND LD. If you’re not sure of the instruction a mne-
monic is used for, refer to Appendix B Programming Instructions.

If an instruction is assigned a function code, it will be given in parentheses
after the mnemonic. These function codes, which are 2-digit decimal num-
bers, are used to input most instructions into the CPU and are described
briefly below and in more detail in 7-4 Inputting, Modifying, and Checking the
Program. A table of instructions listed in order of function codes, is also pro-
vided in Appendix B.

An @ before a mnemonic indicates the differentiated version of that instruc-
tion. Differentiated instructions are explained in Section 5-4.

5-2 Instruction Format
Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values (i.e., as
constants), but are usually the addresses of data area words or bits that con-
tain the data to be used. A bit whose address is designated as an operand is
called an operand bit; a word whose address is designated as an operand is
called an operand word. In some instructions, the word address designated
in an instruction indicates the first of multiple words containing the desired
data.

Each instruction requires one or more words in Program Memory. The first
word is the instruction word, which specifies the instruction and contains any
definers (described below) or operand bits required by the instruction. Other
operands required by the instruction are contained in following words, one
operand per word. Some instructions require up to four words.

A definer is an operand associated with an instruction and contained in the
same word as the instruction itself. These operands define the instruction
rather than telling what data it is to use. Examples of definers are TC num-
bers, which are used in timer and counter instructions to create timers and
counters, as well as jump numbers (which define which JUMP instruction is
paired with which JUMP END instruction). Bit operands are also contained in
the same word as the instruction itself, although these are not considered
definers.

5-3 Data Areas, Definer Values, and Flags
In this section, each instruction description includes its ladder diagram sym-
bol, the data areas that can be used by its operands, and the values that can
be used as definers. Details for the data areas are also specified by the oper-
and names and the type of data required for each operand (i.e., word or bit
and, for words, hexadecimal or BCD).

Not all addresses in the specified data areas are necessarily allowed for an
operand, e.g., if an operand requires two words, the last word in a data area
cannot be designated as the first word of the operand because all words for a
single operand must be within the same data area. Other specific limitations
are given in a Limitations subsection. Refer to Section 3 Memory Areas for
addressing conventions and the addresses of flags and control bits.

Data Areas, Definer Values, and Flags Section 5-3

!

103

Caution The IR and SR areas are considered as separate data areas. If an operand has
access to one area, it doesn’t necessarily mean that the same operand will have
access to the other area. The border between the IR and SR areas can, howev-
er, be crossed for a single operand, i.e., the last bit in the IR area may be speci-
fied for an operand that requires more than one word as long as the SR area is
also allowed for that operand.

The Flags subsection lists flags that are affected by execution of an instruc-
tion. These flags include the following SR area flags.

Abbreviation Name Bit

ER Instruction Execution Error Flag 25503

CY Carry Flag 25504

GR Greater Than Flag 25505

EQ Equals Flag 25506

LE Less Than Flag 25507

ER is the flag most commonly used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to
execute the current instruction. The Flags subsection of each instruction lists
possible reasons for ER being ON. ER will turn ON if operands are not en-
tered correctly. Instructions are not executed when ER is ON. A table of in-
structions and the flags they affect is provided in Appendix D Error and Arith-
metic Flag Operation.

When the DM area is specified for an operand, an indirect address can be
used. Indirect DM addressing is specified by placing an asterisk before the
DM: �DM.

When an indirect DM address is specified, the designated DM word will con-
tain the address of the DM word that contains the data that will be used as
the operand of the instruction. If, for example, �DM 0001 was designated as
the first operand and LR 00 as the second operand of MOV(21), the contents
of DM 0001 was 2222, and DM 2222 contained 5555, the value 5555 would
be moved to LR 00.

MOV(21)

�DM 0001

LR 00

 Word Content
DM 0000 4C59
DM 0001 2222
DM 0002 F35A

DM 2222 5555
DM 2223 2506
DM 2224 D541

5555 moved
to LR 00.

Indicates
DM 2222.

Indirect
address

When using indirect addressing, the address of the desired word must be in
BCD and it must specify a word within the DM area. In the above example,
the content of �DM 0000 would have to be in BCD (between 0000 and 4095
for the C1000H, and between 0000 and 6655 for the C2000H).

Although data area addresses are most often given as operands, many oper-
ands and all definers are input as constants. The available value range for a
given definer or operand depends on the particular instruction that uses it.
Constants must also be entered in the form required by the instruction, i.e., in
BCD or in hexadecimal.

Indirect Addressing

Designating Constants

Data Areas, Definer Values, and Flags Section 5-3

104

5-4 Differentiated Instructions
Most instructions are provided in both differentiated and non-differentiated
forms. Differentiated instructions are distinguished by an @ in front of the
instruction mnemonic.

A non-differentiated instruction is executed each time it is scanned as long as
its execution condition is ON. A differentiated instruction is executed only
once after its execution condition goes from OFF to ON. If the execution con-
dition has not changed or has changed from ON to OFF since the last time
the instruction was scanned, the instruction will not be executed. The follow-
ing two examples show how this works with MOV(21) and @MOV(21), which
are used to move the data in the address designated by the first operand to
the address designated by the second operand.

00000

MOV(21)

HR 10

DM 0000Diagram A

00000

@MOV(21)

HR 10

DM 0000Diagram B

Address Instruction Operands

Address Instruction Operands

00000 LD 00000

00001 MOV(21)

HR 10

DM 0000

00000 LD 00000

00001 @MOV(21)

HR 10

DM 0000

In diagram A, the non-differentiated MOV(21) will move the content of HR 10
to DM 0000 whenever it is scanned with 00000. If the cycle time is 80 ms and
00000 remains ON for 2.0 seconds, this move operation will be performed 25
times and only the last value moved to DM 0000 will be preserved there.

In diagram B, the differentiated @MOV(21) will move the content of HR 10 to
DM 0000 only once after 00000 goes ON. Even if 00000 remains ON for 2.0
seconds with the same 80 ms cycle time, the move operation will be exe-
cuted only during the first cycle in which 00000 has changed from OFF to
ON. Because the content of HR 10 could very well change during the 2 sec-
onds while 00000 is ON, the final content of DM 0000 after the 2 seconds
could be different depending on whether MOV(21) or @MOV(21) was used.

All operands, ladder diagram symbols, and other specifications for instruc-
tions are the same regardless of whether the differentiated or non-differen-
tiated form of an instruction is used. When inputting, the same function codes
are also used, but NOT is input after the function code to designate the differ-
entiated form of an instruction. Most, but not all, instructions have differenti-
ated forms.

Refer to 5-7 INTERLOCK and INTERLOCK CLEAR – IL(02) and IL(03) for
the effects of interlocks on differentiated instructions.

The C1000H and C2000H also provide differentiation instructions: DIFU(13)
and DIFD(14). DIFU(13) operates the same as a differentiated instruction,
but is used to turn ON a bit for one cycle. DIFD(14) also turns ON a bit for
one cycle, but does it when the execution condition has changed from ON to
OFF. Refer to 5-6-2 DIFFERENTIATE UP and DIFFERENTIATE DOWN –
DIFU(13) and DIFD(14) for details.

5-5 Coding Right-hand Instructions
Writing mnemonic code for ladder instructions is described in Section 4 Writ-
ing and Inputting the Program. Converting the information in the ladder dia-

Coding Right-hand Instructions Section 5-5

105

gram symbol for all other instructions follows the same pattern, as described
below, and is not specified for each instruction individually.

The first word of any instruction defines the instruction and provides any de-
finers. If the instruction requires only a signal bit operand with no definer, the
bit operand is also placed on the same line as the mnemonic. All other oper-
ands are placed on lines after the instruction line, one operand per line and in
the same order as they appear in the ladder symbol for the instruction.

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For all other lines, the left two columns are left
blank. If the instruction requires no definer or bit operand, the data column is
left blank for first line. It is a good idea to cross through any blank data col-
umn spaces (for all instruction words that do not require data) so that the
data column can be quickly scanned to see if any addresses have been left
out.

If an IR or SR address is used in the data column, the left side of the column
is left blank. If any other data area is used, the data area abbreviation is
placed on the left side and the address is place on the right side. If a con-
stant to be input, the number symbol (#) is placed on the left side of the data
column and the number to be input is placed on the right side. Any numbers
input as definers in the instruction word do not require the number symbol on
the right side. TC bits, once defined as a timer or counter, take a TIM (timer)
or CNT (counter) prefix.

When coding an instruction that has a function code, be sure to write in the
function code, which will be necessary when inputting the instruction via the
Programming Console. Also be sure to designate the differentiated instruc-
tion with the @ symbol.

Coding Right-hand Instructions Section 5-5

106

The following diagram and corresponding mnemonic code illustrates the
points described above.

00000 LD 00000

00001 AND 00001

00002 OR 00002

00003 DIFU(13) 22500

00004 LD 00100

00005 AND NOT 00200

00006 LD 01001

00007 AND NOT 01002

00008 AND NOT LR 6300

00009 OR LD --

00010 AND 22500

00011 BCNT(67) --

0001

004

HR 00

00012 LD 00005

00013 TIM 000

0150

00014 LD TIM 000

00015 MOV(21) --

HR 00

LR 00

00016 LD HR 0015

00017 OUT NOT 00500

00100 00200

DIFU(13) 22500

00500

BCNT(67)

#0001

004

HR 00

MOV(21)

HR 00

LR 00

01001 01002 LR 6300

TIM 000

22500

00002

00005

HR 0015

00000 00001

TIM 000

#0150

Address Instruction Data

If a right-hand instruction requires multiple instruction lines (such as
KEEP(11)), all of the lines for the instruction are entered before the right-
hand instruction. Each of the lines for the instruction is coded, starting with

Multiple Instruction Lines

Coding Right-hand Instructions Section 5-5

107

LD or LD NOT, to form ‘logic blocks’ that are combined by the right-hand in-
struction. An example of this for SFT(10) is shown below.

I

P

R

SFT(10)

HR 00

HR 00

Address Instruction Data

00000 LD 00000

00001 AND 00001

00002 LD 00002

00003 LD 00100

00004 AND NOT 00200

00005 LD 01001

00006 AND NOT 01002

00007 AND NOT LR 6300

00008 OR LD --

00009 AND 22500

00010 SFT(10) --

HR 00

HR 00

00011 LD HR 0015

00012 OUT NOT 00500

00100 00200

00500

01001 01002 LR 6300

22500

00002

HR 0015

00000 00001

Block instructions are coded directly after BPRG(96) in the same order as
written. Each address takes one instruction, and each of the block instruction
lines requires one word (i.e., one line) in the mnemonic code table. Operand
bits, operand words, and definers for block instruction are also coded in the
same way as any other instruction. Refer to 5-21 Block Programming Instruc-
tions for details.

When you have finished coding the program, make sure you have placed
END(01) at the last address.

5-6 Ladder Diagram Instructions
Ladder Diagram instructions include Ladder instructions and Logic Block in-
structions. Ladder instructions correspond to the conditions on the ladder
diagram. Logic block instructions are used to relate more complex parts of
the diagram that cannot be programmed with Ladder instructions alone.

Block Instructions

END(01)

Ladder Diagram Instructions Section 5-6

108

5-6-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT

B: Bit

IR, SR, AR, HR, TC, LR, TR

Ladder Symbols Operand Data Areas

LOAD - LD
B

B: Bit

IR, SR, AR, HR, TC, LR
LOAD NOT - LD NOT B

B: Bit

IR, SR, AR, HR, TC, LR
AND - AND

B

B: Bit

IR, SR, AR, HR, TC, LR
AND NOT - AND NOT

B

B: Bit

IR, SR, AR, HR, TC, LR
OR - OR B

B: Bit

IR, SR, AR, HR, TC, LR
OR NOT - OR NOT B

There is no limit to the number of any of these instructions, or restrictions in
the order in which they must be used, as long as the memory capacity of the
PC is not exceeded.

These six basic instructions correspond to the conditions on a ladder dia-
gram. As described in Section 4 Programming, the status of the bits assigned
to each instruction determines the execution conditions for all other instruc-
tions. Each of these instructions and each bit address can be used as many
times as required. Each can be used in as many of these instructions as re-
quired.

The status of the bit operand (B) assigned to LD or LD NOT determines the
first execution condition. AND takes the logical AND between the execution
condition and the status of its bit operand; AND NOT, the logical AND be-
tween the execution condition and the inverse of the status of its bit operand.
OR takes the logical OR between the execution condition and the status of its
bit operand; OR NOT, the logical OR between the execution condition and
the inverse of the status of its bit operand. The ladder symbol for loading TR
bits is different from that shown above. Refer to 4-2-2 Ladder Instructions for
details.

There are no flags affected by these instructions.

Limitations

Description

Flags

Ladder Diagram Instructions Section 5-6

109

5-6-2 AND LOAD and OR LOAD

Ladder Symbol

AND LOAD - AND LD
00002

00003

00000

00001

Ladder Symbol

OR LOAD - OR LD
00000 00001

00002 00003

When instructions are combined into blocks that cannot be logically com-
bined using only OR and AND operations, AND LD and OR LD are used.
Whereas AND and OR operations logically combine a bit status and an exe-
cution condition, AND LD and OR LD logically combine two execution condi-
tions, the current one and the last unused one.

In order to draw ladder diagrams, it is not necessary to use AND LD and OR
LD instructions, nor are they necessary when inputting ladder diagrams di-
rectly, as is possible from the GPC. They are required, however, to convert
the program to and input it in mnemonic form.

In order to reduce the number of programming instructions required, a basic
understanding of logic block instructions is required. For an introduction to
logic blocks, refer to 4-2-3 Logic Block Instructions. For details and exam-
ples, refer to 7-1-3 Logic Block Instructions.

There are no flags affected by these instructions.

5-7 Bit Control Instructions
There are five instructions that can be used generally to control individual bit
status. These are OUT, OUT NOT, DIFU(13), DIFD(14), and KEEP(11).
These instructions are used to turn bits ON and OFF in different ways.

5-7-1 OUTPUT and OUTPUT NOT – OUT and OUT NOT

B: Bit

IR, SR, AR, HR, TC, LR, TR

Ladder Symbol Operand Data Areas
OUTPUT - OUT

B

B: Bit

IR, SR, AR, HR, TC, LR

Ladder Symbol Operand Data Areas
OUTPUT NOT - OUT NOT

B

Any output bit can generally be used in only one instruction that controls its
status. Refer to 3-2 IR Area for details and to 5-20 Block Instructions for in-
formation on using output bits in SET<07> and RSET<08>.

Description

Flags

Limitations

Bit Control Instructions Section 5-7

110

OUT and OUT NOT are used to control the status of the designated bit ac-
cording to the execution condition.

OUT turns ON the designated bit for an ON execution condition, and turns
OFF the designated bit for an OFF execution condition. With a TR bit, OUT
appears at a branching point rather than at the end of an instruction line. Re-
fer to 4-6-7 Branching Instruction Lines for details.

OUT NOT turns ON the designated bit for a OFF execution condition, and
turns OFF the designated bit for an ON execution condition.

OUT and OUT NOT can be used to control execution by turning ON and OFF
bits that are assigned to conditions on the ladder diagram, thus determining
execution conditions for other instructions. This is particularly helpful and al-
lows a complex set of conditions to be used to control the status of a single
work bit, and then that work bit can be used to control other instructions.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT with TIM. Refer to Examples under 5-11-1 TIMER – TIM
for details.

There are no flags affected by these instructions.

5-7-2 DIFFERENTIATE UP and DIFFERENTIATE DOWN –
DIFU(13) and DIFD(14)

B: Bit

IR, AR, HR, LR

Ladder Symbols Operand Data Areas

DIFU(13) B

B: Bit

IR, AR, HR, LR
DIFD(14) B

Any output bit can generally be used in only one instruction that controls its
status. Refer to 3-2 IR Area for details and to 5-20 Block Instructions for in-
formation on using output bits in SET<07> and RSET<08>.

DIFU(13) and DIFD(14) are used to turn the designated bit ON for one cycle
only.

Whenever executed, DIFU(13) compares its current execution with the previ-
ous execution condition. If the previous execution condition was OFF and the
current one is ON, DIFU(13) will turn ON the designated bit. If the previous
execution condition was ON and the current execution condition is either ON
or OFF, DIFU(13) will either turn the designated bit OFF or leave it OFF (i.e.,
if the designated bit is already OFF). The designated bit will thus never be
ON for longer than one cycle, assuming it is executed each cycle (see Pre-
cautions, below).

Whenever executed, DIFD(14) compares its current execution with the previ-
ous execution condition. If the previous execution condition is ON and the
current one is OFF, DIFD(14) will turn ON the designated bit. If the previous
execution condition was OFF and the current execution condition is either
ON or OFF, DIFD(14) will either turn the designated bit OFF or leave it OFF.
The designated bit will thus never be ON for longer than one cycle, assuming
it is executed each cycle (see Precautions, below).

Description

Flags

Limitations

Description

Bit Control Instructions Section 5-7

111

These instructions are used when differentiated instructions (i.e., those pre-
fixed with an @) are not available and single-cycle execution of a particular
instruction is desired. They can also be used with non-differentiated forms of
instructions that have differentiated forms when their use will simplify pro-
gramming. Examples of these are shown below.

There are no flags affected by these instructions.

DIFU(13) and DIFD(14) operation can be uncertain when the instructions are
programmed between IL and ILC, between JMP and JME, or in subroutines.
Refer to 5-7 INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03), 5-8
JUMP and JUMP END – JMP(04) and JME(05), and 5-19 Subroutines and
Interrupt Control for details.

In diagram A, below, whenever CMP(20) is executed with an ON execution
condition it will compare the contents of the two operand words (HR 10 and
DM 0000) and set the arithmetic flags (GR, EQ, and LE) accordingly. If the
execution condition remains ON, flag status may be changed each cycle if
the content of one or both operands change. Diagram B, however, is an ex-
ample of how DIFU(13) can be used to ensure that CMP(20) is executed only
once each time the desired execution condition goes ON.

00000

CMP(20)

HR 10

DM 0000Diagram A

22500

CMP(20)

HR 10

DM 0000Diagram B

DIFU(13) 22500

00000

Address Instruction Operands

00000 LD 00000

00001 CMP(20)

HR 10

DM 0000

Address Instruction Operands

00000 LD 00000

00001 DIFU(13) 22500

00002 LD 22500

00003 CMP(20)

HR 10

DM 0000

Although a differentiated form of MOV(21) is available, the following diagram
would be very complicated to draw using it because only one of the condi-
tions determining the execution condition for MOV(21) requires differentiated
treatment.

22500

MOV(21)

HR 10

DM 0000

DIFU(13) 22500

00000

00001 00002 00003

00004 00005

Address Instruction Operands

00000 LD 00000

00001 DIFU(13) 22500

00002 LD 22500

00003 LD 00001

00004 AND NOT 00002

00005 AND NOT 00003

00006 OR LD ---

00007 LD 00004

00008 AND NOT 00005

00009 OR LD ---

00010 MOV(21)

HR 10

DM 0000

Flags

Precautions

Example 1: Use when
There’s No Differentiated
Instruction

Example 2: Use to Simplify
Programming

Bit Control Instructions Section 5-7

112

5-7-3 KEEP – KEEP(11)

B: Bit

IR, AR, HR, LR

Ladder Symbol Operand Data Areas
S

R

 KEEP(11)

B

Any output bit can generally be used in only one instruction that controls its
status. Refer to 3-2 IR Area for details and to 5-20 Block Instructions for in-
formation on using output bits in SET<07> and RSET<08>.

KEEP(11) is used to maintain the status of the designated bit based on two
execution conditions. These execution conditions are labeled S and R. S is
the set input; R, the reset input. KEEP(11) operates like a latching relay that
is set by S and reset by R.

When S turns ON, the designated bit will go ON and stay ON until reset, re-
gardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF and stay OFF until reset, regardless of whether R stays
ON or goes OFF. The relationship between execution conditions and
KEEP(11) bit status is shown below.

S execution condition

R execution condition

Status of B

KEEP(11) operates like the self-maintaining bit described in 4-7-3 Self-main-
taining Bits (Seal). The following two diagrams would function identically,
though the one using KEEP(11) requires one less instruction to program and
would maintain status even in an interlocked program section.

00002 00003

00500

00500
Address Instruction Operands

Address Instruction Operands

00000 LD 00002

00001 OR 00500

00002 AND NOT 00003

00003 OUT 00500

00000 LD 00002

00001 LD 00003

00002 KEEP(11) 00500

S

R

 KEEP(11)

00500

00002

00003

There are no flags affected by this instruction.

Never use an input bit in a normally closed condition on the reset (R) for
KEEP(11) when the input device uses an AC power supply. The delay in
shutting down the PC’s DC power supply (relative to the AC power supply to
the input device) can cause the designated bit of KEEP(11) to be reset. This
situation is shown below.

Limitations

Description

Flags

Precautions

Bit Control Instructions Section 5-7

113

Input Unit

A

NEVER

S

R

 KEEP(11)

HR 0003A

Bits used in KEEP are not reset in interlocks. Refer to the 5-7 INTERLOCK
and INTERLOCK CLEAR – IL(02) and ILC(03) for details.

If a HR bit or an AR bit is used, bit status will be retained even during a
power interruption. KEEP(11) can thus be used to program bits that will main-
tain status after restarting the PC following a power interruption. An example
of this that can be used to produce a warning display following a system
shutdown for an emergency situation is shown below. Bits 00002, 00003, and
00004 would be turned ON to indicate some type of error. Bit 00005 would be
turned ON to reset the warning display. HR 0000, which is turned ON when
any one of the three bits indicates an emergency situation, is used to turn ON
the warning indicator through 00500.

HR 0000

00500

00002

00003

00004

00005
Reset input

Indicates
emergency
situation

Activates
warning
display

Address Instruction Operands

00000 LD 00002

00001 OR 00003

00002 OR 00004

00003 LD 00005

00004 KEEP(11) HR 0000

00005 LD HR 0000

00006 OUT 00500

S

R

 KEEP(11)

HR 0000

KEEP(11) can also be combined with TIM to produce delays in turning bits
ON and OFF. Refer to 5-11-1 TIMER – TIM for details.

5-8 INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03)
Ladder Symbol IL(02)

Ladder Symbol ILC(03)

IL(02) is always used in conjunction with ILC(03) to create interlocks. Inter-
locks are used to enable branching in the same way as can be achieved with
TR bits, but treatment of instructions between IL(02) and ILC(03) differs from
that with TR bits when the execution condition for IL(02) is OFF. If the execu-
tion condition of IL(02) is ON, the program will be executed as written, with
an ON execution condition used to start each instruction line from the point
where IL(02) is located through the next ILC(03). Refer to 4-6-7 Branching
Instruction Lines for basic descriptions of both methods.

If the execution condition for IL(02) is OFF, the interlocked section between
IL(02) and ILC(03) will be treated as shown in the following table:

Example

Description

INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03) Section 5-8

114

Instruction Treatment

OUT and OUT NOT Designated bit turned OFF.

TIM and TIMH(15) Reset.

CNT, CNTR(12) PV maintained.

KEEP(11) Bit status maintained.

DIFU(13) and DIFD(14) Not executed (see below).

All others Not executed.

IL(02) and ILC(03) do not necessarily have to be used in pairs. IL(02) can be
used several times in a row, with each IL(02) creating an interlocked section
through the next ILC(03). ILC(03) cannot be used unless there is at least one
IL(02) between it and any previous ILC(03).

Changes in the execution condition for a DIFU(13) or DIFD(14) are not re-
corded if the DIFU(13) or DIFD(14) is in an interlocked section and the exe-
cution condition for the IL(02) is OFF. When DIFU(13) or DIFD(14) is execu-
tion in an interlocked section immediately after the execution condition for the
IL(02) has gone ON, the execution condition for the DIFU(13) or DIFD(14)
will be compared to the execution condition that existed before the interlock
became effective (i.e., before the interlock condition for IL(02) went OFF).
The ladder diagram and bit status changes for this are shown below. The
interlock is in effect while 00000 is OFF. Notice that 01000 is not turned ON
at the point labeled A even though 00001 has turned OFF and then back ON.

00000

IL(02)

DIFU(13) 01000

ILC(03)

00001

00000

00001

ON

OFF

ON

OFF

01000
ON

OFF

A

Address Instruction Operands

00000 LD 00000

00001 IL(02)

00002 LD 00001

00003 DIFU(13) 01000

00004 ILC(03)

There must be an ILC(03) following any one or more IL(02).

Although as many IL(02) instructions as are necessary can be used with one
ILC(03), ILC(03) instructions cannot be used consecutively without at least
one IL(02) in between, i.e., nesting is not possible. Whenever a ILC(03) is
executed, all interlocks between the active ILC(03) and the preceding
ILC(03) are cleared.

When more than one IL(02) is used with a single ILC(03), an error message
will appear when the program check is performed, but execution will proceed
normally.

There are no flags affected by these instructions.

DIFU(13) and DIFD(14) in
Interlocks

Precautions

Flags

INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03) Section 5-8

115

The following diagram shows IL(02) being used twice with one ILC(03).

00000

00001

ILC(03)

IL(02)

00004

00005

00003

00002

IL(02)

00502

CP

R

CNT 001

IR 010
00100

Address Instruction Operands

00000 LD 00000

00001 IL(02)

00002 LD 00001

00003 TIM 511

0015

00004 LD 00002

00005 IL(02)

00006 LD 00003

00007 AND NOT 00004

00008 CNT 001

010

00009 LD 00005

00010 OUT 00502

00011 ILC(03)

TIM 511

#0015 1.5 s

When the execution condition for the first IL(02) is OFF, TIM 511 will be reset
to 1.5 s, CNT 001 will not be changed, and 00502 will be turned OFF. When
the execution condition for the first IL(02) is ON and the execution condition
for the second IL(02) is OFF, TIM 511 will be executed according to the
status of 00001, CNT 001 will not be changed, and 00502 will be turned OFF.
When the execution conditions for both the IL(02) are ON, the program will
execute as written.

5-9 JUMP and JUMP END – JMP(04) and JME(05)

N: Jump number

(00 to 99)

Ladder Symbols Definer Values

JMP(04) N

N: Jump number

(00 to 99)
JME(05) N

Jump numbers 01 through 99 may be used only once in JMP(04) and once in
JME(05), i.e., each can be used to define one jump only. Jump number 00
can be used as many times as desired.

JMP(04) is always used in conjunction with JME(05) to create jumps, i.e., to
skip from one point in a ladder diagram to another point. JMP(04) defines the
point from which the jump will be made; JME(05) defines the destination of
the jump. When the execution condition for JMP(04) in ON, no jump is made
and the program is executed consecutively as written. When the execution
condition for JMP(04) is OFF, a jump is made to the JME(05) with the same
jump number and the instruction following JME(05) is executed next.

If the jump number for JMP(04) is between 01 and 99, jumps, when made,
will go immediately to JME(05) with the same jump number without executing
any instructions in between. The status of timers, counters, bits used in OUT,
bits used in OUT NOT, and all other status controlled by the instructions be-
tween JMP(04) and JMP(05) will not be changed. Each of these jump num-
bers can be used to define only one jump. Because all of instructions be-

Example

Limitations

Description

JUMP and JUMP END – JMP(04) and JME(05) Section 5-9

116

tween JMP(04) and JME(05) are skipped, jump numbers 01 through 99 can
be used to reduce cycle time.

If the jump number for JMP(04) is 00, the CPU will look for the next JME(05)
with a jump number of 00. To do so, it must search through the program,
causing a longer cycle time (when the execution condition is OFF) than for
other jumps. The status of timers, counters, bits used in OUT, bits used in
OUT NOT, and all other status controlled by the instructions between
JMP(04) 00 and JMP(05) 00 will not be changed. Jump number 00 can be
used as many times as desired. A jump from JMP(04) 00 will always go to
the next JME(05) 00 in the program. It is thus possible to use JMP(04) 00
consecutively and match them all with the same JME(05) 00. It makes no
sense, however, to use JME(05) 00 consecutively, because all jumps made
to them will end at the first JME(05) 00.

Although DIFU(13) and DIFD(14) are designed to turn ON the designated bit
for one cycle, they will not necessarily do so when written between JMP(04)
and JMP (05). Once either DIFU(13) or DIFD(14) has turned ON a bit, it will
remain ON until the next time DIFU(13) or DIFD(14) is executed again. In
normal programming, this means the next cycle. In a jump, this means the
next time the jump from JMP(04) to JME(05) is not made, i.e., if a bit is
turned ON by DIFU(13) or DIFD(14) and then a jump is made in the next
cycle so that DIFU(13) or DIFD(14) are skipped, the designated bit will re-
main ON until the next time the execution condition for the JMP(04) control-
ling the jump is ON.

When JMP(04) and JME(05) are not used in pairs, an error message will ap-
pear when the program check is performed. Although this message also ap-
pears if JMP(04) 00 and JME(05) 00 are not used in pairs, the program will
execute properly as written.

There are no flags affected by these instructions.

Examples of jump programs are provided in 4-6-8 Jumps.

5-10 END – END(01)

Ladder Symbol END(01)

END(01) is required as the last instruction in any program. If there are sub-
routines, END(01) is placed after the last subroutine. No instruction written
after END(01) will be executed. END(01) can be placed anywhere in the pro-
gram to execute all instructions up to that point, as is sometimes done to de-
bug a program, but it must be removed to execute the remainder of the pro-
gram.

If there is no END(01) in the program, no instructions will be executed and
the error message “NO END INST” will appear.

END(01) turns OFF the ER, CY, GR, EQ, and LE flags.

5-11 NO OPERATION – NOP(00)

NOP(00) is not generally required in programming and there is no ladder
symbol for it. When NOP(00) is found in a program, nothing is executed and

DIFU(13) and DIFD(14) in
Jumps

Precautions

Flags

Examples

Description

Flags

Description

NO OPERATION – NOP(00) Section NO TAG

117

the program execution moves to the next instruction. When memory is
cleared prior to programming, NOP(00) is written at all addresses. NOP(00)
can be input through the 00 function code.

There are no flags affected by NOP(00).

5-12 Timer and Counter Instructions

TIM and TIMH are decrementing ON-delay timer instructions which require a
TC number and a set value (SV).

CNT is a decrementing counter instruction and CNTR is a reversible counter
instruction. Both require a TC number and a SV. Both are also connected to
multiple instruction lines which serve as an input signal(s) and a reset.

Any one TC number cannot be defined twice, i.e., once it has been used as
the definer in any of the timer or counter instructions (including timer and
counter block instructions discussed in 5-20 Block Instructions), it cannot be
used again. Once defined, TC numbers can be used as many times as re-
quired as operands in instructions other than timer and counter instructions.

TC numbers run from 000 through 511. No prefix is required when using a
TC number as a definer in a timer or counter instruction. Once defined as a
timer, a TC number can be prefixed with TIM for use as an operand in certain
instructions. The TIM prefix is used regardless of the timer instruction that
was used to define the timer. Once defined as a counter, a TC number can
be prefixed with CNT for use as an operand in certain instructions. The CNT
is also used regardless of the counter instruction that was used to define the
counter.

TC numbers can be designated as operands that require either bit or word
data. When designated as an operand that requires bit data, the TC number
accesses a bit that functions as a ‘Completion Flag’ that indicates when the
time/count has expired, i.e., the bit, which is normally OFF, will turn ON when
the designated SV has expired. When designated as an operand that re-
quires word data, the TC number accesses a memory location that holds the
present value (PV) of the timer or counter. The PV of a timer or counter can
thus be used as an operand in CMP(20), or any other instruction for which
the TC area is allowed. This is done by designating the TC number used to
define that timer or counter to access the memory location that holds the PV.

Note that “TIM 000” is used to designate the Timer instruction defined with
TC number 000, to designate the Completion Flag for this timer, and to des-
ignate the PV of this timer. The meaning of the term in context should be
clear, i.e., the first is always an instruction, the second is always a bit oper-
and, and the third is always a word operand. The same is true of all other TC
numbers prefixed with TIM or CNT.

An SV can be input as a constant or as a word address in a data area. If an
IR area word assigned to an Input Unit is designated as the word address,
the Input Unit can be wired so that the SV can be set externally through
thumbwheel switches or similar devices. Timers and counter wired in this
way can only be set externally during RUN or MONITOR mode. All SVs, in-
cluding those set externally, must be in BCD.

Flags

Timer and Counter Instructions Section 5-12

118

5-12-1 TIMER – TIM

N: TC number

(000 through 511)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas
TIM N

SV

SV is between 000.0 and 999.9. The decimal point is not entered.

Each TC number can be used as the definer in only one timer or counter in-
struction.

TC 000 through TC 047 should not be used in TIM if they are required for
TIMH(15). Refer to 5-11-2 HIGH-SPEED TIMER – TIMH(15) for details.

A timer is activated when its execution condition goes ON and is reset (to
SV) when the execution condition goes OFF. Once activated, TIM measures
in units of 0.1 second from the SV. TIM accuracy is +0.0/–0.1 second.

If the execution condition remains ON long enough for TIM to time down to
zero, the Completion Flag for the TC number used will turn ON and will re-
main ON until TIM is reset (i.e., until its execution condition is goes OFF).

The following figure illustrates the relationship between the execution condi-
tion for TIM and the Completion Flag assigned to it.

Execution condition

Completion Flag

ON

OFF

ON

OFF

SV SV

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, SR area clock pulse bits can be
counted to produce timers using CNT. Refer to 5-11-3 COUNTER – CNT for
details.

Program execution will continue even if a non-BCD SV is used, but timing will
not be accurate.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

All of the following examples use OUT in diagrams that would generally be
used to control output bits in the IR area. There is no reason, however, why
these diagrams cannot be modified to control execution of other instructions.

The following example shows two timers, one set with a constant and one set
via input word 005. Here, 00200 will be turned ON after 00000 goes ON and

Limitations

Description

Precautions

Examples

Example 1:
Basic Application

Timer and Counter Instructions Section 5-12

119

stays ON for at least 15 seconds. When 00000 goes OFF, the timer will be
reset and 00200 will be turned OFF. When 00001 goes ON, TIM 001 is
started from the SV provided through IR word 005. Bit 00201 is also turned
ON when 00001 goes ON. When the SV in 005 has expired, 00201 is turned
OFF. This bit will also be turned OFF when TIM 001 is reset, regardless of
whether or not SV has expired.

00000

TIM 000

00001

TIM 001

00200

00201

Address Instruction Operands

00000 LD 00000

00001 TIM 000

0150

00002 LD TIM 000

00003 OUT 00200

00004 LD 00001

00005 TIM 001

005

00006 AND NOT TIM 001

00007 OUT 00201

TIM 000

#0150

TIM 001

005

There are two ways to achieve timers that operate for longer than 999.9 sec-
onds. One method is to program consecutive timers, with the Completion
Flag of each timer used to activate the next timer. A simple example with two
900.0-second (15-minute) timers combined to functionally form a 30-minute
timer.

00000

TIM 001

TIM 002

00200

Address Instruction Operands

00000 LD 00000

00001 TIM 001

9000

00002 LD TIM 001

00003 TIM 002

9000

00004 LD TIM 002

00005 OUT 00200

TIM 001

#9000

TIM 002

#9000

900.0 s

900.0 s

In this example, 00200 will be turned ON 30 minutes after 00000 goes ON.

TIM can also be combined with CNT or CNT can be used to count SR area
clock pulse bits to produce longer timers. An example is provided in 5-11-3
COUNTER – CNT.

TIM can be combined with KEEP(11) to delay turning a bit ON and OFF in
reference to a desired execution condition. KEEP(11) is described in 5-6-3
KEEP – KEEP(11).

To create delays, the Completion Flags for two TIM are used to determine
the execution conditions for setting and reset the bit designated for
KEEP(11). The bit whose manipulation is to be delayed is used in KEEP(11).
Turning ON and OFF the bit designated for KEEP(11) is thus delayed by the
SV for the two TIM. The two SV could naturally be the same if desired.

In the following example, 00500 would be turned ON 5.0 seconds after
00000 goes ON and then turned OFF 3.0 seconds after 00000 goes OFF. It
is necessary to use both 00500 and 00000 to determine the execution condi-
tion for TIM 002; 00000 in a normally closed condition is necessary to reset

Example 2:
Extended Timers

Example 3:
ON/OFF Delays

Timer and Counter Instructions Section 5-12

120

TIM 002 when 00000 goes ON and 00500 is necessary to activate TIM 002
(when 00000 is OFF).

00000

00500 00000

TIM 001

TIM 002

00000

00500

5.0 s 3.0 s

Address Instruction Operands

00000 LD 00000

00001 TIM 001

0050

00002 LD 00500

00003 AND NOT 00000

00004 TIM 002

0030

00005 LD TIM 001

00006 LD TIM 002

00007 KEEP(11) 00500

TIM 001

#0050

TIM 002

#0030

S

R

 KEEP(11)

00500

5.0 s

3.0 s

The length of time that a bit is kept ON or OFF can be controlled by combin-
ing TIM with OUT or OUT NO. The following diagram demonstrates how this
is possible. In this example, 00204 would remain ON for 1.5 seconds after
00000 goes ON regardless of the time 00000 stays ON. This is achieved by
using 01000 as a self-maintaining bit activated by 00000 and turning ON
00204 through it. When TIM 001 comes ON (i.e., when the SV of TIM 001
has expired), 00204 will be turned OFF through TIM 001 (i.e., TIM 001 will
turn ON which, as a normally closed condition, creates an OFF execution
condition for OUT 00204).

00000

TIM 00101000

01000

01000 TIM 001

01000

00204

00000

00204

1.5 s 1.5 s

Address Instruction Operands

00000 LD 01000

00001 AND NOT TIM 001

00002 OR 00000

00003 OUT 01000

00004 LD 01000

00005 TIM 001

0015

00006 LD 01000

00007 AND NOT TIM 001

00008 OUT 00204

TIM 001

#0015 1.5 s

Bits can be programmed to turn ON and OFF at regular intervals while a des-
ignated execution condition is ON by using TIM twice. One TIM functions to
turn ON and OFF a specified bit, i.e., the Completion Flag of this TIM turns
the specified bit ON and OFF. The other TIM functions to control the opera-
tion of the first TIM, i.e., when the first TIM’s Completion Flag goes ON, the

Example 4:
One-Shot Bits

Example 5:
Flicker Bits

Timer and Counter Instructions Section 5-12

121

second TIM is started and when the second TIM’s Completion Flag goes ON,
the first TIM is started.

00000 TIM 002

TIM 001

TIM 001
00205

00000

00205

1.5 s1.0 s 1.5 s1.0 s

Address Instruction Operands

00000 LD 00000

00001 AND TIM 002

00002 TIM 001

0010

00003 LD TIM 001

00004 TIM 002

0015

00005 LD TIM 001

00006 OUT 00205

TIM 002

#0015

TIM 001

#0010 1.0 s

1.5 s

A simpler but less flexible method of creating a flicker bit is to AND one of the
SR area clock pulse bits with the execution condition that is to be ON when
the flicker bit is operating. Although this method does not use TIM, it is in-
cluded here for comparison. This method is more limited because the ON
and OFF times must be the same and they depend on the clock pulse bits
available in the SR area.

In the following example the 1-second clock pulse is used (25502) so that
00206 would be turned ON and OFF every second, i.e., it would be ON for
0.5 seconds and OFF for 0.5 seconds. Precise timing and the initial status of
00206 would depend on the status of the clock pulse when 00000 goes ON.

00000 25502
00206

Address Instruction Operands

00000 LD 00000

00001 LD 25502

00002 OUT 00206

5-12-2 HIGH-SPEED TIMER – TIMH(15)

N: TC number

(000 through 047 preferred)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

TIMH(15) N

SV

SV is between 00.02 and 99.99. (Although 00.00 and 00.01 may be set,
00.00 will disable the timer, i.e., turn ON the Completion Flag immediately,
and 00.01 is not reliably scanned.) The decimal point is not entered.

Each TC number can be used as the definer in only one timer or counter in-
struction.

Although TC 048 through TC 511 can be programmed, TC 000 through TC
047 must be used to ensure accuracy if the cycle time is greater than 10 ms.

Limitations

Timer and Counter Instructions Section 5-12

122

With a C2000H Duplex System, TC 048 through TC 511 cannot be used for
TIMH(15).

TIMH(15) operates in the same way as TIM except that TIMH measures in
units of 0.01 second.

The cycle time affects TIMH(15) accuracy if TC 048 through TC 511 are
used. If the cycle time is greater than 10 ms, use TC 000 through TC 047.

Refer to 5-11-1 TIMER – TIM for operational details and examples. Except
for the above, and all aspects of operation are the same.

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, SR area clock pulse bits can be
counted to produce timers using CNT. Refer to 5-11-3 COUNTER – CNT for
details.

Program execution will continue even if a non-BCD SV is used, but timing will
not be accurate.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

5-12-3 COUNTER – CNT

N: TC number

(000 through 511)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

CP

R

CNT N

SV

Each TC number can be used as the definer in only one timer or counter in-
struction.

CNT is used to count down from SV when the execution condition on the
count pulse, CP, goes from OFF to ON, i.e., the present value (PV) will be
decremented by one whenever CNT is executed with an ON execution condi-
tion for CP and the execution condition was OFF for the last execution. If the
execution condition has not changed or has changed from ON to OFF, the
PV of CNT will not be changed. The Completion Flag for a counter is turned
ON when the PV reaches zero and will remain ON until the counter is reset.

CNT is reset with a reset input, R. When R goes from OFF to ON, the PV is
reset to SV. The PV will not be decremented while R is ON. Counting down
from SV will begin again when R goes OFF. The PV for CNT will not be reset
in interlocked program sections or by power interruptions.

Description

Precautions

Limitations

Description

Timer and Counter Instructions Section 5-12

123

Changes in execution conditions, the Completion Flag, and the PV are illus-
trated below. PV line height is meant only to indicate changes in the PV.

Execution condition
on count pulse (CP)

Execution condition
on reset (R)

ON

OFF

ON

OFF

Completion Flag
ON

OFF

PV
SV

SV - 1

SV - 2

0002

0001

0000

SV

Program execution will continue even if a non-BCD SV is used, but the SV
will not be correct.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

In the following example, the PV will be decremented whenever both 00000
and 00001 are ON provided that 00002 is OFF and either 00000 or 00001
was OFF the last time CNT 004 was executed. When 150 pulses have been
counted down (i.e., when PV reaches zero), 00205 will be turned ON.

00000
CP

R

CNT 004

#0150
00002

00001

00205

CNT 004

Address Instruction Operands

00000 LD 00000

00001 AND 00001

00002 LD 00002

00003 CNT 004

0150

00004 LD CNT 004

00005 OUT 00205

Here, 00000 can be used to control when CNT is operative and 00001 can
be used as the bit whose OFF to ON changes are being counted.

The above CNT can be modified to restart from SV each time power is
turned ON to the PC. This is done by using the First Cycle Flag in the SR
area (25315) to reset CNT as shown below.

00000
CP

R

CNT 004

#0150
00002

00001

00205

CNT 004

25315

Address Instruction Operands

00000 LD 00000

00001 AND 00001

00002 LD 00002

00003 OR 25315

00004 CNT 004

0150

00005 LD CNT 004

00006 OUT 00205

Counters that can count past 9,999 can be programmed by using one CNT to
count the number of times another CNT has counted to zero from SV.

Precautions

Example 1:
Basic Application

Example 2: Extended
Counter

Timer and Counter Instructions Section 5-12

124

In the following example, 00000 is used to control when CNT 001 operates.
CNT 001, when 00000 is ON, counts down the number of OFF to ON
changes in 00001. CNT 001 is reset by its Completion Flag, i.e., it starts
counting again as soon as its PV reaches zero. CNT 002 counts the number
of times the Completion Flag for CNT 001 goes ON. Bit 00002 serves as a
reset for the entire extended counter, resetting both CNT 001 and CNT 002
when it is OFF. The Completion Flag for CNT 002 is also used to reset CNT
001 to inhibit CNT 001 operation, once SV for CNT 002 has been reached,
until the entire extended counter is reset via 00002.

Because in this example the SV for CNT 001 is 100 and the SV for CNT 002
is 200, the Completion Flag for CNT 002 turns ON when 100 x 200 or 20,000
OFF to ON changes have been counted in 00001. This would result in 00203
being turned ON.

00203

CP

R

CNT 001

#0100

CP

R

CNT 002

#0200

CNT 001

00002

CNT 002

00000 00001

00002

CNT 001

CNT 002

Address Instruction Operands

00000 LD 00000

00001 AND 00001

00002 LD NOT 00002

00003 OR CNT 001

00004 OR CNT 002

00005 CNT 001

0100

00006 LD CNT 001

00007 LD NOT 00002

00008 CNT 002

0200

00009 LD CNT 002

00010 OUT 00203

CNT can be used in sequence as many times as required to produce count-
ers capable of counting any desired values.

CNT can be used to create extended timers in two ways: by combining TIM
with CNT and by counting SR area clock pulse bits.

In the following example, CNT 002 counts the number of times TIM 001
reaches zero from its SV. The Completion Flag for TIM 001 is used to reset
TIM 001 so that is runs continuously and CNT 002 counts the number of
times the Completion Flag for TIM 001 goes ON (CNT 002 would be exe-
cuted once each time between when the Completion Flag for TIM 001 goes
ON and TIM 001 is reset by its Completion Flag). TIM 001 is also reset by
the Completion Flag for CNT 002 so that the extended timer would not start
again until CNT 002 was reset by 00001, which serves as the reset for the
entire extended timer.

Because in this example the SV for TIM 001 is 5.0 seconds and the SV for
CNT 002 is 100, the Completion Flag for CNT 002 turns ON when 5 seconds

Example 3:
Extended Timers

Timer and Counter Instructions Section 5-12

!

125

x 100 times, i.e., 500 seconds (or 8 minutes and 20 seconds) have expired.
This would result in 00201 being turned ON.

00000 TIM 001 CNT 002

TIM 001

00001

CNT 002

00200

CP

R

CNT 002

#0100

Address Instruction Operands

00000 LD 00000

00001 AND NOT TIM 001

00002 AND NOT CNT 002

00003 TIM 001

0050

00004 LD TIM 001

00005 LD 00001

00006 CNT 002

0100

00007 LD CNT 002

00008 OUT 00200

TIM 001

#0050

In the following example, CNT 001 counts the number of times the 1-second
clock pulse bit (25502) goes from OFF to ON. Here again, 00000 is used to
control the times when CNT is operating.

Because in this example the SV for CNT 001 is 700, the Completion Flag for
CNT 002 turns ON when 1 second x 700 times, or 11 minutes and 40 sec-
onds have expired. This would result in 00202 being turned ON.

CP

R

CNT
001

#0700

00000 25502

00001

CNT 001
00202

Address Instruction Operands

00000 LD 00000

00001 AND 25502

00002 LD NOT 00001

00003 CNT 001

0700

00004 LD CNT 001

00005 OUT 00202

Caution The shorter clock pulses will not necessarily produce accurate timers because
their short ON times might not be read accurately during longer cycles. In partic-
ular, the 0.02-second and 0.1-second clock pulses should not be used to create
timers with CNT instructions.

5-12-4 REVERSIBLE COUNTER – CNTR(12)

N: TC number

(000 through 511)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

II

DI
CNTR(12)

N

SVR

Each TC number can be used as the definer in only one timer or counter in-
struction.

The CNTR(12) is a reversible, up/down circular counter, i.e., it is used to
count between zero and SV according to changes in two execution condi-
tions, those in the increment input (II) and those in the decrement input (DI).

Limitations

Description

Timer and Counter Instructions Section 5-12

126

The present value (PV) will be incremented by one whenever CNTR(12) is
executed with an ON execution condition for II and the last execution condi-
tion for II was OFF. The present value (PV) will be decremented by one
whenever CNTR(12) is executed with an ON execution condition for DI and
the last execution condition for DI was OFF. If OFF to ON changes have oc-
curred in both II and DI since the last execution, the PV will not be changed.

If the execution conditions have not changed or have changed from ON to
OFF for both II and DI, the PV of CNT will not be changed.

When decremented from 0000, the present value is set to SV and the Com-
pletion Flag is turned ON until the PV is decremented again. When incre-
mented past the SV, the PV is set to 0000 and the Completion Flag is turned
ON until the PV is incremented again.

CNTR(12) is reset with a reset input, R. When R goes from OFF to ON, the
PV is reset to zero. The PV will not be incremented or decremented while R
is ON. Counting will begin again when R goes OFF. The PV for CNTR(12)
will not be reset in interlocked program sections or by the effects of power
interruptions.

Changes in II and DI execution conditions, the Completion Flag, and the PV
are illustrated below starting from part way through CNTR(12) operation (i.e.,
when reset, counting begins from zero). PV line height is meant to indicate
changes in the PV only.

Execution condition
on increment (II)

Execution condition
on decrement (DI)

ON

OFF

ON

OFF

Completion Flag
ON

OFF

PV
SV

SV - 1

SV - 2
0001

0000 0000

SV

SV - 1

SV - 2

Program execution will continue even if a non-BCD SV is used, but the SV
will not be correct.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

Precautions

Timer and Counter Instructions Section 5-12

127

5-13 Data Shifting
All of the instructions described in this section are used to shift data, but in
differing amounts and directions. The first shift instruction, SFT(10), shifts an
execution condition into a shift register; the rest of the instructions shift data
that is already in memory.

5-13-1 SHIFT REGISTER – SFT(10)

St: Starting word

IR, AR, HR, LR

E: End word

IR, AR, HR, LR

Operand Data AreasLadder Symbol

I

P

SFT(10)

St

E
R

E must be less than or equal to St, and St and E must be in the same data
area.

If a bit address in one of the words used in a shift register is also used in an
instruction that controls individual bit status (e.g., OUT, KEEP(11), SET<07>),
an error (“COIL DUPL”) will be generated when program syntax is checked
on the Programming Console or another Programming Device. The program,
however, will be executed as written. See Example 2: Controlling Bits in Shift
Registers for a programming example that does this.

SFT(10) is controlled by three execution conditions, I, P, and R. If SFT(10) is
executed and 1) execution condition P is ON and was OFF the last execution
and 2) R is OFF, then execution condition I is shifted into the rightmost bit of
a shift register defined between St and E, i.e., if I is ON, a 1 is shifted into the
register; if I is OFF, a 0 is shifted in. When I is shifted into the register, all bits
previously in the register are shifted to the left and the leftmost bit of the reg-
ister is lost.

Execution
condition I

Lost
data

E St+1, St+2, ... St

The execution condition on P functions like a differentiated instruction, i.e., I
will be shifted into the register only when P is ON and was OFF the last time
SFT(10) was executed. If execution condition P has not changed or has gone
from ON to OFF, the shift register will remain unaffected.

St designates the rightmost word of the shift register; E designates the left-
most. The shift register includes both of these words and all words between
them. The same word may be designated for St and E to create a 16-bit (i.e.,
1-word) shift register.

When execution condition R goes ON, all bits in the shift register will be
turned OFF (i.e., set to 0) and the shift register will not operate until R goes
OFF again.

Flags There are no flags affected by SFT(10).

Limitations

Description

Data Shifting Section 5-13

128

The following example uses the 1-second clock pulse bit (25502) so that the
execution condition produced by 00005 is shifted into a 3-word register be-
tween IR 010 and IR 012 every second.

I

P

SFT(10)

010

012
R

00005

25502

00006

Address Instruction Operands

00000 LD 00005

00001 LD 25502

00002 LD 00006

00003 SFT(10)

010

012

The following program is used to control the status of the 17th bit of a shift
register running from AR 00 through AR 01. When the 17th bit is to be set,
00004 is turned ON. This causes the jump for JMP(04) 00 not to be made for
that one cycle, and AR 0100 (the 17th bit) will be turned ON. When 12800 is
OFF (i.e., at all times except during the first cycle after 00004 has changed
from OFF to ON), the jump is executed and the status of AR 0100 will not be
changed.

I

P

R

SFT(10)

AR 00

AR 01

JME(05) 00

JMP(04) 00

00200

AR 0100

DIFU(13) 12800

00201

00202

00203

00004

12800

12800

Address Instruction Operands

00000 LD 00200

00001 AND 00201

00002 LD 00202

00003 LD 00203

00004 SFT(10)

AR 00

AR 01

00005 LD 00004

00006 DIFU(13) 12800

00007 LD 12800

00008 JMP(04) 00

00009 LD 12800

00010 OUT AR 0100

00011 JME(05) 00

When a bit that is part of a shift register is used in OUT (or any other instruc-
tion that controls bit status), a syntax error will be generated during the pro-
gram check, but the program will executed properly (i.e., as written).

The following program controls the conveyor line shown below so that faulty
products detected at the sensor are pushed down a chute. To do this, the
execution condition determined by inputs from the first sensor (00001) are
stored in a shift register: ON for good products; OFF for faulty ones. Con-
veyor speed has been adjusted so that HR 0003 of the shift register can be
used to activate a pusher (00500) when a faulty product reaches it, i.e., when
HR 0003 turns ON, 00500 is turned ON to activate the pusher.

The program is set up so that a rotary encoder (00000) controls execution of
SFT(10) through a DIFU(13), the rotary encoder is set up to turn ON and
OFF each time a product passes the first sensor. Another sensor (00002) is

Example 1:
Basic Application

Example 2:
Controlling Bits in Shift
Registers

Example 3:
Control Action

Data Shifting Section 5-13

129

used to detect faulty products in the chute so that the pusher output and HR
0003 of the shift register can be reset as required.

Sensor

Chute

(00002)

(00500)

Sensor
(00001)

Rotary Encoder
(00000)

Pusher

00000 LD 00001

00001 LD 00000

00002 LD 00003

00003 SFT(10)

HR 00

HR 01

00004 LD HR 0003

00005 OUT 00500

00006 LD 00002

00007 OUT NOT 00500

00008 OUT NOT HR 0003

I

P

SFT(10)

HR 00

HR 01
R

00001

00000

00003

00500

HR 0003

00002

HR 0003

00500

Address Instruction Operands

5-13-2 REVERSIBLE SHIFT REGISTER – SFTR(84)

C: Control word

IR, AR, DM, HR, LR

St: Starting word

IR, AR, DM, HR, LR

Ladder Symbols

Operand Data Areas

E: End word

IR, AR, DM, HR LR

SFTR(84)

C

St

E

@SFTR(84)

C

St

E

St and E must be in the same data area and St must be less than or equal
to E.

SFTR(84) is used to create a single- or multiple-word shift register that can
shift data to either the right or the left. To create a single-word register, desig-
nate the same word for St and E. The control word provides the shift direc-

Limitations

Description

Data Shifting Section 5-13

130

tion, the status to be put into the register, the shift pulse, and the reset input.
The control word is allocated as follows:

15 14 13 12 Not used.

Shift direction
1 (ON): Left
0 (OFF): Right

Status to input into register

Shift pulse bit

Reset

The data in the shift register will be shifted one bit in the direction indicated
by bit 12, shifting one bit out to CY and the status of bit 13 into the other end
whenever SFTR(84) is executed with an ON execution condition as long as
the reset bit is OFF and as long as bit 14 is ON. If SFTR(84) is executed with
an OFF execution condition or if SFTR(84) is executed with bit 14 OFF, the
shift register will remain unchanged. If SFTR(84) is executed with an ON
execution condition and the reset bit (bit 15) is OFF, the entire shift register
and CY will be set to zero.

Flags ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

St and E are not in the same data area or ST is greater than E.

CY: Receives the status of bit 00 of St or bit 15 of E, depending on the
shift direction.

Data Shifting Section 5-13

131

In the following example, IR 00005, IR 00006, IR 00007, and IR 00008 are
used to control the bits of C used in @SFTR(84). The shift register is be-
tween LR 20 and LR 21, and it is controlled through IR 00009.

00000 LD 00005

00001 OUT 05012

00002 LD 00006

00003 OUT 05013

00004 LD 00007

00005 OUT 00514

00006 LD 00008

00007 OUT 05015

00008 LD 00009

00009 @SFTR(84)

050

LR 20

LR 21

Address Instruction Operands Address Instruction Operands

05012

00005

05013

05014

05015

00006

00007

00008

00009

Direction

Status to input

Shift pulse

Reset

@SFTR(84)

050

LR 20

LR 21

5-13-3 ARITHMETIC SHIFT LEFT – ASL(25)

Wd: Shift word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ASL(25)

Wd

@ASL(25)

Wd

When the execution condition is OFF, ASL(25) is not executed. When the
execution condition is ON, ASL(25) shifts a 0 into bit 00 of Wd, shifts the bits
of Wd one bit to the left, and shifts the status of bit 15 into CY.

1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1

CY
Bit
00

Bit
15

0

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: Receives the status of bit 15.
EQ: ON when the content of Wd is 0; otherwise OFF.

Example

Description

Flags

Data Shifting Section 5-13

132

5-13-4 ARITHMETIC SHIFT RIGHT – ASR(26)

Wd: Shift word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ASR(26)

Wd

@ASR(26)

Wd

When the execution condition is OFF, ASR(25) is not executed. When the
execution condition is ON, ASR(25) shifts a 0 into bit 15 of Wd, shifts the bits
of Wd one bit to the right, and shifts the status of bit 00 into CY.

1 0 0 1 0 1 1 0 0 1 1 0 0 1 01

Bit
00

Bit
15 CY

0

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 00.

EQ: ON when the content of Wd is 0; otherwise OFF.

5-13-5 ROTATE LEFT – ROL(27)

Wd: Rotate word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ROL(27)

Wd

@ROL(27)

Wd

When the execution condition is OFF, ROL(27) is not executed. When the
execution condition is ON, ROL(27) shifts all Wd bits one bit to the left, shift-
ing CY into bit 00 of Wd and shifting bit 15 of Wd into CY.

1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 10

CY
Bit
00

Bit
15

Use STC(41) to set the status of CY or CLC(41) to clear the status of CY be-
fore doing a rotate operation to ensure that CY contains the proper status
before execution ROL(27).

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 15.

EQ: ON when the content of Wd is 0; otherwise OFF.

Description

Flags

Description

Precautions

Flags

Data Shifting Section 5-13

133

5-13-6 ROTATE RIGHT – ROR(28)

Wd: Rotate word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ROR(28)

Wd

@ROR(28)

Wd

When the execution condition is OFF, ROR(28) is not executed. When the
execution condition is ON, ROR(28) shifts all Wd bits one bit to the right,
shifting CY into bit 15 of Wd and shifting bit 00 of Wd into CY.

0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 10

Bit
15CY

Bit
00

Use STC(41) to set the status of CY or CLC(41) to clear the status of CY be-
fore doing a rotate operation to ensure that CY contains the proper status
before execution ROR(28).

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 15.

EQ: ON when the content of Wd is 0; otherwise OFF.

5-13-7 ONE DIGIT SHIFT LEFT – SLD(74)

Ladder Symbols Operand Data Areas

SLD(74)

St

E

@SLD(74)

St

E

St: Starting word

IR, AR, DM, HR, LR

E: End word

IR, AR, DM, HR, LR

St and E must be in the same data area, and E must be greater than or equal
to St.

When the execution condition is OFF, SLD(74) is not executed. When the
execution condition is ON, SLD(74) shifts data between St and E (inclusive)
by one digit (four bits) to the left. 0 is written into the rightmost digit of the St,
and the content of the leftmost digit of E is lost.

5

E

8 1

St

F C 97D

Lost data 0

...

Description

Precautions

Flags

Limitations

Description

Data Shifting Section 5-13

134

If a power failure occurs during a shift operation across more than 50 words,
the shift operation might not be completed.

ER: The St and E words are in different areas, or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

5-13-8 ONE DIGIT SHIFT RIGHT – SRD(75)

Ladder Symbols Operand Data Areas

SRD(75)

E

St

@SRD(75)

E

St

E: End word

IR, AR, DM, HR, LR

St: Starting word

IR, AR, DM, HR, LR

St and E must be in the same data area, and E must be less than or equal to
St.

When the execution condition is OFF, SRD(75) is not executed. When the
execution condition is ON, SRD(75) shifts data between St and E (inclusive)
by one digit (four bits) to the right. 0 is written into the leftmost digit of St and
the rightmost digit of E is lost.

2

St

3 1

E

4 5 C8F

Lost data0

...

If a power failure occurs during a shift operation across more than 50 words,
the shift operation might not be completed.

Flags ER: The St and E words are in different areas, or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

5-13-9 WORD SHIFT – WSFT(16)

Ladder Symbols Operand Data Areas

WSFT(16)

St

E

@WSFT(16)

St

E

St: Starting word

IR, AR, DM, HR, LR

E: End word

IR, AR, DM, HR, LR

Precautions

Flags

Limitations

Description

Precautions

Data Shifting Section 5-13

135

St and E must be in the same data area, and E must be greater than or equal
to St.

When the execution condition is OFF, WSFT(16) is not executed. When the
execution condition is ON, WSFT(16) shifts data between St and E in word
units. Zeros are written into St and the content of E is lost.

F 0 C 2 3 4 5 2 1 0 2 9

E St + 1 St

3 4 5 2 1 0 2 9 0 0 0 0

E St + 1 St

Lost

0000

Flags ER: The St and E words are in different areas, or St is greater than E.
Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

5-14 Data Movement
This section describes the instructions used for moving data between differ-
ent addresses in data areas. These movements can be programmed to be
within the same data area or between different data areas. Data movement is
essential for utilizing all of the data areas of the PC. Effective communica-
tions in Link Systems also requires data movement. All of these instructions
change only the content of the words to which data is being moved, i.e., the
content of source words is the same before and after execution of any of the
data movement instructions.

5-14-1 MOVE – MOV(21)

S: Source word

IR, SR, AR, DM, HR, TC, LR, #

D: Destination word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

MOV(21)

S

D

@MOV(21)

S

D

When the execution condition is OFF, MOV(21) is not executed. When the
execution condition is ON, MOV(21) copies the content of S to D.

Source word Destination word

Bit status
not changed.

TC numbers cannot be designated as D to change the PV of the timer or
counter. However, these can be easily changed using BSET(71).

Flags ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when all zeros are transferred to D.

Limitations

Description

Description

Precautions

Data Movement Section 5-14

136

5-14-2 MOVE NOT – MVN(22)

S: Source word

IR, SR, AR, DM, HR, TC, LR, #

D: Destination word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

MVN(22)

S

D

@MVN(22)

S

D

When the execution condition is OFF, MVN(22) is not executed. When the
execution condition is ON, MVN(22) transfers the complement of the content
of S (specified word or four-digit hexadecimal constant) to D, i.e., for each
ON bit in S, the corresponding bit in D is turned OFF, and for each OFF bit in
S, the corresponding bit in D is turned ON.

Source word Destination word

Bit status
inverted.

TC numbers cannot be designated as D to change the PV of the timer or
counter. However, these can be easily changed using BSET(71).

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when all zeros are transferred to D.

5-14-3 BLOCK SET – BSET(71)

S: Source data

IR, SR, AR, DM, HR, TC, LR, #

St: Starting word

IR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

E: End Word

IR, AR, DM, HR, TC, LR

BSET(71)

S

St

E

@BSET(71)

S

St

E

St must be less than or equal to E, and St and E must be in the same data
area.

Description

Precautions

Flags

Limitations

Data Movement Section 5-14

137

When the execution condition is OFF, BSET(71) is not executed. When the
execution condition is ON, BSET(71) copies the content of S to all words
from St through E.

2

S

3 4 5 2

St

3 4 5

2

St+1

3 4 5

2

St+2

3 4 5

2

E

3 4 5

BSET(71) can be used to change timer/counter PV. (This cannot be done
with MOV(21) or MVN(22).) BSET(71) can also be used to clear sections of a
data area, i.e., the DM area, to prepare for executing other instructions.

ER: St and E are not in the same data area or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

The following example shows how to use BSET(71) to change the PV of a
timer depending on the status of IR 00003 and IR 00004. When IR 00003 is
ON, TIM 010 will operate as a 50-second timer; when IR 00004 is ON, TIM
010 will operate as a 30-second timer.

@BSET(71)

#0500

TIM 010

TIM 010

@BSET(71)

#0300

TIM 010

TIM 010

00004

00003

00004

00004

00003

Address Instruction Operands

00000 LD 00003

00001 AND NOT 00004

00002 @BSET(71)

0500

TIM 010

TIM 010

00003 LD 00004

00004 AND NOT 00003

00005 @BSET(71)

0300

TIM 010

TIM 010

00006 LD 00003

00007 OR 00004

00008 TIM 010

9999

TIM 010

#9999

00003

Description

Flags

Example

Data Movement Section 5-14

138

5-14-4 BLOCK TRANSFER – XFER(70)

N: Number of words (BCD)

IR, SR, AR, DM, HR, TC, LR, #

S: Starting source word

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

D: Starting destination word

IR, AR, DM, HR, TC, LR

XFER(70)

N

S

D

@XFER(70)

N

S

D

Both S and D may be in the same data area, but their respective block areas
must not overlap. S and S+N must be in the same data area, as must D and
D+N,

When the execution condition is OFF, XFER(70) is not executed. When the
execution condition is ON, XFER(70) copies the contents of S, S+1, ..., S+N
to D, D+1, ..., D+N.

2

D

3 4 5

1

D+1

3 4 5

2

D+2

3 4 2

2

D+N

6 4 5

2

S

3 4 5

1

S+1

3 4 5

2

S+2

3 4 2

2

S+N

6 4 5

ER: N is not BCD

S and S+N or D and D+N are not in the same data area.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

5-14-5 DATA EXCHANGE – XCHG(73)

E1: Exchange word 1

IR, AR, DM, HR, TC, LR

E2: Exchange word 2

IR, AR, DM, HR, TC, LR

Ladder Symbols Operand Data Areas

XCHG(73)

E1

E2

@XCHG(73)

E1

E2

When the execution condition is OFF, XCHG(73) is not executed. When the
execution condition is ON, XCHG(73) exchanges the content of E1 and E2.

Limitations

Description

Flags

Description

Data Movement Section 5-14

139

E2E1

If you want to exchange content of blocks whose size is greater than 1 word,
use work words as an intermediate buffer to hold one of the blocks using
XFER(70) three times.

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

5-14-6 SINGLE WORD DISTRIBUTE – DIST(80)

S: Source data

IR, SR, AR, DM, HR, TC, LR, #

DBs: Destination base word

IR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

Of: Offset data (BCD)

IR, AR, DM, HR, TC, LR, #

DIST(80)

S

DBs

Of

@DIST(80)

S

DBs

Of

Of must be BCD. DBs must be in the same data area as DBs+Of.

When the execution condition is OFF, DIST(80) is not executed. When the
execution condition is ON, DIST(80) copies the content of S to DBs+Of,
i.e.,Of is added to DBs to determine the destination word.

2

DBs + Of

3 4 52

S

3 4 5

ER: The specified offset data is not BCD, or when added to the DBs, the
resulting address lies outside the data area of the DBs.

 Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of S is 0; otherwise OFF.

5-14-7 DATA COLLECT – COLL(81)

SBs: Source base word

IR, SR, AR, DM, HR, TC, LR

Of: Offset data (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: Destination word

IR, AR, DM, HR, TC, LR

COLL(81)

SBs

Of

D

@COLL(81)

SBs

Of

D

Flags

Limitations

Description

Flags

Data Movement Section 5-14

140

Of must be a BCD. SBs must be in the same data area as SBs+Of.

When the execution condition is OFF, COLL(81) is not executed. When the
execution condition is ON, COLL(81) copies the content of SBs + Of to D,
i.e., Of is added to SBs to determine the source word.

2

D

3 4 52

SBs + Of

3 4 5

ER: Of is not BCD, or when added to the SBs, or when added to the SBs,
the resulting address lies outside the data area of the SBs.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of S is 0; otherwise OFF.

5-14-8 MOVE BIT – MOVB(82)

S: Source word

IR, SR, AR, DM, HR, LR, #

Bi: Bit designator (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: Destination word

IR, AR, DM, HR, LR

MOVB(82)

S

Bi

D

@MOVB(82)

S

Bi

D

Limitations The rightmost two digits and the leftmost two digits of Bi must each be be-
tween 00 and 15.

When the execution condition is OFF, MOVB(82) is not executed. When the
execution condition is ON, MOVB(82) copies the specified bit of S to the spe-
cified bit in D. The bits in S and D are specified by Bi. The rightmost two dig-
its of Bi designate the source bit; the leftmost two bits designate the destina-
tion bit.

1

Bi

1 2 0

Source bit (00 to 15)

Destination bit (00 to 15)

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

Bit
15

Bit
00

0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1

0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1

S

D

Bi

1 2 0 1Bit
15

Bit
15

Bit
00

Bit
00

ER: Bi is not BCD, or it is specifying a non-existent bit (i.e., bit specifica-
tion must be between 00 and 15).

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

Flags

Description

Flags

Data Movement Section 5-14

141

5-14-9 MOVE DIGIT – MOVD(83)

S: Source word

IR, SR, AR, DM, HR, TC, LR, #

Di: Digit designator (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: Destination word

IR, AR, DM, HR, TC, LR

MOVD(83)

S

Di

D

@MOVD(83)

S

Di

D

Limitations The rightmost three digits of Di must each be between 0 and 3.

When the execution condition is OFF, MOVD(83) is not executed. When the
execution condition is ON, MOVD(83) copies the content of the specified
digit(s) in S to the specified digit(s) in D. Up to four digits can be transferred
at one time. The first digit to be copied, the number of digits to be copied,
and the first digit to receive the copy are designated in Di as shown below.
Digits from S will be copied to consecutive digits in D starting from the desig-
nated first digit and continued for the designated number of digits. If the last
digit is reached in either S or D, further digits are used starting back at digit 0.

First digit in S (0 to 3)

Number of digits (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First digit in D (0 to 3)

Digit number: 3 2 1 0

Not used.

The following show examples of the data movements for various values of
Di.

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

S

Di: 0031 Di: 0023

Di: 0030Di: 0010
S

SS

0

1

2

3

D

0

1

2

3

D

0

1

2

3

D

0

1

2

3

D

ER: At least one of the rightmost three digits of Di is not between 0 and 3.

 Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

Description

Digit Designator

Flags

Data Movement Section 5-14

142

5-15 Data Comparison
This section describes the instructions used for comparing data. CMP(20) is
used to compare the contents of two words; BCMP(68) is used to determine
within which of several preset ranges the content of one word lies; and
TCMP(85) is used to determine which of several preset values the content of
one word equals.

5-15-1 COMPARE – CMP(20)

Cp1: First compare word

IR, SR, AR, DM, HR, TC, TR, #

Cp2: Second compare word

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols Operand Data Areas

CMP(20)

Cp1

Cp2

When comparing a value to the PV of a timer or counter, the value must be in
BCD.

When the execution condition is OFF, CMP(20) is not executed. When the
execution condition is ON, CMP(20) compares Cp1 and Cp2 and outputs the
result to the GR, EQ, and LE flags in the SR area.

Placing other instructions between CMP(20) and the operation which ac-
cesses the EQ, LE, and GR flags may change the status of these flags. Be
sure to access them before the desired status is changed.

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON if Cp1 equals Cp2.

LE: ON if Cp1 is less than Cp2.

GR: ON if Cp1 is greater than Cp2.

The following example shows how to save the comparison result immedi-
ately. If the content of 010 is greater than that of HR 09, 00200 is turned ON;
if the two contents are equal, 00201 is turned ON; if content of 010 is less
than that of HR 09, 00202 is turned ON. In some applications, only one of the
three OUTs would be necessary, making the use of TR 0 unnecessary. With

Limitations

Description

Precautions

Flags

Example 1:
Saving CMP(20) Results

Data Comparison Section 5-15

143

this type of programming, 00200, 00201, and 00202 are changed only when
CMP(20) is executed.

CMP(20)

010

HR 09

00000

25505
00200

25507
00202

TR
0

25506

00201

Greater Than

Equal

Less Than

Address Instruction Operands Address Instruction Operands

00000 LD 00000

00001 OUT TR 0

00002 CMP(20)

010

HR 09

00003 LD TR 0

00004 AND 25505

00005 OUT 00200

00006 LD TR 0

00007 AND 25506

00008 OUT 00201

00009 LD TR 0

00010 AND 25507

00011 OUT 00202

The following example uses TIM, CMP(20), and the LE flag (25507) to pro-
duce outputs at particular times in the timer’s countdown. The timer is started
by turning ON 00000. When 00000 is OFF, TIM 010 is reset and the second
two CMP(20)s are not executed (i.e., executed with OFF execution condi-
tions). Output 00200 is produced after 100 seconds; output 00201, after 200
seconds; output 00202, after 300 seconds; and output 00204, after 500 sec-
onds.

The branching structure of this diagram is important in order to ensure that
00200, 00201, and 00202 are controlled properly as the timer counts down.

Example 2:
Obtaining Indications
during Timer Operation

Data Comparison Section 5-15

144

Because all of the comparisons here use to the timer’s PV as reference, the
other operand for each CMP(20) must be in 4-digit BCD.

#2000

CMP(20)

TIM 010

#3000

CMP(20)

TIM 010

CMP(20)

TIM 010

#4000

00201

00204

00202

00000

00200

25507

00200

25507

00201

25507

TIM 010

Output at
100 s.

Output at
200 s.

Output at
300 s.

Output at
500 s.

Address Instruction Operands Address Instruction Operands

00000 LD 00000

00001 TIM 010

5000

00002 CMP(20)

TIM 010

4000

00003 AND 25507

00004 OUT 00200

00005 LD 00200

00006 CMP(20)

TIM 010

3000

00007 AND 25507

00008 OUT 00201

00009 LD 00201

00010 CMP(20)

TIM 010

2000

00011 AND 25507

00012 OUT 00202

00013 LD TIM 010

00014 OUT 00204

TIM 010

#5000

Data Comparison Section 5-15

145

5-15-2 BLOCK COMPARE – BCMP(68)

CD: Compare data

IR, SR, DM, HR, TC, LR, #

CB: First comparison block word

IR, SR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, TC, LR

BCMP(68)

CD

CB

R

@BCMP(68)

CD

CB

R

Each lower limit word in the comparison block must be less than or equal to
the upper limit.

When the execution condition is OFF, BCMP(68) is not executed. When the
execution condition is ON, BCMP(68) compares CD to the ranges defined by
a block consisting of of CB, CB+1, CB+2, ..., CB+32. Each range is defined
by two words, the first one providing the lower limit and the second word pro-
viding the upper limit. If CD is found to be within any of these ranges (inclu-
sive of the upper and lower limits), the corresponding bit in R is set. The
comparisons that are made and the corresponding bit in R that is set for each
true comparison are shown below. The rest of the bits in R will be turned
OFF.

CB ≤ CD ≤ CB+1 Bit 00
CB+2 ≤ CD ≤ CB+3 Bit 01
CB+4 ≤ CD ≤ CB+5 Bit 02
CB+6 ≤ CD ≤ CB+7 Bit 03
CB+8 ≤ CD ≤ CB+9 Bit 04
CB+10 ≤ CD ≤ CB+11 Bit 05
CB+12 ≤ CD ≤ CB+13 Bit 06
CB+14 ≤ CD ≤ CB+15 Bit 07
CB+16 ≤ CD ≤ CB+17 Bit 08
CB+18 ≤ CD ≤ CB+19 Bit 09
CB+20 ≤ CD ≤ CB+21 Bit 10
CB+22 ≤ CD ≤ CB+23 Bit 12
CB+24 ≤ CD ≤ CB+25 Bit 13
CB+26 ≤ CD ≤ CB+27 Bit 14
CB+28 ≤ CD ≤ CB+29 Bit 15
CB+30 ≤ CD ≤ CB+31 Bit 16

ER: The comparison block (i.e., CB through CB+31) exceeds the data
area.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

Flags

Data Comparison Section 5-15

146

The following example shows the comparisons made and the results pro-
vided for BCMP(68). Here, the comparison is made during each cycle when
00000 is ON.

CD: 001 Lower limits Upper limits R: HR 05

001 0210 HR 10 0000 HR 11 0100 HR 0500 0

HR 12 0101 HR 13 0200 HR 0501 0

HR 14 0201 HR 15 0300 HR 0502 1

HR 16 0301 HR 17 0400 HR 0503 0

HR 18 0401 HR 19 0500 HR 0504 0

HR 20 0501 HR 21 0600 HR 0505 0

HR 22 0601 HR 23 0700 HR 0506 0

HR 24 0701 HR 25 0800 HR 0507 0

HR 26 0801 HR 27 0900 HR 0508 0

HR 28 0901 HR 29 1000 HR 0509 0

HR 30 1001 HR 31 1100 HR 0510 0

HR 32 1101 HR 33 1200 HR 0511 0

HR 34 1201 HR 35 1300 HR 0512 0

HR 36 1301 HR 37 1400 HR 0513 0

HR 38 1401 HR 39 1500 HR 0514 0

HR 40 1501 HR 41 1600 HR 0515 0

BCMP(68)

001

HR 10

HR 05

00000

Compare data in IR 001
(which contains 0210)
with the given ranges.

Address Instruction Operands

00000 LD 00000

00001 BCMP(68)

001

HR 10

HR 05

5-15-3 TABLE COMPARE – TCMP(85)

CD: Compare data

IR, SR, AR, DM, HR, TC, LR, #

TB: First comparison table word

IR, SR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, TC, LR

TCMP(85)

CD

TB

R

@TCMP(85)

CD

TB

R

When the execution condition is OFF, TCMP(85) is not executed. When the
execution condition is ON, TCMP(85) compares CD to the content of TB,
TB+1, TB+2, ..., and TB+15. If CD is equal to the content of any of these
words, the corresponding bit in R is set, e.g., if the CD equals the content of
TB, bit 00 is turned ON, if it equals that of TB+1, bit 01 is turned ON, etc. The
rest of the bits in R will be turned OFF.

ER: The comparison table (i.e., TB through TB+15) exceeds the data
area.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

Example

Description

Flags

Data Comparison Section 5-15

147

The following example shows the comparisons made and the results pro-
vided for TCMP(85). Here, the comparison is made during each cycle when
00000 is ON.

CD: 001 Upper limits R: HR 05

001 0210 HR 10 0100 HR 0500 0

HR 11 0200 HR 0501 0

HR 12 0210 HR 0502 1

HR 13 0400 HR 0503 0

HR 14 0500 HR 0504 0

HR 15 0600 HR 0505 0

HR 16 0210 HR 0506 1

HR 17 0800 HR 0507 0

HR 18 0900 HR 0508 0

HR 19 1000 HR 0509 0

HR 20 0210 HR 0510 1

HR 21 1200 HR 0511 0

HR 22 1300 HR 0512 0

HR 23 1400 HR 0513 0

HR 24 0210 HR 0514 1

HR 25 1600 HR 0515 0

TCMP(85)

001

HR 10

HR 05

00000

Compare the data in IR 001
with the given ranges.

Address Instruction Operands

00000 LD 00000

00001 TCMP(85)

001

HR 10

HR 05

Example

Data Comparison Section 5-15

148

5-16 Data Conversion
The conversion instructions convert word data that is in one format into an-
other format and output the converted data to specified result word(s). Con-
versions are available to convert between binary (hexadecimal) and BCD, to
7-segment display data, to ASCII, and between multiplexed and non-multi-
plexed data. All of these instructions change only the content of the words to
which converted data is being moved, i.e., the content of source words is the
same before and after execution of any of the conversion instructions.

5-16-1 BCD-TO-BINARY – BIN(23)

S: Source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: Result word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

BIN(23)

S

R

@BIN(23)

S

R

When the execution condition is OFF, BIN(23) is not executed . When the
execution condition is ON, BIN(23) converts the BCD content of S into the
numerically equivalent binary bits, and outputs the binary value to R. Only
the content of R is changed; the content of S is left unchanged.

S

R

BCD

Binary

BIN(23) can be used to convert BCD to binary so that displays on the Pro-
gramming Console or any other programming device will appear in hexadeci-
mal rather than decimal. It can also be used to convert to binary to perform
binary arithmetic operations rather than BCD arithmetic operations, e.g.,
when BCD and binary values must be added.

ER: The content of S is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when 0 is placed in R.

5-16-2 DOUBLE BCD-TO-DOUBLE BINARY – BINL(58)

S: First source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: First result word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

BINL(58)

S

R

@BINL(58)

S

R

Description

Flags

Data Conversion Section 5-16

149

When the execution condition is OFF, BINL(58) is not executed. When the
execution condition is ON, BINL(58) converts an eight-digit number in S and
S+1 into 32-bit binary data, and outputs the converted data to R and R+1.

S + 1 S

R + 1 R

BCD

Binary

ER: The contents of S and/or S+1 words are not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when 00000000 is placed in R.

5-16-3 BINARY-TO-BCD – BCD(24)

S: Source word (binary)

IR, SR, AR, DM, HR, LR

R: Result word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

BCD(24)

S

R

@BCD(24)

S

R

If the content of S exceeds 270F, the converted result would exceed 9999
and BCD(24) will not be executed. When the instruction is not executed, the
content of R remains unchanged.

BCD(24) converts the binary (hexadecimal) content of S into the numerically
equivalent BCD bits, and outputs the BCD bits to R. Only the content of R is
changed; the content of S is left unchanged.

S

RBCD

Binary

BCD(24) can be used to convert binary to BCD so that displays on the Pro-
gramming Console or any other programming device will appear in decimal
rather than hexadecimal. It can also be used to convert to BCD to perform
BCD arithmetic operations rather than binary arithmetic operations, e.g.,
when BCD and binary values must be added.

ER: S is greater than 270F.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when 0 is placed in R.

Description

Flags

Limitations

Description

Flags

Data Conversion Section 5-16

150

5-16-4 DOUBLE BINARY-TO-DOUBLE BCD – BCDL(59)

S: First source word (binary)

IR, SR, AR, DM, HR, LR

R: First result word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

BCDL(59)

S

R

@BCDL(59)

S

R

If the content of S exceeds 05F5E0FF, the converted result would exceed
99999999 and BCDL(59) will not be executed. When the instruction is not
executed, the content of R and R+1 remain unchanged.

BCDL(59) converts the 32-bit binary content of S and S+1 into eight digits of
BCD data, and outputs the converted data to R and R+1.

S + 1 S

R + 1 RBCD

Binary

ER: Content of R and R+1 exceeds 99999999.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when 0 is placed in R.

5-16-5 4-TO-16 DECODER – MLPX(76)

S: Source word

IR, SR, AR, DM, HR, TC, LR

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR, LR

MLPX(76)

S

Di

R

@MLPX(76)

S

Di

R

The rightmost two digits of Di must each be between 0 and 3.

All result words must be in the same data area.

When the execution condition is OFF, MLPX(76) is not executed. When the
execution condition is ON, MLPX(76) converts up to four, four-bit hexadeci-
mal digits from S into decimal values from 0 to 15, each of which is used to
indicate a bit position. The bit whose number corresponds to each converted

Limitations

Description

Flags

Limitations

Description

Data Conversion Section 5-16

151

value is then turned ON in a result word. If more than one digit is specified,
then one bit will be turned ON in each of consecutive words beginning with R.
(See examples, below.)

The following is an example of a one-digit decode operation from digit num-
ber 1 of S, i.e., here Di would be 0001.

Source word

First result word

C

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Bit C (i.e., bit number 12) turned ON.

The first digit and the number of digits to be converted are designated in Di. If
more digits are designated than remain in S (counting from the designated
first digit), the remaining digits will be taken starting back at the beginning of
S. The final word required to store the converted result (R plus the number of
digits to be converted) must be in the same data area as R, e.g., if two digits
are converted, the last word address in a data area cannot be designated; if
three digits are converted, the last two words in a data area cannot be desig-
nated.

The digits of Di are set as shown below.

Specifies the first digit to be converted (0 to 3)

Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

Not used

Digit number: 3 2 1 0

Some example Di values and the digit-to-word conversions that they produce
are shown below.

0

1

2

3

 R

R + 1

 R

R + 1

R + 2

0

1

2

3

0

1

2

3

0

1

2

3

 R

R + 1

R + 2

R + 3

 R

R + 1

R + 2

R + 3

S

Di: 0031 Di: 0023

Di: 0030Di: 0010
S

SS

ER: Undefined digit designator, or R plus number of digits exceeds a data
area.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

Digit Designator

Flags

Data Conversion Section 5-16

152

The following program converts three digits of data from DM 0020 to bit posi-
tions and turns ON the corresponding bits in three consecutive words starting
with HR 10.

00000
MLPX(76)

DM 0020

#0021

HR 10

Address Instruction Operands

00000 LD 00000

00001 MLPX(76)

DM 00200

0021

HR 10

S: DM 0020 R: HR 10 R+1: HR 11 R+2: HR 12

DM 00 20 HR 1000 0 HR 1100 0 HR 1200 1

DM 01 21 HR 1001 0 HR 1101 0 HR 1201 0

DM 02 22 HR 1002 0 HR 1102 0 HR 1202 0

DM 03 23 HR 1003 0 HR 1103 0 HR 1203 0

DM 04 1 20 HR 1004 0 HR 1104 0 HR 1204 0

DM 05 1 21 1 HR 1005 0 HR 1105 0 HR 1205 0

DM 06 1 22 HR 1006 0 HR 1106 1 HR 1206 0

DM 07 1 23 HR 1007 0 HR 1107 0 HR 1207 0

DM 08 0 20 HR 1008 0 HR 1108 0 HR 1208 0

DM 09 1 21 2 HR 1009 0 HR 1109 0 HR 1209 0

DM 10 1 22 HR 1010 0 HR 1110 0 HR 1210 0

DM 11 0 23 HR 1011 0 HR 1111 0 HR 1211 0

DM 12 0 20 HR 1012 0 HR 1112 0 HR 1212 0

DM 13 0 21 3 HR 1013 0 HR 1113 0 HR 1213 0

DM 14 0 22 HR 1014 0 HR 1114 0 HR 1214 0

DM 15 0 23 HR 1015 1 HR 1115 0 HR 1215 0

15

6

0

Not
Converted

5-16-6 16-TO-4 ENCODER – DMPX(77)

SB: First source word

IR, SR, AR, DM, HR, TC, LR

R: Result word

IR, AR, DM, HR, LR

Ladder Symbols

Operand Data Areas

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

DMPX(77)

SB

R

Di

@DMPX(77)

SB

R

Di

The rightmost two digits of Di must each be between 0 and 3.

All source words must be in the same data area.

When the execution condition is OFF, DMPX(77) is not executed. When the
execution condition is ON, DMPX(77) determines the position of the highest
ON bit in S, encodes it into single-digit hexadecimal value corresponding to
the bit number of the highest ON bit number, then transfers the hexadecimal
value to the specified digit in R. The digits to receive the results are specified
in Di, which also specifies the number of digits to be encoded.

Example

Limitations

Description

Data Conversion Section 5-16

153

The following is an example of a one-digit encode operation to digit number 1
of R, i.e., here Di would be 0001.

Result word

First source word

C

0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0

C transferred to indicate bit number 12 as
the highest ON bit.

Up to four digits from four consecutive source words starting with S may be
encoded and the digits written to R in order from the designated first digit. If
more digits are designated than remain in R (counting from the designated
first digit), the remaining digits will be placed at digits starting back at the be-
ginning of R.

The final word to be converted (S plus the number of digits to be converted)
must be in the same data area as SB.

The digits of Di are set as shown below.

Specifies the first digit to receive converted data (0 to 3).

Number of words to be converted (0 to 3)
0: 1 word
1: 2 words
2: 3 words
3: 4 words

Not used.

Digit numbers: 3 2 1 0

Some example Di values and the word-to-digit conversions that they produce
are shown below.

0

1

2

3

R
Di: 0011

 S

S + 1

0

1

2

3

 S

S + 1

S + 2

S + 3

Di: 0030
R

 S

S + 1

S + 2

S + 3

0

1

2

3

Di: 0032
R

Di: 0013

0

1

2

3

 S

S + 1

R

ER: Undefined digit designator, or S plus number of digits exceeds a data
area.

Content of a source word is 0.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

When 00000 is ON, the following diagram encodes IR words 010 and 011 to
the first two digits of HR 20 and then encodes LR 10 and 11 to the last two

Digit Designator

Flags

Example

Data Conversion Section 5-16

154

digits of HR 20. Although the status of each source word bit is not shown, it is
assumed that the bit with status 1 (ON) shown is the highest bit that is ON in
the word.

00000
DMPX(77)

010

HR 20

#0010

LR 10

HR 20

#0012

 IR 010

01000

 :

01011 1

01012 0

 : : :

01015 0

 LR 10

LR 1000

LR 1001 1

LR 1002 0

 : : :

 : : :

LR 1015 0

Digit 0

 IR 011

01100

 :

01109 1

01110 0

 : : :

01115 0

Digit 1

Digit 2

Digit 3

B

9

1

8
 LR 11

LR 1100

 :

LR 1108 1

LR 1109 0

 : : :

LR 1115 0

HR 20

DMPX(77)

Address Instruction Operands

00000 LD 00000

00001 DMPX(77)

010

HR 20

0010

00002 DMPX(77)

LR 10

HR 20

0012

5-16-7 7-SEGMENT DECODER – SDEC(78)

S: Source word (binary)

IR, SR, AR, DM, HR, TC, LR

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: First destination word

IR, AR, DM, HR, LR

SDEC(78)

S

Di

D

@SDEC(78)

S

Di

D

Di must be within the values given below

All destination words must be in the same data area.

When the execution condition is OFF, SDEC(78) is not executed. When the
execution condition is ON, SDEC(78) converts the designated digit(s) of S
into the equivalent 8-bit, 7-segment display code and places it into the desti-
nation word(s) beginning with D.

Limitations

Description

Data Conversion Section 5-16

155

Any or all of the digits in S may be converted in sequence from the desig-
nated first digit. The first digit, the number of digits to be converted, and the
half of D to receive the first 7-segment display code (rightmost or leftmost 8
bits) are designated in Di. If multiple digits are designated, they will be placed
in order starting from the designated half of D, each requiring two digits. If
more digits are designated than remain in S (counting from the designated
first digit), further digits will be used starting back at the beginning of S.

The digits of Di are set as shown below.

Specifies the first digit to receive converted data (0 to 3).

Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First half of D to be used.
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

Not used; set to 0.

Digit number: 3 2 1 0

Some example Di values and the 4-bit binary to 7-segment display conver-
sions that they produce are shown below.

0

1

2

3

S digits

Di: 0011

 D

0

1

2

3

Di: 0030

S digits

0

1

2

3

Di: 0130
S digits

Di: 0112

0

1

2

3

S digits

1st half

2nd half

 D

1st half

2nd half

 D+1

1st half

2nd half

 D

1st half

2nd half

 D+1

1st half

2nd half

 D

1st half

2nd half

 D+1

1st half

2nd half

 D+2

1st half

2nd half

The following example shows the data to produce an 8. The lower case let-
ters show which bits correspond to which segments of the 7-segment display.

Digit Designator

Example

Data Conversion Section 5-16

156

The table underneath shows the original data and converted code for all hex-
adecimal digits.

20

21

22

23

20

21

22

23

20

21

22

23

20

21

22

23

0

1

0

0

0

0

0

1

0

1

1

1

1

0

1

1

0

1

2

3

1

1

1

1

1

1

1

0

S

g
f b

c

d

e

aD

0

1

0

0

0

0

0

1

0

1

1

1

1

0

1

1

x100

x101

x102

x103

Di

1: Second digit

0: One digit

0 or 1:
bits 00 through 07 or
08 through 15.

Not used.

a

b

c

d

e

f

g

Bit 00
or
bit 08

Bit 07
or
bit 15

8

Original data Converted code (segments) Display

Digit Bits – g f e d c b a

0 0 0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 0 0 0 0 0 1 1 0

2 0 0 1 0 0 1 0 1 1 0 1 1

3 0 0 1 1 0 1 0 0 1 1 1 1

4 0 1 0 0 0 1 1 0 0 1 1 0

5 0 1 0 1 0 1 1 0 1 1 0 1

6 0 1 1 0 0 1 1 1 1 1 0 1

7 0 1 1 1 0 0 1 0 0 1 1 1

8 1 0 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 0 1 1 0 1 1 1 1

A 1 0 1 0 0 1 1 1 0 1 1 1

B 1 0 1 1 0 1 1 1 1 1 0 0

C 1 1 0 0 0 0 1 1 1 0 0 1

D 1 1 0 1 0 1 0 1 1 1 1 0

E 1 1 1 0 0 1 1 1 1 0 0 1

F 1 1 1 1 0 1 1 1 0 0 0 1

ER: Incorrect digit designator, or data area for destination exceeded

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

Flags

Data Conversion Section 5-16

157

5-16-8 ASCII CONVERT – ASC(86)

S: Source word

IR, SR, AR, DM, HR, TC, LR

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: First destination word

IR, AR, DM, HR, LR

ASC(86)

S

Di

D

@ASC(86)

S

Di

D

Di must be within the values given below

All destination words must be in the same data area.

When the execution condition is OFF, ASC(86) is not executed. When the
execution condition is ON, ASC(86) converts the designated digit(s) of S into
the equivalent 8-bit ASCII code and places it into the destination word(s) be-
ginning with D.

Any or all of the digits in S may be converted in order from the designated
first digit. The first digit, the number of digits to be converted, and the half of
D to receive the first ASCII code (rightmost or leftmost 8 bits) are designated
in Di. If multiple digits are designated, they will be placed in order starting
from the designated half of D, each requiring two digits. If more digits are
designated than remain in S (counting from the designated first digit), further
digits will be used starting back at the beginning of S.

Refer to Appendix F for a table of extended ASCII characters.

The digits of Di are set as shown below.

Specifies the first digit to be converted (0 to 3).

Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First half of D to be used.
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

Parity 0: none,
1: even,
2: odd

Digit number: 3 2 1 0

Limitations

Description

Digit Designator

Data Conversion Section 5-16

158

Some examples of Di values and the 4-bit binary to 8-bit ASCII conversions
that they produce are shown below.

0

1

2

3

S

Di: 0011

 D

0

1

2

3

Di: 0030

S

0

1

2

3

Di: 0130
S

Di: 0112

0

1

2

3

S

1st half

2nd half

 D

1st half

2nd half

 D+1

1st half

2nd half

 D

1st half

2nd half

 D+1

1st half

2nd half

 D

1st half

2nd half

 D+1

1st half

2nd half

 D+2

1st half

2nd half

The leftmost bit of each ASCII character (2 digits) can be automatically ad-
justed for either even or odd parity. If no parity is designated, the leftmost bit
will always be zero.

When even parity is designated, the leftmost bit will be adjusted so that the
total number of ON bits is even, e.g., when adjusted for even parity, ASCII
“31” (00110001) will be “B1” (10110001: parity bit turned ON to create an
even number of ON bits); ASCII “36” (00110110) will be “36” (00110110: par-
ity bit turned OFF because the number of ON bits is already even). The sta-
tus of the parity bit does not affect the meaning of the ASCII code.

When odd parity is designated, the leftmost bit of each ASCII character will
be adjusted so that there is an odd number of ON bits.

ER: Incorrect digit designator, or data area for destination exceeded..

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

5-17 BCD Calculations
The BCD calculation instructions – INC(38), DEC(39), ADD(30), ADDL(54),
SUB(31), SUBL(55), MUL(32), MULL(56), DIV(33), DIVL(57), FDIV(79), and
ROOT(72) – all perform arithmetic operations on BCD data.

For INC(38) and DEC(39) the source and result words are the same. That is,
the content of the source word is overwritten with the instruction result. All
other instructions change only the content of the words in which results are
placed, i.e., the contents of source words are the same before and after exe-
cution of any of the other BCD calculation instructions.

STC(40) and CLC(41), which set and clear the carry flag, are included in this
group because most of the BCD operations make use of the carry flag (CY)
in their results. Binary calculations and shift operations also use CY.

Parity

Flags

BCD Calculations Section 5-17

159

The addition and subtraction instructions include CY in the calculation as well
as in the result. Be sure to clear CY if its previous status is not required in the
calculation, and to use the result placed in CY, if required, before it is
changed by execution of any other instruction.

5-17-1 INCREMENT – INC(38)

Wd: Increment word (BCD)

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

INC(38)

Wd

@INC(38)

Wd

When the execution condition is OFF, INC(38) is not executed. When the
execution condition is ON, INC(38) increments Wd, without affecting carry
(CY).

ER: Wd is not BCD

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the incremented result is 0.

5-17-2 DECREMENT – DEC(39)

Wd: Decrement word (BCD)

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

DEC(39)

Wd

@DEC(39)

Wd

When the execution condition is OFF, DEC(39) is not executed. When the
execution condition is ON, DEC(39) decrements Wd, without affecting CY.
DEC(39) works the same way as INC(38) except that it decrements the value
instead of incrementing it.

ER: Wd is not BCD

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the decremented result is 0.

5-17-3 SET CARRY – STC(40)

Ladder Symbols

STC(40) @STC(40)

When the execution condition is OFF, STC(40) is not executed.When the ex-
ecution condition is ON, STC(40) turns ON CY (SR 25504).

5-17-4 CLEAR CARRY – CLC(41)

Ladder Symbols

CLC(41) @CLC(41)

Description

Flags

Description

Flags

BCD Calculations Section 5-17

160

When the execution condition is OFF, CLC(41) is not executed.When the ex-
ecution condition is ON, CLC(41) turns OFF CY (SR 25504).

5-17-5 BCD ADD – ADD(30)

Au: Augend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ad: Addend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ADD(30)

Au

Ad

R

@ADD(30)

Au

Ad

R

When the execution condition is OFF, ADD(30) is not executed. When the
execution condition is ON, ADD(30) adds the contents of Au, Ad, and CY,
and places the result in R. CY will be set if the result is greater than 9999.

Au + Ad + CY CY R

ER: Au and/or Ad is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

If 00002 is ON, the program represented by the following diagram clears CY
with CLC(41), adds the content of LR 25 to a constant (6103), places the re-
sult in DM 0100, and then moves either all zeros or 0001 into DM 0101 de-
pending on the status of CY (25504). This ensures that any carry from the
last digit is preserved in R+1 so that the entire result can be later handled as
eight-digit data.

TR 0

MOV(21)

#0001

DM 0101

00002
CLC(41)

ADD(30)

 LR 25

#6103

DM 0100

MOV(21)

#0000

DM 0101

25504

25504

Address Instruction Operands

00000 LR 00002

00001 OUT TR 0

00002 CLC(41)

00003 AND(30)

LR 25

6103

DM 0100

00004 AND 25504

00005 MOV(21)

0001

DM 0101

00006 LD TR 0

00007 AND NOT 25504

00008 MOV(21)

0000

DM 0101

Although two ADD(30) can be used together to perform eight-digit BCD addi-
tion, ADDL(54) is designed specifically for this purpose.

Description

Flags

Example

BCD Calculations Section 5-17

161

5-17-6 DOUBLE BCD ADD – ADDL(54)

Au: First augend word (BCD)

IR, SR, AR, DM, HR, TC, LR

Ad: First addend word (BCD)

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR, LR

ADDL(54)

Au

Ad

R

@ADDL(54)

Au

Ad

R

When the execution condition is OFF, ADDL(54) is not executed. When the
execution condition is ON, ADDL(54) adds the contents of CY to the 8-digit
value in Au and Au+1 to the 8-digit value in Ad and Ad+1, and places the re-
sult in R and R+1. CY will be set if the result is greater than 99999999.

Au + 1 Au

Ad + 1 Ad

R + 1 R

+ CY

CY

ER: Au and/or Ad is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

When 00000 is ON, the following program adds two 12-digit numbers, the
first contained in LR 20 through LR 22 and the second in DM 0012. The re-
sult is placed in LR 10 through HR 13. In the second addition (using
ADD(30)), any carry from the first addition is included. The carry from the
second addition is placed in HR 13 by using @ADB(50) (see Section 5-17-1)
with two all-zero constants to indirectly place the content of CY into HR 13.

Description

Flags

Example

BCD Calculations Section 5-17

!

162

00000 LD 00000

00001 CLC(41)

00002 @ADDL(54)

LR 20

DM 0010

HR 10

00003 @ADD(30)

LR 22

DM 0012

HR 12

00004 @ADB(50)

0000

0000

HR 13

@ADDL(54)

LR 20

DM 0010

HR 10

CLC(41)

00000

@ADD(30)

LR 22

DM 0012

HR 12

@ADB(50)

#0000

#0000

HR 13

Address Instruction Operands

5-17-7 BCD SUBTRACT – SUB(31)

Mi: Minuend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Su: Subtrahend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

SUB(31)

Mi

Su

R

@SUB(31)

Mi

Su

R

When the execution condition is OFF, SUB(31) is not executed. When the
execution condition is ON, SUB(31) subtracts the contents of Su and CY
from Mi, and places the result in R. If the result is negative, CY is set and the
10’s complement of the actual result is placed in R. To convert the 10’s com-
plement to the true result, subtract the content of R from zero (see example
below).

Mi – Su – CY CY R

ER: Mi and/or Su is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.

EQ: ON when the result is 0.

Caution Be sure to clear the carry flag with CLC(41) before executing SUB(31) if its previ-
ous status is not required, and check the status of CY after doing a subtraction
with SUB(31). If CY is ON as a result of executing SUB(31) (i.e., if the result is
negative), the result is output as the 10’s complement of the true answer. To con-
vert the output result to the true value, subtract the value in R from 0.

When 00002 is ON, the following ladder program clears CY, subtracts the
contents of DM 0100 and CY from the content of 010 and places the result in
HR 20.

Description

Flags

Example

BCD Calculations Section 5-17

163

If CY is set by executing SUB(31), the result in HR 20 is subtracted from zero
(note that CLC(41) is again required to obtain an accurate result), the result
is placed back in HR 20, and HR 2100 is turned ON to indicate a negative
result.

If CY is not set by executing SUB(31), the result is positive, the second sub-
traction is not performed, and HR 2100 is not turned ON. HR 2100 is pro-
grammed as a self-maintaining bit so that a change in the status of CY will
not turn it OFF when the program is recycled.

In this example, differentiated forms of SUB(31) are used so that the subtrac-
tion operation is performed only once each time 00002 is turned ON. When
another subtraction operation is to be performed, 00002 will need to be
turned OFF for at least one cycle (resetting HR 2100) and then turned back
ON.

00000 LD 00002

00001 OUT TR 0

00002 CLC(41)

00003 @SUB(31)

010

DM 0100

HR 20

00004 AND 25504

00005 CLC(41)

00006 @SUB(31)

0000

HR 20

HR 20

00007 LD TR 0

00008 AND 25504

00009 OR HR 2100

00010 OUT HR 2100

CLC(41)

@SUB(31)

010

DM 0100

HR 20

CLC(41)

@SUB(31)

#0000

HR 20

HR 20

TR 0

25504
HR 2100

00002

25504

HR 2100

First
subtraction

Second
subtraction

Turned ON to indicate
negative result.

Address Instruction Operands

The first and second subtractions for this diagram are shown below using
example data for 010 and DM 0100.

The actual SUB(31) operation involves subtracting Su and CY from 10,000
plus Mi. For positive results the leftmost digit is truncated. For negative
results the 10s complement is obtained. The procedure for establishing the
correct answer is given below.

First Subtraction
IR 010 1029
DM 0100 – 3452
CY – 0

HR 20 7577 (1029 + (10000 – 3452))
CY 1 (negative result)

Note

BCD Calculations Section 5-17

164

Second Subtraction
0000

HR 20 –7577
CY –0

HR 20 2423 (0000 + (10000 – 7577))
CY 1 (negative result)

In the above case, the program would turn ON HR 2100 to indicate that the
value held in HR 20 is negative.

5-17-8 DOUBLE BCD SUBTRACT – SUBL(55)

Mi: First minuend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Su: First subtrahend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR, LR

SUBL(55)

Mi

Su

R

@SUBL(55)

Mi

Su

R

When the execution condition is OFF, SUBL(55) is not executed. When the
execution condition is ON, SUBL(55) subtracts CY and the 8-digit contents of
Su and Su+1 from the 8-digit value in Mi and Mi+1, and places the result in R
and R+1. If the result is negative, CY is set and the 10’s complement of the
actual result is placed in R. To convert the 10’s complement to the true result,
subtract the content of R from zero. Since an 8-digit constant cannot be di-
rectly entered, use the BSET(71) instruction (see Section 5-13-3) to create
an 8-digit constant.

Mi + 1 Mi

Su + 1 Su

R + 1 R

– CY

CY

ER: Mi, M+1,Su, or Su+1 are not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su.

EQ: ON when the result is 0.

The following example works much like that for single-word subtraction. In
this example, however, BSET(71) is required to clear the content of DM 0000

Description

Flags

Example

BCD Calculations Section 5-17

165

and DM 0001 so that a negative result can be subtracted from 0 (inputting an
8-digit constant is not possible).

00000 LD 00003

00001 OUT TR 0

00002 CLC(41)

00003 @SUBL(55)

HR 20

120

DM 0100

00004 AND 25504

00005 @BSET(71)

0000

DM 0000

DM 0001

00006 CLC(41)

00007 @SUBL(55)

DM 0000

DM 0100

DM 0100

00008 LD TR 0

00009 AND 25504

00010 OR HR 2100

00011 OUT HR 2100

CLC(41)

@SUBL(55)

HR 20

120

DM 0100

CLC(41)

@SUBL(55)

DM 0000

DM 0100

DM 0100

TR 0

25504
HR 2100

00003

25504

HR 2100

First
subtraction

Second
subtraction

Turned ON to indicate
negative result.

@BSET(71)

#0000

DM 0000

DM 0001

Address Instruction Operands Address Instruction Operands

5-17-9 BCD MULTIPLY – MUL(32)

Md: Multiplicand (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Mr: Multiplier (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

MUL(32)

Md

Mr

R

@MUL(32)

Md

Mr

R

BCD Calculations Section 5-17

166

When the execution condition is OFF, MUL(32) is not executed. When the
execution condition is ON, MUL(32) multiplies Md by the content of Mr, and
places the result In R and R+1.

Md

Mr

R +1 R

X

When IR 00000 is ON with the following program, the contents of IR 013 and
DM 0005 are multiplied and the result is placed in HR 07 and HR 08. Exam-
ple data and calculations are shown below the program.

MUL(32)

013

DM 0005

HR 07

00000

R+1: HR 08 R: HR 07
0 0 0 8 3 9 0 0

Md: IR 013
3 3 5 6

Mr: DM 0005
0 0 2 5

X

Address Instruction Operands

00000 LD 00000

00001 MUL(32)

013

DM 00005

HR 07

ER: Md and/or Mr is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

5-17-10 DOUBLE BCD MULTIPLY – MULL(56)

Md: First multiplicand word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Mr: First multiplier word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

MULL(56)

Md

Mr

R

@MULL(56)

Md

Mr

R

Description

Example

Flags

BCD Calculations Section 5-17

167

When the execution condition is OFF, MULL(56) is not executed. When the
execution condition is ON, MULL(56) multiplies the eight-digit content of Md
and Md+1 by the content of Mr and Mr+1, and places the result in R to R+3.

Md + 1 Md

Mr + 1 Mr

R + 1 RR + 1 R + 2

x

ER: Md, Md+1,Mr, or Mr+1 is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

5-17-11 BCD DIVIDE – DIV(33)

Dd: Dividend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbol

Dr: Divisor word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Operand Data Areas

DIV(33)

Dd

Dr

R

R: First result word (BCD)

IR, AR, DM, HR, LR

R and R+1 must be in the same data area.

When the execution condition is OFF, DIV(33) is not executed and the pro-
gram moves to the next instruction. When the execution condition is ON, Dd
is divided by Dr and the result is placed in R and R + 1: the quotient in R and
the remainder in R + 1.

R+1 R

DdDr

QuotientRemainder

ER: Dd or Dr is not in BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Description

Flags

Limitations

Description

Flags

BCD Calculations Section 5-17

168

When IR 00000 is ON with the following program, the content of IR 020 is
divided by the content of HR 09 and the result is placed in DM 0017 and DM
0018. Example data and calculations are shown below the program.

DIV(33)

020

HR 09

DM 0017

00000

R: DM 0017 R + 1: DM 0018
1 1 5 0 0 0 0 2

Dd: IR 020
3 4 5 2

Quotient Remainder

Dd: HR 09
0 0 0 3

Address Instruction Operands

00000 LD 00000

00001 DIV(33)

020

HR 09

DM 0017

5-17-12 DOUBLE BCD DIVIDE – DIVL(57)

Dd: First dividend word (BCD)

IR, SR, AR, DM, HR, TC, LR

Dr: First divisor word (BCD)

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

DIVL(57)

Dd

Dr

R

@DIVL(57)

Dd

Dr

R

When the execution condition is OFF, DIVL(57) is not executed. When the
execution condition is ON, DIVL(57) the eight-digit content of Dd and D+1 is
divided by the content of Dr and Dr+1 and the result is placed in R to R+3:
the quotient in R and R+1, the remainder in R+2 and R+3.

R+1 R

QuotientRemainder

Dd+1 DdDr+1 Dr

R+3 R+2

ER: Dr and Dr+1 contain 0.

Dd, Dd+1, Dr, or Dr+1 is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Example

Description

Flags

BCD Calculations Section 5-17

169

5-17-13 FLOATING POINT DIVIDE – FDIV(79)

Dd: First dividend word (BCD)

IR, SR, AR, DM, HR, TC, LR

Dr: First divisor word (BCD)

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

FDIV(79)

Dd

Dr

R

@FDIV(79)

Dd

Dr

R

Dr and Dr+1 cannot contain zero. Dr and Dr+1 must be in the same data
area, as must Dd and Dd+1; R and R+1.

When the execution condition is OFF, FDIV(79) is not executed. When the
execution condition is ON, FDIV(79) divides the floating-point value in Dd and
Dd+1 by that in Dr and Dr+1 and places the result in R and R+1.

R+1 R

Quotient

Dd+1 DdDr+1 Dr

To represent the floating point values, the rightmost seven digits are used for
the mantissa and the leftmost digit is used for the exponent, as shown in the
diagram below. The mantissa is expressed as a value less than one, i.e., to
seven decimal places.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
First word

Exponent (0 to 7)
Sign of exponent 0: +

1: –

1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

Mantissa (leftmost 3 digits)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Second word

Mantissa (rightmost 4 digits)

0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1

= 0.1111113 x 10–2

ER: Dr and Dr+1 contain 0.

Dd, Dd+1, Dr, or Dr+1 is not BCD.

The result is not between 0.0000001 x 10–7 and 0.999999 x 10+7.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Limitations

Description

Flags

BCD Calculations Section 5-17

170

Valid Ranges for Division Data and Quotient

Maximum value for division
data and quotient (same)
0.9999999×107

Minimum value for
division data
0.0000001×10–7

Minimum value for
quotient
0.100000×10–7

Contents of words
Dd+1, Dr+1, or R+1

Contents of words
Dd, Dr, or R

Contents of words
Dd +1 or Dr+1

Contents of words
Dd or Dr

Contents of word R+1

Contents of word R

7 9 9 9
0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1

MSB LSB

9 9 9 9
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

MSB LSB

F 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

MSB LSB

0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

MSB LSB

F 1 0 0
1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

MSB LSB

0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MSB LSB

The following example shows how to divide two whole four-digit numbers
(i.e., numbers without fractions) so that a floating-point value can be ob-
tained.

First the original numbers must be placed in floating-point form. Because the
numbers are originally without decimal points, the exponent will be 4 (e.g.,
3452 would equal 0.3452 x 104). All of the moves are to place the proper
data into consecutive words for the final division, including the exponent and
zeros. Data movements for Dd and Dd+1 are shown at the right below.
Movements for Dr and Dr+1 are basically the same.The original values to be
divided are in DM 0000 and DM 0001. The final division is also shown.

Example

BCD Calculations Section 5-17

171

00000 LD 00000

00001 @MOV(21)

0000

HR 00

00002 @MOV(21)

0000

HR 02

00003 @MOV(21)

4000

HR 01

00004 @MOV(21)

4000

HR 03

00005 @MOVD(83)

DM 0000

0021

HR 01

00006 @MOVD(83)

DM 0000

0300

HR 00

00007 @MOVD(83)

DM 0001

0021

HR 03

00008 @MOVD(83)

DM 0001

0300

HR 02

00009 @FDIV(79)

HR 00

HR 02

DM 0002

DM 0000
3 4 5 2

@MOV(21)

#0000

HR 00

00000

@MOV(21)

#0000

HR 02

@MOV(21)

#4000

HR 01

@MOV(21)

#4000

HR 03

@MOVD(83)

DM 0000

#0021

HR 01

@MOVD(83)

DM 0000

#0300

HR 00

@MOVD(83)

DM 0001

#0021

HR 03

@MOVD(83)

DM 0001

#0300

HR 02

@FDIV(79)

HR 00

HR 02

DM 0002

HR 01 HR 00
0 0 0 0

0000

HR 01 HR 00
4 0 0 0 0 0 0 0

4000

HR 01 HR 00
4 3 4 5 0 0 0 0

DM 0000
3 4 5 2

HR 01 HR 00
4 3 4 5 2 0 0 0

HR 01 HR 00
4 3 4 5 2 0 0 0

HR 03 HR 02
4 0 0 7 9 0 0 0

DM 0003 DM 0002
2 4 3 6 9 6 2 0

÷

0.4369620 x 102

Address Instruction Operands Address Instruction Operands

BCD Calculations Section 5-17

172

5-17-14 SQUARE ROOT – ROOT(72)

Sq: First source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: Result word

IR, AR, DM, HR, LR,

Ladder Symbols Operand Data Areas

ROOT(72)

Sq

R

@ROOT(72)

Sq

R

When the execution condition is OFF, ROOT(72) is not executed. When the
execution condition is ON, ROOT(72) computes the square root of the
eight-digit content of Sq and Sq+1 and places the result in R. The fractional
portion is truncated.

R

Sq+1 Sq

ER: Sq is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

The following example shows how to take the square root of a four-digit num-
ber and then round the result.

First the words to be used are cleared to all zeros and then the value whose
square root is to be taken is moved to Sq+1. The result, which has twice the
number of digits required for the answer (because the number of digits in the
original value was doubled), is placed in DM 0102, and the digits are split into
two different words, the leftmost two digits to IR 011 for the answer and the
rightmost two digits to DM 0103 so that the answer in IR 011 can be rounded
up if required. The last step is to compare the value in DM 0103 so that IR
011 can be incremented using the Greater Than flag.

In this example, √6017 = 77.56. The result is rounded off to an integer, ac-
cording to the digit in the tenths place. A remainder less than 0.5 is rounded
to 0, and a remainder of 0.5 or greater is rounded to 1. In this case, 77.56 is
rounded off to 78.

Description

Flags

Example

BCD Calculations Section 5-17

173

010
6 0 1 7

00000

@MOV(21)

010

DM 0101

@ROOT(72)

DM 0100

DM 0102

@MOV(21)

#0000

011

@MOVD(83)

DM 0102

#0012

011

@MOVD(83)

DM 0102

#0210

DM 0103

@CMP(20)

DM 0103

#4900

@INC(38)

011

DM 0101 DM 0100
0 0 0 0 0 0 0 0

0000

DM 0101 DM 0100
6 0 1 7 0 0 0 0

DM 0102
7 7 5 6

IR 011 DM 0103
0 0 7 7 5 6 0 0

@BSET(71)

#0000

DM 0100

DM 0101

@MOV(21)

#0000

DM 0103

0000

60170000= 7756.932

DM 0103 IR 011
0 0 0 0 0 0 0 0

00000000

25505

5600 > 4900?

IR 011
0 0 7 8

Address Instruction Operands Address Instruction Operands

00000 LD 00000

00001 @BSET(71)

0000

DM 0100

DM 0101

00002 @MOV(21)

010

DM 0101

00003 @ROOT(72)

DM 0100

DM 0102

00004 @MOV(21)

0000

011

00005 @MOV(21)

0000

DM 0103

00006 @MOVD(83)

DM 0102

0012

011

00007 @MOVD(83)

DM 0102

0210

DM 0103

00008 @CMP(20)

DM 0103

4900

00009 LD 25505

00010 @INC(38)

011

BCD Calculations Section 5-17

174

5-18 Binary Calculations
The binary calculation instructions – ADB(50), SBB(51), MLB(52) and
DVB(53) – all perform arithmetic operations on hexadecimal data.

The addition and subtraction instructions include CY in the calculation as well
as in the result. Be sure to clear CY if its previous status is not required in the
calculation, and to use the result placed in CY, if required, before it is
changed by the execution of any other instruction. STC(40) and CLC(41) can
be used to control CY. Refer to 5-16 BCD Calculations.

5-18-1 BINARY ADD – ADB(50)

Au: Augend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ad: Addend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ADB(50)

Au

Ad

R

@ADB(50)

Au

Ad

R

When the execution condition is OFF, ADB(50) is not executed. When the
execution condition is ON, ADB(50) adds the contents of Au, Ad, and CY,
and places the result in R. CY will be set if the result is greater than FFFF.

Au + Ad + CY CY R

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is greater than FFFF.

EQ: ON when the result is 0.

Examples The following example shows a four-digit addition with CY used to place ei-
ther #0000 or #0001 into R+1 to ensure that any carry is preserved.

CLC(41)

00000

ADB(50)

010

DM 0100

HR 10

MOV(21)

#0000

HR 11

MOV(21)

#0001

HR 11

TR 0

25504

25504

= R

= R+1

= R+1

Address Instruction Operands

00000 LD 00000

00001 OUT TR 0

00002 CLC(41)

00003 ADB(50)

010

DM 0100

HR 10

00004 AND NOT 25504

00005 MOV(21)

0000

HR 11

00006 LD TR 0

00007 AND 25504

00008 MOV(21)

00001

HR 11

Description

Flags

Binary Calculations Section 5-18

175

In the case below, A6E2 + 80C5 = 127A7. The result is a 5-digit number, so
CY (SR 25504) = 1, and the content of R + 1 becomes #0001.

R+1: HR 11 R: HR 10
0 0 0 1 2 7 A 7

Au: IR 010
A 6 E 2

Ad: DM 0100
8 0 C 5

+

The following example performs eight-digit addition by using ADB(50) twice.
ADB(50) is also used to place the carry into DM 0302 (one word greater than
the rest of the answer). The complete answer thus ends up in DM 0300
through DM 0302.

CLC(41)

00000

@ADB(50)

LR 20

DM 0200

DM 0300

@ADB(50)

LR 21

DM 0201

DM 0301

@ADB(50)

#0000

#0000

DM 0302

Address Instruction Operands

00000 LD 00000

00001 CLC(41)

00002 @ADB(50)

LR 20

DM 0200

DM 0300

00003 @ADB(50)

LR 21

DM 0201

DM 0301

00004 @ADB(50)

0000

0000

DM 0302

In the case below, 4F52A6E2 + EC3B80C5 = 13B8E27A7. The sum of the
addition of the lower 4 digits is a 5-digit number, so CY (SR 25504) = 1, and
the sum of the higher 4-digit addition is incremented by 1.

R: DM 0300
2 7 A 7

Au: LR 20
A 6 E 2

Ad: DM 0200
8 0 C 5

+

R: DM 0301
3 B 8 E

Au: LR 21
4 F 5 2

Ad: DM 0201
E C 3 B

+
CY = 1

Lower 4 digits. Higher 4 digits.

CY = 1

R+2: DM 0302 R+1: DM 0301 R: DM 0300
0 0 0 1 3 B 8 E 2 7 A 7

Binary Calculations Section 5-18

176

5-18-2 BINARY SUBTRACT – SBB(51)

Mi: Minuend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Su: Subtrahend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

SBB(51)

Mi

Su

R

@SBB(51)

Mi

Su

R

When the execution condition is OFF, SBB(51) is not executed. When the
execution condition is ON, SBB(51) subtracts the contents of Su and CY from
Mi and places the result in R. If the result is negative, CY is set and the 2’s
complement of the actual result is placed in R.

Mi – Su – CY CY R

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.

EQ: ON when the result is 0.

Example The following example shows eight-digit subtraction. CY is tested following
the first two subtractions to see if the result is negative. If it is, the first result
is subtracted from zero to obtain the true result, which is placed in HR 10 and

Description

Flags

Binary Calculations Section 5-18

177

HR 11, and either 0000 or 0001 is placed in HR 12 (0001 indicates a nega-
tive answer).

CLC(41)

00000

SBB(51)

010

DM 0100

HR 10

MOV(21)

#0000

HR 12

MOV(21)

#0001

HR 12

TR 0

25504

25504

SBB(51)

011

DM 0101

HR 11

CLC(41)

25504

SBB(51)

#0000

HR 10

HR 10

SBB(51)

#0000

HR 11

HR 11

Address Instruction Operands

00000 LD 00000

00001 OUT TR 0

00002 CLC(41)

00003 SBB(51)

010

DM 0100

HR 10

00004 SBB(51)

011

DM 0101

HR 11

00005 AND 25505

00006 CLC(41)

00007 SBB(51)

0000

HR 10

HR 10

00008 SBB(51)

0000

HR 11

HR 11

00009 LD TR 0

00010 AND NOT 25504

00011 MOV(21)

0000

HR 12

00012 LD TR 0

00013 AND 25504

00014 MOV(21)

0000

HR 12

In the case below, 20F55A10 – B8A360E3 = 97AE06D3. In the the lower
4-digit subtraction, Su > Mi, so CY(SR 25504) becomes 1, and the result of
the higher 4-digit subtraction is decremented by 1. In the final calculations,
#0000 – F9D2 = 0000 + (10000 – F9D2) = 06D3.

Binary Calculations Section 5-18

178

#0000 – 6851 –1 (from CY = 1) = 0000 + (10000 – 6851 – 1) = 97AE.
The content of HR 12, #0001, indicates a negative result.

R: HR 10
F 9 2 D

Mi: IR 010
5 A 1 0

Su: DM 0100
6 0 E 3

–

R: HR 11
6 8 5 1

Mi: IR 011
2 0 F 5

Su: DM 0101
B 8 A 3

–

CY = 1

Lower 4 digits. Higher 4 digits.

CY = 1

R+2: HR 12 R+1: HR 11 R: HR 10
0 0 0 1 9 7 A E 0 6 D 3

5A10 + (10000 – 60E3)

– 0 0 0 10 0 0 0–
20F5 + (10000 – B8A3) – 1

CY = 0
(from CLC(41))

5-18-3 BINARY MULTIPLY – MLB(52)

Md: Multiplicand word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Mr: Multiplier word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

MLB(52)

Md

Mr

R

@MLB(52)

Md

Mr

R

When the execution condition is OFF, MLB(52) is not executed. When the
execution condition is ON, MLB(52) multiplies the content of Md by the con-
tents of Mr, places the rightmost four digits of the result in R, and places the
leftmost four digits in R+1.

Md

Mr

R +1 R

X

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Description

Flags

Binary Calculations Section 5-18

179

5-18-4 BINARY DIVIDE – DVB(53)

Dd: Dividend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Dr: Divisor word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

DVB(53)

Dd

Dr

R

@DVB(53)

Dd

Dr

R

When the execution condition is OFF, DVB(53) is not executed. When the
execution condition is ON, DVB(53) divides the content of Dd by the content
of Dr and the result is placed in R and R+1: the quotient in R, the remainder
in R+1.

DdDr

R R + 1

Quotient Remainder

ER: Dr contains 0.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-19 Logic Instructions
The logic instructions – COM(29), ANDW(34), ORW(35), XORW(36), and
XNRW(37) – perform logic operations on word data.

5-19-1 COMPLEMENT – COM(29)

Wd: Complement word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

COM(29)

Wd

@COM(29)

Wd

When the execution condition is OFF, COM(29) is not executed. When the
execution condition is ON, COM(29) clears all ON bits and sets all OFF bits
in Wd.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

15 00

15 00

Original

Complement

Example

Description

Flags

Description

Logic Instructions Section 5-19

180

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-19-2 AND WORD – ANDW(34)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ANDW(34)

I1

I2

R

@ANDW(34)

I1

I2

R

When the execution condition is OFF, ANDW(34) is not executed. When the
execution condition is ON, ANDW(34) logically AND’s the contents of I1 and
I2 bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

15 00

15 00

I1

I2

R

Example

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-19-3 OR WORD – ORW(35)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ORW(35)

I1

I2

R

@ORW(35)

I1

I2

R

Flags

Description

Flags

Logic Instructions Section 5-19

181

When the execution condition is OFF, ORW(35) is not executed. When the
execution condition is ON, ORW(35) logically OR’s the contents of I1 and I2
bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

15 00

15 00

I1

I2

R

Example

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-19-4 EXCLUSIVE OR – XORW(36)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

XORW(36)

I1

I2

R

@XORW(36)

I1

I2

R

When the execution condition is OFF, XORW(36) is not executed. When the
execution condition is ON, XORW(36) exclusively OR’s the contents of I1
and I2 bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

15 00

15 00

I1

I2

R

Example

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Description

Flags

Description

Flags

Logic Instructions Section 5-19

182

5-19-5 EXCLUSIVE NOR – XNRW(37)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

XNRW(37)

I1

I2

R

@XNRW(37)

I1

I2

R

When the execution condition is OFF, XNRW(37) is not executed. When the
execution condition is ON, XNRW(37) exclusively NOR’s the contents of I1
and I2 bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

15 00

15 00

I1

I2

R

ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-20 Subroutines and Interrupt Control

5-20-1 Overview
Subroutines break large control tasks into smaller ones and enable you to
reuse a given set of instructions. When the main program calls a subroutine,
control is transferred to the subroutine and the subroutine instructions are
executed. The instructions within a subroutine are written in the same way as
main program code. When all the subroutine instructions have been exe-
cuted, control returns to the main program to the point just after the point
from which the subroutine was entered (unless otherwise specified in the
subroutine).

Subroutines may also be activated by interrupts. Like subroutine calls, inter-
rupts cause a break in the flow of the main program execution such that the
flow can be resumed from that point after completion of the subroutine. An
interrupt is caused either by an external source, such as an input signal from
an Interrupt Input Unit, or a scheduled interrupt. In the case of the scheduled
interrupt, the interrupt signal is repeated at regular intervals.

Whereas subroutine calls are controlled from within the main program, sub-
routines activated by interrupts are triggered when the interrupt signal is re-
ceived. Also, multiple interrupts from different Interrupt Input Units can occur

Description

Flags

Subroutines and Interrupt Control Section 5-20

183

at the same time. To effectively deal with this, the PC employs a priority sys-
tem for handling interrupts.

In the case of the scheduled interrupt, the time interval between interrupts is
set by the user and is unrelated to the cycle timing of the PC. This capability
is useful for periodic supervisory or executive program execution.

INT(89) is used to control the interrupt signals received from the Interrupt
Input Units, and also to control the scheduling of the scheduled interrupt.
INT(89) provides such functions as masking of interrupts (so that they are
recorded but ignored) and clearing of interrupts.

5-20-2 SUBROUTINE START and RETURN – SBN(92)/RET(93)

N: Subroutine number

(00 to 99)

Ladder Symbols Operand Data Areas

SBN(92) N

RET(93)

Each subroutine number can be used in SBN(92) once only, i.e., up to 100
subroutines may be programmed. Subroutine numbers 00 through 31 are
used by Interrupt Input Units and subroutine number 99 is used for the
scheduled interrupt. Refer to 5-19-4 Interrupt Control – INT(89) for details.

SBN(92) is used to mark the beginning of a subroutine program; RET(93) is
used to mark the end. Each subroutine is identified with a subroutine number,
N, that is programmed as a definer for SBN(92). This same subroutine num-
ber is used in any SBS(91) that calls the subroutine (see next subsection).
No subroutine number is required with RET(93).

All subroutines must be programmed at the end of the main program. When
one or more subroutines have been programmed, the main program will be
executed up to the first SBN(92) before returning to address 00000 for the
next cycle. Subroutines will not be executed unless called by SBS(91) or acti-
vated by an interrupt.

END(01) must be placed at the end of the last subroutine program, i.e., after
the last RET(93). It is not required at any other point in the program. (Refer to
the next subsection for further details.)

Precautions If SBN(92) is mistakenly placed in the main program, it will inhibit program
execution past that point, i.e., program execution will return to the beginning
when SBN(92) is encountered.

If either DIFU(13) or DIFU(14) is placed within a subroutine, the operand bit
will not be turned OFF until the next time the subroutine is executed, i.e., the
operand bit may stay ON longer than one cycle.

There are no flags directly affected by these instructions.

5-20-3 SUBROUTINE ENTER – SBS(91)

N: Subroutine number

(00 to 99)

Ladder Symbol Operand Data Areas

SBS(91) N

Limitations

Description

Flags

Subroutines and Interrupt Control Section 5-20

184

A subroutine can be executed by placing SBS(91) in the main program at the
point where the subroutine is desired. The subroutine number used in
SBS(91) indicates the desired subroutine. When SBS(91) is executed (i.e.,
when the execution condition for it is ON), the instructions between the
SBN(92) with the same subroutine number and the first RET(93) after it are
executed before execution returns to the instruction following the SBS(91)
that made the call.

SBS(91) 00

SBN(92) 00

RET(93)

END(01)

Main program

Subroutine

Main program

SBS(91) may be used as many times as desired in the program, i.e., the
same subroutine may be called from different places in the program).

SBS(91) may also be placed into a subroutine to shift program execution
from one subroutine to another, i.e., subroutines may be nested. When the
second subroutine has been completed (i.e., RET(93) has been reached),
program execution returns to the original subroutine which is then completed
before returning to the main program. Nesting is possible to up to sixteen
levels. A subroutine cannot call itself, (e.g., SBS(91) 00 cannot be pro-
grammed within the subroutine defined with SBN(92) 00). The following dia-
gram illustrates two levels of nesting.

SBN(92) 10 SBN(92) 11 SBN(92) 12

SBS(91) 11

RET(93)

SBS(91) 10 SBS(91) 12

RET(93) RET(93)

Although subroutines 00 through 31 can be called by using SBS(91), they
are also activated by interrupt signals from Interrupt Input Units. Subroutine
99, which can also be called using SBS(91), is used for the scheduled inter-
rupt. (Refer to the next subsection for details.)

Description

Subroutines and Interrupt Control Section 5-20

!

!

185

The following diagram illustrates program execution flow for various execu-
tion conditions for two SBS(91).

SBS(91) 00

SBS(91) 01

SBN(92) 00

RET(93)

SBN(92) 01

RET(93)

END(01)

Main
program

Subroutines

A

B

C

D

E

A

A

A

A

B

B

B

B

C

C

C

C

D

D

E

E

OFF execution conditions for
subroutines 00 and 01

ON execution condition for
subroutine 00 only

ON execution condition for
subroutine 01 only

ON execution conditions for
subroutines 00 and 01

Flags ER: A subroutine does not exist for the specified subroutine number.

A subroutine has called itself.

Subroutines have been nested to more than sixteen levels.

Caution SBS(91) will not be executed and the subroutine will not be called when ER is
ON.

5-20-4 INTERRUPT CONTROL – INT(89)

CC: Control code

(000 to 002)

N: Interrupt designator

(000 to 004)

Ladder Symbols

Operand Data Areas

D: Control data

IR, AR, DM, HR, TC, LR, TR, #

INT(89)

CC

N

D

@INT(89)

CC

N

D

Limitations D may be a constant only when CC is 000 or 001. D must be a word address
when CC is 002. See below for details.

Caution INT(89) cannot be used during execution of step programs or in C2000H Duplex
CPUs. Refer to 5-21 Set Instructions for details on step programs.

Subroutines and Interrupt Control Section 5-20

186

INT(89) is used both to control interrupts from Interrupt Input Units and to
control the scheduled interrupt. If N is 000, 001, 002, or 003, it indicates an
Interrupt Input Unit number and INT(89) is used to control interrupts from the
designated Unit. If N is 004, INT(89) is used to control the scheduled inter-
rupt. Interrupts from Interrupt Input Units and scheduled interrupts are cov-
ered separately.

Interrupts from Interrupt Input Units (N = 000, 001, 002, or 003)

Up to four (0 to 3) Interrupt Input Units can be used for one PC. Interrupt In-
put Unit numbers are assigned sequentially starting from 0 and following the
same order as the numbers of the I/O channels to which the Units are
mounted.

For each Interrupt Input Unit, bits 00 through 07 may be used for interrupt
signals. Bits 08 through 15 are not used. When one of the bits assigned to an
Interrupt Input Unit turns ON, the subroutine associated with it is called and
executed. A unique interrupt routine number is associated with each bit ac-
cording to the following table.

Interrupt Input Unit Subroutine Interrupt Input Unit Subroutine

Unit no. Bit no. Unit no. Bit no.

0 0 00 2 0 16

1 01 1 17

2 02 2 18

3 03 3 19

4 04 4 20

5 05 5 21

6 06 6 22

7 07 7 23

1 0 08 3 0 24

1 09 1 25

2 10 2 26

3 11 3 27

4 12 4 28

5 13 5 29

6 14 6 30

7 15 7 31

The subroutines used by these interrupts may also be called from the pro-
gram using SBS(91). Calls to interrupt routines will generate the error mes-
sage “SBS UNDEFD” during program check, but it will not inhibit program
execution.

CC is used to specify the desired operation as shown below. The function of
D will vary with the value of CC (see below).

 CC = 000: Masking/unmasking interrupts
 001: Clearing interrupts

002: Accessing the current mask status

A control code of CC = 000 causes those bits of the designated Interrupt In-
put Unit corresponding to ON bits in D to be masked, and those correspond-
ing to OFF bits in D to be unmasked. All masked interrupts will still be re-
corded. When a masked bit has been recorded as being ON, the subroutine

Description

Description

CC = 000
(Mask/Unmask)

Subroutines and Interrupt Control Section 5-20

!

!

187

for it will be run as soon as the bit is unmasked (unless it is cleared first – see
below). All interrupts are initially masked.

A control code of CC = 001 causes the masks on those bits of the designated
Interrupt Input Unit, corresponding to ON bits in D to be cleared so that the
subroutine will not be executed even if the interrupt is unmasked. Because
interrupt inputs are stored, masked interrupts will be serviced after the mask
is removed, unless they are cleared first.

A control code of CC = 002 writes the current mask status of the designated
Interrupt Input Unit into D.

Scheduled Interrupts (N = 004)

Subroutine 99 can be established so that it will be executed repeatedly at a
fixed interval through scheduled interrupts.The actual time at which it is exe-
cuted is independent of the cycle time. INT(89) is used to control the sched-
uled interrupt. If N is 004, CC is used to designate the desired function as
follows:

 CC = 000: Setting time interval
001: Setting the time to first scheduled interrupt
002: Reading the current time interval

Even when a subroutine 99 has been written, it will not be executed accord-
ing to scheduled interrupts unless INT(89) is used to set the proper times.
INT(89) should be used to set both the time interval (CC = 000) for the
scheduled interrupt and the time to the first scheduled interrupt (CC = 001.
Unstable operation may result is the time to the first interrupt is not set.

To set the time interval for the scheduled interrupt, set CC to 000 and set D
to any value between 00.01 and 99.99 seconds. The decimal point is not in-
put. The time interval can be changed at any time.

To cancel the scheduled interrupt, set the time interval to 00.00 seconds.

Caution If the scheduled execution time of the subroutine becomes too large, it will have
a serious effect on the overall execution time of the main program. Therefore,
you should take extra care to write a subroutine that is fast and efficient. INT(89),
with a CC of 000, is used to change the scheduled interrupt time interval, the new
time interval is not effective until after the next scheduled interrupt. (c.f. CC = 001
below.)

To set the time to the first interrupt, set CC to 001 and set D to any value be-
tween 00.01 and 99.99 seconds. The decimal point is not entered. If D is set
to 00.00, the interrupt will not occur.

Caution INT(89), with a CC code of 001, can be used to change the scheduled interrupt
time interval for one cycle. The new time interval is effective immediately. The
scheduled interrupt may never actually occur if the time to the first interrupt is
changed repeatedly, i.e., before the interrupt has time to occur.

To access the current time interval for the scheduled interrupt, set CC 002.
The current time interval will be placed in D.

Flags ER: CC, D, or N is not within specified values.

CC = 001
(Clear)

CC = 002
(Read Mask)

Description

Scheduling the Interrupt

CC = 000
(Interval)

CC = 001
(Time to First Interrupt)

CC = 002
(Read Interval)

Subroutines and Interrupt Control Section 5-20

188

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

The following program shows the overall structure and operation of the
scheduled interrupt.

Here, the scheduled subroutine is started and will be repeated every 20 ms.
The control flow logic of the main program is unaffected by execution of the
scheduled subroutine, i.e., immediately after the sub
routine has finished execution, control returns to the point in the main pro-
gram where it was suspended.

SBN(92) 99

INT(89)

000

004

#0002

RET(93)

INT(89)

001

004

#0002

25315

Main program

Subroutine

Set at 20 ms.

Main program execution

Interrupts every 20 ms Returned from
scheduled
interrupt routine

First Cycle Flag

Address Instruction Operands Address Instruction Operands

00000 LD 25315

00001 INT(89)

001

004

0002

00002 INT(89)

000

004

0002

Main program.

00500 SBN(92) 99

Subroutine.

00600 RET(93)

Examples

Subroutines and Interrupt Control Section 5-20

189

Interrupt Priority Levels
When an interrupt is being serviced (i.e. the subroutine is executing), another
incoming interrupt must wait until the first is finished before it will be serviced.

Interrupt input #1

Interrupt #1 servicing

Interrupt input #2

Interrupt #2 servicing

If two or more interrupt inputs are turned ON simultaneously, the subroutine
with the lowest subroutine number takes precedence. For example, interrupts
from interrupt Unit 0, bit 0 will be serviced before interrupts from Unit 2, bit 3.
Subroutines for interrupts from Interrupt Input Units will be interrupted for the
scheduled interrupt.

Subroutines and Interrupt Control Section 5-20

190

5-21 Block Programming Instructions
Block programming facilitates coding operations which are difficult to write
with normal ladder diagrams, i.e. ladder diagrams which include sequential
arithmetic operations or conditional branching. It also reduces the overall
cycle time. Up to 100 block programs may be defined in a given main pro-
gram.

5-21-1 Overview
Block programming instructions are not part of the ‘ladder’ section of a lad-
der-diagram program. Rather, they are written in sequence down the right
side of the ladder diagram. Block programming instructions still require ex-
ecution conditions, and most of them require operands.

Instructions dedicated for use within block programs are distinguished by
pointed parentheses <like these>. For example, FUN<02> is IF, whereas
IL(02) is IL. BPRG(96), which is used to start a section of block programming
instructions, is a normal ladder-diagram program instructions. Block program-
ming instructions are treated as NOP(00) if programmed outside a block pro-
gram.

None of the following instructions can be used within a block program:
OUT OUT NOT TIM CNT
END(01) IL(02) ILC(03) JMP(04)
JME(05) STEP(08) SNXT(09) SFT(10)
KEEP(11) CNTR(12) DIFU(13) DIFD(14)
TIMH(15) SBN(92) RET(93)
All Differentiated Instructions (i.e., those preceded by @)

If these instructions are included with in block programs, they will be treated
as NOP(00). Other instructions may be used within a block program. Instruc-
tions such as LD, AND, and OR are still used to create execution conditions.
In a block program, however, these are written in their mnemonic form, rather
than in the normal ladder-diagram form.

5-21-2 BLOCK PROGRAM BEGIN – BPRG(96) and
BLOCK PROGRAM END – BEND<01>

N: Block program number

(00 to 99)

Ladder Symbols Definer Data Areas

BPRG(96) N

BEND<01>

BPRG(96) is used to switch to block programming and BEND<01> is used to
switch back to ladder-diagram programming. For every BPRG(96) there must
be a corresponding BEND<01>.

00500 BPRG(96) 99

Block program.

00600 BEND<01>

BPRG(96) 99

BEND<01>

Block program

Address Instruction Operands

Instructions Not Available
for Use Within Block
Programs

Description

Block Programming Instructions Section 5-21

191

5-21-3 SET – SET<07> and RESET – RSET<08>

SET<07> B

RSET<08> B

Instruction Formats

B: Bit

IR, AR, HR, LR

Operand Data Areas

SET<07> turns B ON, and RSET<08> turns B OFF.

Flags No flags are affected by this instruction.

5-21-4 Block Branching–IF<02>, IF<02>NOT, ELSE<03>, and IEND<04>

IF<02> B
IF<02>
IF<02> NOT B
ELSE<03>
IEND<04>

Instruction Formats

B: Bit

IR, SR, AR, HR, TC, LR

Operand Data Areas

These instructions are used to branch according to either the current execu-
tion condition or the status of a designated bit. IF<02> and IF<02> NOT must
be used in combination with IEND<04). ELSE<03> may be used in between
them, but is optional.

Branching is initiated with any of the following: IF<02> with a bit operand,
IF<02> without a bit operand, or IF<02> NOT with a bit operand.

If the IF condition is YES, the instructions immediately following the IF<02>
or IF<02> NOT will be executed. A YES execution condition is produced by
an ON bit or ON execution condition for IF<02> or an OFF bit for
IF<02>NOT.

If ELSE<03> is encountered following IF<02> or IF<02>NOT, execution will
jump to IEND<03> without executing any instruction in between. If
ELSE<03> is not encountered, execution will continue as normal.

If the IF condition is NO, execution will jump to ELSE<03> or to IEND<04>,
whichever appears first after the IF<02> or IF<02> NOT.

LD, possible in combination with AND or OR, must be used to establish the
execution condition for IF<02> or IF<02> NOT without an operand.

Execution Flow Examples

IF<02> to ELSE to IEND

A

IF<02> B

ELSE<03>

C

IEND<04>

When B is ON, A is executed.

When B is OFF, C is executed.

Description

Description

IF<02> with an Operand

Block Programming Instructions Section 5-21

192

IF<02> NOT to ELSE to IEND

C

IF<02> NOT B

ELSE<03>

D

IEND<04>

When B is OFF, C is executed.

When B is ON, D is executed.

IF<02> to ELSE to IEND

A

ELSE<03>

C

IEND<04>

When 00000, 00001 are ON, A is executed.

When either is OFF, C is executed.

LD 00000
AND 00001
IF<02>

IF<02> to IEND

C

IEND<04>

When 00001 is ON, C is executed.

LD 00001
IF<02>

IF<02> blocks can be nested up to a maximum of 253 levels. Each IF<02> or
IF<02> NOT will be effective through the next ELSE<03> and/or IEND<04>.

IF<02>

IF<02>

IF<02>

IEND

IEND

IEND

Flags No flags are affected by this instruction.

Example The following example shows two different block programs controlled by
00000 and 00002. The first block executes one of two additions depending
on the status of 00001. The second block shows nesting to two levels.

IF<02> NOT with an
Operand

IF<02> without an Operand

IF<02> without ELSE

Nesting

Block Programming Instructions Section 5-21

193

BPRG(96) 00

IF<02> 00001
CLC(41)
ADD(30)

001
#0001

DM 0000
ELSE<03>
CLC(41)
ADD(30)

001
#0002

DM 0000
IEND<04>
BEND<01>

00000

BPRG(96) 01

LD 00003
AND 00004
IF<02>
CLC(41)
ADD(30)

HR 10
002

DM 0010
IF<02> 25504
MOV(21)

#0001
DM 0011

IF<02> 25503
SET<07> 00300
IEND<04>
IEND<04>
ELSE<03>
SET<07> 00301
IEND<04>
BEND<01>

00002

Address Instruction Operands

00000 LD 00000

00001 BPRG(96) 00

00002 IF<02> 00001

00003 CLC(41)

00004 ADD(30)

001

0001

DM 0000

00005 ELSE<03>

00006 CLC(41)

00007 ADD(30)

001

0002

DM 0000

00008 IEND<04>

00009 BEND<01>

00010 LD 00002

00011 BPRG(96) 01

00012 LD 00003

00013 AND 00004

00014 IF<02>

00015 CLC(41)

00016 ADD(30)

HR 10

002

DM 0010

00017 IF<02> 25504

00018 MOV(21)

0001

DM 0011

00019 IF<02> 25503

00020 SET<07> 00300

00021 IEND<04>

00022 IEND<04>

00023 ELSE<03>

00024 SET<07> 00301

00025 IEND<04>

00026 BEND<01>

5-21-5 ONE CYCLE AND WAIT – WAIT<05>

WAIT<05>
WAIT<05> B
WAIT<05> NOT B

Instruction Formats

B: Bit

IR, SR, AR, HR, TC, LR

Operand Data Areas

WAIT<05> and WAIT<05> NOT allow you to inhibit execution of the portion
of block program from WAIT<05> to BEND<01> until B turns ON.

As long of the execution condition or operand bit of WAIT<05> is ON, or the
operand bit of WAIT<05> NOT is OFF, the block program will be executed as
normal. If the execution condition or operand bit of WAIT<05> is OFF or the
operand bit of WAIT<05> NOT is ON, only the part of the block program up
to the WAIT<05> or WAIT<05> NOT instruction will be executed during the

Description

Block Programming Instructions Section 5-21

194

first cycle. During following cycles, none of the block program will be ex-
ecuted until the operand bit or execution condition changes, at which point
the remainder of the block program will be executed. Once the entire block
program has been executed, the process is repeated.

WAIT<05> NOT cannot be used without an operand bit.

When 00000 is ON, the block program is executed as normal. If 00001 is
OFF, however, A is executed and then B is skipped and program control
jumps to BEND<01>. During the following cycles, until 00001 turns ON, no
instructions within block 00 will be executed (except WAIT <05>).

BPRG(96) 00

WAIT<05> 00001

A

B

BEND<01>

C

00000 Address Instruction Operands

00000 LD 00000

00001 BPRG(96) 00

A

00100 WAIT<05> 00001

B

00200 BEND<01>

C

The execution flow for this example would be as shown below:

00000 ON A

00000 ON

00001 ON B

00001 OFF

C

C

Initial execution

The following example would work similarly, except that execution of
WAIT<05> would be based on an AND between the status of 00001 and HR
0200.

BPRG(96) 01

LD
AND
WAIT<05>

A

B

BEND<01>

C

00000

00001
HR 0200

Address Instruction Operands

00000 LD 00000

00001 BPRG(96) 01

A

00200 LD 00001

00201 AND HR 0200

00202 WAIT<05>

B

00300 BEND<01>

C

Precautions

Execution Flow Examples

Block Programming Instructions Section 5-21

195

5-21-6 TIMER WAIT – TIMW<13> and
HIGH-SPEED TIMER WAIT – TMHW<15>

TIMW<13> N
SV

TMHW<15> N
SV

Instruction Formats

N: Timer number

TC

Definer Data Areas

SV: Set value (BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

SV is between 000.0 and 999.9 for TIMW<13>, and between 00.00 and
99.99 for TMHW<15>. The decimal point is not entered.

Each TC number can be used as the definer in only one timer or counter in-
struction, including those used in normal ladder-diagram timers and counters.

If cycle time is greater than 10 ms, TC 000 through TC 047 must be used for
TMHW<15> to ensure accuracy.

TIMW<13> and TMHW<15> allow you to create a specified time lag (SV)
between execution of the program part preceding it and the part following.
The first part will be executed the first time the block program is entered.
When the block timer instruction is reached, execution of the block program
will halt until SV has expired, at which time the second part of the block pro-
gram will be executed. Once the entire block program has been executed,
the process is repeated.

Example In the following example, B will be executed 20 seconds after A whenever
00000 is ON, and 02000 will be set 2.35 seconds after 00001 goes ON.

00000 LD 00000

00001 BPRG(96) 00

A

00200 TIMW<13> 001

0200

B

00300 BEND<01>

00301 LD 00001

00302 BPRG(96) 01

00303 TMHW<15> 002

0235

00304 SET<07> 02000

00305 BEND<01>

BPRG(96) 00

TIMW<13>

A

B

BEND<01>

00000

001
#0200

BPRG(96) 01
00001

TMHW<15>

SET<07>
BEND<01>

002
#0235
02000

Address Instruction Operands

Flags ER: SV data is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

Block Programming Instructions Section 5-21

196

5-21-7 COUNTER WAIT – CNTW<14>

CNTW<14> N
SV
I

Instruction Format

N: Counter number

 TC

Definer Data Areas

SV: Set value (BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

I: Count input

IR, SR, AR, HR, TC, LR

Each TC number can be used as the definer in only one timer or counter in-
struction, including the normal ladder-diagram timers and counters.

CNTW<14> allows you to create a ‘count’ lag (SV) between execution of the
program part preceding the CNTW<14> (i.e., between BPRG(96) and
CNTW<14>) and the part following it (i.e., between CNTW<14> and
BEND<01>). The first part will be executed the first time the block program is
entered. When CNTW<14> is reached, the execution of the block program
will stop until SV has been reached, at which time the second part of the
block program will be executed. Once the entire block program has been ex-
ecuted, the process is repeated.

Example In the following example, B will be executed after the execution of A and after
7,000 counts of 00100 while 00000 is ON.

BPRG(96) 00

CNTW<14>

A

B

BEND<01>

00000

005
#7000
00100

Address Instruction Operands

00000 LD 00000

00001 BPRG(96) 00

A

00200 CNTW<14> 005

7000

00100

B

00300 BEND<01>

Flags ER: SV data is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

Block Programming Instructions Section 5-21

197

5-21-8 CONDITIONAL BLOCK EXIT – EXIT<06> and EXIT<06> NOT

EXIT<06>

EXIT<06> B

EXIT<06> NOT B

Instruction Formats

B: Bit

IR, SR, AR, HR, TC, LR

Operand Data Areas

EXIT<06> and EXIT<06> NOT conditionally end execution of the block pro-
gram in which they occur, based on either the execution condition or the op-
erand bit.

If the EXIT condition is YES when EXIT<06> or EXIT<05> NOT is reached,
execution moves directly to BEND<01> without executing any more instruc-
tions in the block. If the EXIT condition is NO, the block program is executed
normally.

A YES EXIT condition is produced by an ON execution condition for
EXIT<06> without an operand, by an ON bit for EXIT<06> with an operand
bit, or by an OFF bit for EXIT<06> NOT with an operand bit.

LD, possibly in combination with AND or OR, must be used to create an ex-
ecution condition for EXIT<06> when used without an operand bit.

Example In the following example, B will be executed only when 00001 is OFF.

BPRG(96) 00

EXIT<06>

A

B

BEND<01>

00000

00001

Address Instruction Operands

00000 LD 00000

00001 BPRG(96) 00

A

00200 EXIT<06> 00001

B

00300 BEND<01>

5-21-9 Block Loop Control–LOOP<09>, LEND<10>, and LEND<10> NOT

LOOP<09>

LEND<10>

LEND<10> B

LEND<10> NOT B

Instruction Formats

B: Bit

IR, SR, AR, HR, TC, LR

Operand Data Areas

LOOP<09> and LEND<10> are used to create a loop that is repeatedly ex-
ecuted until the LOOP END condition becomes YES. LOOP<09> designates
the beginning of the loop program, and a LEND<10> or LEND<10> NOT in-
struction specifies the end of the loop. When LEND<10> or LEND<10> NOT

Description

Description

Block Programming Instructions Section 5-21

198

is reached, program execution will loop back to the next previous LOOP<09>
an exit condition is attained.

A YES LOOP END condition is produced by an ON execution condition for
LEND<10> without an operand, by an ON bit for LEND<10> with an operand
bit, or by an OFF bit for LEND<10> NOT with an operand bit.

LD, possibly in combination with AND or OR, must be used to create an ex-
ecution condition for LEND<10> when used without an operand bit.

Note Execution inside a loop does not refresh I/O data. If I/O data must be re-
freshed during the loop, use IORF(97).

• Conditional block branching can be used within a loop, but the entire
branch operation must be within the loop.

Correct: Incorrect:

LOOP<09> LOOP<09>

 IF<02> IF<02>

IF<02> IF<02>

IEND<04> IEND<04>

 IEND<04> LEND<10>

LEND<10>

• Loops cannot be nested within loops.

Incorrect:

LOOP<09>

 LOOP<09>

 LEND<10>

LEND<10>

• Do not reverse the order of LOOP and LEND.

Incorrect:

LEND<10>

:

:

LOOP<09>

5-21-10 BLOCK PROGRAM PAUSE – BPPS<11> and
BLOCK PROGRAM RESTART – BPRS<12>

BPPS<11> N

BPRS<12> N

Instruction Formats

N: Block program number

(00 to 99)

Definer Data Areas

BPPS<11> is used inside one block program to suspend the execution of
another block program. BPRS<12> restarts the specified block program.
These instructions are effective whenever executed, i.e., they do not rely on
operand bit status or execution condition.

Example If 00000 is ON, the following program suspends execution of either block pro-
gram 01 or block program 02 depending on the status of 00001. The block

Precautions

Description

Block Programming Instructions Section 5-21

199

program that was suspended is then restarted after 10 seconds. Note that
the ladder diagram simply has the mnemonic code typed after the BPRG(96)
instruction.

BPRG(96) 00

IF<02>

BPPS<11>

ELSE<03>

BPPS<11>

IEND<04>

TIMW<03>

BPRS<12>

BPRS<12>

BEND<01>

00000

00001

01

02

000

#0100

01

02

Address Instruction Operands

00000 LD 00000

00001 BPRG(96) 00

00002 IF<02> 00001

00003 BPPS<11> 01

00004 ELSE<03>

00005 BPPS<11> 02

00006 IEND<04>

00007 TIMW<03> 000

0100

00008 BPRS<12> 01

00009 BPRS<12> 02

00010 BEND<01>

5-22 Step Instructions
The step instructions STEP(08) and SNXT(09) are used in conjunction to set
up breakpoints between sections in a large program so that the sections can
be executed as units and reset upon completion. A section of program will
usually be defined to correspond to an actual process in the application. (Re-
fer to the application examples later in this section.) A step is like a normal
programming code, except that certain instructions (e.g. IL(02)/ILC(03),
JMP(04)/JME(05)) may not be included.

5-22-1 STEP DEFINE and STEP START–STEP(08)/SNXT(09)

B: Control bit

IR, AR, HR, LR

Ladder Symbols Definer Data Areas

STEP(08) B STEP(08)

B: Control bit

IR, AR, HR, LR

SNXT(09) B

Control bits within one section of step programming must be sequential and
from the same word.

STEP(08) uses a control bit in the IR or HR areas to define the beginning of
a section of the program called a step. STEP(08) does not require an execu-
tion condition, i.e., its execution is controlled through the control bit. To start
execution of the step, SNXT(09) is used with the same control bit as used for
STEP(08). If SNXT(09) is executed with an ON execution condition, the step
with the same control bit is executed. If the execution condition is OFF, the
step is not executed. The SNXT(09) instruction must be written into the pro-

Limitations

Description

Step Instructions Section 5-22

200

gram so that it is executed before the program reaches the step it starts. It
can be used at different locations before the step to control the step accord-
ing to two different execution conditions (see example 2, below). Any step in
the program that has not been started with SNXT(09) will not be executed.

Once SNXT(09) is used in the program, step execution will continue until
STEP(08) is executed without a control bit. STEP(08) without a control bit
must be preceded by SNXT(09) with a dummy control bit. The dummy con-
trol bit may be any unused IR or HR bit. It cannot be a control bit used in a
STEP(08).

Execution of a step is completed either by execution of the next SNXT(09) or
by turning OFF the control bit for the step (see example 3 below). When the
step is completed, all of the IR and HR bits in the step are turned OFF and all
timers in the step are reset to their SVs. Counters, shift registers, and bits
used in KEEP(11) maintain status. Two simple steps are shown below.

SNXT(09) 20200

STEP(08) 20200

00000

Step controlled by 20200

SNXT(09) 20201

STEP(08) 20201

00001

Step controlled by 20201

SNXT(09) 20202

STEP(08)

00002

Starts step execution

Ends step execution

1st step

2nd step

Address Instruction Operands Address Instruction Operands

00000 LD 00000

00001 SNXT(09) 20200

00002 STEP(08) 20200

Step controlled by 20200.

00100 LD 00001

00101 SNXT(09) 20201

00102 STEP(08) 20201

Step controlled by 20201.

00200 LD 00002

00201 SNXT(09) 20202

00202 STEP(08) ---

Steps can be programmed in consecutively. Each step must start with
STEP(08) and generally ends with SNXT(09) (see example 3, below, for an
exception). When steps are programmed in series, three types of execution
are possible: sequential, branching, or parallel. The execution conditions for,
and the positioning of, SNXT(09) determine how the steps are executed. The
three examples given below demonstrate these three types of step execu-
tion.

Step Instructions Section 5-22

201

Interlocks, jumps, SBN(92), and END(01) cannot be used within step pro-
grams.

Bits used as control bits must not be used anywhere else in the program un-
less they are being used to control the operation of the step (see example 3,
below).

If IR or LR bits are used for control bits, their status will be lost during any
power interruption. If it is necessary to maintain status to resume execution
at the same step, HR bits must be used.

25407: Step Start Flag; turns ON for one cycle when STEP(08) is executed
and can be used to reset counters in steps as shown below if neces-
sary.

SNXT(09) 01000

CP

R

CNT 01

#0003

00000

00100

25407

STEP(08) 01000

1 Cycle

25407

01000

Start

Address Instruction Operands Address Instruction Operands

00000 LD 00000

00001 SNXT(09) 01000

00002 STEP(08) 01000

00003 LD 00100

00004 LD 25407

00005 CNT 01

0003

The following three examples demonstrate the three types of execution con-
trol possible with step programming. Example 1 demonstrates sequential
execution; Example 2, branching execution; and Example 3, parallel execu-
tion.

Precautions

Flags

Examples

Step Instructions Section 5-22

202

The following process requires that three processes, loading, part installa-
tion, and inspection/discharge, be executed in sequence with each process
being reset before continuing on the the next process. Various sensors
(SW1, SW2, SW3, and SW4) are positioned to signal when processes are to
start and end.

SW 1

SW 2
SW 3

SW 4

Loading Part installation Inspection/discharge

The following diagram demonstrates the flow of processing and the switches
that are used for execution control.

Process A

Process B

Process C

Loading

Part Installation

Inspection/discharge

SW1

SW2

SW3

SW4

The program for this process, shown below, utilizes the most basic type of
step programming: each step is completed by a unique SNXT(09) that starts

Example 1:
Sequential Execution

Step Instructions Section 5-22

203

the next step. Each step starts when the switch that indicates the previous
step has been completed turns ON.

SNXT(09) 12800

00001 (SW1)

STEP(08) 12800

SNXT(09) 12801

STEP(08) 12801

SNXT(09) 12802

STEP(08) 12802

SNXT(09) 12803

STEP(08)

Programming for process A

Programming for process B

Programming for process C

00002 (SW2)

00003 (SW3)

00004 (SW4)

Process A started.

Process A reset.
Process B started.

Process B reset.
Process C started.

Process C reset.

Address Instruction Operands Address Instruction Operands

00000 LD 00001

00001 SNXT(09) 12800

00002 STEP(08) 12800

Process A

00100 LD 00002

00101 SNXT(09) 12801

00102 STEP(08) 12801

Process B

00100 LD 00003

00101 SNXT(09) 12802

00102 STEP(08) 12802

Process C

00200 LD 00004

00201 SNXT(09) 12803

00202 STEP(08) ---

Step Instructions Section 5-22

204

The following process requires that a product is processed in one of two
ways, depending on its weight, before it is printed. The printing process is the
same regardless of which of the first processes is used. Various sensors are
positioned to signal when processes are to start and end.

SW A1 SW A2

SW B1 SW B2

Process CWeight scale

Process B

Process A

Printer
SW D

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, either process A or process B is
used depending on the status of SW A1 and SW B1.

Process A

Process C

End

SW A1 SW B1

SW A2 SW B2

SW D

Process B

The program for this process, shown below, starts with two SNXT(09) in-
structions that start processes A and B. Because of the way 00001 (SW A1)
and 00002 (SB B1) are programmed, only one of these will be executed to

Example 2:
Branching Execution

Step Instructions Section 5-22

205

start either process A or process B. Both of the steps for these processes
end with a SNXT(09) that starts the step for process C.

SNXT(09) HR 0001

00002 (SW B2)

STEP(08) HR 0000

SNXT(09) HR 0002

STEP(08) HR 0001

SNXT(09) HR 0002

STEP(08) HR 0002

SNXT(09) HR 0003

STEP(08)

Programming for process A

Programming for process B

Programming for process C

00003 (SW A2)

00004 (SW B2)

00005 (SW D)

Process A started.

Process A reset.
Process C started.

Process B reset.
Process C started.

Process C reset.

00001 (SW A1)

SNXT(09) HR 0000

00002 (SW B2)

00001 (SW A1)

Address Instruction Operands Address Instruction Operands

00000 LD 00001

00001 AND NOT 00002

00002 SNXT(09) HR 0000

00003 LD NOT 00001

00004 AND 00002

00005 SNXT(09) HR 0001

00006 STEP(08) HR 0000

Process A

00100 LD 00003

00101 SNXT(09) HR 0002

00102 STEP(08) HR 0001

Process B

00100 LD 00004

00101 SNXT(09) HR 0002

00102 STEP(08) HR 0002

Process C

00200 LD 00005

00201 SNXT(09) HR 0003

00202 STEP(08) ---

Note Using HR 0002 as the operand in two SNXT(09) instructions is not consid-
ered duplicate use of the bit and an error will not occur in the program check.

Step Instructions Section 5-22

206

The following process requires that two parts of a product pass simultane-
ously through two processes each before they are joined together in a fifth
process. Various sensors are positioned to signal when processes are to
start and end.

Process C

SW1

SW2

Process A
SW3

SW4

Process D

Process B

Process E

SW6

SW5 SW7

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, process A and process C are
started together. When process A finishes, process B starts; when process C
finishes, process D starts. When both processes B and D have finished,
process E starts.

Process A

Process E

End

Process C

SW7

Process B Process D

SW3 SW4

SW 1 and SW2 both ON

SW5 and SW6 both ON

The program for this operation, shown below, starts with two SNXT(09) in-
structions that start processes A and C. These instructions branch from the
same instruction line and are always executed together, starting steps for
both A and C. When the steps for both A and C have finished, the steps for
process B and D begin immediately.

When both process B and process D have finished (i.e., when SW5 and SW6
turn ON), processes B and D are reset together by the SNXT(09) at the end
of the programming for process B. Although there is no SNXT(09) at the end
of process D, the control bit for it is turned OFF by executing SNXT(09) LR
0004. This is because the OUT for LR 0003 is in the step reset by SNXT(09)
LR 0004, i.e., LR 003 is turned OFF when SNXT(09) LR 0004 is executed

Example 3:
Parallel Execution

Step Instructions Section 5-22

207

Process B is thus reset directly and process D is reset indirectly before exe-
cuting the step for process E.

STEP(08) LR 0000

SNXT(09) LR 0001

STEP(08) LR 0001

STEP(08) LR 0004

SNXT(09) LR 0005

STEP(08)

Programming for process A

Programming for process B

Programming for process C

00002 (SW3)

00005 (SW7)

Process A started.

Process A reset.
Process B started.

Process E reset.

00001 (SW1 and SW2))

SNXT(09) LR 0000

SNXT(09) LR 0002

Process C started.

01101

SNXT(09) LR 0004

00004 (SW5 and SW6)

LR 0003

STEP(08) LR 0002

Process E started.

Used to
turn off
process D.

00003 (SW4)

SNXT(09) LR 0003

STEP(08) LR 0003

Process C reset.
Process D started.

Programming for process D

Programming for process E

Step Instructions Section 5-22

208

00000 LD 00001

00001 SNXT(09) LR 0000

00002 SNXT(09) LR 0002

00003 STEP(08) LR 0000

Process A

00100 LD 00002

00101 SNXT(09) LR 0001

00102 STEP(08) LR 0001

Process B

00100 LD 01101

00101 OUT LR 0003

00101 AND 00004

00101 SNXT(09) LR 0004

00102 STEP(08) LR 0002

Process C

00200 LD 00003

00201 SNXT(09) LR 0003

00202 STEP(08) LR 0003

Process D

00300 STEP(08) LR 0004

Process E

00400 LD 00005

00401 SNXT(09) LR 0005

00402 STEP(08) ---

Address Instruction Operands Address Instruction Operands

5-23 Special Instructions
The instructions in this section are used for various operations, including pro-
gramming user error codes and messages, counting ON bits, setting the
watchdog timer, and refreshing I/O during program execution.

5-23-1 FAILURE ALARM – FAL(06) and
SEVERE FAILURE ALARM – FALS(07)

N: FAL number

(00 to 99)

Ladder Symbols Definer Data Areas

@FAL(06) NFAL(06) N

N: FAL number

(01 to 99)
FALS(07) N

FAL(06) and FALS(07) are provided so that the programmer can output error
numbers for use in operation, maintenance, and debugging. When executed
with an ON execution condition, either of these instruction will output a FAL
number to bits 00 to 07 of SR 253. The FAL number that is output can be
between 01 and 99 and is input as the definer for FAL(06) or FALS(07).
FAL(06) with a definer of 00 is used to reset this area (see below).

25307 25300

X101 X100

FAL Area

Description

Special Instructions Section 5-23

209

When FAL(06) is executed with an ON execution condition, the warning indi-
cator on the front of the CPU will light, but PC operation will continue. When
FALS(07) is executed with an ON execution condition, the alarm indicator will
light and PC operation will stop.

The system also generates error codes to the FAL area.

A maximum of three FAL error codes will be retained in memory, although
only one of these is available in the FAL area. To access the other FAL
codes, reset the FAL area by executing FAL(06) 00. Each time FAL(06) 00 is
executed, another FAL error will be moved to the FAL area, clearing the one
that is already there.

FAL(06) 00 is also used to clear message programmed with the next instruc-
tion MSG(46).

If the FAL area cannot be cleared, as is generally the case when FALS(07) is
executed, first remove the cause of the error and then clear the FAL area
through the Programming Console (see 4-5-4 Clearing Error Messages).

5-23-2 DISPLAY MESSAGE – MSG(46)

FM: First message word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

MSG(46)

FM

@MSG(46)

FM

When executed with an ON execution condition, MSG(46) reads eight words
of extended ASCII code from FM to FM+7 and displays the message on the
Programming Console, GPC, or FIT. The displayed message can be up to 16
characters long, i.e., each ASCII character code requires eight bits (two dig-
its). Refer to Appendix F for the extended ASCII codes. Japanese katakana
characters are included in this code.

If not all eight words are required for the message, it can be stopped at any
point by inputting “OD.” When OD is encountered in a message, no more
words will be read and the words that normally would be used for the mes-
sage can be used for other purposes.

Up to three messages can be buffered in memory. Once stored in the buffer,
they are displayed on a first in, first out basis. Since it is possible that more
than three MSG(46)s may be executed within a single cycle, there is a prior-
ity scheme, based on the area where the messages are stored, for the selec-
tion of those messages to be buffered.

The priority of the data areas is as follows for message display:

• LR > IR (I/O) > IR (not I/O) > HR > AR > DM
• In handling messages from the same area, those with the lowest address

values have higher priority.
• In handling indirectly addressed messages (i.e. �DM), those with the lowest

DM address values have higher priority.

To clear a message, execute FAL(06) 00 or clear it via a Programming Con-
sole using the procedure in 4-5-4 Clearing Error Messages.

Resetting Errors

Description

Message Buffering and
Priority

Clearing Messages

Special Instructions Section 5-23

�	�

��������/&�����

210

If the message data changes while the message is being displayed, the dis-
play will also change.

Flags ER: Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

The following example shows the display that would be produced for the in-
struction and data given when 00000 was ON. If 00001 goes ON, a message
will be cleared.

MSG(46)

DM 0010

FAL(06) 00

00000

00001

Address Instruction Operands

00000 LD 00000

00001 MSG(46)

DM 0010

00002 LD 00001

00003 FAL(06) 00

DM contents ASCII
equivalent

DM 0010 4 1 4 2 A B

DM 0011 4 3 4 4 C D

DM 0012 4 5 4 6 E F

DM 0013 4 7 4 8 G H

DM 0014 4 9 4 A I J

DM 0015 4 B 4 C K L

DM 0016 4 D 4 E M N

DM 0017 4 F 5 0 O P

5-23-3 BIT COUNTER – BCNT(67)

N: Number of words (BCD)

IR, AR, DM, HR, TC, LR, #

SB: Source beginning word

IR, SR, AR, DM, HR, TC, LR

Operand Data Areas

R: Destination word

IR, AR, DM, HR, TC, LR

Ladder Symbols

BCNT(67)

N

SB

R

@BCNT(67)

N

SB

R

Limitations N cannot be 0.

When the execution condition is OFF, BCNT(67) is not executed. When the
execution condition is ON, FUN(67) counts the total number of bits that are
ON in all words between SB and SB+(N–1) and places the result in D.

Flags ER: N is not BCD, or N is 0; SB and SB+(N–1) are not in the same area.
The resulting count value exceeds 9999.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Example

Description

Special Instructions Section 5-23

211

5-23-4 WATCHDOG TIMER REFRESH– WDT(94)

T: Watchdog timer value

(00 to 63)

Ladder Symbols Definer Data Areas

@WDT(94) TWDT(94) T

When the execution condition is OFF, WDT(94) is not executed. When the
execution condition is ON, WDT(94) extends the setting of the watchdog tim-
er (normally set by the system to 130 ms) by 100 ms times T.

Timer extension = 100 ms x T.

Precautions If the cycle time is longer than the time set for the watchdog timer, 9F will be
output to the FAL area and the CPU will stop.

If the cycle time exceeds 6,500 ms, a FALS 9F will be generated and the sys-
tem will stop.

Timers might not function properly when the cycle time exceeds 100 ms.
When using WDT(94), the same timer should be repeated in the program at
intervals that are less than 100 ms apart. TIMH(15) should be used only in a
scheduled interrupt routine executed at intervals of 10 ms or less.

Flags ER: There are no flags affected by this instruction.

5-23-5 I/O REFRESH – IORF(97)

St: Starting word

IR (I/O word only)

Ladder Symbol

E: End word

IR (I/O word only)

Operand Data Areas

IORF(97)

St

E

IORF(97) can be used to refresh I/O words allocated to the CPU or an Ex-
pansion I/O Rack only. It cannot be used for other I/O words.

St must be less than or equal to E.

When the execution condition is OFF, IORF(97) is not executed. When the
execution condition is ON, all words between St and E will be refreshed. This
will be in addition to the normal I/O refresh performed during the CPU’s cycle.

The execution time for IORF(97), TIORF, is computed as follows:
TIORF = 1 ms + (130 µs x number of words refreshed)

Flags There are no flags affected by this instruction.

5-24 Data Tracing (TRACE MEMORY SAMPLING – TRSM(45))
Data tracing can be used to facilitate debugging programs. To set up and use
data tracing it is necessary to have a GPC or FIT; no data tracing is possible

Description

Limitations

Description

Execution Time

Data Tracing (TRACE MEMORY SAMPLING – TRSM(45)) Section 5-24

212

from a Programming Console. Data tracing is described in detail in the GPC,
FIT, and LSS Operation Manuals. This section shows the ladder symbol for
TRSM(45) and gives an example program.

Address tracing also aids debugging and is possible from the Programming
Console. It does not, however, require any direct programming consider-
ations, including use of TRSM(45). Refer to 7-1-5 Address Tracing for details.

Ladder Symbol

TRSM(45)

TRSM(45) is used in the program to mark locations where specified data is to
be stored in Trace Memory. Up to 12 bits and up to 3 words may be desig-
nated for tracing (refer to the GPC, FIT or LSS Operation Manual).

TRSM(45) is not controlled by an execution condition, but rather by two bits
in the AR area: AR 1815 and AR 1814. AR 1815 is the Sampling Start bit.
This bit is turned ON to start the sampling processes for tracing. The Sam-
pling Start bit must not be turned ON from the program, i.e., it must be turned
ON only from the peripheral device. AR 1814 is the Trace Start bit. When it is
set, the specified data is recorded in Trace Memory. The Trace Start bit can
be set either from the program or from the Programming Device. A positive
or negative delay can also be set to alter the actual point from which tracing
will begin.

Data can be recorded in any of three ways. TRSM(45) can be placed at one
or more locations in the program to indicate where the specified data is to be
traced. If TRSM(45) is not used, the specified data will be traced when
END(01) is executed. The third method involves setting a timer interval from
the peripheral devices so that the specified data will be tracing at a regular
interval independent of the cycle time (refer to the GPC, FIT or LSS Opera-
tion Manual).

TRSM(45) can be incorporated anywhere in a program, any number of times.
The data in the trace memory can then be monitored via a Programming
Console, GPC, etc.

AR Control Bits and Flags The following control bits and flags are used during data tracing. The Tracing
Flag will be ON during tracing operations. The Trace Completed Flag will turn
ON when enough data has been traced to fill Trace Memory.

Flag Function

AR 1815 Sampling Start Bit

AR 1814 Trace Start Bit

AR 1813 Tracing Flag

AR 1812 Trace Completed Flag

If TRSM(45) occurs TRSM(45) will not be executed within a JMP(08) –
JME(09) block when the jump condition is OFF .

Description

Precautions

Data Tracing (TRACE MEMORY SAMPLING – TRSM(45)) Section 5-24

213

TRSM(45)

00000
AR

1814

AR 1813 ON when tracing

00200

00201

AR 1812 ON when trace is complete

Starts data tracing.

Designates point for
tracing.

Indicates that tracing has
been completed.

Address Instruction Operands Address Instruction Operands

00000 LD 0000

00001 OUT AR 1814

00002 TRSM(45)

00003 LD AR 1813

00004 OUT 00200

00005 LD AR 1812

00006 OUT 00201

Example The following shows the basic program and operation for data tracing. Refer
to the GPC, FIT, or LSS Operation Manual for details. The Sampling Start Bit
starts the sampling. The data is read and stored into trace memory. When the
Trace Start Bit is received, the CPU looks at the delay and marks the trace
memory accordingly. This can mean that some of the samples already made
will be recorded as the trace memory (negative delay), or that more samples
will be made before they are recorded (positive delay). The sampled data is
written to trace memory, jumping to the beginning of the memory area once
the end has been reached and continuing up to the start marker. This might
mean that previously recorded data (i.e., data from this sample that falls be-
fore the start marker) is overwritten (this is especially true if the delay is posi-
tive). The negative delay cannot be such that the required data was executed
before sampling was started.

TRSM(45)

00000
AR

1814

AR 1813 ON when tracing

00200

00201

AR 1812 ON when trace is complete

Starts data tracing.

Designates point for
tracing.

Indicates that tracing has
been completed.

Address Instruction Operands Address Instruction Operands

00000 LD 0000

00001 OUT AR 1814

00002 TRSM(45)

00003 LD AR 1813

00004 OUT 00200

00005 LD AR 1812

00006 OUT 00201

Data Tracing (TRACE MEMORY SAMPLING – TRSM(45)) Section 5-24

214

AR 1815

AR 1814

AR 1813

AR 1812

Sampling

Trace memory
AR 1812 turns ON and the
trace is complete when
enough data to fill trace
memory has been sampled.

Sampling

Start tracing

Tracing Flag

Trace Completed Flag

Positive
delay

*Negative
delay

No delay

*Negative delays cannot be such that the
requested data was executed before the
sampling started.

5-25 File Memory Instructions

File memory instructions all involve the transfer of data to and from the File
Memory area and the PC memory areas.The File Memory area is contained
in a File Memory Unit. The instructions described in this section can thus only
be used if there is a File Memory Unit mounted.

File memory transfers are done in blocks of 128 words. File Memory Units
are available with a capacity of either 1000 or 2000 blocks. The blocks are
numbered from zero.

Exercise care when transferring a very large number of blocks or words since
this can greatly increase the overall cycle time.

The following flags are used by all of the File Memory instructions. Refer to
3-4-3 File Memory Flags and Control Bits for details.

AR 1900 Turned ON and OFF to reset AR 1903 through AR 1907.

AR 1901 Transfer in progress (ON)

AR 1902 Transfer direction (ON for transfer away from File Memory;
OFF for transfer to File memory)

AR 1903 to1906 Error flags

AR 20 Total number of transferred blocks (4-digit BCD)

AR 21 Remaining number of blocks to be transferred
(4-digit BCD)

File Memory Instructions Section 5-25

215

5-25-1 FILE MEMORY READ – FILR(42)

N: Number of transfer blocks (BCD)

IR, AR, DM, HR, TC, LR, #

S: Source beginning block (BCD)

IR, AR, DM, HR, TC, LR, #

Operand Data Areas

D: Destination beginning word

IR, AR, DM, HR, TC, LR

Ladder Symbols

FILR(42)

N

S

D

@FILR(42)

N

S

D

S+(N–1) must be less than the largest block number provided by the File
Memory Unit (0999 or 1999).

When the execution condition is OFF, FILR(42) is not executed. When the
execution condition is ON, FILR(42) reads blocks of data from the File
Memory (128-word blocks), and outputs the data to the designated PC
memory area beginning at D.

If the destination memory area is too small to accommodate all of the transfer
data, only the portion that fits will be transferred.

D: DM 0010

Block #0

S: #0005

Block #5

Block #6

Block #7

File Memory

DM 0010

DM 0137

DM 0138

DM 0267

DM 0266

DM 0393

PC Memory

N: #0003

From block 5 onwards3 blocks
(3 x 128 words)

If a failure occurs, the transfer of the current word will be completed before
operation is stopped.

Flags ER: File Memory Unit is not mounted.

N or S is not BCD.

S+(N–1) is greater than 999 or 1999.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

Precautions

File Memory Instructions Section 5-25

216

5-25-2 FILE MEMORY WRITE – FILW(43)

N: Number of transfer blocks (BCD)

IR, SR, AR, DM, HR, TC, LR, #

S: Source beginning word

IR, SR, AR, DM, HR, TC, LR

Operand Data Areas

D: First destination block (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

FILW(43)

N

S

D

@FILW(43)

N

S

D

D+(N–1) must be less than the largest block number provided by the File
Memory Unit (0999 or 1999).

When the execution condition is OFF, FILW(43) is not executed. When the
execution condition is ON, FILW(43) transfers the designated number of
blocks (N) from the designated PC memory area starting at S, to the File
Memory beginning at D. The data is transferred in 128-word blocks.

If the last block of the source transfer area does not have a full 128 words,
the unused words of the File Memory block will be empty.

D: #0005

LR 20

S: LR 20

LR 63

Block #5 (128 words)

#0000

PC Memory File Memory

If a power failure occurs, transfer of the current block will be completed be-
fore operation is stopped.

Flags ER: File Memory Unit is not mounted.

N or D is not BCD.

D+(N–1) is greater than 999 or 1999.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

5-25-3 EXTERNAL PROGRAM READ – FILP(44)

BB: Beginning data block

IR, AR, DM, HR, TC, LR, #

Ladder Symbols Operand Data Areas

FILP(44)

BB

@FILP(44)

BB

Limitations

Description

Precautions

File Memory Instructions Section 5-25

217

BB must be less than the largest block number provided by the File Memory
Unit (0999 or 1999). The Memory Unit must be RAM, and the blocks being
transferred from the File Memory must contain program data.

When the execution condition is OFF, FILP(44) is not executed. When the
execution condition is ON, FILP(44) reads the data stored in the File Memory
beginning at BB, transfers it to the program memory location immediately
following FILP(44), and then executes the transferred program. The trans-
ferred program data replaces existing program data in the program memory
area. The transfer is completed when the first END(01) is encountered or
when the next non-program block is encountered. If END(01) is encountered
within the beginning block, only that block is transferred.

Because the transfer is done in block units, any other data between the
END(01) instruction and the block boundary is also transferred.

00201
@FILP(44) #0002 Block no. 0002

END(01)

File MemoryUser Program

Execution of loaded program data is inhibited when the FILP(44) execution
condition is ON; use @FILP(44) when required to ensure that program ex-
ecution can continue.

Exercise care when overwriting program data that contains an interrupt rou-
tine. Ensure that the program data to be loaded defines an interrupt routine
with the same subroutine number.

ER: ROM memory unit is being used for user memory.

File memory unit is not mounted.

BB is not BCD.

BB is greater than 999 or 1999.

The blocks will not fit in User Memory.

5-26 Intelligent I/O Instructions
The intelligent I/O instructions are used for input/output operations with Spe-
cial I/O Units such as an ASCII Unit.

Limitations

Description

Precautions

Flags

Intelligent I/O Instructions Section 5-26

218

5-26-1 I/O WRITE – WRIT(87)

N: Number of transfer words (BCD)

IR, AR, DM, HR, TC, LR, #

S: Source beginning word

IR, SR, AR, DM, HR, TC, LR

Operand Data Areas

D: Destination word

IR (I/O word only)

Ladder Symbols

WRIT(87)

N

S

D

@WRIT(87)

N

S

D

Limitations S and S+(N–1) must be in the same data area.

When the execution condition is OFF, WRIT(87) is not executed. When the
execution condition is ON, WRIT(87) transfers the contents of S through
S+(N–1) to the Intelligent I/O Unit allocated D.

If an Intelligent I/O Unit is busy and unable to receive data, the data will be
written during the next cycle. To make sure that WRIT(87) execution has
been completed, check EQ .

Flags ER: N is not BCD.

D is not allocated to an Intelligent I/O Unit.

S+(N–1) exceeds the data area boundary.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: OFF while data is being written; ON when writing has been com-
pleted.

5-26-2 I/O READ – READ(88)

N: Number of transfer words (BCD)

IR, AR, DM, HR, TC, LR, #

S: Source word

IR (I/O word only)

Operand Data Areas

D: Destination word

IR, AR, DM, HR, TC, LR

Ladder Symbols

READ(88)

N

S

D

@READ(88)

N

S

D

When the execution condition is OFF, READ(88) is not executed. When the
execution condition is ON, READ(88) reads data from the memory area of
the Intelligent I/O Unit allocated S and transfers it to D through D+(N–1).

If the data cannot be sent or the Intelligent I/O Unit is busy, the data will be
transferred during the next cycle. To make sure that READ(88) execution has
been completed, check EQ.

Description

Precautions

Description

Precautions

Intelligent I/O Instructions Section 5-26

219

Flags ER: S is not allocated to an intelligent I/O Unit.

D+(N–1) exceeds a data area boundary.

N is not BCD.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: OFF while data is being read; ON when reading has been com-
pleted.

5-27 Network Instructions
The Network instructions are used for communicating with other PCs linked
through the SYSMAC NET Link System or SYSMAC LINK System.

5-27-1 NETWORK SEND – SEND(90)

S: Source beginning word

IR, SR, AR, DM, HR, TC, LR

D: Destination beginning word

IR, AR, DM, HR, TC, LR

Operand Data Areas

C: First control data word

IR, AR, DM, HR, TC, LR

Ladder Symbols

SEND(90)

S

D

C

@SEND(90)

S

D

C

Limitations C through C+2 must be within the same data area and must be within the
values specified below. To be able to use SEND(90), the system must have a
SYSMAC NET Link or SYSMAC LINK Unit mounted.

When the execution condition is OFF, SEND(90) is not executed. When the
execution condition is ON, SEND(90) transfers data beginning at word S, to
addresses specified by D in the designated node on the SYSMAC NET Link/
SYSMAC LINK System. The control words, beginning with C, specify the
number of words to be sent, the destination node, and other parameters. The
contents of the control data depends on whether a transmission is being sent
in a SYSMAC NET Link System or a SYSMAC LINK System.

The status of bit 15 of C+1 determines whether the instruction is for a SYS-
MAC NET Link System or a SYSMAC LINK System.

Control Data

SYSMAC NET Link Systems The destination port number is always set to 0. Set the destination node
number to 0 to send the data to all nodes. Set the network number to 0 to
send data to a node on the same Subsystem (i.e., network). Refer to the
SYSMAC NET Link System Manual for details.

Word Bits 00 to 07 Bits 08 to 15

C Number of words (0 to 1000 in 4-digit hexadecimal, i.e., 0000hex to 03E8hex)

C+1 Network number (0 to 127 in 2-digit
hexadecimal, i.e., 00hex to 7Fhex)

Bit 14 ON: Operating level 0
OFF: Operating level 1

Bits 08 to 13 and 15:
Set to 0.

C+2 Destination node (0 to 126 in 2-digit
hexadecimal, i.e., 00hex to 7Ehex)*

Destination port
NSB: 00
NSU: 01/02

Description

Network Instructions Section 5-27

220

*The node number of the PC executing the send may be set.

SYSMAC LINK Systems Set the destination node number to 0 to send the data to all nodes. Refer to
the SYSMAC LINK System Manual for details.

Word Bits 00 to 07 Bits 08 to 15

C Number of words (0 to 256 in 4-digit hexadecimal, i.e., 0000hex to 0100hex)

C+1 Response time limit (0.1 and 25.4
seconds in 2-digit hexadecimal
without decimal point, i.e., 00hex to
FFhex)

Note: The response time will be
2 seconds if the limit is set to 0hex.
There will be no time limit if the
time limit is set to FFhex.

Bits 08 to 11:
No. of retries (0 to 15 in
hexadecimal,
i.e., 0hex to Fhex)

Bit 12: Set to 0.
Bit 13 ON: Response not returned.

OFF: Response returned.
Bit 14 ON: Operating level 0

OFF: Operating level 1
Bit 15: Set to 1.

C+2 Destination node (0 to 62 in 2-digit
hexadecimal, i.e., 00hex to 3Ehex)*

Set to 0.

*The node number of the PC executing the send cannot be set.

Examples This example is for a SYSMAC NET Link System. When 00000 is ON, the
following program transfers the content of IR 001 through IR 005 to LR 20
through LR 24 on node 10.

0 0 0 5

0 0 0 0

0 0 0 A

IR 001

IR 002

IR 003

IR 004

IR 005

LR 20

LR 21

LR 22

LR 23

LR 24

DM 0010

DM 0011

DM 0012

15 0

SEND(90)

001

LR 20

DM 0010

00000

Node 10

Address Instruction Operands

00000 LD 00000

00001 SEND(90)

001

LR 20

DM 0010

Flags ER: The specified node number is greater than 126 in a SYSMAC NET
Link System or greater than 62 in a SYSMAC LINK System.

The sent data overruns the data area boundaries.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

There is no SYSMAC NET Link/SYSMAC LINK Unit.

Network Instructions Section 5-27

221

5-27-2 NETWORK RECEIVE – RECV(98)

S: Source beginning word

IR, SR, AR, DM, HR, TC, LR

D: Destination beginning word

IR, AR, DM, HR, TC, LR

Operand Data Areas

C: First control data word

IR, AR, DM, HR, TC, LR

Ladder Symbols

RECV(98)

S

D

C

@RECV(98)

S

D

C

Limitations C through C+2 must be within the same data area and must be within the
values specified below. To be able to use RECV(98), the system must have a
SYSMAC NET Link or SYSMAC LINK Unit mounted.

When the execution condition is OFF, RECV(98) is not executed. When the
execution condition is ON, RECV(98) transfers data beginning at S from a
node on the SYSMAC NET Link/SYSMAC LINK System to words beginning
at D. The control words, beginning with C, provide the number of words to be
received, the source node, and other transfer parameters.

The status of bit 15 of C+1 determines whether the instruction is for a SYS-
MAC NET Link System or a SYSMAC LINK System.

Control Data

SYSMAC NET Link Systems The source port number is always set to 0. Set the network number to 0 to
receive data to a node on the same Subsystem (i.e., network). Refer to the
SYSMAC NET Link System Manual for details.

Word Bits 00 to 07 Bits 08 to 15

C Number of words (0 to 1000 in 4-digit hexadecimal, i.e., 0000hex to 03E8hex)

C+1 Network number (0 to 127 in
2-digit hexadecimal, i.e., 00hex to
7Fhex)

Bit 14 ON: Operating level 0
OFF: Operating level 1

Bits 08 to 13 and 15:
Set to 0.

C+2 Source node (1 to 126 in 2-digit
hexadecimal, i.e., 01hex to 7Ehex)

Source port
NSB: 00
NSU: 01/02

SYSMAC LINK Systems Refer to the SYSMAC LINK System Manual for details.

Word Bits 00 to 07 Bits 08 to 15

C Number of words (0 to 256 in 4-digit hexadecimal, i.e., 0000hex to 0100hex)

C+1 Response time limit (0.1 and 25.4
seconds in 2-digit hexadecimal
without decimal point, i.e., 00hex to
FFhex)

Note: The response time will be
2 seconds if the limit is set to 0hex.
There will be no time limit if the
time limit is set to FFhex.

Bits 08 to 11:
No. of retries (0 to 15 in
hexadecimal,
i.e., 0hex to Fhex)

Bit 12: Set to 0.
Bit 13: Set to 0.
Bit 14 ON: Operating level 0

OFF: Operating level 1
Bit 15: Set to 1.

C+2 Source node (0 to 62 in 2-digit
hexadecimal, i.e., 00hex to 3Ehex)

Set to 0.

Description

Network Instructions Section 5-27

222

Examples This example is for a SYSMAC NET Link System. When 00000 is ON, the
following program transfers the content of IR 001 through IR 005 to LR 20
through LR 24 on node 10.

0 0 0 5

0 0 0 0

0 0 0 A

IR 001

IR 002

IR 003

IR 004

IR 005

LR 20

LR 21

LR 22

LR 23

LR 24

DM 0010

DM 0011

DM 0012

15 0

RECV(98)

001

LR 20

DM 0010

00000

Node 10

Address Instruction Operands

00000 LD 00000

00001 RECV(98)

001

LR 20

DM 0010

Flags ER: The specified node number is greater than 126 in a SYSMAC NET
Link System or greater than 62 in a SYSMAC LINK System.

The received data overflows the data area boundaries.

Indirectly addressed DM word is non-existent. (Content of �DM word
is not BCD, or the DM area boundary has been exceeded.)

There is no SYSMAC NET Link/SYSMAC LINK Unit.

5-27-3 About SYSMAC NET Link/SYSMAC LINK Operations
SEND(90) and RECV(98) are based on command/response processing. That
is, the transmission is not complete until the sending node receives and ac-
knowledges a response from the destination node. Note that the
SEND(90)/RECV(98) Enable Flag is not turned ON until the first END(01)
after the transmission is completed. Refer to the SYSMAC NET Link System
Manual or SYSMAC LINK System Manual for details about command/re-
sponse operations.

If multiple SEND(90)/RECV(98) operations are used, the following flags must
be used to ensure that any previous operation has completed before attempt-
ing further send/receive SEND(90)/RECV(98) operations

SR Flag Functions

SEND(90)/RECV(98)
Enable Flag
(SR 25204)

OFF during SEND(90)/RECV(98) execution (including
command response processing). Do not start a
SEND(90)/RECV(98) operation unless this flag is ON.

SEND(90)/RECV(98)
Error Flag
(SR 25203)

OFF following normal completion of SEND/RECV (i.e.,
after reception of response signal)

ON after an unsuccessful SEND(90)/RECV(98) attempt.
Error status is maintained until the next
SEND(90)/RECV(98) operation.

Error types:
Time-out error (command/response time greater than 1
second)
Transmission data errors

Network Instructions Section 5-27

223

Timing

Instruction
received

Transmission
completes
normally

Instruction
received

Transmission
error

Instruction
received

Successful
send/receive
execution

Send/receive
error

Data is transmitted for SEND(90) and RECV(98) for all PCs when
SEND(90)/RECV(98) is executed. Final processing for transmissions/recep-
tions is performed when END(01) is executed in C2000H Duplex CPUs, and
during servicing of peripheral devices and Link Units for all other CPUs.

To ensure successful SEND(90)/RECV(98) operations, your program must
use the SEND(90)/RECV(98) Enable Flag and SEND(90)/RECV(98) Error
Flags to confirm that execution is possible. The following program shows one
example of how to do this for a SYSMAC NET Link System.

Data Processing for
SEND(90)/RECV(98)

Programming Example:
Multiple
SEND(90)/RECV(98)

Network Instructions Section 5-27

224

DIFU(13) 12801

@MOV(21)

#000A

DM 0000

12800
R

S

KEEP(11)
12800

00000 25204 12802

12801

@MOV(21)

#0000

DM 0001

@MOV(21)

#0003

DM 0002

XFER(70)

#0010

000

DM 0010

@SEND(90)

DM 0010

DM 0020

DM 0000

00200

XFER(70)

#0016

000

DM 0030

R

S

KEEP(11)
12802

00001 25204 12800

12803

@MOV(21)

#0010

DM 0003

12802

@MOV(21)

#0000

DM 0004

@MOV(21)

#007E

DM 0005

@RECV(98)

HR 10

LR 10

DM 0003

12802 25204 25203

12800 25203

12800 prevents execution of SEND(90) until
RECV(98) (below) has completed. IR 00000
is turned ON to start transmission.

Data is placed into control data words to
specify the 10 words to be transmitted to
node 3 in operating level 1 of network 00
(NSB).

Turns ON to indicate transmission error.

Transmitted data moved into words
beginning at DM 0030 for storage.

12802 prevents execution of RECV(98)
when SEND(90) above has not completed.
IR 00001 is turned ON to start transmission.

Data moved into control data words to spec-
ify the 16 words to be transmitted from node
126 in operating level 1 of network 00
(NSB).

SEND(90)/RECV(98)
Enable Flag

SEND(90)/RECV(98)
Error Flag

12800 25204

Resets 12800, above.

DIFU(13) 12803

12802 25204

Resets 12802, above.

00201
12802 25203 Turns ON to indicate reception error.

SEND(90)/RECV(98)
Error Flag

Network Instructions Section 5-27

225

Address Instruction Operands Address Instruction Operands

00000 LD 00000

00001 AND 25204

00002 AND NOT 12802

00003 LD 12801

00004 KEEP(11) 12800

00005 LD 12800

00006 @MOV(21)

000A

DM 0000

00007 @MOV(21)

0000

DM 0001

00008 @MOV(21)

0003

DM 00002

00009 @XFER(70)

0010

000

DM 0002

00010 @SEND(90)

DM 0010

DM 0020

DM 0000

00011 LD 12800

00012 AND 25203

00013 OUT 00200

00014 LD 12800

00015 AND 25204

00016 DIFU(13) 12801

00017 LD 00001

00018 AND 25204

00019 AND NOT 12800

00020 LD 12803

00021 KEEP(11) 12802

00022 LD 12802

00023 AND 25204

00024 AND NOT 25203

00025 XFER(70)

0016

000

DM 0030

00026 LD 12802

00027 @MOV(21)

0010

DM 0003

00028 @MOV(21)

0000

DM 0004

00029 @MOV(21)

007E

DM 0005

00030 @RECV(98)

HR 10

LR 10

DM 0003

00031 LD 12802

00032 AND 25203

00033 OUT 00201

00034 LD 12802

00035 AND 25204

00036 DIFU(13) 12803

Network Instructions Section 5-27

227

SECTION 6
Program Execution Timing

The timing of various operations must be considered both when writing and debugging a program. The time required to
execute the program and perform other CPU operations is important, as is the timing of each signal coming into and leav-
ing the PC in order to achieve the desired control action at the right time. This section explains the cycle and shows how
to calculate the cycle time and I/O response times.

I/O response times in Link Systems are described in the individual System Manuals. These are listed at the end of Section
1 Introduction.

6-1 Cycle Time 228.
6-2 Calculating Cycle Time 232.

6-2-1 I/O Units Only 232.
6-2-2 PC with Link Units 233.

6-3 Instruction Execution Times 235.
6-4 I/O Response Time 241.

228

6-1 Cycle Time
To aid in PC operation, the average, maximum, and minimum cycle times
can be displayed on the Programming Console or any other Programming
Device and the maximum cycle time and current cycle time values are held in
AR 26 and AR 27. Understanding the operations that occur during the cycle
and the elements that affect cycle time is, however, essential to effective pro-
gramming and PC operations.

The major factors in determining program timing are the cycle time and the
I/O response time. One cycle of CPU operation is called a cycle; the time
required for one cycle is called the cycle time. The time required to produce a
control output signal following reception of an input signal is called the I/O
response time.

Cycle Time Section 6-1

229

The overall flow of CPU operation is as shown in the following flowchart:

YES

NO

YES

YES

NO

NO

Power application

Clears IR area and
resets all timers

Checks I/O Unit
connections

Resets watchdog
timer

Checks hardware and
Program Memory

Check OK?

Refresh output signals
according to output bit
status

Process Remote I/O Units

Resets watchdog timer

Services Peripheral
Devices and Link Units

End of program?

ERROR or ALARM

Sets error flags and
lights indicator

Resets watchdog timer and
program address counter

Executes program

End of program?

Resets watchdog timer

Refreshes input bits
according to input signals

ERROR

ALARM

In
pu

t
re

fr
es

hi
ng

P
er

ip
he

ra
l D

ev
ic

e
an

d
Li

nk
 U

ni
t s

er
vi

ci
ng

P
ro

gr
am

 e
xe

cu
tio

n

P
C

 s
ca

n
tim

e

R
em

ot
e

I/O
pr

oc
es

si
ng

O
ut

pu
t

re
fr

es
hi

ng
O

ve
rs

ee
in

g
pr

oc
es

se
s

In
iti

al
iz

at
io

n
on

 p
ow

er
-u

p

The first three operations immediately after power application are performed
only once each time the PC is turned on. The rest of the operations are per-
formed in cyclic fashion, with each cycle forming one cycle. The cycle time is

Cycle Time Section 6-1

230

the time that is required for the CPU to complete one of these cycles. This
cycle includes basically four types of operation.

1. Overseeing

2. Output refreshing and Unit servicing

3. Input refreshing

4. Program execution

The cycle time is the total time required for the PC to perform all of the above
operations. Of these, number two, output refreshing and Unit servicing, and
number four, program execution, are executed in parallel. Because Unit serv-
icing is repeated until program execution is completed (see below), output
refreshing and Unit servicing time will be the same or longer than the pro-
gram execution time. The cycle time will thus be the total of the time required
for overseeing operations, the time required for output refreshing and Unit
servicing, and the time required for input refreshing.

Cycle time = overseeing time + output refreshing and
Unit servicing time + input refreshing time

The second of the above four operations is composed of up to six separate
components. The breakdown of this operation and the function and time re-
quired for each operation are shown in the following table.

Overseeing

Output refreshing and
Unit servicing

I/O bus check

Output refreshing

Remote I/O
servicing

Peripheral device
servicing

Host Link Unit
servicing

PC Link Unit
servicing I and II

Program execution

Input refreshing

Approx. 3.0 ms + sync time (1.0 ms)

0.8 ms

18 µs per output word

1 ms per Master plus 20 µs per word
controlled though each Master

1.5 ms per service if Unit is mounted;
0.5 ms if Unit is not mounted.

1.5 ms per service if Unit is mounted;
0.5 ms if Unit is not mounted.

1.5 ms per service if Unit is mounted;
0.5 ms if Unit is not mounted.

Total execution time for all instructions
varies with program size, the instruc-
tions used, and execution conditions.
Refer to 6-3 Instruction Execution
Times for details.

25 µs per input word

Watchdog timer set and cycle time
checked. CPUs synchronized for
C2000H Duplex System.

I/O connections and bus operation
checked.

Output signals sent according to
status of output bits in memory.

Inputs and Outputs in Remote I/O
Systems refreshed, i.e., output signals
sent according to output bit status and
input bits set according to input signal
status.

Commands from Programming De-
vices and Interface Units processed.

Commands from computers con-
nected through Host Link Units proc-
essed.

Data communications for PC Link
System processed.

Program executed.

Input bits set according to status of
input signals.

All Link Units and peripheral devices are serviced once each cycle in the or-
der given in the above table. If more time is required for program execution

Cycle Time Section 6-1

231

than is required for output refreshing and Unit servicing, Link Units (except
for Remote I/O Units) and all peripheral devices will be serviced again, one
type at a time, until program execution is completed.

From the second cycle on, servicing will be in the following cycle (with servic-
ing for the remaining time in any one cycle starting where servicing was left
off the previous cycle): PC Link Unit servicing I, PC Link Unit servicing II, pe-
ripheral devices, and then Host Link Unit servicing. Program execution com-
pletion will be checked between the servicing of each of these, and servicing
will be ended as soon as the program has been executed.

The following flowchart illustrates this portion of CPU operation.

Output refreshing

Program ended?

Remote I/O servicing

Peripheral servicing

Host Link Unit servicing

PC Link Unit servicing I

PC Link Unit servicing II YES

NO

To input refreshing

Servicing returns to the next item following the last one to be processed.

Host Link Unit servicing

Peripheral servicing

Because Link Unit and peripheral device servicing is repeated until program
execution is completed, the time required for output refreshing and Unit serv-
icing will be the program execution time plus the time required to finish the
Link Unit or Peripheral Device servicing operation that is in process when
program execution has been completed. This is explained in more detail in
6-2 Calculating Cycle Time.

Within the PC, the watchdog timer measures the cycle time and compares it
to a set value. If the cycle time exceeds the set value of the watchdog timer,
a FALS 9F error is generated and the CPU stops. WDT(94) can be used to
extend the set value for the watchdog timer.

Even if the cycle time does not exceed the set value of the watchdog timer, a
long cycle time can adversely affect the accuracy of system operations as
shown in the following table.

Watchdog Timer and Long
Cycle Times

Cycle Time Section 6-1

232

Cycle time (ms) Possible adverse affects

10 or greater TIMH(15) inaccurate when TC 048 through TC 511 are used.

20 or greater 0.02-second clock pulse not accurately readable.

100 or greater 0.1-second clock pulse not accurately readable and Cycle
Timer Error Flag (25309) turns ON.

200 or greater 0.2-second clock pulse not accurately readable.

6,500 or greater FALS code 9F generated regardless of watchdog timer setting
and the system stops.

6-2 Calculating Cycle Time
The PC configuration, the program, and program execution conditions must
be taken into consideration when calculating the cycle time. This means tak-
ing into account such things as the number of I/O points, the programming
instructions used, and whether or not peripheral devices are employed. This
section shows some basic cycle time calculation examples. To simplify the
examples, the instructions used in the programs have been assumed to be
all either LD or OUT. The average execution time for the instructions is thus
0.6 µs. (Operating times are given in the table in Section 6-1.)

6-2-1 I/O Units Only
Here, we’ll compute the cycle time for a PC that controls only I/O Units, six
on the CPU Rack and eight on an Expansion I/O Rack. In this PC configura-
tion, there is also a Programming Console mounted to the CPU that needs to
be taken into consideration. The PC configuration for this would be as shown
below. It is assumed that the program contains 20,000 instructions requiring
an average of 0.6 µs each to execute.

CPU Rack

Expansion I/O Rack

32-point Output Units

16-point Output Units32-point Input Units

16-point Input Units

16-point Input Units

16-point Output Units

The equation for the cycle time from above is as follows:

Cycle time = overseeing time
+ output refreshing and Unit servicing time
+ input refreshing time

Calculations

Calculating Cycle Time Section 6-2

233

The overseeing time is fixed at 3.0 ms. The input refresh time would be as
follows for the five 16-point Input Units and two 32-point Input Units con-
trolled by the PC:

16 points

(16 points x 5) + (32 points x 2) x 25 µs = 0.23 ms

The output refreshing and Unit servicing time equals the I/O bus check time
plus the output refresh time plus the peripheral device and Link Unit servicing
time. The I/O bus check time is fixed at 0.8 ms. The output refresh time
would be as follows for the five 16-point Output Units and two 32-point Out-
put Units controlled by the PC:

16 points

(16 points x 5) + (32 points x 2) x 18 µs = 0.16 ms

The basic peripheral device and Link Unit servicing time would be 1.5 ms for
the Programming Console and 0.5 ms each for a Host Link Unit and two PC
Link Units. This time, a total of 3 ms, is required even though not all of these
Units are mounted to the PC. The total output refreshing time, including Unit
servicing time computed above, is thus 0.8 ms + 0.16 ms + 3 ms = 3.96 ms.

Because this is considerably less than the program execution time, which is
12 ms (0.6 µs/instruction times 20,000 instructions) it is necessary to com-
pute the number of times that peripheral device and Link Unit servicing would
be repeated to arrive at the actual output refreshing and Unit servicing time.
Subtracting 3.96 ms from 12 ms gives us 8.04 ms remaining before program
execution is completed. This would be enough time to complete two more
cycles of Peripheral Device and Link Unit servicing and still leave 2.04 ms to
service the Programming Console (1.5 ms) and two more Link Units (0.5 ms
each). The total output refreshing and Unit servicing time would thus be as
follows:

3.96 ms + (2 x 3 ms) + 1.5 ms + 0.5 ms + 0.5 ms = 12.46 ms

The cycle time would thus be: 3.0 ms + 12.46 ms + 0.23 ms = 15.69 ms

6-2-2 PC with Link Units
Here, the cycle time is computed for a C2000H Duplex System with three
16-point Input Units, two 16-point Output Units, a Remote I/O Master Unit, a
Host Link Unit, and a PC Link Unit on the CPU I/O Rack and two 16-point
Input Units, two 32-point Input Units, two 16-point Output Units, and two
32-point Output Units on an Optical Slave Rack. In this PC configuration,
there is also a Programming Console mounted to the CPU that needs to be
taken into consideration. The PC configuration for this could be as shown

Calculating Cycle Time Section 6-2

234

below. It is assumed that the program contains 20,000 instructions requiring
an average of 0.6 µs each to execute.

Computer Next PC in
PC Link System

32-point Output Unit

16-point Output Unit

32-point Input Unit

16-point Input Unit

Optical Remote I/O Slave Unit

Slave Rack

Host Link Unit
PC Link Unit
Optical Remote I/O Master Unit

16-point
Input
Unit

16-point
Output
Unit

CPU I/O Rack

CPU Rack

The equation for the cycle time is as follows:

Cycle time = overseeing time
+ output refreshing and Unit servicing time
+ input refreshing time

The overseeing time is fixed at 3.0 ms plus 1.0 ms (for synchronization of
Duplex CPUs), or 4.0 ms. The input refresh time is 3 Units x 25 µs per
16-point Input Unit, or 0.08 ms

The output refreshing and Unit servicing time equals the I/O bus check time
plus the output refresh time plus the Remote I/O servicing time plus the pe-
ripheral device and Link Unit servicing time. The I/O bus check time is fixed
at 0.8 ms. The output refresh time would 2 Units x 18 µs per 16-point Output
Unit, or 0.16 ms. The Remote I/O servicing time would be as as follows for
the four 16-point I/O Units and four 32-point I/O Units controlled through the
Master:

16 points

(16 points x 4) + (32 points x 4) x 20 µs = 1.24 ms1 ms +

Calculations

Calculating Cycle Time Section 6-2

235

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

The basic peripheral device and Link Unit servicing time would be 1.5 ms x 4,
or 6 ms, for the Programming Console, Host Link Unit, and two PC Link
Units. The total output refreshing and Unit servicing time computed above is
thus 0.8 ms + 0.04 ms + 1.24 ms + 6 ms = 8.08 ms.

Because this is less than the program execution time, which is 12 ms (0.6 µs/
instruction times 20,000 instructions) it is necessary to compute the number
of times that peripheral device and Link Unit servicing would be repeated to
arrive at the actual output refreshing and Unit servicing time. Subtracting
8.08 ms from 12 ms gives us 3.92 ms remaining before program execution is
completed. This would be enough time to repeat Programming Console serv-
icing, the Host Link Unit servicing, and PC Link Unit servicing (1.5 ms each).
The total output refreshing and Unit servicing time would thus be as follows:

8.08 ms + (3 x 1.5 ms) = 12.58 ms

The cycle time would thus be 4.0 ms + 12.58 ms + 0.08 ms = 16.66 ms

6-3 Instruction Execution Times
This following table lists the execution times for all instructions that are avail-
able for the C1000H and C2000H. The maximum and minimum execution
times and the conditions which cause them are given where relevant. When
“word” is referred to in the Conditions column, it implies the content of any
word except for indirectly addressed DM words. Indirectly addressed DM
words, which create longer execution times when used, are indicated by
“�DM.”

Execution times for most instructions depend on whether they are executed
with an ON or an OFF execution condition. Exceptions are the ladder dia-
gram instructions OUT and OUT NOT, which require the same time regard-
less of the execution condition. The OFF execution time for an instruction
can also vary depending on the circumstances, i.e., whether it is in an inter-
locked program section and the execution condition for IL is OFF, whether it
is between JMP(04) 00 and JME(05) 00 and the execution condition for
JMP(04) 00 is OFF, or whether it is reset by an OFF execution condition. “R,”
“IL,” and “JMP” are used to indicate these three times.

Table: Instruction Execution Times

Instruction Conditions ON execution time (µs)1,2 OFF execution time (µs)1,2

C1000H C2000H C1000H C2000H

LD --- 0.4 0.4 0.4 0.4

LD NOT --- 0.4 0.4 0.4 0.4

AND --- 0.4 0.4 0.4 0.4

AND NOT --- 0.4 0.4 0.4 0.4

OR --- 0.4 0.4 0.4 0.4

OR NOT --- 0.4 0.4 0.4 0.4

AND LD --- 0.4 0.4 0.4 0.4

OR LD --- 0.4 0.4 0.4 0.4

OUT --- 0.8 0.8 0.8 0.8

OUT NOT --- 0.8 0.8 0.8 0.8

Instruction Execution Times Section 6-3

236

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

Instruction OFF execution time (µs)1,2ON execution time (µs)1,2Conditions

C2000HC1000HC2000HC1000H

TIM Constant for SV 2.4 2.4 R: 2.4

IL: 2.4

JMP: 2.4

�DM for SV 20 13 R: 29

IL: 29

JMP: 14

R: 19

IL: 19

JMP: 10

CNT Constant for SV 2.4 2.4 R: 2.4

IL: 2.4

JMP: 2.4

�DM for SV 16 11 R: 28

IL: 11

JMP: 11

R: 18

IL: 7

JMP: 7

NOP(00) --- 0.4 0.4 --- ---

END(01) --- 8 5 --- ---

IL(02) --- 9 6 8 6

ILC(03) --- 9 6 7 5

JMP(04) --- 10 7 9 6

JME(05) --- 10 7 9 6

FAL(06) --- 16/17 11/12 7/8 5/6

FAL(06) 00 --- 11/12 7/8 7/8 5/6

FALS(07) --- 11/12 7/8 7 5

STEP(08) --- 24 16 15 10

SNXT(09) --- 10 6 7 5

SFT(10) With 1-word shift register 40 26 R: 35

IL: 7

JMP: 7

R: 25

IL: 5

JMP: 5

With 252-word shift register 444 296 R: 20
0

IL: 7

JMP: 7

R: 13
3

IL: 5

JMP: 5

KEEP(11) --- 0.8 0.8 --- ---

CNTR(12) Constant for SV 21 14 R: 15

IL: 10

R: 10

IL: 7

�DM for SV 29 19 JMP: 10 JMP: 7

DIFU(13) --- 16 10 Normal: 15

IL: 16

JMP: 8

Normal: 10

IL: 10

JMP: 5

DIFD(14) --- 16 11 Normal: 16

IL: 16

JMP: 9

Normal: 11

IL: 11

JMP: 6

Instruction Execution Times Section 6-3

237

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

Instruction OFF execution time (µs)1,2ON execution time (µs)1,2Conditions

C2000HC1000HC2000HC1000H

TIMH(15) Interrupt Constant for SV 20 13 R: 20

Normal cycle 22 15 IL: 21

Interrupt �DM for SV 20 13 JMP: 15

Normal cycle 18 12 R: 29

IL: 30

JMP: 16

R: 19

IL: 20

JMP: 10

WSFT(16) When shifting 1 word 36/38 24/26 7/8 5/6

When shifting 4,096 words using �DM 5.59 ms 3.72 ms

CMP(20) When comparing a constant to a word 14 9 7 5

When comparing two �DM 29 20

MOV(21) When transferring a constant to a word 15/17 10/11 7/8 5/6

When transferring �DM to �DM 30/31 20/21

MVN(22) When transferring a constant to a word 16/17 10/11 7/8 5/6

When transferring �DM to �DM 30/31 20/21

BIN (23) When converting a word to a word 21/23 14/15 7/8 5/6

When converting �DM to �DM 34/35 22/23

BCD(24) When converting a word to a word 21/22 14/15 7/8 5/6

When converting �DM to �DM 33/34 22/23

ASL(25) When shifting a word 18/19 12/13 7/8 5/6

When shifting �DM 24/25 16/17

ASR(26) When shifting a word 18/19 12/13 7/8 5/6

When shifting �DM 24/25 16/17

ROL(27) When rotating a word 18/19 12/13 7/8 5/6

When rotating �DM 24/25 16/17

ROR(28) When rotating a word 18/19 12/13 7/8 5/6

When rotating �DM 24/25 16/17

COM(29) When inverting a word 15/17 10/11 7/8 5/6

When inverting �DM 21/23 14/15

ADD(30) Constant + word → word 33/35 22/23 7/8 5/6

�DM + �DM → �DM 53/55 35/36

SUB(31) Constant + word → word 33/34 22/23 7/8 5/6

�DM – �DM → �DM 53/55 35/36

MUL(32) Constant x word → word 48/50 32/33 7/8 5/6

�DM x �DM → word 68/70 55/56

DIV(33) Word ÷ constant → word 63/65 42/43 7/8 5/6

�DM ÷ �DM → �DM 84/86 56/57

Instruction Execution Times Section 6-3

238

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

Instruction OFF execution time (µs)1,2ON execution time (µs)1,2Conditions

C2000HC1000HC2000HC1000H

ANDW(34) Constant AND word → word 19/21 13/14 7/8 5/6

�DM AND �DM → �DM 40/41 27/28

ORW(35) Constant OR word → word 19/20 13/14 7/8 5/6

�DM OR �DM → �DM 40/41 27/28

XORW(36) Constant XOR word → word 19/21 13/14 7/8 5/6

�DM XOR �DM → �DM 40/41 27/28

XNRW(37) Constant XNOR word → word 20/21 13/14 7/8 5/6

�DM XNOR �DM → �DM 40/41 27/28

INC(38) When incrementing a word 23/25 15/16 7/8 5/6

When incrementing �DM 29/31 20/21

DEC(39) When decrementing a word 22/24 15/16 7/8 5/6

When decrementing �DM 28/30 19/20

STC(40) --- 9/10 6/7 6/8 4/6

CLC(41) --- 9/10 6/7 6/8 4/6

FILR(42) When reading 1 block 4.89 ms 3.26 ms 6/8 4/6

When reading 20 blocks 81.9 ms 54.5 ms

FILW(43) When writing 1 block 7.21 ms 4.8 ms 6/8 4/6

When writing 20 blocks 131 ms 87 ms

FILP(44) When reading 600 addresses 38 ms 25 ms 9 6

When reading 30 addresses 1.66 s 1.11 s

TRSM(45) When tracing 1 point + 1 word 56 38 8 5

When tracing 12 points + 3 words 93 62

MSG(46) --- 16/17 11/12 7/8 5/6

ADB(50) Constant + word → word 22/23 15/16 7/8 5/6

�DM + �DM → �DM 42/44 28/29

SBB(51) Constant – word → word 22/24 15/16 7/8 5/6

�DM – �DM → �DM 43/44 29/30

MLB(52) Constant x word → word 26/27 17/18 7/8 5/6

�DM x �DM → �DM 6/48 31/32

DVB(53) Word ÷ constant → word 51/52 34/35 7/8 5/6

�DM ÷ �DM → �DM 71/73 47/48

ADDL(54) Word + word → word 74/76 49/50 6/8 4/6

�DM + �DM → �DM 92/93 61/62

SUBL(55) Word – word → word 73/75 49/50 6/8 4/6

�DM – �DM → �DM 93/95 62/63

MULL(56) Word x word → word 187/188 125/126 6/8 4/6

�DM x �DM → �DM 205/206 137/138

Instruction Execution Times Section 6-3

239

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

Instruction OFF execution time (µs)1,2ON execution time (µs)1,2Conditions

C2000HC1000HC2000HC1000H

DIVL(57) Word ÷ word → word 192/194 128/129 6/8 4/6

�DM ÷ �DM → �DM 210/212 140/141

BINL(58) When converting words to words 35/37 27/28 7/8 5/6

When converting �DM to �DM 47/49 31/32

BCDL(59) When converting words to words 39/40 26/27 7/8 5/6

When converting �DM to �DM 50/52 33/34

BCNT(67) When counting 1 word 51/53 34/35 7/8 5/6

(Bit Count) When counting 4,096 words using �DM 8.2 ms 5.5 ms

BCMP(68) Comparing constant to word-designated table 66/68 44/45 7/8 5/6

Comparing �DM → �DM-designated table 95/96 63/64

XFER(70) When transferring 1 word 46/48 31/32 7/8 5/6

When transferring 4,096 words using �DM 5.49 ms 3.66 ms

BSET(71) When setting a constant to 1 word 35/37 23/24 7/8 5/6

When setting �DM ms to 4,096 words using
�DM

4.14 ms 2.76 ms

ROOT(72) When taking root of word and placing in a
word

99/100 66/67 7/8 5/6

When taking root of 99,999,999 in �DM and
placing in �DM

109/110 73/74

XCHG(73) Between words 19/20 13/14 7/8 5/6

Between �DM 31/33 21/22

SLD(74) When shifting 1 word 35/37 23/24 7/8 5/6

When shifting 4,096 DM words using �DM 6.31 ms 4.20 ms 7/8 5/6

SRD(75) When shifting 1 word 35/37 23/24 7/8 5/6

When shifting 4,006 DM words using �DM 6.27 ms 4.18 ms

MLPX(76) When decoding word to word 26/28 17/18 7/8 5/6

When decoding �DM to �DM 56/58 37/38

DMPX(77) When encoding a word to a word 35/36 23/24 7/8 5/6

When encoding �DM to �DM 65/67 43/44

SDEC(78) When decoding a word to a word 30/31 20/21 7/8 5/6

When decoding �DM to �DM 67/68 45/46

FDIV(79) Word ÷ word → word (equals 0) 52/54 35/36 7/8 5/6

Word ÷ word → word (doesn’t equal 0) 174/175 116/117

�DM ÷ �DM → �DM 192/194 128/129

DIST(80) Constant → word + (word) 25/27 17/18 7/8 5/6

�DM → (�DM + (�DM)) 47/49 31/32

COLL(81) (Word + (word)) → word 28/30 19/20 7/8 5/6

(�DM + (�DM)) → �DM 48/50 32/33

Instruction Execution Times Section 6-3

240

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

Instruction OFF execution time (µs)1,2ON execution time (µs)1,2Conditions

C2000HC1000HC2000HC1000H

MOVB (82) When transferring word to a word 31/32 21/22 7/8 5/6

When transferring �DM to �DM 51/52 34/35

MOVD(83) When transferring word to a word 27/28 18/19 7/8 5/6

When transferring �DM to �DM 47/49 31/32

SFTR(84) When shifting 1 word 42/44 28/29 7/8 5/6

When shifting 4,096 DM words using �DM 7.35 ms 4.90 ms

TCMP(85) Comparing constant to word-designated table 51/53 34/35 7/8 5/6

Comparing �DM → �DM-designated table 71/73 47/48

ASC(86) Word → word 32/34 21/22 7/8 5/6

�DM → �DM 74/76 49/50

WRIT(87) When writing 1 word 1.24 ms 0.83 ms 6/8 4/6

When writing 255 words 6.32 ms 4.21 ms

READ(88) When reading 1 word 1.24 ms 0.83 ms 6/8 4/6

Instruction Execution Times Section 6-3

241

6-4 I/O Response Time
The I/O response time is the time it takes for the PC to output a control signal
after it has received an input signal. The time it takes to respond depends on
the cycle time and when the CPU receives the input signal relative to the in-
put refresh period. The I/O response times for a PC not in a Link System are
discussed below. For response times for PCs with Link Systems, refer to the
relevant System Manual.

The minimum and maximum I/O response time calculations described below
are for where 00000 is the input bit that receives the signal and 00200 is the
output bit corresponding to the desired output point.

00000

00200
Address Instruction Operands

00000 LD 00000

00001 OUT 00200

The PC responds most quickly when it receives an input signal just prior to
the input refresh period in the cycle. Once the input bit corresponding to the
signal has been turned ON, the program will have to be executed once to
turn ON the output bit for the desired output signal and then the input refresh
and overseeing operations would have to be repeated before the output re-
fresh operation refreshes the output bit. The I/O response time in this case is
thus found by adding the input ON-delay time, the cycle time (including the
I/O refresh times and the overseeing time), and the output ON-delay time.
This situation is illustrated below.

Cycle time

Input
signal

Output
signal

Cycle

Cycle time

Input refresh Output refresh

Overseeing

I/O response time

CPU reads
input signal

CPU writes
output signal

Output ON delayInput ON delay

Minimum I/O response time = input ON delay + cycle time + I/O refresh time
+ overseeing time + output ON delay

The PC takes longest to respond when it receives the input signal just after
the input refresh phase of the cycle. In this case the CPU does not recognize
the input signal until the end of the next cycle. The maximum response time
is thus one cycle longer than the minimum I/O response time, except that the
input refresh time would not need to be added in because the input comes
just after it rather than before it.

Minimum I/O Response
Time

Maximum I/O Response
Time

I/O Response Time Section 6-4

242

Input
signal

Output
signal

Cycle

Cycle time

Input refresh Output refresh

I/O response time

CPU reads
input signal

CPU writes
output signal

Input ON delay

Overseeing

Cycle time

Output ON delay

Maximum I/O response time = input ON delay + (cycle time x 2) + overseeing
time + output ON delay

The data in the following table would produce the minimum and maximum
cycle times shown calculated below.

Input ON-delay 1.5 ms

Cycle time 20 ms

Input refresh time 0.23 ms

Overseeing time 3.0 ms

Output ON-delay 15 ms

Minimum I/O response time = 1.5 + 20 + 0.23 + 3.0 +15 = 39.73 ms

Maximum I/O response time = 1.5 + (20 x 2) + 3.0 +15 = 59.5 ms

Calculation Example

I/O Response Time Section 6-4

243

SECTION 7
Program Debugging and Execution

This section provides the procedures for debugging a program and monitoring and controlling the PC through a Program-
ming Console.

If you are using a GPC, a FIT, or a computer running LSS, refer to the Operation Manual for procedures on these.

7-1 Debugging 244.
7-1-1 Displaying and Clearing Error Messages 244.
7-1-2 Entering Debug Mode 245.
7-1-3 Address Execution 246.
7-1-4 Debug Execution 248.
7-1-5 Address Tracing 249.
7-1-6 Address Trace Read 250.

7-2 Monitoring Operation and Modifying Data 252.
7-2-1 Bit/Word Monitor 252.
7-2-2 Force Set/Reset 255.
7-2-3 Hexadecimal/BCD Data Modification 257.
7-2-4 Hex/ASCII Display Change 258.
7-2-5 Three-word Monitor 259.
7-2-6 Three-word Data Modification 260.
7-2-7 Binary Monitor 261.
7-2-8 Binary Data Modification 262.
7-2-9 Changing Timer/Counter SV 263.

7-3 File Memory Operations 266.
7-3-1 File Memory Clear 266.
7-3-2 File Memory Write 267.
7-3-3 File Memory Verify 270.
7-3-4 File Memory Read 272.
7-3-5 File Memory Edit 275.

7-4 Program Backup and Restore Operations 276.
7-4-1 Saving Program Memory Data 277.
7-4-2 Restoring or Comparing Program Memory Data 278.
7-4-3 Saving, Restoring, and Comparing DM Data 280.

244

7-1 Debugging
After inputting a program and correcting it for syntax errors, it must be exe-
cuted and all execution errors must be eliminated. Execution errors include
an excessively long cycle, errors in settings for various Units in the PC, and
inappropriate control actions, i.e., the program not doing what it is designed
to do.

If desired, the program can first be executed isolated from the actual control
system and wired to dummy inputs and outputs to check for certain types of
errors before actual trial operation with the controlled system.

The procedures in this section are designed to aid in debugging the program
and quickly achieving an operative Control System.These procedures can be
used in combination with the monitoring and data modification procedures
provided in the next section.

All but the first of these procedures can be performed only after entering the
Debug operation from PROGRAM mode.

7-1-1 Displaying and Clearing Error Messages

When an error occurs during program execution, it can be displayed for iden-
tification by pressing CLR, FUN, and then MONTR. If an error message is
displayed, MONTR can be pressed to access any other error messages that
are stored by the system in memory. If MONTR is pressed in PROGRAM
mode, the error message will be cleared from memory; be sure to write down
the error message when required before pressing MONTR. OK will be dis-
played when the last message has been cleared. This procedure can also be
used to clear messages produced by the program through MSG(46).

If a beeper sounds and the error cannot be cleared by pressing MONTR, the
cause of the error still exists and must be eliminated before the error mes-
sage can be cleared. If this happens, take the appropriate corrective action to
eliminate the error. Refer to Section 8 Troubleshooting for all details on all
error messages. The sequence in which error messages are displayed de-
pends on the priority levels of the errors. The messages for fatal errors (i.e.,
those that stop PC operation) are displayed before non-fatal ones.

Although error messages can be displayed in any mode, they can be cleared
only in PROGRAM mode. There is no way to restart the PC following a fatal
error without first clearing the error message in PROGRAM mode.

Key Sequence

Debugging Section 7-1

245

The following displays show some of the messages that may appear. Refer
to Section 8 Troubleshooting for an extensive list of error messages, their
meanings, and the appropriate responses.

Fatal
errors

Non-fatal
errors

All errors
have been
cleared

�����

�����

���� ��!

�����������&

�&

����������

���������	�

�����	����

����	������

�������������

	�	���������	

	�	���������

�������

������������

�����������

	�������������

�����������&

�&

7-1-2 Entering Debug Mode
Debug mode cannot be entered if there are no instructions in the program or
if there is no END(01). Although the Program Clear, Program Write, and In-
struction Insert/Delete operations are not possible during debugging, all other
PROGRAM mode functions are available.

Example

Debugging Section 7-1

246

When Debug mode is entered or left, data in the IR, AR, and LR areas is
cleared unless the Data Retention control bit is ON (see 3-3-2 Data Reten-
tion Control Bit)

Key Sequence

(Program mode → Debug mode)

(Debug mode → Program mode)

Example

Debugging possible.

Debugging not possible.

Entering DEBUG
mode

Leaving DEBUG
mode

���������	�

�������������

��	����

�����������

�����

�����

�������������

�����������

7-1-3 Address Execution

This operation is used to execute a program on an instruction-by-instruction
basis while examining the execution status at each step.

After Debug mode is entered, the address from which execution is to begin is
set. EXT is then used to start execution; the down key, to go to the next ad-
dress. If the address holds an instruction that ends a cycle (such as END(01)
and SBN(92)) or an instruction that stops program execution (FALS(07)), ad-
dress execution will be ended.

Since the results of the executed instruction are transferred to the I/O mem-
ory, word data can be monitored through the Data Monitor operation.

Debugging Section 7-1

247

Key Sequence

Address currently set Execution

ON

OFF

�����������

������	���������

����������������

������	���������

		� $�!��������

�����	����������

		� $�!��������

������	���������

����������������

������	���������

����������������

�����	����������

����������������

�����	����������

����������������

Meaning of Displays
Execution status 2
Execution status 1

�����	����������

����������������

Execution status 1 shows the execution condition of the current instruction or
indicates that a block program is being executed. This status can be changed
(set or reset) by using PLAY/SET or REC/RESET as long as B (see below) is
not also being displayed. Execution status 1 values indicate the following:

0: OFF

1: ON

B: Block program execution

Execution status 2 values indicate the following:

IL: The displayed instruction is between IL(02) and ILC(03) and the IL
condition is not met.

JP: The displayed instruction is between JMP(04) and JME(05) and the
JMP condition is not met.

NP: Block program is not executed.

Example

Debugging Section 7-1

248

7-1-4 Debug Execution

The Debug Execution operation is used to execute the program from the cur-
rently displayed address to the address before the specified stop address.

After switching from PROGRAM to Debug mode, read the program and set
the address from which to start debugging. Then, press EXT and CHG and
enter the stop address. Press the down key to start debugging.

If END(01) is encountered before the stop address, execution will halt. Also,
program execution can be aborted by pressing CLR.

Key Sequence

[Stop address]

To abort

Address
currently set

Example

Address currently being executed

Start address

Indicates the previously
set stop address.

Executing using the previously set stop address.

Aborting while debugging in progress

�����������

������	���������

����������������

�����������

	�������	�������

�����������

	�������	�����+1

(((((�����

���+1�	���������

����������������

(((((�����

��0�������������

���������������+

Instruction currently being executed

Debugging Section 7-1

249

7-1-5 Address Tracing
The Address Tracing operation is used to debug a section of 250 instructions
and store the results in the Trace Memory. To set up the Address Tracing op-
eration, press EXT and CHG, then specify a stop address, a trigger address,
and a delay value (the address where tracing is to begin relative to the trigger
address). The delay value can be any integer from –249 to +250. Use NOT
to change between positive and negative delays. If the trigger address is
01000 and the delay value is –211, the trace area will range from 00789
(01000 – 211) to 01038 (00789 + 250). Even if the stop address lies outside
this trace area, only those 250 instruction steps between 00789 and 01038
will be traced.

If the stop address or END(01) lies within the trace area, trace execution will
go only as far as the stop address or the END(01) and then will loop back
over the instructions at the start of the trace area. Address tracing will con-
tinue to loop until 250 instructions have been traced. Results for the instruc-
tion that have been recorded in Trace Memory can later be read (see the
next operation) to check the status of program execution instruction-by-in-
struction.

Trigger
address

Stop
address

00000

00789
(–211)
01000

01038
(+038)
02121

Instruction trace
range (250 steps)

The following diagram shows the maximum and the minimum ranges from
the trigger address.

–249
Delay value set at –249

+250
Delay value set at +250

Trigger address

Address tracing
range (250 steps)

Key Sequence

[Stop address] [Trigger address] [Delay value]

Address currently set

To abort

Delay Values

Debugging Section 7-1

250

Example

Previously set stop address

Start address

Previously set trigger address

Previously set delay

Use the NOT key to
switch between + and –.

Indicates number of execution
loops when trigger address is
not found before the stop
address or END(01) instruction.Program address being executed

Aborting while tracing is in progress

When tracing finishes, the dis-
play returns to as it was before
(with the final address).

����������

	�������	�������

����������

��������	�������

����������

��������	�������

����������

������������'���

��������

������������'���

((((((������

������������((((

�����������

������	���������

����������������

����������

	�������	�������

������	���������

����������������

��0�������������

���������������+

If no trigger address is found between address 00000 and either the stop ad-
dress or END(01), no tracing will occur and execution will loop for 250 ad-
dresses.

7-1-6 Address Trace Read

The Address Trace Read operation is used to read the contents of Trace
Memory starting with the trigger address. Pressing the up and down keys
increments or decrements the Trace Memory area address being read.

Debugging Section 7-1

251

Key Sequence

�����������

���������������

�����2����������

����������������

�����2����������

����������������

�����2����������

����������������

��$$$"����������

����������������

��$$0"����������

����������������

Meaning of Displays

0: OFF
1: ON
B: Block program execution

IL: Within an IL/ILC block
JP: Within a JMP/JME block
NP: Block program not executed

Address relative to the trigger address

Read direction (+/–)

Address

(((((2(((���((�(

����������������

Example

Debugging Section 7-1

252

7-2 Monitoring Operation and Modifying Data
The simplest form of operation monitoring is to display the address whose
operand bit status is to be monitored using the Program Read or one of the
search operations. As long as the operation is performed in RUN or MONI-
TOR mode, the status of any bit displayed will be indicated.

This section provides other procedures for monitoring data as well as proce-
dures for modifying data that already exists in a data area. Data that can be
modified includes the PV (present value) and SV (set value) for any timer or
counter.

All monitor operations in this section can be performed in RUN, MONITOR,
or PROGRAM mode and can be cancelled by pressing CLR.

All data modification operations except for timer/counter SV changes are per-
formed after first performing one of the monitor operations. Data modification
is possible in either MONITOR or PROGRAM mode, but cannot be per-
formed in RUN mode.

7-2-1 Bit/Word Monitor
The status of any bit or word in any data area can be monitored using the
following operation. Although the operation is possible in any mode, ON/OFF
status displays will be provided for bits in MONITOR or RUN mode only.

The Bit/Word Monitor operation can be entered either from a cleared display
by designating the first bit or word to be monitored or it can be entered from
any address in the program by displaying the bit or word address whose
status is to be monitored and pressing MONTR.

When a bit is monitored, it’s ON/OFF status will be displayed (in MONITOR
or RUN mode); when a word address is designated other than a timer or
counter, the digit contents of the word will be displayed; and when a timer or
counter number is designated, the PV of the timer will be displayed and a
small box will appear if the completion flag of a timer or counter is ON. When
multiple words are monitored, a caret will appear under the leftmost digit of
the address designation to help distinguish between different addresses. The
status of TR bits and SR flags (e.g., the arithmetic flags), cleared when
END(01) is executed, cannot be monitored.

Up to six memory addresses, either bits, words, or a combination of both,
can be monitored at once, although only three of these are displayed at any
one time. To monitor more than one address, return to the start of the proce-
dure and continue designating addresses. Monitoring of all designated ad-
dresses will be maintained unless more than six addresses are designated. If
more than six addresses are designated, the leftmost address of those being
monitored will be cancelled.

To display addresses that are being monitored but are not presently on the
Programming Console display, press MONTR without designating another
address. The addresses being monitored will be shifted to the right. As
MONTR is pressed, the addresses being monitored will continue shifting to
the right until the rightmost address is shifted back onto the display from the
left.

During a monitor operation the up and down keys can be pressed to incre-
ment and decrement the leftmost address on the display and CLR can be
pressed to cancel monitoring the leftmost address on the display. If the last
address is cancelled, the monitor operation will be cancelled. The monitor
operation can also be cancelled regardless of the number of addresses being
monitored by pressing SHIFT and then CLR.

Monitoring Operation and Modifying Data Section 7-2

253

LD and OUT can be used only to designate the first address to be displayed;
they cannot be used when an address is already being monitored.

Key Sequence

Cancels monitor
operation

Clears leftmost
address

The following examples show various applications of this monitor operation.

Program Read then Monitor

Indicates Completion flag is ON

Monitor operation is
cancelled

�����

���������

����������������

�����

����*

������

�����

�����

����������������

Examples

Monitoring Operation and Modifying Data Section 7-2

254

Bit Monitor

�����

�����

����������������

�����

3����

�����

����������������

Word Monitor

�����

�����

����������������

�����

����������������

�4���

�����

�4���

�����

Monitoring Operation and Modifying Data Section 7-2

255

Multiple Address Monitoring

�����

�����

����������������

�����

�����

����������

����������

����������

����������

����������

����������

���������������

�����3��������

���������������

�����3���������

���������������

����������3����

����������

�����3����

�����

�����

�����

����������������

�����

����������������

Cancels monitoring of
leftmost address

Cancels Monitor
operation

7-2-2 Force Set/Reset
When the Bit/Word Monitor operation is being performed and a bit, timer, or
counter address is leftmost on the display, PLAY/SET can be pressed to turn
ON the bit, start the timer, or increment the counter and REC/RESET can be
pressed to turn OFF the bit or reset the timer or counter. Timers will not oper-
ate in PROGRAM mode. SR bits cannot be turned ON and OFF with this op-
eration.

Bit status will remain ON or OFF only as long as the key is held down; the
original status will return as soon as the key is released. If a timer is started,
the completion flag for it will be turned ON when SV has been reached.

This operation can be used in MONITOR mode to check wiring of outputs
from the PC prior to actual program execution. This operation cannot be
used in RUN mode.

Monitoring Operation and Modifying Data Section 7-2

256

Key Sequence

The following example shows how either bits or timers can be controlled with
the Force Set/Reset operation. The displays shown below are for the follow-
ing program section.

00002

TIM 000

00500

012.3 s

Address Instruction Operands

00200 LD 00002

00201 TIM 000

0123

00202 LD TIM 000

00203 OUT 00500

TIM 000

#0123

The following displays show what happens when TIM 000 is set with 00100
OFF (i.e., 00500 is turned ON) and what happens when TIM 000 is reset with

Example

Monitoring Operation and Modifying Data Section 7-2

257

00100 ON (i.e., timer starts operation, turning OFF 00500, which is turned
back ON when the timer has finished counting down the SV).

(This example is in MONITOR mode.)

Monitoring
00100 and 00500.

Indicates that force set/reset is in progress.

Indicates that the time is up.

Monitoring
TIM 000.

Setting TIM 000
turns ON 00500.

Returns to the beginning
when the key is released.

Display with 0010 originally
ON.

Timer starts timing, turning
00500 OFF.*

When the time is up, 00500
goes ON again.

*Timing not done in PROGRAM mode.

�������+��

����3����

������������+��

�����3����3����

������������+��

�����3����3����

������������+��

�����3����3���

������������+��

�����3����3����

������������+��

�����3����3���

������������+��

�����3���3����

������������+��

�����3����3����

������������+��

�����3����3���

�������+��

3����3����

�������+��

����3����

7-2-3 Hexadecimal/BCD Data Modification
When the Bit/Word Monitor operation is being performed and a BCD or hexa-
decimal value is leftmost on the display, CHG can be input to change the
value. SR words cannot be changed.

If a timer or counter is leftmost on the display, the PV will be displayed and
will be the value changed. See 7-6-7 Changing Timer/Counter SV for the pro-
cedure to change SV. PV can be changed in MONITOR mode only when the
timer or counter is operating.

To change contents of the leftmost word address, press CHG, input the de-
sired value, and press WRITE

Monitoring Operation and Modifying Data Section 7-2

258

Key Sequence

Word currently
monitored on
left of display.

[Data]

The following example shows the effects of changing the PV of a timer.

This example is in MONITOR mode

Timing

Timing

PV changed

Timing

Timing

�����

�����

����������������

�����

�����

��������	�����

���������$�����

��������	�����

���������������

�����

���$$

7-2-4 Hex/ASCII Display Change

This operation converts DM data displays back and forth between 4-digit
hexadecimal data and ASCII.

Key Sequence

Word currently

displayed.

Example

Monitoring Operation and Modifying Data Section 7-2

259

�����

�����

����������������

�����

�**��

�����

��

�����

�*�*�

7-2-5 Three-word Monitor
To monitor three consecutive words together, specify the lowest numbered
word, press MONTR, and then press EXT to display the data contents of the
specified word and the two words that follow it.

A CLR entry changes the three-word monitor operation to a single-word dis-
play.

Key Sequence

Single-word monitor in progress

Example

Monitoring Operation and Modifying Data Section 7-2

260

�����

�����

����������������

�����

�0$�

���������������

������*+1%�0$�

���������������

����������*+1%

����*����������

��������������

����+����*�����

��������������

����*����������

��������������

�����

�����

7-2-6 Three-word Data Modification
This operation changes the contents of a word during the 3-word Monitor op-
eration. The blinking square indicates where the data can be changed. After
the new data value is keyed in, pressing WRITE causes the original data to
be overwritten with the new data. If CLR is pressed before WRITE, the
change operation will be cancelled and the previous 3-word Monitor opera-
tion will resume.

Key Sequence

3 words currently
displayed [Data]

Example

Monitoring Operation and Modifying Data Section 7-2

261

Example

3-word Monitor
in progress.

Stops in the middle
of monitoring.

Resumes previous
monitoring.

���������������

������*+1%�0$�

���������������

������*+1%�0$�

���������������

������*+1%�0$�

���������������

������*+1%�0$�

���������������

��������*+�0$�

���������������

��������*+�0$�

���������������

������*+1%�0$�

7-2-7 Binary Monitor

You can specify that the contents of a monitored word be displayed in binary
by pressing SHIFT and MONTR after the word address has been input.
Words can be successively monitored by using the up and down keys to in-
crement and decrement the displayed word address. To clear the binary dis-
play, press CLR.

Key Sequence

[Word]

Binary Monitor
clear

All monitor
clear

Monitoring Operation and Modifying Data Section 7-2

262

�����

�����

����������������

�����4���������

����������������

�����4���������

����������������

�����

����������������

�����

�����

����������������

�����

�����

���������������

����������������

�����

�����

�����

����������������

7-2-8 Binary Data Modification
This operation assigns a new 16-digit binary value to an IR, HR, AR, LR, or
DM word.

The cursor, which can be shifted to the left with the up key and to the right
with the down key, indicates the position of the bit that can be changed. After
positioning to the desired bit, a 0 or a 1 can then be entered as the new bit
value. After a bit value has been changed, the blinking square will appear at
the next position to the right of the changed bit.

Key Sequence

Word currently
displayed in binary.

Example

Monitoring Operation and Modifying Data Section 7-2

263

IR bit 00115 IR bit 00100

�����

�����

����������������

�����

����������������

�����4���������

����������������

�����4���������

����������������

�����4���������

����������������

�����4���������

����������������

�����4���������

����������������

�����4���������

����������������

�����4���������

����������������

�����4���������

����������������

�����4���������

����������������

7-2-9 Changing Timer/Counter SV
There are two ways to change the SV of a timer or counter. It can be done
either by inputting a new value; or by incrementing or decrementing the cur-
rent SV. Either method can be used only in MONITOR or PROGRAM mode.
In MONITOR mode, the SV can be changed while the program is being exe-
cuted. Incrementing and decrementing the SV is possible only when the SV
has been entered as a constant.

To use either method, first display the address of the timer or counter whose
SV is to be changed, presses the down key, and then press CHG. The new
value can then be input numerically and WRITE pressed to change the SV or
EXT can be pressed followed by the up and down keys to increment and
decrement the current SV. When the SV is incremented and/or decremented,
CLR can be pressed once to change the SV to the incremented or decre-
mented value but remaining in the display that appeared when EXT was
pressed or CLR can be pressed twice to return to the original display with the
new SV.

This operation can be used to change a SV from designation as a constant to
a word address designation and vice versa.

Example

Monitoring Operation and Modifying Data Section 7-2

264

Key Sequence

Timer/Counter
currently displayed

The following examples show inputting a new constant, changing from a con-
stant to an address, and incrementing to a new constant.

�����

�����

����������������

�����	���

����������������

��������������

�����������-����

��������������

�����-�����-����

��������������

�����-�����-���*

��������������

�����������-���*

�����������

�����-������4���

�����������

�����-������4���

��������������

����������������

Example

Inputting New SV and
Changing to Word
Designation

Monitoring Operation and Modifying Data Section 7-2

265

Returns to original display
with new SV

Current SV (during
change operation)

SV before the change

�����

�����

����������������

�����	���

����������������

���������������

�����������-����

���������������

�����-�����-����

���������������

�����-�����-����

�����������

�����-�����-����

�����������

�����-�����-����

�����������

�����-�����-���*

�����������

�����-���*�-����

����������������

�����������-���*

Incrementing and
Decrementing

Monitoring Operation and Modifying Data Section 7-2

266

7-3 File Memory Operations
When a File Memory Unit is connected to the PC, contents of the Program
Memory and data areas can be transferred to and from the File Memory (FM)
area.

The FM area can thus be used for auxiliary program memory (UM) and data
memory (IOM) storage, as well as for comment memory storage (CM) for
ladder logic program comments.

Except where specifically noted, these operations are available only in the
MONITOR and PROGRAM modes.

The Programming Console operations described in this section can be can-
celled by pressing CLR during or after the normal key sequence.

7-3-1 File Memory Clear
This operation clears the FM area. Clearing the entire FM area initializes it
and prepares it for future data storage. This must be done when using an FM
Unit for the first time or when an FM error occurs because of memory dam-
age.

To clear a portion of the FM, you must specify a start block number and an
end block number. FM is not initialized for partial clears.

Key Sequence

[Start block] [End block]

Clear all

Partial clear

File Memory Operations Section 7-3

267

Partial clear

Clear all

Last block number

�����������

	��������&�����

�����������

	��������&�����

�����������

�������&�������

�����������

�������&�������

����������

���

�����

�����

���� ��!

�����������5�

��,���5������5�

������������5�

������������5�

�����������

$%���&����������

�����������

$%���&������$%��

�$$$������

���

7-3-2 File Memory Write
The File Memory Write operation writes data to the FM area. Data either from
program memory or a data area can be transferred to the FM area with this
operation. Data is written in blocks of 128 words.

When transferring from program memory, data between the specified starting
address and the next END(01) in the program is moved into the FM area
starting at the FM start block. If the size of the program data exceeds the
space between the FM start block and the end of the FM area, only that part
of the program data which will fit into the FM area will be transferred.

When transferring from a data area, data between the specified start word
and the last word in the particular data area will be transferred. For data

Example

File Memory Operations Section 7-3

268

transfer from the DM area, you must specify the number of blocks to be
transferred.

Key Sequence

[Start block][Start address]

[Start DM Wd] [No. of blocks] [Start block]

[Start Wd]

(AR)

File Memory Operations Section 7-3

269

continued on next page

For program memory

For a data area (here, DM)

�����

�����

���� ��!

�����������5�

,���5������5�

��,����
���5�

����5������5�

��������'���

��������'�������

��������'�������

	��������&�����

��������'�������

	��������&�����

��������'�������

,�����

��������'�������

,�������������+�

��������'������

����������������

��������'������

���������������*

��������'������

���&�����������

��������'������

���&�����������

Changing numbers

��������'������

,���������������

Aborting during operation

��������'������

	��������&�����

Example

File Memory Operations Section 7-3

270

Continued from previous page.

��������'������

	��������&�����

��������'������

,�����

��������'������

,���������������

��������'������

,��������������+

Aborting during operation

Changing numbers

7-3-3 File Memory Verify
The File Memory Verify operation compares data either in program memory
or in a data area with data stored in the FM area. If the two sets of data differ,
a ”VER ERR” message will be displayed on the Programming Console.

When data in program memory is being verified, this operation compares
program memory data starting at the specified address and ranging to
END(01), to FM data starting at a specified block (the start block).

When data in a data area is being verified, this operation compares data be-
tween the specified start word and the last word in the particular data area, to
data in an FM area. For DM area verification, you must specify the number of
blocks to be verified (one block consists of 128 words).

Key Sequence

[Start block][Start address]

[Start DM Wd] [No. of blocks] [Start block]

[Start Wd]

(AR)

File Memory Operations Section 7-3

271

continued on next page

For program memory

For a data area (here, DM)

�����

�����

���� ��!

�����������5�

,���5������5�

��,����
���5�

����5������5�

��������)���

��������)�����

��������)�����

	��������&�����

��������)�����

	��������&�����

��������)�����

�����

��������)�����

��������������+�

��������)������

����������������

��������)������

���������������*

��������)������

���&�����������

��������)������

���&�����������

Changing numbers

��������)�����

����������������

Aborting during operation

��������)������

	��������&�����

Example

File Memory Operations Section 7-3

272

Continued from previous page.

��������)������

	��������&�����

��������)������

,�����

��������)������

����������������

��������)������

���������������+

Aborting during operation

Changing numbers

7-3-4 File Memory Read
The File Memory Read operation is used to read user program data (UM)
stored in the FM area and transfer it to a specified area in RAM Program
Memory, or to read user data (IOM) in the FM area and transfer it to one of
the CPU data areas. The data is read and transferred in blocks of 128 words.

When reading data to be transferred to program memory, reading begins at
the specified FM start block. Reading and block transfer end when either the
first END(01) or non-UM (i.e., CM or IOM) FM block is encountered, or when
the RAM user program memory area to which the data is being transferred
overflows.

When reading data for a data area, reading begins at the specified FM start
block and continues to the end. If a non-IOM block is encountered, an error
message will be displayed and transfer will not be possible. When transfer-
ring data to the DM area, you must specify the number of blocks to be read
and transferred.

File Memory Operations Section 7-3

273

Key Sequence

[Start block][Start address]

[Start DM Wd] [No. of blocks] [Start block]

[Start Wd]

(AR)

File Memory Operations Section 7-3

274

continued on next page

For program memory

For a data area (here, DM)

�����

�����

���� ��!

�����������5�

,���5������5�

��,����
���5�

����5������5�

�����������

��������������

��������������

	��������&�����

��������������

	��������&�����

��������������

,�����

��������������

,�������������+�

��������������

����������������

��������������

���������������*

��������������

���&�����������

��������������

���&�����������

Changing numbers

��������������

,���������������

Aborting during operation

��������)������

	��������&�����

Example

File Memory Operations Section 7-3

275

Continued from previous page.

��������������

	��������&�����

��������������

,�����

��������������

,���������������

��������������

,��������������+

Aborting during operation

Changing numbers

7-3-5 File Memory Edit
The File Memory Edit operation allows you to read and modify data stored in
the FM area (IOM). Data can be read in RUN mode with this function, but it
can be modified only when in MONITOR or PROGRAM mode.

If you do not specify a start block, the reading will begin at the first block of
the FM area. To access words within the current block, use the up and down
keys to scroll through word-by-word, or to go directly to a specific word within
the block by entering CLR, the word number, then the down key.

To change the contents of an FM area word, enter the new data for the cur-
rent word, followed by WRITE. This will write the data into the FM area word.
Program and comment data stored in the FM area cannot be rewritten with
this operation.

Key Sequence

[Start block] [Programming
operations]

File Memory Operations Section 7-3

276

Word Data contents Type of memory (** indicates empty area)

I/O memory

Reading block #7

Changing data contents
from 1234 to 0005

Read IR 009

User program

Comments

Changing the word

Reading the program or comment data

�����

�����

���� ��!

�����������5�

�,���5������5�

������������

����%�������

����%�������

����������������

����%�������

����������*�����

����%�������

����������+�����

����%�������

������������

����%�������

����

����%�������

���$

����%�������

���$�����1%�����

����%�������

��	������������

����%�������

��	������������

7-4 Program Backup and Restore Operations
Both Program Memory (UM) and DM area data can be backed-up on a stan-
dard, commercially available cassette tape recorder. Any dependable mag-
netic cassette tape of adequate length will suffice. To save a 16K-word pro-
gram, the tape must be 30 minutes long. Always allow for about 5 seconds of
blank leader tape before the taped data begins. Store only one program or
section of DM area on a single side of a tape; there is no way to identify
separate programs or DM areas stored on the same side of the tape. If a pro-
gram is too long for one side, it can be split onto two sides.

Example

Program Backup and Restore Operations Section 7-4

277

Be sure to clearly label all cassette tapes.

Use patch cords to connect the cassette recorder earphone (or LINE-OUT)
jack to the Programming Console EAR jack and the cassette recorder micro-
phone (or LINE-IN) jack to the Programming Console MIC jack. Set the cas-
sette recorder volume and frequency equalizer controls to maximum levels.

The PC must be in PROGRAM mode for all cassette tape operations.

While the operation is in progress, the cursor will blink and the block count
will be incremented on the display.

Cassette tape operations may be halted at any time by pressing CLR.

The following error messages may appear during cassette tape operations.

Message Meaning and appropriate response

0000 ERR ******* File number on cassette and designated file number are
not the same Repeat the operation using the correct file

FILE NO.********
not the same. Repeat the operation using the correct file
number.

**** MT VER ERR Cassette tape contents differs from that in the PC. Check
content of tape and/or the PC.

**** MT ERR Cassette tape is faulty. Replace it with another.

7-4-1 Saving Program Memory Data
This operation is used to copy the content of Program Memory to a cassette
tape. The procedure is as follows:

1, 2, 3... 1. Press EXT and the 0 key to specify Program Memory.
2. Input a file number for the data that is to be saved.
3. Specify the start and stop addresses of the section of Program Memory

that is to be recorded. When the start address is designated, the default
stop address will indicate the last address that can be stored on one
side of a cassette tape (i.e., approximately 16K words for one side of a
C60 tape). Do not designate a stop address greater than this one.

4. Start cassette tape recording.
5. Within 5 seconds, press SHIFT and REC/RESET.

Program saving continues until END(01) or the stop address is reached. At
that time the program size in Kwords is displayed. If the END(01) is reached
before the stop address, the recording operation will continue, however,
through the designated stop address unless CLR is pressed to cancel.

Key Sequence

Cancel with the clear key

No longer than 5 seconds

Error Messages

Program Backup and Restore Operations Section 7-4

278

Selecting
Program Memory

Starting address of
data to be recorded

Last address

Stop address
specified

Blinking

Continue within 5 seconds

Recording in progress

When it comes to END

Stop recording with CLR

Saved up to stop address

Start recording

�����

�������

���5����5�

�������

�������.��������

�������

�������.01���*��

�������

	���������������

�������

	�������������*+

���*+��

	������������0$�

���*+��

	�����������+%0$

���*+����������

�������.01���*��

��*������������

�������.01���*��

�*0������������

���� ��! �+.1&
!

�*0�������	�����

���� ��! �+.1&
!

�+%0$����������

���� ��! �1.0&
!

7-4-2 Restoring or Comparing Program Memory Data
This operation is used to restore Program Memory data from a cassette tape
or to compare Program Memory data with the contents on a cassette tape.
The procedure is as follows:

1, 2, 3... 1. Press EXT and the 0 key to specify Program Memory.
2. Specify the number of the file to be restored or compared.

Example

Program Backup and Restore Operations Section 7-4

279

3. Specify the start address for the data that is to be restored or compared.
4. Start playing the cassette tape.
5. Within 5 seconds, press SHIFT and PLAY/SET to restore data or VER to

compare data.

Program restoration or comparison continues until END(01) is reached or
until the tape is finished, at which time the program size in Kwords is dis-
played. At that time the program size in Kwords is displayed. Even if END(01)
is reached before the end of the tape, the restoring or comparison operation
will continue through the end of the tape unless CLR is pressed to cancel.

To restore or compare program data recorded on two sides of a tape or on
two or more tapes, begin restoring or comparing from the lowest address.

Key Sequence

No longer than
5 seconds

Program Backup and Restore Operations Section 7-4

280

Restoring in progress

END reached

Restored up to END

Stop restoring using CLR

Comparison in progress

END reached

Stop comparison using CLR

Compared up to end of tape

�����

�������

���5����5�

�������

�������.��������

���*+����������

�������01���*��

��*������������

�������01���*��

�+0������������

���� ��! �+.0&
!

�+0�������	�����

���� ��! �+.0&
!

�1%0$����������

���� ��! �1.0&
!

���*+����������

�������01���*��

��*������������

�������01���*��

�+0������������

���� ��! �+.0&
!

�+0�������	�����

�������� �+.0&
!

�1%0$���������&

���� ��! �1.0&
!

�������

�������.01���*��

�������

	���������������

�������

	�������������*+

7-4-3 Saving, Restoring, and Comparing DM Data
The procedures for saving, restoring and comparing DM area data are identi-
cal to those for Program Memory except that the DM area is specified and
start and stop addresses are not required. Cassette tape operations for DM
area data will be continued to the end of the DM area or the end of the cas-
sette tape unless CLR is pressed to cancel. Refer to the relevant operation in
the preceding sections for details. An example for each operation is given
below.

Example

Program Backup and Restore Operations Section 7-4

281

Key Sequence

[File no.]
Start
recording

Start
playing

Within 5 seconds

Saving

Restoring

Comparing

Selecting the
DM area

Start recording

Wait about 5 seconds

Recording in progress

Recording stopped using CLR key.

Recording stops at the end.

�����

�������

���5�����5�

�������

�������.��������

�������

�������.��������

��������������

�������.��������

����%���������

�������.��������

����%�����	�����

�������.��������

�11++����������&

�������.��������

Example: Saving DM Data

Program Backup and Restore Operations Section 7-4

282

Selecting the
DM area

Start tape playback

Within 5 seconds

Comparison in progress

Stopped verification using CLR Key

Verification stopped at the end.

�����

�������

���5�����5�

�������

�������.��������

�������

�������.��������

���������������

�������.��������

����%����������

�������.��������

����%�����	�����

�������.��������

��$$$�����&

�������.��������

Blinking

Example: Comparing DM
Data

Program Backup and Restore Operations Section 7-4

283

Selecting the
DM area

Start tape playback

Within 5 seconds

Restoring in progress

Restoring stopped using CLR key.

Restoring stopped at the end.

�����

�������

���5�����5�

�������

�������.��������

�������

�������.��������

���������������

�������.��������

����%����������

�������.��������

����%�����	�����

�������.��������

�11++�������

�������.��������

Blinking

Example: Restoring DM
Data

Program Backup and Restore Operations Section 7-4

284

Selecting the
DM area

Start tape playback

Within 5 seconds

Comparison in progress

Stopped verification using CLR Key

Verification stopped at the end.

�����

�������

���5�����5�

�������

�������.��������

�������

�������.��������

���������������

�������.��������

����%����������

�������.��������

����%�����	�����

�������.��������

�11++�����&

�������.��������

Blinking

Example: Comparing DM
Data

Program Backup and Restore Operations Section 7-4

285

SECTION 8
Error Processing

The C1000H and C2000H provide self-diagnostic functions to identify many types of abnormal system conditions. These
functions minimize downtime and enable quick, smooth error correction.

This section provides information on hardware and software errors that occur during PC operation. Program input and
program syntax errors are described in Section 4 Writing and Inputting the Program. Although described in Section 3
Memory Areas, flags and other error information provided in SR and AR areas are listed in 8-5 Error Flags.

8-1 Alarm Indicators 286.
8-2 Programmed Alarms and Error Messages 286.
8-3 Reading and Clearing Errors and Messages 286.
8-4 Error Messages 286.
8-5 Error Flags 289.
8-6 Troubleshooting 290.

!

286

8-1 Alarm Indicators
There are two indicators on the front of the CPU that provide visual indication
of an abnormality in the PC. The error indicator (ERR) indicates fatal errors
(i.e., ones that will stop PC operation); the alarm indicator (ALARM) indicates
nonfatal ones. These indicators are shown in 2-1 Indicators.

Caution The PC will turn ON the error indicator (ERR), stop program execution, and turn
OFF all outputs from the PC for most hardware errors, for certain fatal software
errors, or when FALS(07) is executed in the program (see tables on following
pages). PC operation will continue for all other errors. It is the user’s responsibil-
ity to take adequate measures to ensure that a hazardous situation will not result
from automatic system shutdown for fatal errors and to ensure that proper ac-
tions are taken for errors for which the system is not automatically shut down.
System flags and other system and/or user-programmed error indications can
be used to program proper actions.

8-2 Programmed Alarms and Error Messages
FAL(06), FALS(07), and MSG(46) can be used in the program to provide
user-programmed information on error conditions. With these three instruc-
tions, the user can tailor error diagnosis to aid in troubleshooting.

FAL(06) is used with a FAL number other than 00, which is output to the SR
area when FAL(06) is executed. Executing FAL(06) will not stop PC operation
or directly affect any outputs from the PC.

FALS(07) is also used with a FAL number, which is output to the same loca-
tion in the SR area when FALS(07) is executed. Executing FALS(07) will stop
PC operation and will cause all outputs from the PC to be turned OFF.

When FAL(06) is executed with a function number of 00, the current FAL
number contained in the SR area is cleared and replaced by another, if more
have been stored in memory by the system.

When MSG(46) is used, a message containing specified data area words is
displayed onto the Programming Console or another Programming Device.

The use of these instructions is described in detail in Section 5 Instruction
Set.

8-3 Reading and Clearing Errors and Messages
System error messages can be displayed onto the Programming Console or
any other Programming Device.

On the Programming Console, press the CLR, FUN, and MONTR keys. If
there are multiple error messages stored by the system, the MONTR key can
be pressed again to access the next message. If the system is in PROGRAM
mode, pressing the MONTR key will clear the error message, so be sure to
write down all message errors as you read them. (It is not possible to clear
an error or a message while in RUN or MONITOR mode; the PC must be in
PROGRAM mode.) When all messages have been cleared, “ERR CHK OK”
will be displayed.

Details on accessing error messages from the Programming Console are
provided in 7-3 Monitoring Operation and Modifying Data. Procedures for the
GPC, LSS, and FIT are provided in the relevant Operation Manuals.

8-4 Error Messages
There are basically three types of errors for which messages are displayed:
initialization errors, non-fatal operating errors, and fatal operating errors.

Error Messages Section 8-4

287

Most of these are also indicated by FAL number being transferred to the FAL
area of the SR area.

The type of error can be quickly determined from the indicators on the CPU,
as described below for the three types of errors. If the status of an indicator is
not mentioned in the description, it makes no difference whether it is lit or not.

After eliminating the cause of an error, clear the error message from memory
before resuming operation.

Asterisks in the error messages in the following tables indicate variable nu-
meric data. An actual number would appear on the display.

The following error messages appear before program execution has been
started. The POWER indicator will be lit and the RUN indicator will not be lit
for either of these. The RUN output will be OFF for each of these errors.

Error and message FAL no. Probable cause Possible remedy

Waiting for start input

���
�����

None Start input on CPU
Power Unit is OFF.

Short start input terminals on CPU
Power Unit.

Waiting for Remote I/O

���
�����

None Power to Remote I/O
Unit is off or terminator
cannot be found or more
than one terminator has
been set.

Check power supply to Remote
I/O Units, connections between
Remote I/O Units, and terminator
setting.

The following error messages appear for errors that occur after program exe-
cution has been started. PC operation and program execution will continue
after one or more of these errors have occurred. For each of these errors, the
POWER, RUN, and ALARM indicators will be lit and the ERR indicator will
not be lit. The RUN output will be ON.

Error and message FAL no. Probable cause Possible correction

FAL error

	�	���������((

01 to 99 FAL(06) has been
executed in program.
Check the FAL number
to determine conditions
that would cause
execution (set by user).

Correct according to cause
indicated by FAL number (set by
user).

Cycle time overrun

	�������������

F8 Watchdog timer has
exceeded 100 ms.

Program cycle time is longer than
recommended. Reduce cycle time
if possible.

I/O table verification error

�����������

E7 Unit has been removed
making I/O table
incorrect.

Use I/O Table Verify Operation to
check I/O table and either connect
dummy Units or register the I/O
table again.

Remote
I/O
Master
Unit

Remote I/O error

������������

B0 to B7 Error occurred in
transmissions between
Remote I/O Units.

Check transmission line between
PC and Master and between
Remote I/O Units.

Initialization Errors

Non-fatal Operating Errors

Error Messages Section 8-4

288

Error and message Possible correctionProbable causeFAL no.

Duplex system error

�������

D0 Error has occurred in
Duplex System
operation.

Check Duplex System settings.

Battery error

������

F7 Backup battery is
missing or its voltage
has dropped.

Check battery and replace if
necessary.

The following error messages appear for errors that occur after program exe-
cution has been started. PC operation and program execution will stop and
all outputs from the PC will be turned OFF when any of the following errors
occur. All CPU indicators will not be lit for the power interruption error. For all
other fatal operating errors, the POWER, and ERR indicators will be lit. The
RUN output will be OFF.

Error and message FAL no. Probable cause Possible correction

Power interruption

No message

None Power has been
interrupted for at least
10 ms.

Check power supply voltage and
power lines. Try to power-up
again.

Power interruption/fault

No message

None Power has been
interrupted at an
Expansion Rack. A fault
has occurred in a Power
Supply Unit.

Check power supply voltage and
power lines. Replace the Power
Supply Unit.

CPU error

No message

None Watchdog timer has
exceeded maximum
setting (default setting:
130 ms).

Restart system in PROGRAM
mode and check program. Reduce
cycle time or reset watchdog timer
if longer time required. (Consider
effects of longer cycle time before
resetting.)

Memory error

����������

F1 Memory Unit is
incorrectly mounted or
missing, or parity error
has occurred.

Check Memory Unit to make sure
it is mounted and backed up
properly. Perform a Program
Check Operation to locate cause
of error. If error not correctable, try
inputting program again.

No END(01) instruction

���������	�

F0 END(01) is not written
anywhere in program.

Write END(01) at the final address
of the program.

I/O bus error

Rack no.

�����	����

C0 to C7 Error has occurred in the
bus line between the
CPU and I/O Units.

The rightmost digit of the FAL
number will indicate the number of
the Rack where the error was
detected. Check cable
connections between the I/O Units
and Racks.

Too many Units

�������������

E1 Maximum number of I/O
points exceeded when
I/O Table Registration
operation was
performed.

Check the number of points with
I/O Table Read. If necessary,
reduce number of Units in the
system to keep within maximum
number of I/O points and register
the I/O table again.

Fatal Operating Errors

Error Messages Section 8-4

289

Error and message Possible correctionProbable causeFAL no.

Input-output I/O table error

����	��������

E0 Input and output word
designations registered
in I/O table do no agree
with input/output words
required by Units
actually mounted.

Check the I/O table with I/O Table
Verification operation and check all
Units to see that they are in
correct configuration. When the
system has been confirmed,
register the I/O table again.

FALS error

	�	���������((

0 to 99 or
9F

FALS has been
executed by the
program. Check the FAL
number to determine
conditions that would
cause execution (Set by
user or by system).

Correct according to cause
indicated by FAL number. If FAL
number is 9F, check watchdog
timer and cycle time, which may
be to long. 9F will be output when
FALS(07) is executed and the
cycle time is between 120 and
130 ms.

A number of other error messages are detailed within this manual. Errors in
program input and debugging can be examined in Sections 4-6-2 and 4-6-3
and errors in cassette tape operation are detailed in Section 7-4.

8-5 Error Flags

The following table lists the flags and other information provided in the SR
and AR areas that can be used in troubleshooting. Details are provided in 3-3
SR Area and 3-4 AR Area.

SR Area

Address(es) Function

24700 to 25015 PC Link Unit Run and Error Flags

25100 to 25115 Remote I/O Error Flags

25203 SYSMAC NET Link System SEND(90)/RECV(98)
Error Flag

25206 Rack-mounting Host Link Unit Level 1 Error Flag

25208 CPU-mounting Host Link Unit Error Flag

25300 to 25307 FAL number output area.

25308 Low Battery Flag (CPU or File Memory)

25309 Cycle Time Error Flag

25310 I/O Verification Error Flag

25311 Rack-mounting Host Link Unit Level 0 Error Flag

25312 Remote I/O Error Flag

25408 Duplex System Bus Error Flag

25410 Duplex System CPU Error Flag

25411 Duplex System Memory Error Flag

25503 Instruction Execution Error (ER) Flag

Other Error Messages

Error Messages Section 8-5

290

AR Area

Address(es) Function

1901 FM Data Transfer Flag

1903 FM Blocks Different Error Flag

1904 FM Write-protected Error Flag

1905 Unsuccessful FM Write Flag

1906 FM Checksum Error Flag

1907 File Memory Unit Low Battery Flag

2400 to 2403 Leftmost digit of FALS-generating address (AR 25
contains the other four digits)

2500 to 2515 Rightmost four digits of FALS-generating address
(AR 2400 to AR 2403 contain the fifth digit)

8-6 Troubleshooting
The following tables provide basic hardware and software troubleshooting in-
formation.

CPU

Symptom Possible cause Correction

Power Supply does not turn on. Voltage selector terminal setting error Connect the voltage selector terminal
correctly.

Fuse is blown. Replace fuse.

Fuse blows repeatedly. Voltage selector terminal setting error Connect the voltage selector terminal
correctly.

Circuit board is short-circuited, or
burnt.

Replace CPU Rack Power Supply
Unit or Backplane.

RUN indicator does not light. Start input is OFF. Turn the start input ON.g

Programming error Correct the program.

Power line is defective. Replace CPU Power Supply Unit.

RUN output does not turn ON. Power circuit is defective. Replace CPU Power Supply Unit.

I/Os following a particular I/O number
do not operate.

I/O bus is defective. Replace Backplane.

Abnormal I/Os on Expansion I/O Rack
are in groups of 8.

I/O Connecting Cable is defective.
(Cable wiring is broken.)

Replace the I/O Connecting Cable.
g p

I/O bus is defective. Replace Backplane.

One I/O turns ON erroneously. I/O bus is defective. Replace Backplane.

All I/Os of a particular I/O Unit do not
operate.

I/O bus is defective. Replace Backplane.

Troubleshooting Section 8-6

291

Input Units

Symptom Possible cause Correction

All inputs do not turn ON, and
i di t d t li ht

External input voltage is not supplied. Supply power.p
indicators do not light.

External input voltage is low. Raise supply voltage.

Terminal screws are loose. Tighten terminal screws.

Faulty contact of terminal block
connector

Replace terminal block connector.

All inputs do not turn ON, but
indicators are lit.

Input circuit is defective. Replace defective Input Unit.

All inputs do not turn OFF. Input circuit is defective. Replace defective Input Unit.

One input point does not turn ON. Input device is defective. Replace input device.p p

Input wiring is broken. Check and replace input wiring.

Terminal screws are loose. Tighten terminal screws.

Faulty contact of terminal block
connector

Replace terminal block connector.

Input ON-time is too short. Adjust field input device.

Input circuit is defective. Replace defective Input Unit.

Input bit is incorrectly programmed in
OUTPUT instruction.

Correct the program.

One input point does not turn OFF. Input circuit is defective. Replace defective Input Unit.p p

Input bit is incorrectly programmed in
OUTPUT instruction.

Correct the program.

Inputs turn ON and OFF irregularly. External input voltage is low. Raise external voltage.p g y

Malfunction due to noise Countermeasures against noise:
Install surge suppressor.
Install insulating transformer.
Wire with shielded cable.

Terminal screws are loose. Tighten terminal screws.

Inputs turn ON and OFF irregularly. Faulty contact of terminal block
connector

Replace terminal block connector.

Abnormal input numbers are in groups
f 8 bit

Common terminal screws are loose. Tighten common terminal screws.p g p
of 8 bits.

Faulty contact of terminal block
connector

Replace terminal block connector.

Data bus is faulty. Replace defective Unit.

CPU is defective. Replace CPU.

Input operation indicator does not
light.

Indicator is defective. Replace defective Unit.

Troubleshooting Section 8-6

292

Output Units

Symptom Possible cause Correction

All Outputs do not turn ON. Power is not supplied to loads. Supply power.p pp

Raise supply voltage.

Terminal screws are loose. Tighten terminal screws.

Faulty contact of terminal block
connector

Replace terminal block connector.

Fuse is blown. Replace fuse.

Faulty contact of I/O bus connector Replace defective Unit.

Output circuit is defective. Replace defective Unit.

All Outputs do not turn OFF. Output circuit is defective. Replace defective Unit.

One output does not turn ON, and
i di t d t li ht

Output ON-time is too short. Correct the program.p
indicator does not light.

The same output bit is control by two
different instructions (duplication).

Correct the program.

Output circuit is defective. Replace defective Unit.

One output does not turn ON, but
i di t i lit

Output device is defective. Replace output device.p
indicator is lit.

Output wiring is broken. Check output wiring.

Terminal screws are loose. Tighten terminal screws.

Faulty contact of terminal block
connector

Replace terminal block connector.

Output relay is defective. Replace defective relay.

Output circuit is defective. Replace defective Unit.

One output does not turn OFF, but
i di t d t li ht

Output relay is defective. Replace defective relay.p
indicator does not light.

Leakage current, or residual voltage Replace external load or add dummy
resistor.

One output does not turn OFF, and
indicator is lit.

The same output bit is control by two
different instructions (duplication).

Correct the program.

Output circuit is defective. Replace defective Unit.

Outputs turn ON and OFF irregularly. Supply voltage for external load is low. Raise external supply voltage.p g y

The same output bit is control by two
different instructions (duplication).

Correct the program.

Malfunction due to noise Countermeasures against noise;
Install surge suppressor.
Install insulating transformer.
Wire with shielded cable.

Terminal screws are loose. Tighten terminal screws.

Faulty contact of terminal block
connector

Replace terminal block connector.

Abnormal output points are in groups
f 8

Common terminal screws are loose. Tighten common terminal screws.p p g p
of 8.

Faulty contact of terminal block
connector.

Replace terminal block connector.

Fuse is blown. Replace fuse.

Data bus is faulty. Replace CPU.

CPU is defective.

p

Output indicator does not light. Indicator is defective. Replace defective Unit.

Troubleshooting Section 8-6

293

Appendix A
Standard Models

CPU Backplane

Name Remarks Model

Backplane C1000H 9 I/O slots (see note) 6 Link slots C500-BC091

8 I/O slots 3 Link slots 3G2A5-BC081

5 Link slots C500-BC082

6 I/O slots 5 Link slots C500-BC061

5 I/O slots 3 Link slots 3G2A5-BC051

5 Link slots C500-BC052

3 I/O slots 3 Link slots C500-BC031

C2000H Simplex 6 I/O slots 3G2C5-BC061

C2000H Duplex 3G2C5-BC001

CPU C1000H C1000H-CPU01-EV1

C2000H C2000H-CPU01-EV1

RAM Unit 8K words C2000-MR831-V2

16K words C2000-MR141-V2

24K words C2000-MR241-V2

ROM Unit 32K words C2000-MP341-V1

EPROM Chip 27128 150 ns, Write voltage 12.5 V ROM-ID-B

Duplex Unit For C2000H duplex system 3G2C5-DPL01-E

CPU Power Supply 100 to 120/200 to Output: 7 A 5 VDC 3G2A5-PS221-E

240 VAC (selectable) Output: 12 A 5 VDC 3G2A5-PS223-E

24 VDC Output: 7 A max. 5 VDC 3G2A5-PS211-E

Output: 9 A max. 5 VDC C500-PS213-E

I/O Control Unit Required to connect Expansion I/O Racks 3G2A5-II101

File Memory Unit RAM, 1K blocks C1000H-FMR11

RAM, 2K blocks C1000H-FMR21

Note *The rightmost slot is only for Link Units.

I/O Backplane (for C2000H Duplex System)

Name Remarks Model

I/O Backplane --- 3G2C5-BI082

I/O Backplane Power Supply 100 to 120/200 to 240 VAC (selectable) Output: 7 A 5 VDC 3G2A5-PS222-E

24 VDC Output: 7 A 5 VDC 3G2A5-PS212-E

I/O Control Unit --- 3G2A5-II101

File Memory Unit RAM type, 1K blocks C1000H-FMR11

RAM type, 2K blocks C1000H-FMR21

Appendix AStandard Models

294

Expansion I/O Backplane
Name Remarks Model

Expansion I/O Backplane For C2000H, 8 slots, w/I/O on-line exchange function 3G2C5-BI083

8 slots 3G2A5-BI081

5 slots 3G2A5-BI051

Power Supply 100 to 120/200 to 240 VAC (selectable) Output: 7 A 5 VDC 3G2A5-PS222-E

24 VDC Output: 7 A 5 VDC 3G2A5-PS212-E

I/O Interface Unit --- 3G2A5-II002

I/O Connecting Cable Vertical type 30 cm C500-CN312N

50 cm C500-CN512N

80 cm C500-CN812N

1 m C500-CN122N

2 m C500-CN222N

For I/O Unit On-line Exchange (C2000H)
Name Remarks Model

I/O Remove Auxiliary Unit For CPU Rack in Simplex System and I/O Rack in Duplex
System

3G2C5-IOD01

For Expansion I/O Rack 3G2C5-IOD02

Connecting Cable 35 cm C2000-CN313

55 cm C2000-CN513

85 cm C2000-CN813

105 cm C2000-CN123

205 cm C2000-CN223

Appendix AStandard Models

295

I/O Units

Name Remarks Model

Input Unit DC 16 mA 5 to 12 VDC, 8 points/common, 2 circuits 16 pts 3G2A5-ID112

10 mA 12 to 24 VDC, 8 points/common, 2 circuits 16 pts 3G2A5-ID213

10 mA 12 to 24 VDC,
8 points/ common 4

ON response time: 15 ms max. 32 pts 3G2A5-ID215
8 points/ common, 4
circuits ON response time: 1.5 ms 32 pts 3G2A5-ID218

10 mA 12 to 24 VDC, 8 points/common, 4 circuits 32 pts 3G2A5-ID218CN

7 mA 12 VDC, static, 8 points/common, 8 circuits 64 pts 3G2A5-ID114

10 mA 12 to 24 VDC, dynamic 64 pts 3G2A5-ID212

7 mA 24 VDC, static, 8 points/common, 8 circuits 64 pts 3G2A5-ID219

Interrupt Input
Unit

13 mA 12 to 24 VDC (sep. commons) 8 pts 3G2A5-ID216

AC 10 mA 100 to 120 VAC, 8 points/common, 2 circuits 16 pts 3G2A5-IA121

10 mA 200 to 240 VAC, 8 points/common, 2 circuits 16 pts 3G2A5-IA222

10 mA 100 to 120 VAC, 8 points/common, 4 circuits 32 pts 3G2A5-IA122

10 mA 200 to 240 VAC, 8 points/common, 4 circuits 32 pts 3G2A5-IA223

AC/DC 10 mA 12 to 24 VAC/DC, 8 points/common, 2 circuits 16 pts 3G2A5-IM211

10 mA 12 to 24 VAC/DC, 8 points/common, 4 circuits 32 pts 3G2A5-IM212

TTL 3.5 mA 5 VDC, 8 points/common, 4 circuits 32 pts 3G2A5-ID501CN

Output
U it

Contact 2 A 250 VAC/24 VDC, 8 points/common, 2 circuits 16 pts 3G2A5-OC221p
Unit

2 A 250 VAC/24 VDC (sep. commons) 16 pts 3G2A5-OC223

2 A 250 VAC/24 VDC, 8 points/common, 4 circuits 32 pts 3G2A5-OC224-E

Transistor 1 A 12 to 24 VDC, 8 points/common, 2 circuits 16 pts 3G2A5-OD217

1 A 12 to 48 VDC, 16 points/common, 1 circuit 16 pts 3G2A5-OD411

50 mA 24 VDC (sep. commons) 16 pts 3G2A5-OD215

0.3 A 12 to 24 VDC, 16 points/common, 2 circuits 32 pts 3G2A5-OD218

2.1 A 12 to 24 VDC, 8 points/common, 2 circuits 16 pts C500-OD219

0.3 A 12 to 48 VDC, 16 points/common, 2 circuits 32 pts 3G2A5-OD414

0.3 A 12 to 48 VDC, 32 points/common, 1 circuit 32 pts 3G2A5-OD412

0.3 A 12 to 24 VDC, PNP output, 16 points/common,
2 circuits

32 pts 3G2A5-OD212

0.3 A 12 to 48 VDC I/O relay terminal can be
connected. 16 points/common, 2 circuits

32 pts 3G2A5-OD415CN

0.1 A 24 VDC, dynamic 64 pts 3G2A5-OD211

0.1 A 24 VDC, static, 8 points/common, 8 circuits 64 pts 3G2A5-OD213

Triac 1 A 132 VAC max., 8 points/common, 2 circuits 16 pts 3G2A5-OA121

1 A 250 VAC max., 8 points/common, 2 circuits 16 pts 3G2A5-OA222

1 A 250 VAC max., 8 points/common, 3 circuits 24 pts 3G2A5-OA223

1 A 250 VAC max., 8 points/common, 4 circuits 32 pts 3G2A5-OA225

TTL 3.5 mA 5 VDC, 8 points/common, 4 circuits 32 pts 3G2A5-OD501CN

DC Input/Transistor Output
U it

12 to 24 VDC Input: 10 mA 16 pts 3G2A5-MD211CNp p
Unit

Output: 0.3 A each

Dummy I/O Unit No. of I/O points is selectable --- 3G2A5-DUM01

Appendix AStandard Models

296

Special I/O Units
Name Remarks Model

A/D Conversion Input 4 to 20 mA 1 to 5 V 2 pts 3G2A5-AD001

0 to 10 V 2 pts 3G2A5-AD002

0 to 5 V 2 pts 3G2A5-AD003

–10 to 10 V 2 pts 3G2A5-AD004

–5 to 5 V 2 pts 3G2A5-AD005

4 to 20 mA 1 to 5 V 4 pts 3G2A5-AD006

0 to 10 V 4 pts 3G2A5-AD007

0 to 10 V, 0 to 20 mA 8 pts C500-AD101

D/A Conversion Output 4 to 20 mA 1 to 5 V 2 pts 3G2A5-DA001

0 to 10 V 2 pts 3G2A5-DA002

0 to 5 V 2 pts 3G2A5-DA003

–10 to 10 V 2 pts 3G2A5-DA004

–5 to 5 V 2 pts 3G2A5-DA005

4 to 20 mA, 1 to 5 V, 0 to 10 V 4 pts C500-DA101

High-speed counter 6 BCD digits, 50 K cps 1 Set Value 1 pt 3G2A5-CT001

6 BCD digits, 50 K cps 8 Set Value 1 pt 3G2A5-CT012

4 BIN digits, 20 K cps 1 Set Value 4 pt C500-CT041

Magnetic Card Reader --- 3G2A5-MGC01

Connecting Cable --- 3G2A9-CN521

Card Reader --- 3S4YR-MAW2C-04

Card --- 3G2A9-MCD01

PID --- 3G2A5-PID01-E

Position Control 1-axis, for stepping/servo motor 3G2A5-NC103-E

1-axis, for servo motor 3G2A5-NC111-EV1

2-axis, for servo motor C500-NC222-E

Stepping Motor Driver Phase current: 0.5 to 2 A 3G2A5-SMD21

Phase current: 0.6 to 2 A 3G2A5-SMD41

Encoder Adapter 3G2A5-AE001

Teaching Box --- 3G2A5-TU001-E

3G2A5-TU002-E

Connecting For NC211-E 2 m C200H-CN222

Cable for TU002 4 m C200H-CN422

For NC103-E/111-EV1/121 4 m C500-CN422

External Display C500-ND201

Adapter Box 3G2A5-IF101

Power Supply 3G2A5-PS103

ASCII Unit RAM + EEPROM C500-ASC04

Ladder Program I/O --- C500-LDP01-V1

Cam Positioner --- C500-CP131

Appendix AStandard Models

297

Name ModelRemarks

ID Sensor --- C500-IDS01-V2

For long distance (3G2A5-ID02-E is required) C500-IDS02-V1

ID Adapter C500-IDA02

R/W Head V600-H06

Data Carrier V600-D2KR01

Link Units and Remote I/O Units
Name Remarks Model

Host Link Rack- APF/PCF 3G2A5-LK101-PEV1

mounting PCF 3G2A5-LK101-EV1

RS-232C/RS-422 3G2A5-LK201-EV1

APF/PCF C500-LK103-P

PCF C500-LK103

RS-232C/RS-422 C500-LK203

CPU- APF/PCF 3G2A6-LK101-PEV1

mounting PCF 3G2A6-LK101-EV1

RS-232C 3G2A6-LK201-EV1

RS-422 3G2A6-LK202-EV1

PC Link Links up to 32 PCs C500-LK009-V1

SYSMAC Net General-purpose C500-SNT31-V4

SYSMAC Link Use optical fiber cable C1000H-SLK11

Only for C1000H and C2000H Simplex C1000H-SLK21-V1

Optical Remote I/O Master APF/PCF 3G2A5-RM001-PEV1

PCF 3G2A5-RM001-EV1

Optical Remote I/O Slave APF/PCF w/1 optical connector 3G2A5-RT001-PEV1

w/2 optical connectors 3G2A5-RT002-PEV1

PCF w/1 optical connector 3G2A5-RT001-EV1

w/2 optical connectors 3G2A5-RT002-EV1

Optical I/O Link APF/PCF 3G2A5-LK010-PE

PCF 3G2A5-LK010-E

Wired Remote I/O Master --- C500-RM201

Wired Remote I/O Slave --- C500-RT201

Remote Terminal Input Specify 12 VDC or 24 VDC G71-IC16

Output G71-OD16

Input Block AC Input Specify 100 VAC or 200 VAC G7TC-IA16

DC Input Specify 12 VDC or 24 VDC G7TC-ID16

Output Block Output Specify 12 VDC or 24 VDC G7TC-OC16

Appendix AStandard Models

298

Link Units and Remote I/O Units (Continued)

Name Remarks Model

Optical Transmitting I/O DC Input No-voltage 8 pts APF/PCF 3G5A2-ID001-PE

contact, 100 VAC PCF 3G5A2-ID001-E

AC/DC Input 12 to 24 VAC/DC 8 pts APF/PCF 3G5A2-IM211-PE

100 VAC PCF 3G5A2-IM211-E

AC Input 100 VAC 8 pts APF/PCF 3G5A2-IA121-PE

100 VAC PCF 3G5A2-IA121-E

200 VAC 8 pts APF/PCF 3G5A2-IA221-PE

100 VAC PCF 3G5A2-IA221-E

Contact output 2 A
250 VAC/24 VDC

8 pts APF/PCF 3G5A2-OC221-PE

100/200 VAC PCF 3G5A2-OC221-E

Triac Output 100/200 VAC 8 pts APF/PCF 3G5A2-OA222-PE

100/200 VAC PCF 3G5A2-OA222-E

Transistor 0.3 A 12 to 48 VDC 8 pts APF/PCF 3G5A2-OD411-PE

output 100/200 VAC PCF 3G5A2-OD411-E

SYSBUS

Name Remarks Model

Link Adapter RS-422, 3 pcs 3G2A9-AL001

Optical (APF/PCF), 3pcs 3G2A9-AL002-PE

Optical (PCF), 3pcs 3G2A9-AL002-E

Optical (APF/PCF), RS-422, RS-232C, 1 pc each 3G2A9-AL004-PE

Optical (PCF), RS-422, RS-232C, 1 pc each 3G2A9-AL004-E

Optical (APF/PCF), optical (AGF), 1 pc each 3G2A9-AL005-PE

Optical (PCF), optical (AGF), 1 pc each 3G2A9-AL005-E

Optical (APF/PCF), optical (AGF), 2 pcs each 3G2A9-AL006-PE

Optical (PCF), optical (AGF), 2 pcs each 3G2A9-AL006-E

Optical (APF/PCF), 1 pc, RS-485 1 pc for Wired Remote I/O
system only

B500-AL007-P

Repeater APF/PCF 3G5A2-RPT01-PE

PCF 3G5A2-RPT01-E

All Plastic Optical Fiber Cable (APF)

Name Remarks Model

Plastic Optical Fiber Cable Cable only, 5 to 100 m in multiples of 5 meters or multiples of
200 or 500m

3G5A2-PF002

Optical Connector A 2 pcs (brown), for plastic optical fiber 10 m long max. 3G5A2-CO001

Optical Connector B 2 pcs (black) for plastic optical fiber 8 to 20 m long 3G5A2-CO002

Plastic Optical Fiber Cable 1 m, w/optical connector A provided at both ends 3G5A2-PF101

Appendix AStandard Models

299

Plastic-Clad Optical Fiber Cable (PCF)
Name Remarks Model

Optical Fiber Cable (indoor) 0.1 m, w/connector Ambient temperature: –10°C to 70°C 3G5A2-OF011

1 m, w/connector 3G5A2-OF101

2 m, w/connector 3G5A2-OF201

3 m, w/connector 3G5A2-OF301

5 m, w/connector 3G5A2-OF501

10 m, w/connector 3G5A2-OF111

20 m, w/connector 3G5A2-OF211

30 m, w/connector 3G5A2-OF311

40 m, w/connector 3G5A2-OF411

50 m, w/connector 3G5A2-OF511

Optical Fiber Cable
(indoor/outdoor)

1 to 500 m (Order in
Units of 1 m)

Ambient temperature: –10°C to 70°C 3G5A2-OF002

501 to 800 m (Order
in Units of 1 m)

Ambient temperature: 0°C to 55°C (Must
not be subjected to direct sunlight)

H-PCF Optical Fiber Cords and Cables with Connectors
The following diagram illustrates the model number for cables with connectors. tension members and power lines
are provided in the cable. Half-lock connectors use the S3200-COCF2511 and are compatible with C200H SYS-
MAC LINK or SYSMAC NET Link Unit connectors. Full-lock connectors use the S3200-COCF2011 and are com-
patible with CV-series SYSMAC LINK or SYSMAC NET and C1000H SYSMAC LINK Link Unit connectors. Full-
lock connectors cannot be used with C200H connectors.

The above connectors cannot be used with C500 SYSMAC NET Link Unit connectors, cable relays, or NSB. Refer
to the SYSMAC NET Link System Manual for appropriate connectors for these applications.

S3200-CN���-��-��

Cable Length
201 2 m
501 5 m
102 10 m
152 15 m
202 20 m
Blank Over 20 m* *Specify lengths over 20 m separately when ordering.

Connector Type
20-20 Full-lock connecter on each end
20-25 One full-lock and one half-lock connector
25-25 Full lock connector on each end

Appendix AStandard Models

300

Optical Connectors
Name Model

SYSMAC NET: CV500-SNT31

SYSMAC LINK: CV500-SLK11, C1000H-SLK11

SYSMAC BUS/2: CV500-RM211/RT211

S3200-COCF2011

SYSMAC NET: C200H-SNT31

SYSMAC LINK: C200H-SLK11

S3200-COCF2511

SYSMAC NET: C500-SNT31-V4
S3200-LSU03-01E/NSB11-E
S3200-NSUA1-00E/NSUG4-00E
FIT10-IF401

S3200-COCH62M

SYSMAC BUS: 3G2A5-RM001-(P)EV1
3G2A5-RT001/RT002-(P)EV1
3G2A9-AL��-(P)E

S3200-COCH82

SYSMAC NET Relay (M) Connector S3200-COCF62M

SYSMAC NET Relay (F) Connector S3200-COCF62F

Cable Assembly Tool and Cutter
Name Model

Cable Assembly Tool S3200-CAK1062

Optical Power Tester
Name Model

SYSMAC NET: CV500-SNT31 S3200-CAT2000

SYSMAC LINK: CV500-SLK11

SYSMAC BUS/2: CV500-RM211/RT211

S3200-CAT2700

SYSMAC BUS: 3G2A5-RM001-(P)EV1
3G2A5-RT001/RT002-(P)EV1

S3200-CAT2820

SYSMAC NET: S3200-LSU03-01E
FIT10-IF401

S3200-CAT3200

Optical Power Tester Head Unit
Name Model

SYSMAC NET: CV500-SNT31 S3200-CAT2002

SYSMAC LINK: CV500-SLK11

SYSMAC BUS/2: CV500-RM211/RT211

S3200-CAT2702

SYSMAC BUS: 3G2A5-RM001-(P)EV1
3G2A5-RT001/RT002-(P)EV1

S3200-CAT2822

SYSMAC NET: S3200-LSU03-01E
FIT10-IF401

S3200-CAT3202

Appendix AStandard Models

301

Peripheral Devices
Name Remarks Model

Programming Console Vertical, w/backlight 3G2A5-PRO13-E

 Horizontal, w/backlight 3G2A6-PRO15-E

Programming Console For connecting Programming Console, GPC, or FIT. 2 m 3G2A2-CN221

Connecting Cable (Only use CN221 [2 m] for Programming Console.) 5 m C500-CN523

10 m C500-CN131

20 m C500-CN231

30 m C500-CN331

40 m C500-CN431

50 m C500-CN531

Programming Console
Adapter

For extending Programming Console. Connecting cable is
separate.

3G2A5-AP001

Programming Console Base 3G2A5-BP001

Data Access Console --- C200H-DAC01

Handheld Programming
Console

--- C200H-PR027-E

Programming Console
Adapter

Required for each Handheld Programming Console --- C500-AP003

Connecting Cable 2 m C200H-CN222

4 m C200H-CN422

PROM Writer Write voltage 12.5/21 V applicable 3G2A5-PRW06

Printer Interface Unit Memory Pack is separate. 3G2A5-PRT01-E

Memory Pack (for Printer
Interface)

--- 3G2C5-MP102-EV3

Printer Connecting Cable 2 m, for connecting printer SCY-CN201

Floppy Disk Interface Unit 3G2C5-FDI03-E

Peripheral Interface Unit Connecting cable is separate. 3G2A5-IP004-E

FIT CPU and System Disk Set FIT10-SET11-E

Graphic Programming 100 to 120 VAC, 32 K, w/comments 3G2C5-GPC03-E

Console 200 to 240 VAC, 32 K, w/comments 3G2C5-GPC04-E

GPC Memory Pack w/comments for C20, P-type, C120, C500 C500-MP303-EV2

w/comments for K-type, C200H, C1000H, C2000H 3G2C5-MP304-EV3

CRT Interface Unit For connecting GPC to CRT 3G2A5-GD101-E

Cassette Recorder
Connecting Cable

1 m SCYPOR-PLG01

LSS Ladder diagram programming software for PC/AT 5.25” 2D C500-SF711-EV3

3.5” 2DD C500-SF312-EV3

Appendix AStandard Models

302

Optional Products
Name Remarks Model

Battery --- 3G2A9-BAT08

Relay 24 VDC G6B-1174P-FD-US-M

I/O Terminal Cover For 38-pin block, special type 3G2A5-COV11

For 38-pin block, standard C500-COV12

For 20-pin block, standard C500-COV13

Connector Cover For I/O connector 3G2A5-COV01

For Link connector 3G2A5-COV02

For I/O Control Unit / I/O Interface Unit connector 3G2A5-COV03

For C2000H system simplex, CPU Connector C2000-COV04

Space Unit For I/O Control Unit 3G2A5-SP001

For I/O Unit 3G2A5-SP002

303

Appendix B
Programming Instructions

A PC instruction is input either by inputting the corresponding Programming Console key(s) (e.g., LD, AND,
OR, NOT) or by using function codes. To input an instruction via its function code, press FUN, the function
code, and then WRITE. If the function code is in pointed parentheses <like this>, then SHIFT must be pressed
before the above sequence. Codes requiring SHIFT are for block programming instructions.

Function Code Name Mnemonic Page

-- AND AND 46, 108

-- AND LOAD AND LD 49, 109

-- AND NOT AND NOT 46, 108

-- COUNTER CNT 122

-- LOAD LD 45, 108

-- LOAD NOT LD NOT 45, 108

-- OR OR 46, 108

-- OR NOT OR NOT 46, 108

-- OR LOAD OR LD 50, 109

-- OUTPUT OUT 48, 109

-- OUTPUT NOT OUT NOT 48, 109

-- TIMER TIM 118

00 NO OPERATION NOP 116

01 END END 48, 107, 116

02 INTERLOCK IL 88, 113

03 INTERLOCK CLEAR ILC 88, 113

04 JUMP JMP 90, 115

05 JUMP END JME 90, 115

06 FAILURE ALARM FAL 208

07 SEVERE FAILURE ALARM FALS 208

08 STEP DEFINE STEP 199

09 STEP START SNXT 199

10 SHIFT REGISTER SFT 127

11 KEEP KEEP 112

12 REVERSIBLE COUNTER CNTR 125

13 DIFFERENTIATE UP DIFU 92, 110

14 DIFFERENTIATE DOWN DIFD 92, 110

15 HIGH-SPEED TIMER TIMH 121

16 WORD SHIFT WSFT 134

20 COMPARE CMP 142

21 MOVE MOV 135

22 MOVE NOT MVN 136

23 BCD-TO-BINARY BIN 148

24 BINARY-TO-BCD BCD 149

25 ARITHMETIC SHIFT LEFT ASL 131

26 ARITHMETIC SHIFT RIGHT ASR 132

27 ROTATE LEFT ROL 132

Programming Instructions Appendix B

304

Function Code PageMnemonicName

28 ROTATE RIGHT ROR 133

29 COMPLEMENT COM 179

30 BCD ADD ADD 160

31 BCD SUBTRACT SUB 162

32 BCD MULTIPLY MUL 165

33 BCD DIVIDE DIV 167

34 AND WORD ANDW 180

35 OR WORD ORW 180

36 EXCLUSIVE OR XORW 181

37 EXCLUSIVE NOR XNRW 182

38 INCREMENT INC 159

39 DECREMENT DEC 159

40 SET CARRY STC 159

41 CLEAR CARRY CLC 159

42 FILE MEMORY READ FILR 215

43 FILE MEMORY WRITE FILW 216

44 EXTERNAL PROGRAM READ FILP 216

45 TRACE MEMORY SAMPLE TRSM 211

46 MESSAGE MSG 209

50 BINARY ADD ADB 174

51 BINARY SUBTRACT SBB 176

52 BINARY MULTIPLY MLB 178

53 BINARY DIVIDE DVB 179

54 DOUBLE BCD ADD ADDL 161

55 DOUBLE BCD SUBTRACT SUBL 164

56 DOUBLE BCD MULTIPLY MULL 166

57 DOUBLE BCD DIVIDE DIVL 168

58 DOUBLE BCD-TO-DOUBLE BINARY BINL 148

59 DOUBLE BINARY-TO-DOUBLE BCD BCDL 150

67 BIT COUNTER BCNT 210

68 BLOCK COMPARE BCMP 145

70 BLOCK TRANSFER XFER 138

71 BLOCK SET BSET 136

72 SQUARE ROOT ROOT 172

73 DATA EXCHANGE XCHG 138

74 ONE DIGIT SHIFT LEFT SLD 133

75 ONE DIGIT SHIFT RIGHT SRD 134

76 4-TO-16 DECODER MLPX 150

77 16-TO-4 ENCODER DMPX 152

78 7-SEGMENT DECODER SDEC 154

79 FLOATING POINT DIVIDE FDIV 169

80 SINGLE WORD DISTRIBUTE DIST 139

81 DATA COLLECT COLL 139

82 MOVE BIT MOVB 140

83 MOVE DIGIT MOVD 141

Appendix BProgramming Instructions

305

Function Code PageMnemonicName

84 REVERSIBLE SHIFT REGISTER SFTR 129

85 TABLE COMPARE TCMP 146

86 ASCII CONVERT ASC 157

87 I/O WRITE WRIT 218

88 I/O READ READ 218

89 INTERRUPT CONTROL INT 185

90 NETWORK SEND SEND 219

91 SUBROUTINE ENTRY SBS 183

92 SUBROUTINE DEFINE SBN 183

93 RETURN RET 183

94 WATCHDOG TIMER REFRESH WDT 211

96 BLOCK PROGRAM BEGIN BPRG 190

97 I/O REFRESH IORF 211

98 NETWORK RECEIVE RECV 221

<01> BLOCK PROGRAM END BEND 190

<02> CONDITIONAL BRANCH IF 191

<03> NO BRANCH ELSE 191

<04> BRANCH END IEND 191

<05> ONE CYCLE AND WAIT WAIT 193

<06> CONDITIONAL BLOCK EXIT EXIT 197

<07> SET SET 191

<08> RESET RSET 191

<09> LOOP LOOP 197

<10> LOOP END LEND 197

<11> BLOCK PROGRAM PAUSE BPPS 198

<12> BLOCK PROGRAM RESTART BPRS 198

<13> TIMER WAIT TIMW 195

<14> COUNTER WAIT CNTW 196

<15> HIGH-SPEED TIMER WAIT TMHW 195

Instruction Execution Times Appendix B

306

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

Table: Instruction Execution Times

Instruction ON execution time (µs)1,2 Conditions OFF execution time (µs)1,2

C1000H C2000H C1000H C2000H

LD 0.4 0.4 --- 0.4 0.4

LD NOT 0.4 0.4 --- 0.4 0.4

AND 0.4 0.4 --- 0.4 0.4

AND NOT 0.4 0.4 --- 0.4 0.4

OR 0.4 0.4 --- 0.4 0.4

OR NOT 0.4 0.4 --- 0.4 0.4

AND LD 0.4 0.4 --- 0.4 0.4

OR LD 0.4 0.4 --- 0.4 0.4

OUT 0.8 0.8 --- 0.8 0.8

OUT NOT 0.8 0.8 --- 0.8 0.8

TIM 2.4 2.4 Constant for SV R 2.4

IL 2.4

JMP 2.4

20 13 �DM for SV R: 29

IL: 29

JMP: 14

R: 19

IL: 19

JMP: 10

CNT 2.4 2.4 Constant for SV R 2.4

IL 2.4

JMP 2.4

16 11 �DM for SV R: 28

IL: 11

JMP: 11

R: 18

IL: 7

JMP: 7

NOP(00) 0.4 0.4 --- --- ---

END(01) 8 5 --- --- ---

IL(02) 9 6 --- 8 6

ILC(03) 9 6 --- 7 5

JMP(04) 10 7 --- 9 6

JME(05) 10 7 --- 9 6

FAL(06) 16/17 11/12 --- 7/8 5/6

FAL(06) 00 11/12 7/8 --- 7/8 5/6

FALS(07) 11/12 7/8 --- 7 5

STEP(08) 24 16 --- 15 10

SNXT(09) 10 6 --- 7 5

SFT(10) 40 26 With 1-word shift register R: 35

IL: 7

JMP: 7

R: 25

IL: 5

JMP: 5

444 296 With 252-word shift register R: 200

IL: 7

JMP: 7

R: 133

IL: 5

JMP: 5

KEEP(11) 0.8 0.8 --- --- ---

Appendix BInstruction Execution Times

307

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

Instruction OFF execution time (µs)1,2ConditionsON execution time (µs)1,2

C2000HC1000HC2000HC1000H

CNTR(12) 21 14 Constant for SV R: 15

IL: 10

R: 10

IL: 7

29 19 �DM for SV JMP: 10 JMP: 7

DIFU(13) 16 10 --- Normal: 15

IL: 16

JMP: 8

Normal: 10

IL: 10

JMP: 5

DIFD(14) 16 11 --- Normal: 16

IL: 16

JMP: 9

Normal: 11

IL: 11

JMP: 6

TIMH(15) 20 13 Interrupt Constant for SV R 20

22 15 Normal cycle IL 21

20 13 Interrupt �DM for SV JMP 15

18 12 Normal cycle R: 29

IL: 30

JMP: 16

R: 19

IL: 20

JMP: 10

WSFT(16) 36/38 24/26 When shifting 1 word 7/8 5/6

5.59 ms 3.72 ms When shifting 4,096 words using �DM

CMP(20) 14 9 When comparing a constant to a word 7 5

29 20 When comparing two �DM

MOV(21) 15/17 10/11 When transferring a constant to a word 7/8 5/6

30/31 20/21 When transferring �DM to �DM

MVN(22) 16/17 10/11 When transferring a constant to a word 7/8 5/6

30/31 20/21 When transferring �DM to �DM

BIN (23) 21/23 14/15 When converting a word to a word 7/8 5/6

34/35 22/23 When converting �DM to �DM

BCD(24) 21/22 14/15 When converting a word to a word 7/8 5/6

33/34 22/23 When converting �DM to �DM

ASL(25) 18/19 12/13 When shifting a word 7/8 5/6

24/25 16/17 When shifting �DM

ASR(26) 18/19 12/13 When shifting a word 7/8 5/6

24/25 16/17 When shifting �DM

ROL(27) 18/19 12/13 When rotating a word 7/8 5/6

24/25 16/17 When rotating �DM

ROR(28) 18/19 12/13 When rotating a word 7/8 5/6

24/25 16/17 When rotating �DM

COM(29) 15/17 10/11 When inverting a word 7/8 5/6

21/23 14/15 When inverting �DM

Instruction Execution Times Appendix B

308

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

Instruction OFF execution time (µs)1,2ConditionsON execution time (µs)1,2

C2000HC1000HC2000HC1000H

ADD(30) 33/35 22/23 Constant + word → word 7/8 5/6

53/55 35/36 �DM + �DM → �DM

SUB(31) 33/34 22/23 Constant + word → word 7/8 5/6

53/55 35/36 �DM – �DM → �DM

MUL(32) 48/50 32/33 Constant x word → word 7/8 5/6

68/70 55/56 �DM x �DM → word

DIV(33) 63/65 42/43 Word ÷ constant → word 7/8 5/6

84/86 56/57 �DM ÷ �DM → �DM

ANDW(34) 19/21 13/14 Constant AND word → word 7/8 5/6

40/41 27/28 �DM AND �DM → �DM

ORW(35) 19/20 13/14 Constant OR word → word 7/8 5/6

40/41 27/28 �DM OR �DM → �DM

XORW(36) 19/21 13/14 Constant XOR word → word 7/8 5/6

40/41 27/28 �DM XOR �DM → �DM

XNRW(37) 20/21 13/14 Constant XNOR word → word 7/8 5/6

40/41 27/28 �DM XNOR �DM → �DM

INC(38) 23/25 15/16 When incrementing a word 7/8 5/6

29/31 20/21 When incrementing �DM

DEC(39) 22/24 15/16 When decrementing a word 7/8 5/6

28/30 19/20 When decrementing �DM

STC(40) 9/10 6/7 --- 6/8 4/6

CLC(41) 9/10 6/7 --- 6/8 4/6

FILR(42) 4.89 ms 3.26 ms When reading 1 block 6/8 4/6

81.9 ms 54.5 ms When reading 20 blocks

FILW(43) 7.21 ms 4.8 ms When writing 1 block 6/8 4/6

131 ms 87 ms When writing 20 blocks

FILP(44) 38 ms 25 ms When reading 600 addresses 9 6

1.66 s 1.11 s When reading 30 addresses

TRSM(45) 56 38 When tracing 1 point + 1 word 8 5

93 62 When tracing 12 points + 3 words

MSG(46) 16/17 11/12 --- 7/8 5/6

ADB(50) 22/23 15/16 Constant + word → word 7/8 5/6

42/44 28/29 �DM + �DM → �DM

SBB(51) 22/24 15/16 Constant – word → word 7/8 5/6

43/44 29/30 �DM – �DM → �DM

MLB(52) 26/27 17/18 Constant x word → word 7/8 5/6

6/48 31/32 �DM x �DM → �DM

Appendix BInstruction Execution Times

309

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

Instruction OFF execution time (µs)1,2ConditionsON execution time (µs)1,2

C2000HC1000HC2000HC1000H

DVB(53) 51/52 34/35 Word ÷ constant → word 7/8 5/6

71/73 47/48 �DM ÷ �DM → �DM

ADDL(54) 74/76 49/50 Word + word → word 6/8 4/6

92/93 61/62 �DM + �DM → �DM

SUBL(55) 73/75 49/50 Word – word → word 6/8 4/6

93/95 62/63 �DM – �DM → �DM

MULL(56) 187/188 125/126 Word x word → word 6/8 4/6

205/206 137/138 �DM x �DM → �DM

DIVL(57) 192/194 128/129 Word ÷ word → word 6/8 4/6

210/212 140/141 �DM ÷ �DM → �DM

BINL(58) 35/37 27/28 When converting words to words 7/8 5/6

47/49 31/32 When converting �DM to �DM

BCDL(59) 39/40 26/27 When converting words to words 7/8 5/6

50/52 33/34 When converting �DM to �DM

BCNT(67) 51/53 34/35 When counting 1 word 7/8 5/6

(Bit Count) 8.2 ms 5.5 ms When counting 4,096 words using �DM

BCMP(68) 66/68 44/45 Comparing constant to word-designated table 7/8 5/6

95/96 63/64 Comparing �DM → �DM-designated table

XFER(70) 46/48 31/32 When transferring 1 word 7/8 5/6

5.49 ms 3.66 ms When transferring 4,096 words using �DM

BSET(71) 35/37 23/24 When setting a constant to 1 word 7/8 5/6

4.14 ms 2.76 ms When setting �DM ms to 4,096 words using
�DM

ROOT(72) 99/100 66/67 When taking root of word and placing in a
word

7/8 5/6

109/110 73/74 When taking root of 99,999,999 in �DM and
placing in �DM

XCHG(73) 19/20 13/14 Between words 7/8 5/6

31/33 21/22 Between �DM

SLD(74) 35/37 23/24 When shifting 1 word 7/8 5/6

6.31 ms 4.20 ms When shifting 4,096 DM words using �DM 7/8 5/6

SRD(75) 35/37 23/24 When shifting 1 word 7/8 5/6

6.27 ms 4.18 ms When shifting 4,006 DM words using �DM

MLPX(76) 26/28 17/18 When decoding word to word 7/8 5/6

56/58 37/38 When decoding �DM to �DM

DMPX(77) 35/36 23/24 When encoding a word to a word 7/8 5/6

65/67 43/44 When encoding �DM to �DM

SDEC(78) 30/31 20/21 When decoding a word to a word 7/8 5/6

67/68 45/46 When decoding �DM to �DM

Instruction Execution Times Appendix B

310

Notes 1. The execution time is given in microseconds unless otherwise stated.
2. Times for non-differentiated forms are given to the left of the slash, and those for differentiated forms given to the right.

Instruction OFF execution time (µs)1,2ConditionsON execution time (µs)1,2

C2000HC1000HC2000HC1000H

FDIV(79) 52/54 35/36 Word ÷ word → word (equals 0) 7/8 5/6

174/175 116/117 Word ÷ word → word (doesn’t equal 0)

192/194 128/129 �DM ÷ �DM → �DM

DIST(80) 25/27 17/18 Constant → word + (word) 7/8 5/6

 47/49 31/32 �DM → (�DM + (�DM))

COLL(81) 28/30 19/20 (Word + (word)) → word 7/8 5/6

48/50 32/33 (�DM + (�DM)) → �DM

MOVB (82) 31/32 21/22 When transferring word to a word 7/8 5/6

51/52 34/35 When transferring �DM to �DM

MOVD(83) 27/28 18/19 When transferring word to a word 7/8 5/6

47/49 31/32 When transferring �DM to �DM

SFTR(84) 42/44 28/29 When shifting 1 word 7/8 5/6

7.35 ms 4.90 ms When shifting 4,096 DM words using �DM

TCMP(85) 51/53 34/35 Comparing constant to word-designated table 7/8 5/6

71/73 47/48 Comparing �DM → �DM-designated table

ASC(86) 32/34 21/22 Word → word 7/8 5/6

74/76 49/50 �DM → �DM

WRIT(87) 1.24 ms 0.83 ms When writing 1 word 6/8 4/6

 6.32 ms 4.21 ms When writing 255 words

READ(88) 1.24 ms 0.83 ms When reading 1 word 6/8 4/6

311

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Programming Instructions
The following tables detail all of the ladder diagram programming instructions for the C1000H/C2000H PCs,
and the applicable data areas for each. Bit and word addresses for each area are given in the footnotes at the
bottom of the page.

Differentiated instructions (indicated with @) are entered by pressing the NOT key on the Programming Con-
sole following the function code.

The DM area can be indirectly addressed by specifying the data area as *DM, and then entering the address
of the DM word that contains the actual data.

Basic Instructions

Name and
Mnemonic

Symbol Function Operand Data
Areas

Page

AND
AND B

Logically ANDs the status of the
designated bit with the current execution
condition.

B:
IR
SR
HR
AR
LR
TC

108

AND LOAD
AND LD

Logically ANDs the resultant execution
conditions of the preceding logic blocks.

None 109

AND NOT
AND NOT

B

Logically ANDs the inverse of the
designated bit with the current execution
condition.

B:
IR
SR
HR
AR
LR
TC

108

COUNTER
CNT

CNT N

SV

CP

R

A decrementing counter. SV: 0 to 9999;
CP: count pulse; R: reset input. The TC bit
is entered as a constant.

N:
TC

SV:
IR
HR
AR
LR
DM
#

122

LOAD
LD

B

Defines the status of bit B as the execution
condition for subsequent operations in the
instruction line.

B:
IR
SR
HR
AR
LR
TC
TR

108

LOAD NOT
LD NOT

B

Defines the status of the inverse of bit B as
the execution condition for subsequent
operations in the instruction line.

B:
IR
SR
HR
AR
LR
TC

108

Basic Instructions Appendix B

312

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name and
Mnemonic

PageOperand Data
Areas

FunctionSymbol

OR
OR

B

Logically ORs the status of the designated
bit with the current execution condition.

B:
IR
SR
HR
AR
LR
TC

108

OR LOAD
OR LD

Logically ORs the resultant execution
conditions of the preceding logic blocks.

None 109

OR NOT
OR NOT

B

Logically ORs the inverse of the
designated bit with the execution
condition.

B:
IR
SR
HR
AR
LR
TC

108

OUTPUT
OUT

B

Turns ON B for an ON execution condition;
turns OFF B for an OFF execution
condition.

B:
IR
SR
HR
AR
LR
TR

109

OUTPUT NOT
OUT NOT

B

Turns OFF B for an ON execution
condition; turns ON B for an OFF execution
condition.

B:
IR
SR
HR
AR
LR

109

TIMER
TIM

TIM N

SV

ON-delay (decrementing) timer operation.
Set value: 000.0 to 999.9 s. The same TC
bit cannot be assigned to more than one
timer/counter. The TC bit is entered as a
constant.

N:
TC

SV:
IR
HR
AR
LR
DM
#

118

Basic Instructions Appendix B

313

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Special Instructions

Name Mnemonic Symbol Function Operand Data
Areas

Page

NO OPERATION
NOP(00)

None Nothing is executed and program
operation moves to the next instruction.

None 116

END
END(01) END(01)

Required at the end of each program.
Instructions located after END(01) will not
be executed.

None 116

INTERLOCK
IL(02)
INTERLOCK CLEAR
ILC(03)

IL(02)

ILC(03)

If an interlock condition is OFF, all
outputs and all timer PVs between the
current IL(02) and the next ILC(03) are
turned OFF or reset, respectively. Other
instructions are treated as NOP. Counter
PVs are maintained. If the execution
condition is ON, execution continues
normally.

None 113

JUMP
JMP(04)
JUMP END
JME(05)

NJMP(04)

JME(05) N

When the execution condition for the
JMP(04) instruction is ON, all instructions
between JMP(04) and the corresponding
JME(05) are to be ignored or treated as
NOP(00). For direct jumps, the
corresponding JMP(04) and JME(05)
instructions have the same N value in the
range 01 through 99. Direct jumps are
usable only once each per program (i.e.,
N is 01 through 99 can be used only once
each) and the instructions between the
JUMP and JUMP END instructions are
ignored; 00 may be used as many times
as necessary, instructions between JMP
00 and the next JME 00 are treated as
NOP, thus increasing cycle time, as
compared with direct jumps.

N:
00 to 99

115

FAILURE ALARM
(@)FAL(06)

FAL(06) N

Assigns a failure alarm code to the given
execution condition.When N can be
given a value between 01 and 99 to
indicate that a non-fatal error (i.e., one
that will not stop the CPU) has occurred.
This is indicated by the PC outputting N
(the FAL number) to the FAL output area.
To reset the FAL area, N can be defined
as 00. This will cause all previously
recorded FAL numbers in the FAL area to
be deleted. FAL data sent after a 00 will
be recorded in the normal way. The same
code numbers can be used for both
FAL(06) and FALS(07).

N:
00 to 99

208

SEVERE FAILURE
ALARM
FALS(07) FALS(07) N

A fatal error is indicated by outputting N
to the FAL output area and the CPU is
stopped. The same FAL numbers are
used for both FAL(06) and FALS(07).

N:
01 to 99

208

STEP DEFINE
STEP(08)

STEP(08) B

When used with a control bit (B), defines
the start of a new step and resets the
previous step. When used without B, it
defines the end of step execution.

B:
IR
HR
AR
LR

199

Special Instructions Appendix B

314

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

STEP START
SNXT(09)

SNXT(09) B

Used with a control bit (B) to indicate the
end of the step, reset the step, and start
the next step which has been defined
with the same control bit.

B:
IR
HR
AR
LR

199

SHIFT REGISTER
SFT(10)

I

P

R

SFT(10)
St
E

Creates a bit shift register for data from the
starting word (St) through to the ending
word (E). I: input bit; P: shift pulse; R: reset
input. St must be less than or equal to E.
St and E must be in the same data area.

E St
15 1500

IN
00

St/E:
IR
HR
AR
LR

127

KEEP
KEEP(11)

S

KEEP(11)

BR

Defines a bit (B) as a latch, controlled by
the set (S) and reset (R) inputs.

B:
IR
HR
AR
LR

112

REVERSIBLE
COUNTER
CNTR (12)

II

DI

R
N

SV

CNTR(12)

Increases or decreases the PV by one
whenever the increment input (II) or
decrement input (DI) signals,
respectively, go from OFF to ON. SV: 0 to
9999; R: reset input. Each TC bit can be
used for one timer/counter only. The TC
bit is entered as a constant.

N:
TC

SV:
IR
SR HR
AR
LR
DM
#

125

DIFFERENTIATE UP
DIFU(13)
DIFFERENTIATE
DOWN
DIFD(14)

DIFU(13)

DIFD(14)

B

B

DIFU(13) turns ON the designated bit (B)
for one cycle on reception of the leading
(rising) edge of the input signal; DIFD(14)
turns ON the bit for one cycle on
reception of the trailing (falling) edge.

B:
IR
HR
AR
LR

110

HIGH-SPEED TIMER
TIMH(15)

TIMH(15) N

SV

A high-speed, ON-delay (decrementing)
timer. SV: 00.02 to 99.99 s. Each TC bit
can be assigned to only one timer or
counter. The TC bit is entered as a
constant.

N:
TC

SV:
IR
SR
HR
AR
LR
HR
#

121

WORD SHIFT
(@)WSFT(16) WSFT(16)

E
St

The data in the words from the starting
word (St) through to the ending word (E),
is shifted left in word units, writing all
zeros into the starting word. St must be
less than or equal to E, and St and E
must be in the same data area.

St/E:
IR
HR
AR
LR
DM

134

COMPARE
(@)CMP(20)

CMP(20)
Cp1
Cp2

Compares the data in two 4-digit
hexadecimal words (Cp1 and Cp2) and
outputs result to the GR, EQ, or LE
Flags.

Cp1/Cp2:
IR
SR
HR
AR
LR
TC
DM
#

142

Special Instructions Appendix B

315

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

MOVE
(@)MOV(21)

MOV(21)
S
D

Transfers data from source word, (S) to
destination word (D).

S:
IR
SR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

135

MOVE NOT
(@)MVN(22)

MVN(22)
S
D

Transfers the inverse of the data in the
source word (S) to destination word (D).

S:
IR
SR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

136

BCD TO BINARY
(@)BIN(23)

BIN(23)
S
R

Converts 4-digit, BCD data in source word
(S) into 16-bit binary data, and outputs
converted data to result word (R).

S

x100

x101

x102

x103

x160

x161

x162

x163

(BCD) (BIN)
R

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

148

BINARY TO BCD
(@)BCD(24)

BCD(24)
S
R

Converts binary data in source word (S)
into BCD, and outputs converted data to
result word (R).

x160

x161

x162

x163

x101

x102

x103

S R
(BIN) (BCD)

x100

S:
IR
SR
HR
AR
LR
DM

R:
IR
HR
AR
LR
DM

149

ARITHMETIC SHIFT
LEFT
(@)ASL(25) ASL(25)

Wd

Each bit within a single word of data (Wd)
is shifted one bit to the left, with zero written
to bit 00 and bit 15 moving to CY.

Wd

15 00

CY 0

Wd:
IR
HR
AR
LR
DM

131

ARITHMETIC SHIFT
RIGHT
(@)ASR(26) ASR(26)

Wd

Each bit within a single word of data (Wd)
is shifted one bit to the right, with zero
written to bit 15 and bit 00 moving to CY.

0 Wd CY

15 00

Wd:
IR
HR
AR
LR
DM

132

Special Instructions Appendix B

316

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

ROTATE LEFT
(@)ROL(27)

ROL(27)
Wd

Each bit within a single word of data (Wd)
is moved one bit to the left, with bit 15
moving to carry (CY), and CY moving to bit
00.

15 00
CYWd

Wd:
IR
HR
AR
LR
DM

132

ROTATE RIGHT
(@)ROR(28)

ROR(28)
Wd 15 00

CY Wd

Each bit within a single word of data (Wd)
is moved one bit to the right, with bit 00
moving to carry (CY), and CY moving to bit
15.

Wd:
IR
HR
AR
LR
DM

133

COMPLEMENT
(@)COM(29)

COM(29)
Wd

Inverts bit status of one word (Wd) of data,
changing 0s to 1s, and vice versa.

Wd Wd

Wd:
IR
HR
AR
LR
DM

179

BCD ADD
(@)ADD(30)

ADD(30)
Au
Ad
R

CY CY

Adds two 4-digit BCD values (Au and Ad)
and content of CY, and outputs the result to
the specified result word (R).

Au + Ad + R

Au/
Ad:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

160

BCD SUBTRACT
(@)SUB(31)

SUB(31)
Mi
Su
R

Subtracts both the 4-digit BCD subtrahend
(Su) and content of CY, from the 4-digit
BCD minuend (Mi) and outputs the result to
the specified result word (R).

CYMi – Su – R CY

Mi/
Su:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

162

BCD MULTIPLY
(@)MUL(32)

MUL(32)
Md
Mr
R

Multiplies the 4-digit BCD multiplicand
(Md) and 4-digit BCD multiplier (Mr), and
outputs the result to the specified result
words (R and R + 1). R and R + 1 must be
in the same data area.

Md x Mr R + 1 R

Md/
Mr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

165

Special Instructions Appendix B

317

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

BCD DIVIDE
(@)DIV(33)

R

DIV(33)
Dd
Dr

Divides the 4-digit BCD dividend (Dd) by
the 4-digit BCD divisor (Dr), and outputs
the result to the specified result words. R
receives the quotient; R + 1 receives the
remainder. R and R + 1 must be in the same
data area.

R + 1 RDd ÷ Dr

Dd/
Dr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

167

AND WORD
(@)ANDW(34)

ANDW(34)
I1
I2
R

Logically ANDs two 16-bit input words (I1
and I2) and sets the bits in the result
word (R) if the corresponding bits in the
input words are both ON.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

180

OR WORD
(@)ORW(35)

ORW(35)
I1
I2
R

Logically ORs two 16-bit input words (I1
and I2) and sets the bits in the result
word (R) when one or both of the
corresponding bits in the input words
is/are ON.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

180

EXCLUSIVE OR
(@)XORW(36)

XORW(36)
I1
I2
R

Exclusively ORs two 16-bit input words
(I1 and I2) and sets the bits in the result
word (R) when the corresponding bits in
input words differ in status.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

181

EXCLUSIVE NOR
(@)XNRW(37)

I1
I2
R

XNRW(37)

Exclusively NORs two 16-bit input words
(I1 and I2) and sets the bits in the result
word (R) when the corresponding bits in
both input words have the same status.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

182

INCREMENT
(@)INC(38)

INC(38)

Wd

Increments the value of a 4-digit BCD
word (Wd) by one, without affecting carry
(CY).

Wd:
IR
HR
AR
LR
DM

159

DECREMENT
(@)DEC(39)

DEC(39)
Wd

Decrements the value of a 4-digit BCD
word by 1, without affecting carry (CY).

Wd:
IR
HR
AR
LR
DM

159

Special Instructions Appendix B

318

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

SET CARRY
(@)STC(40) STC(40)

Sets the Carry Flag (i.e., turns CY ON). None 159

CLEAR CARRY
(@)CLC(41) CLC(41)

Clears the Carry Flag (i.e, turns CY
OFF).

None 159

FILE MEMORY READ
(@)FILR(42)

FILR(42)
N
S
D

Reads data from the File Memory area in
128-word block units, and outputs data to
the specified PC destination words. N
gives the number of blocks to be
transferred. S specifies the starting source
block. D specifies the address of the
starting destination word.

 PC memory

S

S+N–1D

File memory

N/S:
IR
SR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
TC
DM

215

FILE MEMORY WRITE
(@)FILW(43)

FILW(43)
N
S
D

Transfers data from the PC memory area to
the File Memory area in 128-word (block)
units. N gives the number of blocks to be
transferred. S specifies the address of the
starting source word. D gives the address
of the starting destination block

 PC memory

D

 File memory

D

D+N–1

 S

N:
IR
SR
HR
AR
LR
TC
DM
#

S:
IR
SR
HR
AR
LR
TC
DM

D:
IR
HR
AR
LR
TC
DM

216

EXTERNAL
PROGRAM READ
(@)FILP(44)

FILP(44)
BB

Copies program data from the File Memory
blocks between the beginning block
number (BB) and the first END(01), and
transfers it to Program Memory area at the
addresses immediately following
FLIP(44). The transferred program is then
executed.

PC memory

BB

END

File Memory

BB:
IR
SR
HR
AR
LR
TC
DM
#

216

Special Instructions Appendix B

319

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

TRACE MEMORY
SAMPLE
TRSM(45)

TRSM(45)

Initiates data tracing. Used in conjunction
with flags in the AR area to simplify
debugging. Parameters are set using the
Address Trace operation on a
Programming Console or other System
Support Tool (e.g., FIT, GPC, or LSS). AR
1815 starts sampling, AR 1814 starts the
recording of the samples which are
written to the Trace Memory of the GPC,
FIT, or LSS. A positive or negative delay
can be set for the recording of the
samples. AR 1813 and 1812 indicate
tracing in progress and tracing complete,
respectively.

None 211

DISPLAY MESSAGE
(@)MSG(46)

MSG(46)
FM

Displays eight words of ASCII code,
starting from FM, on the Programming
Console or GPC. All eight words must be in
the same data area.

FM

FM+ 7

C D

A B

D P

ABCD........DP

FM:
IR
HR
AR
LR
TC
DM
#

209

BINARY ADD
(@)ADB(50)

ADB(50)
Au
Ad
R

Adds the 4-digit augend (Au), 4-digit
addend (Ad), and content of CY and
outputs the result to the specified result
word (R).

 Ad

Au

+

+ CY

R

CY

Au/
Ad:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

174

BINARY SUBTRACT
(@)SBB(51)

SBB(51)
Mi
Su
R

Subtracts the 4-digit hexadecimal
subtrahend (Su) and content of carry, from
the 4-digit hexadecimal minuend (Mi), and
outputs the result to the specified result
word (R).

Mi

Su

CY

R

CY

–

–

Mi/
Su:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

176

Special Instructions Appendix B

320

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

BINARY MULTIPLY
(@)MLB(52)

MLB(52)
Md
Mr
R

Multiplies the 4-digit hexadecimal
multiplicand (Md) and 4-digit multiplier
(Mr), and outputs the 8-digit hexadecimal
result to the specified result words (R and
R+1). R and R+1 must be in the same data
area.

Md

Mr

R

R+1

X

Quotient

Remainder

Md/
Mr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

178

BINARY DIVIDE
(@)DVB(53)

DVB(53)
Dd
Dr
R

Divides the 4-digit hexadecimal dividend
(Dd) by the 4-digit divisor (Dr), and outputs
result to the designated result words (R
and R + 1). R and R + 1 must be in the same
data area.

D
d
Dr

R

R+ 1

÷

Quotient

Remainder

Dd
/Dr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR

179

DOUBLE BCD ADD
(@)ADDL(54)

ADDL(54)
Au
Ad
R

Au+ 1

+ Ad+ 1

Adds two 8-digit values (2 words each) and
the content of CY, and outputs the result to
the specified result words. All words for any
one operand must be in the same data
area.

 +

CY R+ 1

CY

Au

Ad

R

Au/
Ad:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

161

DOUBLE BCD
SUBTRACT
(@)SUBL(55)

SUBL(55)
Mi
Su
R

Subtracts both the 8-digit BCD subtrahend
and the content of CY from an 8-digit BCD
minuend, and outputs the result to the
specified result words. All words for any
one operand must be in the same data
area.

Mi + 1 Mi

– Su + 1 Su

–

CY R + 1 R

CY

Mi/
Su:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

164

Special Instructions Appendix B

321

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

DOUBLE BCD
MULTIPLY
(@)MULL(56)

MULL(56)
Md
Mr
R

Multiplies the 8-digit BCD multiplicand and
8-digit BCD multiplier, and outputs the
result to the specified result words. All
words for any one operand must be in the
same data area.

Md+ 1 Md

Mr+ 1 Md

 R + 3 R + 2 R + 1 R

X

Md/
Mr:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

166

DOUBLE BCD DIVIDE
(@)DIVL(57)

DIVL(57)
Dd
Dr
R

Divides the 8-digit BCD dividend by an
8-digit BCD divisor, and outputs the result
to the specified result words. All words for
any one operand must be in the same data
area.

Dd + 1 Dd

Dr + 1 Dr

 R + 1 R

R + 3 R + 2

Quotient

Remainder

÷

Dd
/Dr:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

168

DOUBLE BCD TO
DOUBLE BINARY
(@)BINL(58)

BINL(58)
S
R

Converts the BCD value of the two source
words (S: starting word) into binary and
outputs the converted data to the two result
words (R: starting word). All words for any
one operand must be in the same data
area.

S

S + 1

R

R + 1

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

148

DOUBLE BINARY TO
DOUBLE BCD
(@)BCDL(59)

BCDL(59)
S
R

Converts the binary value of the two source
words (S: starting word) into eight digits of
BCD data, and outputs the converted data
to the two result words (R: starting result
word). Both words for any one operand
must be in the same data area.

S

S + 1

R

R + 1

S:
IR
SR
HR
AR
LR
DM

R:
IR
HR
AR
LR
DM

150

Special Instructions Appendix B

322

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

BIT COUNTER
(@)BCNT(67)

BCNT(67)
N

SB
R

Counts the number of ON bits in one or
more words (SB is the beginning source
word) and outputs the result to the
specified result word (R). N gives the
number of words to be counted. All words
in which bit are to be counted must be in
the same data area.

N:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
TC
DM

SB:
IR
SR
HR
AR
LR
TC
DM

210

BLOCK COMPARE
(@)BCMP(68)

BCMP(68)
S

CB
R

Compares a 1-word binary value (S) with
the 16 ranges given in the comparison
table (CB is the starting word of the
comparison block). If the value falls within
any of the ranges, the corresponding bits in
the result word (R) will be set. The
comparison block must be within one data
area.

S

CB CB+1
CB+2 CB+3
CB+4 CB+5

CB+30 CB+31

1
0
1

0

Lower limit Upper limit

Lower limit ≤ S ≤ Upper limit 1

Re-
sult

S:
IR
SR
HR
AR
LR
TC
DM
#

CB:
IR
SR
HR
LR
TC
DM

R:
IR
HR
AR
LR
TC
DM

145

BLOCK TRANSFER
(@)XFER(70)

XFER(70)
N
S
D

Moves the content of several consecutive
source words (S gives the address of the
starting source word) to consecutive
destination words (D is the starting
destination word). All source words must
be in the same data area, as must all
destination words. Transfers can be within
one data area or between two data areas,
but the source and destination words must
not overlap.

S

S + 1

D

D + 1

S+N–1 D+N–1

No. of
Words

N:
IR
SR
HR
AR
LR
TC
DM
#

S :
IR
HR
AR
LR
TC
DM

D:
IR
SR
HR
AR
LR
TC
DM
#

138

BLOCK SET
(@)BSET(71)

BSET(71)
S
St
E

Copies the content of one word or constant
(S) to several consecutive words (from the
starting word, St, through to the ending
word, E). St and E must be in the same data
area.

S St

E

St/E:
IR
HR
AR
LR
TC
DM

S:
IR
SR
HR
AR
LR
TC
DM
#

136

Special Instructions Appendix B

323

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

SQUARE ROOT
(@)ROOT(72)

ROOT(72)
Sq
R

Computes the square root of an 8-digit
BCD value (Sq and Sq + 1) and outputs the
truncated 4-digit, integer result to the
specified result word (R). Sq and Sq + 1
must be in the same data area.

Sq+1 Sq

R

Sq:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

172

DATA EXCHANGE
(@)XCHG(73)

XCHG(73)
E1
E2

Exchanges the contents of two words (E1
and E2).

E1 E2

E1/E2:
IR
HR
AR
LR
TC
DM

138

ONE DIGIT SHIFT
LEFT
(@)SLD(74)

SLD(74)
St
E

Shifts all data, between the starting word
(St) and ending word (E), one digit (four
bits) to the left, writing zero into the
rightmost digit of the starting word. St and
E must be in the same data area.

E

St

St + 1

0

St/E:
IR
HR
AR
LR
DM

133

ONE DIGIT SHIFT
RIGHT
(@)SRD(75)

SRD(75)
E
St

0 St

Shifts all data, between starting word (St)
and ending word (E), one digit (four bits) to
the right, writing zero into the leftmost digit
of the ending word. St and E must be in the
same data area.

E

E – 1

St/E:
IR
HR
AR
LR
DM

134

Special Instructions Appendix B

324

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

4-TO-16 DECODER
(@)MLPX(76)

MLPX(76)
S
Di
R

Converts up to four hexadecimal digits in
the source word (S), into decimal values
from 0 to 15, and turns ON the
corresponding bit(s) in the result word(s)
(R). There is one result word for each
converted digit. Digits to be converted are
designated by Di. (The rightmost digit
specifies the first digit. The next digit to the
left gives the number of digits to be
converted minus 1. The two leftmost digits
are not used.)

S 0 to F

R

0015

S:
IR
SR
HR
AR
LR
TC
DM

Di:
IR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

150

16-TO-4 ENCODER
(@)DMPX(77)

DMPX(77)
S
R
Di

Determines the position of the leftmost ON
bit in the source word(s) (starting word: S)
and turns ON the corresponding bit(s) in
the specified digit of the result word (R).
One digit is used for each source word.
Digits to receive the converted values are
designated by Di. (The rightmost digit
specifies the first digit. The next digit to left
gives the number of words to be converted
minus 1. The two leftmost digits are not
used.)

S

15 00

0 to FR

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

Di:
IR
HR
AR
LR
TC
DM
#

152

7-SEGMENT
DECODER
(@)SDEC(78)

SDEC(78)
S
Di
D

Converts hexadecimal values from the
source word (S) into 7-segment display
data. Results are placed in consecutive
half-words, starting at the first destination
word (D). Di gives digit and destination
details. (The rightmost digit gives the first
digit to be converted. The next digit to the
left gives the number of digits to be
converted minus 1. If the next digit is 1, the
first converted data is transferred to left half
of the first destination word. If it is 0, the
transfer is to the right half).

S

D 0 to F

S:
IR
SR
HR
AR
LR
TC
DM

Di:
IR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

154

Special Instructions Appendix B

325

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

FLOATING POINT
DIVIDE
(@)FDIV(79)

FDIV(79)
Dd
Dr
R

Divides one floating point value by another
and outputs a floating point result. The
rightmost seven digits of each set of two
words (eight digits) are used for mantissa,
and the leftmost digit is used for the
exponent and its sign (Bits 12 to 14 give the
exponent value, 0 to 7. If bit 15 is 0, the
exponent is positive; if it’s 1, the exponent
is negative).

÷

Dd+ 1 Dd

Dr+ 1 Dr

R + 1 R

Dd/
Dr:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

169

SINGLE WORD
DISTRIBUTE
(@)DIST(80)

DIST(80)
S

DBs
Of

Moves one word of source data (S) to the
destination word whose address is given
by the destination base word (DBs) plus
offset (Of).

S Base (DBs)
+

Offset (OF)

(S) (DBs + Of)

S:
IR
SR
HR
AR
LR
TC
DM
#

DBs:
IR
HR
AR
LR
TC
DM

Of:
IR
HR
AR
LR
TC
DM
#

139

DATA COLLECT
(@)COLL(81)

COLL(81)
SBs
Of
D

Extracts data from the source word and
writes it to the destination word (D). The
source word is determined by adding the
offset (Of) to the address of the source
base word (SBs). The offset cannot be
entered as a constant when using C120 or
C500 PCs.

Base (DBs)
+

Offset (OF)

(SBs+Of) (D)

SBs:
IR
SR
HR
AR
LR
TC
DM

Of:
IR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
TC
DM

139

MOVE BIT
(@)MOVB(82)

MOVB(82)
S
Bi
D

Transfers the designated bit of the source
word or constant (S) to the designated bit
of the destination word (D). The rightmost
two digits of the bit designator (Bi) specify
the source bit. The two leftmost digits
specify the destination bit.

S

D

S:
IR
SR
HR
AR
LR
DM
#

Bi:
IR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

140

Special Instructions Appendix B

326

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

MOVE DIGIT
(@)MOVD(83)

MOVD(83)
S
Di
D

Moves hexadecimal content of up to four
specified 4-bit source digit(s) from the
source word to the specified destination
digit(s) (S gives the source word address.
D specifies the destination word). Specific
digits within the source and destination
words are defined by the Digit Designator
(Di) digits. (The rightmost digit gives the
first source digit. The next digit to the left
gives the number of digits to be moved. The
next digit specifies the first digit in the
destination word.)

S

D

15 00

S:
IR
SR
HR
AR
LR
TC
DM
#

Di:
IR
HR
AR
LR
TC
DM
#

D:
IR
SR
HR
AR
LR
TC
DM

141

REVERSIBLE SHIFT
REGISTER
(@)SFTR(84)

SFTR(84)
C
St
E

Shifts bits in the specified word or series of
words either left or right. Starting (St) and
ending words (E) must be specified.
Control word (C) contains shift direction,
reset input, and data input. (Bit 12: 0 = shift
right, 1 = shift left. Bit 13 is the value shifted
into the source data, with the bit at the
opposite end being moved to CY. Bit 14: 1
= shift enabled, 0 = shift disabled. If bit 15
is ON when SFTR(89) is executed with an
ON condition, the entire shift register and
CY will be set to zero.) St and E must be
in the same data area and St must be less
than or equal to E.

CY

E St

15

00

CY

E

IN

St IN

001112131415

Not usedC

00 15 00

15 00 15

St/E/C:
IR
HR
AR
TC
LR
DM

129

Special Instructions Appendix B

327

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

TABLE COMPARE
(@)TCMP(85)

TCMP(85)
CD
TB
R

Compares a 4-digit hexadecimal value
(CD) with values in table consisting of 16
words (TB: is the first word of the
comparison table). If the value of CD falls
within any of the comparison ranges,
corresponding bits in result word (R) are
set (1 for agreement, and 0 for
disagreement). The table must be entirely
within the one data area.

CD Tb

Tb+1

Tb+13
Tb+14
Tb+15

1: agreement
0: disagreement

0

1

1
0
1

R

0

CD:
IR
SR
HR
AR
LR
TC
DM
#

TB/R:
IR
HR
AR
LR
TC
DM

146

ASCII CONVERT
(@)ASC(86)

ASC(86)
S
Di
D

Converts hexadecimal digits from the
source word (S) into 8-bit ASCII values,
starting at leftmost or rightmost half of the
starting destination word (D). The
rightmost digit of Di designates the first
source digit. The next digit to the left gives
the number of digits to be converted. The
next digit specifies the whether the data is
to be transferred to the rightmost (0) or
leftmost (1) half of the first destination
word. The leftmost digit specifies parity:

0: none,
1: even, or
2: odd.

S

D 8-bit
data

0 to F

15 08 07 00

S:
IR
SR
HR
AR
LR
TC
DM

Di:
IR
HR
LR
TC
DM
#

D:
IR
HR
LR
DM

157

I/O WRITE
(@)WRIT(87)

WRIT(87)
N
S
D

Transfers word data through I/O word (D)
allocated to an Special I/O Unit and
sequentially writes data to the memory
area of the Special I/O Unit. N is the
number of words to be transferred, and S
is the address of the first PC source word
to be transferred. The EQ Flag is set when
the transfer is completed.

S

S+1

S+N–1

N

D

PC I/O Unit

N:
IR
SR
HR
AR
LR
TC
DM
#

S:
IR
SR
HR
AR
LR
TC
DM

D:
I

218

Special Instructions Appendix B

328

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

I/O READ
(@)READ(88)

READ(88)
N
S
D

READ(88) reads data from memory area of
an Special I/O Unit and transfers it through
word (S) allocated to the Special I/O Unit to
destination words (D gives the address of
the first destination word). N is the number
of words to be transferred. The EQ Flag is
set when the transfer is completed.

N

D S

D+1

D+N–1

PC I/O Unit

N:
IR
SR
HR
AR
LR
TC
DM
#

S:
IR
D:
IR
HR
AR
LR
TC
DM

D:
IR
HR
AR
LR
TC
DM

218

INTERRUPT
CONTROL
(@)INT(89)

INT(89)
CC
N
D

Controls programmed (scheduled)
interrupts and interrupts from Interrupt
Input Units. Each PC can have up to 4 IIUs.
N defines the source of the interrupt: 000 to
003 designate the no. of the IIU; 004
designates a scheduled interrupt. In IIUs,
bits 00 to 07 identify the interrupting
subroutine, higher bits are not used. Bit 00
of Unit 0 corresponds to interrupt
subroutine 00, through to bit 07 of Unit 3
which corresponds to subroutine 31. CC is
the control code, the meaning of which
depends on the value of N, as follows:

CC N = 000 to 003 N = 004

000

001

002

Masks and unmasks in-
terrupt bits for the desig-
nated Unit (N) according
to the data in D. Bits corre-
sponding to ON bits in D
are masked, those corre-
sponding to OFF bits are
unmasked. Masked bits
are recorded and will be
executed when they are
unmasked (unless pre-
viously cleared).

Clears the masked inter-
rupt bits of the designated
Unit (N) according to the
corresponding ON bits in
D. The subroutines corre-
sponding to bits cleared in
this manner will not be ex-
ecuted when the bit is un-
masked.

Copies the mask status of
the designated IIU to D.

The interrupt time
interval is set ac-
cording to the data
in D (00.01 to
99.99 s) The deci-
mal point is not en-
tered. The inter-
rupt is cancelled if
D is 00.00.

The time to the
first interrupt is set
according to the
data in D (00.01 to
99.99 s) The deci-
mal point is not en-
tered. The inter-
rupt is cancelled if
D is 00.00.

Copies the time in-
terval data to D.

CC:
000 to
002

N:
000 to
004

D:
IR
HR
AR
LR
TC
DM
#

185

Special Instructions Appendix B

329

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

NETWORK SEND
(@)SEND(90)

SEND(90)
S
D
C

Transfers data from n source words (S is
the starting word) to the destination words
(D is the first address) in node N of the
specified network (in a SYSMAC LINK or
NET Link System). The format of the
control words varies depending on the type
of system. In both types of systems, the
first control word (C) gives the number of
words to be transferred.
For NET Link Systems, in word C+1, bit 14
specifies the system (0 for system 1, and 1
for system 0), and the rightmost 7 bits
define the network number. The left half of
word C+2 specifies the destination port
(00: NSB, 01/02: NSU), and the right half
specifies the destination node number. If
the destination node number is set to 0,
data is transmitted to all nodes.
For SYSMAC LINK Systems, the right half
of C+1 specifies the response monitoring
time (default 00: 2 s, FF: monitoring
disabled), the next digit to the left gives the
maximum number of re-transmissions (0 to
15) that the PC will attempt if no response
signal is received. Bit 13 specifies whether
a response is needed (0) or not (1), and bit
14 specifies the system number (0 for
system 1, and 1 for system 0). The right half
of C+2 gives the destination node number.
If this is set to 0, the data will be sent to all
nodes.

C

C+1

C+2

C

C+1

NET Link

SYSMAC LINK

n: no. of words to be transmitted (0 to 1000)

0X00 0000 Network no. (0 to 127)

Destination port no. Destination node no.
(0 to 126)

n: no. of words to be transmitted, 0 to 1000

0XX0 Re-trans-
missions

Response monitor time
(0.1 to 25.4 s)

0000 Destination node no.
(0 to 62)

0000C+2

Destination node NSource N

S

S+1

S+n–1

D

D+1

D+n–1

S:
IR
SR
HR
AR
LR
TC
DM

D/C:
IR
HR
AR
LR
TC
DM

219

SUBROUTINE ENTER
(@)SBS(91)

SBS(91) N
Calls subroutine N. Moves program
operation to the specified subroutine.

N:
00 to 99

183

SUBROUTINE START
SBN(92)

SBN(92) N
Marks the start of subroutine N. N:

00 to 99
183

RETURN
RET(93)

RET(93) Marks the end of a subroutine and
returns control to the main program.

None 183

Special Instructions Appendix B

330

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

WATCHDOG TIMER
REFRESH
(@)WDT(94) WDT(94) T

Sets the maximum and minimum limits
for the watchdog timer (normally 0 to 130
ms). New limits:
Maximum time = 130 + (100 x T)
Minimum time = 130 + (100 x (T–1))

T:
0 to 63

211

BLOCK PROGRAM
START
BPRG(96)

BPRG(96) N

Indicates the beginning of a block
program. Block programs allow
flowchart-style programming within ladder
diagram programs.

N:
00 to 99

190

I/O REFRESH
(@)IORF(97)

IORF(97)
St
E

Refreshes all I/O words between the start
(St) and end (E) words. Only I/O words
may be designated. Normally these
words are refreshed only once per cycle,
but refreshing words before use in an
instruction can increase execution speed.
St must be less than or equal to E.

St/E:
IR

211

Special Instructions Appendix B

331

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data
Areas

FunctionSymbol

NETWORK RECEIVE
(@)RECV(98)

RECV(98)
S
D
C

n: no. of words to be transmitted, 0 to 1000

Response monitor time
(0.1 to 25.4 s)

Source node no.
(0 to 62)

n: no. of words to be transmitted (0 to 1000)

Network no. (0 to 127)

Source node no.
(0 to 126)

Transfers data from the source words (S is
the first word) from node N of the specified
network (in a SYSMAC LINK or NET Link
System) to the destination words starting
at D. The format of the control words varies
depending on the type of system. In both
types of systems, the first control word (C)
gives the number of words to be
transferred.
For NET Link Systems, in the second word
(C+1), bit 14 specifies the system (0 for
system 1, and 1 for system 0), and the
rightmost 7 bits define the network
number. The left half of word C+2 specifies
the source port (00: NSB, 01/02: NSU),
and the right half specifies the source node
number.
For SYSMAC LINK Systems, the right half
of C+1 specifies the response monitoring
time (default 00: 2 s, FF: monitoring
disabled), the next digit to the left gives the
maximum number of re-transmissions (0
to 15) that the PC will attempt if no
response signal is received. Bit 13
specifies whether a response is needed
(0) or not (1), and bit 14 specifies the
system number (0 for system 1, and 1 for
system 0). The right half of C+2 gives the
source node number.

C

C+1

C+2

C

C+1

NET Link

SYSMAC LINK

0X00 0000

Source port no.
(NSB: 00, NSU: 01/02)

0XX0 Re-trans-
missions

0000 0000C+2

Destination nodeSource node N

S

S+1

S+n–1

D

D+1

D+n–1

S:
IR
SR
HR
AR
LR
TC
DM

C/D:
IR
HR
AR
LR
TC
DM

221

Special Instructions Appendix B

332

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Block Program Instructions

Name Mnemonic Symbol Function Operand Data Areas Page

BLOCK PROGRAM END
BEND<01>

BEND<01> Indicates the end of a block program. None 190

CONDITIONAL BRANCH
IF<02>
IF<02> B
IF<02> NOT B

IF<02>

IF<02> NOT

Indicates the part of the program that
is to be executed when a given
condition is satisfied.

B:
IR
SR
HR
AR
LR
TC

191

NO BRANCH
ELSE<03>

ELSE<03> Specifies the part of the program that
is to be executed when the IF
condition is not satisfied.

None 191

BRANCH END
IEND<04>

IEND<04> Defines the end of the program
portion that has started with IF<02>.

None 191

ONE CYCLE AND WAIT
WAIT<05>
WAIT<05> B
WAIT<05> NOT B

WAIT<05>

WAIT<05> NOT

Halts execution of a block program
until a specified condition is satisfied.

B:
IR
SR
HR
AR
LR
TC

193

CONDITIONAL BLOCK
EXIT
EXIT<06>
EXIT<06 B
EXIT<06> NOT B

EXIT<06>

EXIT<06> NOT

Exits a block program if a given
condition is satisfied.

B:
IR
SR
HR
AR
LR
TC

197

SET
SET<07> B

SET<07> Sets (turns ON) the specified bit. B:
IR
HR
AR
LR

191

RESET
RSET<08> B

RSET<08> Resets (turns OFF) the specified bit. B:
IR
HR
AR
LR

191

LOOP
LOOP<09>

LOOP<09> Defines the beginning of section to be
repeated until a specified terminal
condition is satisfied.

None 197

LOOP END
LEND<10>
LEND<10> B
LEND<10> NOT B

LEND<10>

LEND<10> NOT

Defines the end of the section to be
repeated. Execution of the specified
section continues until the terminal
condition is satisfied.

B:
IR
SR
HR
AR
LR
TC

197

BLOCK PROGRAM
PAUSE
BPPS<11> N

BPPS<11> Causes the execution of designated
block program to pause until a
specified condition is satisfied (often
used in conjunction with a timer or
counter).

N:
0 to 99

198

Block Program Instructions Appendix B

333

IR SR HR TR AR LR TC DM #

00000 to 23615 23700 to 25515 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 C1000H: DM 0000 to DM 4095
C2000H: DM 0000 to DM 6655

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name Mnemonic PageOperand Data AreasFunctionSymbol

BLOCK PROGRAM
RESTART
BPRS<12> N

BPRS<12> Restarts execution of the designated
block program.

N:
0 to 99

198

TIMER WAIT
TIMW<13> N

 SV

TIMW<13> The execution of the block program
between the TIMW<13> instruction
and BEND<04> is not executed until
the set value of the specified timer
has been reached. SV: 000.0 to
999.9.

SV:
IR
AR
DM
HR
LR
#

N:
TC

195

COUNTER WAIT
CNTW<14> N

 SV
 I

CNTW<14> The portion of block program between
the CNTW<14> instruction and
BEND<04> is not executed until the
set value of the specified counter has
been reached.

SV:
IR
AR
DM
HR
LR
#

N:
TC

196

HIGH-SPEED TIMER
WAIT
TMHW<15> N

 SV

TMHW<15> The portion of program between the
TIMH<15> instruction and BEND<04>
is not executed until the set value of
the high-speed timer has been
reached. SV: 00.02 to 99.99

SV:
IR
AR
DM
HR
LR
#

N:
TC

195

Block Program Instructions Appendix B

335

Appendix C
Programming Console Operations

This Appendix provides a table which sums up the Programming Console operations. The table gives the op-
eration name and the function it performs.

Name Function Page

Password Input Prompts the user for the access password. 61

Buzzer ON/OFF Controls whether the buzzer will sound for keystroke inputs. 339

Data Clear Used to erase data, either selectively or totally, from the Program Memory and the
IR, AR, HR, DM, and TC areas.

62

I/O Table Register Registers the I/O after initial entry or subsequent amendments. 64

I/O Table Change Allows Dummy Units to be registered in the table so that the table does not need to
be altered when Units are added.

67

Word Multiplier Enter Used to assign word multipliers to Remote I/O Master Units as required. 65

I/O Table Verify Checks the I/O Table against the actual arrangement of I/O Units. 70

I/O Table Read Displays the Unit type, location, I/O word number, and word multiplier (where
applicable).

71

I/O Table Transfer Copies the I/O table to RAM. This enables simultaneous writing of the table and
user program to EPROM.

67

Error Message Read Displays error messages in sequence, starting with the most severe messages. 66, 244

On-line I/O Unit Change Permissible Units can be mounted or removed while the CPU is operating. 69

Address Designation Displays the specified address. 75

Program Input Used to edit or input program instructions. 76

Program Read Allows the user to scroll through the program address-by-address. In RUN and
MONITOR modes, status of bits is also given.

75

Program Search Searches a program for the specified data address or instruction. 82

Instruction Insert
Instruction Delete

Allows a new instruction to be inserted before the displayed instruction, or deletes
the displayed instruction (respectively).

83

Program Check Checks the completed program for three levels of syntax errors. 79

Debug Operation Enter Places the Unit into debug mode. 244

Address Execution Executes a program instruction-by-instruction starting from the current address. 246

Debug Execution Debugs the program from the current address to the first END(01). 248

Address Trace Debugs a section of 250 instructions and stores the results in the Trace Memory. 249

Address Trace Read Allows the user to scroll address-by-address through the contents of Trace Memory. 250

Bit/Word Monitor Displays the specified address whose operand is to be monitored. In RUN or MONTR
mode it will show the status of the operand for any bit or word in any data area.

252

Three-word Monitor Simultaneously monitors three consecutive words. 259

Temporary Forced
Set/Reset

Set: Used to turn on bits or timers, or to increment counters currently displayed on
the left of the screen.
Reset: Used to turn off bits, or to reset timers or counters.

255

Hex/BCD Data Change Used to change the value of the leftmost BCD or hexadecimal word displayed
during a Bit/Word Monitor operation.

257

Binary Data Change Changes the value of 16-bit words bit-by-bit. Bits can be changed temporarily or
permanently to the desired status.

262

SV Change
SV Reset

Alters the SV of a timer or counter either by incrementing or decrementing the
value, or by overwriting the original value with a new one.

263

Three-word Change Used to change the value of a word displayed during a 3-word Monitor operation. 260

Programming Console Operations Appendix C

336

Name PageFunction

Cycle Time Display Measures the duration of the current cycle. Cycle times will vary according to the
execution conditions which exist in each cycle.

81

Hex-ASCII
Display Change

Converts 4-digit hexadecimal data in the DM area to ASCII and vice-versa. 258

Binary Monitor Displays the monitored area in binary format. 261

Program Memory Save Saves Program Memory to tape. 277

Program Memory
Restore

Reads Program Memory from tape. 278

Program Memory
Compare

Compares Program Memory data on tape with that in the Program Memory area. 278

DM Data
Save, Restore, Compare

Save, restore, and compare tape operations for DM area data. 280

File Memory Clear Clears memory, either selectively or totally, from the FM area. 266

File Memory Edit Allows data in the FM area to be read and modified. 275

File Memory Read Copies UM data from the FM area to a specified part of the Program Memory RAM,
or IOM data in the FM area to one of the CPU data areas.

272

File Memory Write Writes data from the Program Memory or data areas to the FM area. 267

File Memory Verify Compares data in the FM area with that in the specified Program Memory or data
areas.

270

Appendix CProgramming Console Operations

337

System Operations

The following table lists the Programming Console operations according to their function. A brief description of
each operation is given, along with the allowable modes in which it can be implemented, and the keystroke
sequence used to enter it.

Operation/Description Modes* Key sequence

Password Input
Controls access to the PC’s
programming functions. To gain
access to the system once
“PASSWORD” has been displayed,
press CLR, MONTR, and then CLR.

R M P
CLR MONTR CLR

Buzzer ON/OFF
The buzzer can be switched to
operate whenever Programming
Console keys are pressed (as well as
for the normal error indication). BZ is
displayed in the upper right corner
when the buzzer is operative. The
buzzer can be enabled by pressing
SHIFT and then 1 immediately after
entering the password, or after
changing the mode.

R M P
SHIFT

B
1

Data Clear
Unless otherwise specified, this
operation will clear all erasable
memory in Program Memory and IR,
HR, AR, DM, and TC areas. To clear
EPROM memory the write enable
switch must be ON (i.e., enabled).
The branch lines shown are used
only when performing a partial
memory clear, with each of the
memory areas entered being
retained. Specifying an address will
result in the Program Memory after
and including that address being
deleted. All memory up to that
address will be retained.

P
CLR

PLAY

SET
NOT

REC

RESET
MONTR

HR

CNT

DM

[Address] Partial
Clear

Retained if
pressed

All Clear

I/O Table Register
Whenever I/O Unit changes are
made that affect the operation of the
system, the I/O table needs to be
corrected to reflect the changes. This
includes the initial registration once
the system has been established.

P
CLR FUN SHIFT

*
CH

CHG 9 7
B

1
D

3 WRITE

I/O Table Change
Allows I/O Units to be removed or
added without the need to re-register
the I/O Table or to amend the user
program. By creating dummy entries,
word address discrepancies can be
avoided when the Units are added
later.

P

CHG
A

0

B
1

D
3

WRITE
I/O Table Read
in progress

I/O types 0: Output
1: Input
3: Word

Word Multiplier Enter
If the system has Remote I/O
Masters connected to I/O Link Units,
Optical I/O Units, or Remote
Terminals, a word multiplier must be
assigned to each Master after the I/O
table is registered. Word multipliers
can take values from 0 to 3.

P
WRITEI/O Table Register completed [Word multiplier]

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Programming Console Operations Appendix C

338

Operation/Description Modes* Key sequence

I/O Table Verify
Used to check that the registered I/O
Table matches the actual
arrangement of I/O Units. Pressing
VER displays the next inconsistency.

R P M
CLR FUN SHIFT

*
CH

VER VER

I/O Table Read
Used to read the I/O Table. The
display gives the Unit type, location,
I/O word allocation, and word
multiplier. Rack and unit numbers will
vary according to the system in use.
By pressing Shift before the arrow
key, the Rack and Unit numbers need
not be specified.

R P M
CLR FUN SHIFT

*
CH

MONTR[Rack no.] [Unit no.]

MONTR SHIFT

SHIFT

I/O Table Transfer
Transfers a copy of the I/O Table to
RAM so that the table and and the
user program can be written to
EPROM memory at the same time.
The operation will not work if the
memory is not RAM, or when the
contents exceed 31.7K words.

P

2

With battery check

Without battery check

WRITE

On-line I/O Unit Change
Allows mounting or removal of
permissible Units while the CPU is
operating. Be sure to disconnect the
terminal block before removal and to
reconnect it after mounting.

R P M
EXT DEL

EXT INS

[Remove I/O Unit]

[Mount new I/O Unit]

I/O Table Read
in progress

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgramming Console Operations

339

Programming Operations

Operation/Description Modes* Key sequence

Address Designation
Displays the specified address. Can
be used to start programming from a
non-zero address or to access an
address for editing. Leading zeros
need not be entered. The contents of
the address will not be displayed until
the down key is pressed. The up and
down keys can then be used to scroll
through the Program Memory.

R P M

CLR [Address]

Program Input
Used to enter or edit program
instructions. This operation
over-writes the contents of the
memory at the displayed address.
Once at the desired address, enter
the new instruction word and then
press WRITE (preceded by NOT for
differentiated instructions). Input the
required operands, and press
WRITE after each.

P
Address
displayed

[Instruction
word]

[Operand]

Program Read
Allows the user to scroll through the
program address-by-address. If the
Program Memory is read in RUN or
MONITOR mode, the ON/OFF status
of each displayed bit is also shown.

R P M
Address
currently
displayed

Program Search
Allows the program to be searched
for occurrences of any designated
instruction or data area address. To
designate a bit address, press
SHIFT, CONT/#, and then input the
address. Then press SRCH.
Pressing SRCH again will find the
next occurrence. For multi-word
instructions, the up and down keys
can be used to scroll through the
words before continuing the search.
In RUN or MONITOR mode, the
ON/OFF status of each monitored bit
will also be displayed.

R P M
CLR SRCH SRCH

CLR SHIFT
CONT

#

SRCH SRCH

LR

HR

HRSHIFT

TIM

CNT

[Instruction]

[Address]

(AR)

Scroll through multi-
word instructions

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Programming Console Operations Appendix C

340

Operation/Description Modes* Key sequence

Instruction Insert and
Instruction Delete
The displayed instruction can be
deleted, or another instruction can be
inserted before it. Care should be
taken to avoid inadvertent deletions
as there is no way of recovering the
instructions other than to re-enter
them. When an instruction is deleted
all subsequent instruction addresses
are automatically adjusted so that
there are no empty addresses, or
instructions without addresses.

P
INSAt the desired position

in program:

DEL

 Instruction
currently
displayed

[Enter new
instruction]

Insert

Delete

Program Check
Once a program has been entered, it
should be checked for errors. This
program check can be used to search
for three levels of syntax errors.
Details of the errors covered by each
level are given in the relevant
manuals. The address where the
error was generated will also be
displayed.

P
CLR SRCH

A

0

B
1

C
2

SRCH SRCH

CLR

Press SRCH to find
next error.

Cancel

(0, 1, 2: check levels)

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgramming Console Operations

341

Debugging Operations

Operation/Description Modes* Key sequence

Debug Operation Enter
Used to debug the program while in
Program Mode. Program Input,
Program Clear, Instruction Insert,
and Instruction Delete operations are
not available. Unless the Data
Retention control bit is ON, all data in
the IR, AR, and LR areas will be
cleared when debug operation is
entered or exited.

P

(Debug operation

SHIFT MONTR

CHG

SHIFT MONTR

CLR

(Program mode Debug operation)

Program mode)

Address Execution
Executes the program
instruction-by-instruction starting
from the current address. Press the
down key to go to the next address.
Word data can be monitored via the
Data Monitor operation.

P

EXT

PLAY

SET

REC

RESET

Next address

On

Off

Debug operation,
current address

Debug Execution
Executes the program from the
current address to the specified stop
address. Debugging will stop if
END(01) is encountered, or if CLR is
pressed.

P
EXT CHG

CLR

[Stop address]

 To cancel

Debug
operation

Address Trace
Traces up to 250 instructions from
the program. Tracing begins at the
address indicated by the trigger
address and the delay. The delay can
be in the range –249 to +250 (press
NOT to toggle between – and +).
Tracing continues up to the stop
address, or until a maximum of 250
instruction words have been
recorded. If END(01) is encountered,
the tracing will loop back to the
beginning address and continues
until 250 words have been traced and
recorded.

P
EXT CHG WRITE

WRITE MONTR

CLR

[Stop address]

[Trigger address] [Delay value]

To cancel

Debug
operation

Address Trace Read
Reads the Address Trace starting at
the trigger address. The up and down
arrow keys can be used to scroll
through the instructions
word-by-word.

P

CLR MONTR

Error Message Read
Displays error messages in
sequence with most severe
messages displayed first. Press
monitor to access remaining
messages. In PROGRAM mode,
pressing MONTR clears the
displayed message from memory
and the next message is displayed.

R P M
CLR FUN MONTR MONTR

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Programming Console Operations Appendix C

342

Monitoring and Data Changing Operations

Operation/Description Modes* Key sequence

Bit/Word Monitor
Up to six memory addresses,
containing either words or bits, or a
combination of the two, can be
monitored at once. Only three can be
displayed at any one time. If operated
in RUN or MONITOR mode, the
status of monitored bits will also be
displayed.
The operation can be started from a
cleared display by entering the
address of the first word or bit to be
monitored and pressing MONTR, or
from any address in the program by
displaying the address of the bit or
word to be monitored and pressing
MONTR.
When a timer or counter is monitored,
its PV will be displayed and a box is
displayed in the bottom left hand
corner if the Completion Flag is ON.

R P M

CLR SHIFT
CONT

#

LR

HR

SHIFT HR

LD

OUT

TIM

CNT

DM

MONTR

CLR

[Address]

Cancel

Clears the left-
most address
from the screen.

3-word Monitor
Monitors three consecutive words
simultaneously. Specify the lowest
valued address of the three words,
press MONTR, and then press EXT
to display the data contents of the
specified word and the two words that
follow. Pressing CLR will change the
three-word monitor operation into a
single-word display.

R P M

EXT
Bit/Word monitor in progress.
Currently monitored words ap-
pear on the left of the screen.

Temporary Forced Set/Reset
If a bit, timer, or counter address is
leftmost on the screen during a
Bit/Word Monitor operation, pressing
PLAY/SET will turn ON the bit, start
the timer, or increment the counter.
Pressing REC/RESET will turn OFF
the bit, or reset the timer or counter.
These force-sets and force-resets
are effective while the key is held
down.
Timers will not operate in PROGRAM
mode. SR bits are not affected by this
operation.

P M PLAY

SET

REC

RESET

Bit/Word monitor in progress. Bit or
Timer/Counter currently monitored
appears on left of the screen.

Hex/BCD Data Change
Used to edit the leftmost BCD or
hexadecimal value displayed during
a Bit/Word Monitor operation. If a
timer or counter is leftmost on the
display, the PV will be the value
displayed and affected by this
operation. It can only be changed in
MONITOR mode and only while the
timer or counter is operating. SR
words cannot be changed using this
operation.

P M
CHG WRITE[New data]

Bit/Word monitor in progress.
Currently monitored word ap-
pears on the left of the screen.

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgramming Console Operations

343

Operation/Description Modes* Key sequence

Binary Data Change
This operation is used to change the
value of IR, HR, AR, LR, or DM words
bit-by-bit. The cursor can be moved
left by using the up key, and right by
using the down key. The position of
the cursor is the bit that will be
overwritten.

P M

CHG
B

1

A

0

WRITE

Binary monitor
in progress.

Word currently
displayed.

SV Change,
SV Reset
There are two ways of modifying the
SVs for timers and counters. One
method is to enter a new value.
The second is to increment or
decrement the existing SV. In
MONITOR mode the SV can be
changed while the program is being
executed. Incrementing and
decrementing can only be carried out
if the SV has been entered as a
constant.

P M
M

CHG
Timer/Counter
currently displayed WRITE[New SV]

WRITE

All

EXT

3-word Change
This operation changes the value of
a word displayed during a 3-word
Monitor operation. The blinking
cursor indicates the word that will be
affected by the operation. The cursor
can be moved by using the up and
down keys. When the cursor is at the
desired location, press CHG. After
entering the new data, pressing
WRITE causes the original data to be
overwritten.

P M

WRITECHG
3-word Monitor
in progress [Data]

Cycle Time Display
This operation should be performed
after all syntax errors have been
corrected. The cycle time can only be
checked in RUN or MONITOR mode
and while the program is being
executed. The cycle time displayed
after pressing CLR and MONTR is
that for the current cycle. Pressing
MONTR again will display a new
cycle time. Any difference between
successive cycle times is due to the
different execution conditions that
exist during each cycle.

R M
CLR MONTR MONTR

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Programming Console Operations Appendix C

344

Operation/Description Modes* Key sequence

Hex-ASCII Display Change
Converts 4-digit hexadecimal DM
data to ASCII and vice-versa.

R P M

TR
Word currently
displayed

Binary Monitor
The contents of a monitored word
can be specified to be displayed in
binary by pressing SHIFT and
MONTR after entering the word
address. Words can be scrolled by
pressing the up and down keys to
increment and decrement the
displayed address. To terminate the
binary display, press CLR.

R P M

[Word address]

Binary monitor cancel

All monitor cancel

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgramming Console Operations

345

Cassette Tape Operations

Operation/Description Modes* Key sequence

Program Memory Save
Copies data from the Program
Memory to tape. The file no. specified
in the instructions provides an
identifying address for the
information within the tape. Each file
number should be used only once per
tape. If only a part of the Program
Memory is to be stored, the
appropriate start and stop addresses
must be entered. Each C60 tape can
store approximately 16K words on
each side of the tape. When the start
address is entered, the maximum
stop address is set as the default. Do
not set a stop address greater than
this one. If you wish to record past
this address the additional
information will need to be recorded
either on the flip side of the tape or on
a separate tape. After starting the
tape recorder, wait about 5 seconds
before pressing SHIFT REC/RESET.
This is to allow the leader tape to
pass before the data transmission
starts.

P

EXT
A

0 WRITECLR

WRITE Start recording with the
tape recorder.

SHIFT
REC

RESET

[File no.] [Start address]

[Stop address]

After about 5 seconds**
(Cancel with the CLR key).

Program Memory Restore
To read Program Memory data which
has been recorded on a cassette
tape, the keystrokes are as given
here. The file number must be the
same as the one entered when the
data was recorded. The read
operation will proceed from the
specified start address up to the end
of the tape, unless halted by a CLR
command. The instruction must be
completed before the required data is
reached on the tape, i.e., usually
before the leader tape finishes.

P

PLAY

SET

EXT
A

0 WRITECLR

SHIFTStart tape recorder
playback.

[File no.] [Start address]

Within about 5 seconds**

Program Memory Compare
The procedure to compare Program
Memory data stored on a tape with
that in the PC’s Program Memory
area is the same as that for reading it
(see above), except that after starting
the tape playback, VER should be
pressed instead of SHIFT and
PLAY/SET.

P

VER

EXT
A

0 WRITECLR

Start tape recorder
playback.

[File no.] [Start address]

Within about 5 seconds**

DM Data Save, Restore, Compare
The procedures for transferring DM
area data to and from tape, and for
comparing it, are basically the same
as for the Program Memory, given
above. The exceptions are that start
and stop addresses are not required,
and the DM area is specified instead
of the Program Memory. Each
operation will continue through to the
end of the tape unless cancelled by
pressing CLR.

P
EXTCLR

[File no.]

VER

B
1

Start tape recorder
playback.

SHIFT

SHIFT

REC

RESET

PLAY

SET

Start tape recorder re-
cording.

5 second leader tape**

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

**These times take the cassette leader tape into consideration according to the following:
a) When recording to tape, the leader tape needs to be allowed to pass before the data transmission to the tape player starts.

Programming Console Operations Appendix C

346

b) When restoring from tape or comparing data, the Programming Console needs to be ready to receive data before the data is transfered
from the tape.

File Memory Operations

Operation/Description Modes* Key sequence

File Memory Clear
Clears the FM area. For partial
clears, the start block number and
end block number must be specified.
The FM area should be totally
cleared when being used for the first
time or if an FM error occurs due to
corrupted memory data. Clearing the
entire FM area initializes it in
preparation for future data storage.

P
CLR FUN SHIFT

CONT

#

A

0

B
1

A

0

9 7
B

1
D

3

[Start block] WRITE [End block]

MONTR

Clear All

Partial Clear

File Memory Edit
Allows the data stored in the FM area
to be read and modified. The data
can be viewed in all modes, but
editing is only possible in MONITOR
or PROGRAM modes. If a start block
is not specified, the operation will
begin at the first block. The up and
down keys can be used to scroll
through each block word-by-word.
Specific words can be displayed by
entering CLR, the word address, and
then pressing the down key. To
change the content of the displayed
word, enter the new data and press
WRITE. Program and comment data
stored in the FM area cannot be
modified using this operation.

PM

CLR FUN SHIFT
CONT

#

C
2 [Start block]

[Programing
Operations]

File Memory Read
Used to read user program data (UM)
stored in the FM area and transfer it
to a specified part of the Program
Memory RAM, or to read user data in
the FM area and transfer it to one of
the CPU data areas. Data is read and
transferred in blocks of 128 words.
UM data is read from the specified
FM start block and continues until the
first END(01) instruction, or until the
first non-UM FM block is
encountered, or until the destination
memory area overflows.
User data is read starting from the
specified start block and continues
until the end. If a non-data block is
encountered, an error message is
displayed and transfer is aborted.
When transferring to the DM area,
the number of blocks must be
specified.

P

[Start UM address]

CLR FUN SHIFT
CONT

#

B
1

DM

WRITE MONTR

WRITE WRITE

SHIFT
*

CH
WRITE

LR

HR

SHIFT HR

TIM

CNT

[Start block]

[Start DM Wd] [No. of blocks]

[Start Wd]

(AR)

MONTR[Start block]

B
1

Program Memory

(Data area)

Other data areas

DM area

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgramming Console Operations

347

Operation/Description Modes* Key sequence

File Memory Write
Writes data from the Program
Memory or specified data areas to
the FM area. Data is written in blocks
of 128 words.
When transferring data from the
Program Memory, the data between
the specified start address and the
next END(01) instruction is moved to
the FM area. If the amount of data
exceeds the available memory in the
FM area, only the data that will fit into
the memory is transferred.
When transferring data from the DM
area, the number of blocks must be
specified.

P M
CLR FUN SHIFT

CONT

#

A

0

[Start block]

B
1

[Start UM address]

DM

WRITE MONTR

[Start DM Wd] WRITE [No. of blocks] WRITE

[Start block] MONTR

SHIFT
*

CH
[Start Wd] WRITE

LR

HR

SHIFT HR

TIM

CNT

(AR)

Program Memory

Other data areas

DM area

File Memory Verify
Compares the data stored in the FM
area with data in the Program
Memory or specified data areas.
When comparing with data in the
Program Memory, reading starts at
the specified address and continues
to the first END(01). This is compared
with the data starting at the specified
start block in the FM area.
For comparison with the DM area, the
number of blocks to be compared
must be specified. Blocks consist of
128 words.
When comparing with data in one of
the data areas, reading begins at the
start word in the data area and
continues until the end of that
particular data area.

P M C
2CLR FUN SHIFT

CONT

#

[Start block]

B
1

[Start UM address]

DM

WRITE MONTR

[Start DM Wd] WRITE [No. of blocks] WRITE

[Start block] MONTR

SHIFT
*

CH
[Start Wd] WRITE

LR

HR

SHIFT HR

TIM

CNT

(AR)

Program Memory

Other data areas

DM area

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

349

Appendix D
Error and Arithmetic Flag Operation

The following table shows the instructions that affect the ER, CY, GT, LT and EQ flags. In general, ER indi-
cates that operand data is not within requirements. CY indicates arithmetic or data shift results. GT indicates
that a compared value is larger than some standard, LT that it is smaller, and EQ, that it is the same. EQ also
indicates a result of zero for arithmetic operations. Refer to subsections of Section 5 Instruction Set for details.

Vertical arrows in the table indicate the flags that are turned ON and OFF according to the result of the in-
struction.

Although ladder diagram instructions,TIM, TIMW<13>, CNT, CNT<14>, TMHW<15>, and CNTR<12> are ex-
ecuted when ER is ON, other instructions with a vertical arrow under the ER column are not executed if ER is
ON. All of the other flags in the following table will also not operate when ER is ON.

Instructions not shown do not affect any of the flags in the table. Although only the non-differentiated form of
each instruction is shown, differentiated instructions affect flags in exactly the same way.

SR bits (25503 to 25507) change according to the result of the previously executed instruction. If the previous
instruction is a differentiated instruction, it will be executed only for the first scan in which the input conditions
are satisfied and so the SR bits will remain in the status determined by the result of the instruction executed
before the differentiated one.

Error and Arithmetic Flag Operation Appendix D

350

Flags

Instructions 25503(ER) 25504(CY) 25505(GR) 25506(EQ) 25507(LE)

TIM

CNT

END(01) OFF OFF OFF OFF OFF

STEP(08)

SNXT(09)

CNTR(12)

TIMH(15)

WSFT(16)

CMP(20)

MOV(21)

MVN(22)

BIN(23)

BCD(24)

ASL(25)

ASR(26)

ROL(27)

ROR(28)

COM(29)

ADD(30)

SUB(31)

MUL(32)

DIV(33)

ANDW(34)

ORW(35)

XORW(36)

XNRW(37)

INC(38)

DEC(39)

STC(40) ON

CLC(41) OFF

FILR(42)

FILW(43)

Note: means that the flag is affected by the result of instruction execution.

Appendix DError and Arithmetic Flag Operation

351

Flags

Instructions 25503(ER) 25504(CY) 25505(GR) 25506(EQ) 25507(LE)

FILP(44)

TRSM(45)

MSG(46)

ADB(50)

SBB(51)

MLB(52)

DVB(53)

ADDL(54)

SUBL(55)

MULL(56)

DIVL(57)

BINL(58)

BCDL(59)

FUN67

BCMP(68)

XFER(70)

BSET(71)

ROOT(72)

XCHG(73)

SLD(74)

SRD(75)

MLPX(76)

DMPX(77)

SDEC(78)

FDIV(79)

DIST(80)

COLL(81)

MOVB(82)

MOVD(83)

SFTR(84)

TCMP(85)

ASC(86)

Note: means that the flag is affected by the result of instruction execution.

Error and Arithmetic Flag Operation Appendix D

352

Flags

Instructions 25503(ER) 25504(CY) 25505(GR) 25506(EQ) 25507(LE)

WRIT(87)

READ(88)

FUN89

SEND(90)

SBS(91)

SBN(92)

RET(93)

WDT(94)

BPRG(96)

IORF(97)

RECV(98)

BEND<01>

IF<02>

ELSE<03>

IEND<04>

WAIT<05>

EXIT<06>

SET<07>

RSET<08>

LOOP<09>

LEND<10>

BPPS<11>

BPRS<12>

TIMW<13>

CNTW<14>

TMHW<15>

Note: means that the flag is affected by the result of instruction execution.

353

Appendix E
Data Areas

The data areas in the C1000H and C2000H are summarized below. These are the same for both PCs unless
specified. Only dedicated bits are shown specifically. The use of all other bits is determined either by the Sys-
tem the PC is involved in, e.g., PC Link or SYSMAC LINK Systems use the LR area, or by the programmer,
e.g., storage of data in the DM area.

In the following table, prefixes are included with bit and word addresses when inputting them is required to
designate the area, i.e., bits input without a prefix are considered to be IR or SR bits.

Area Bits Words Notes

IR 00000 to 23600 000 to 236 Possible for I/O bits
C1000H without Remote I/O 00000 to 06315.
Remote I/O with C1000H 06400 to 12700.
C2000H (with or without Remote I/O) 00000 to 12700. .

IR area work bits
12700 to 23600 plus any I/O bits not used for I/O.

SR 24700 to 25515 247 to 255 SR bits are dedicated for specific purposes. Unused bits
are not available for programmer use. In designating
operands, the SR area is considered as a continuation of
the IR area. See tables of dedicated bits following this
table.

HR HR 0000 to HR
9915

HR 00 to HR 99 HR bits are available for general data storage and
manipulation. The HR area maintains data when PC
power is turned off.

AR AR 0000 to AR
2715

AR 00 to AR 27 AR bits are mostly dedicated for specific purposes.
Unused AR bits may be used as works bits. See tables of
dedicated bits following this table.

LR LR 0000 to LR 6315 LR 00 to LR 63 LR bits are used for data transmission in PC Link and
SYSMAC LINK Systems. When the PC does not contain
either of these Systems, LR bits may be used as work
bits.

DM Not accessible as
bits.

C1000H:
DM 0000 to DM 4095
C2000H:
DM 0000 to DM 6655

DM words are basically used for data storage.

TC (TC 000 to TC 511) (TC 000 to TC 511) The TC area consists of TC numbers used to manipulate
and access timers and counters. In general, when used as
a bit operand, a TC number accesses the Completion Flag
for the timer or counter defined using the TC number.
When used as a word operand, the TC number accesses
the present value of the timer or counter.

TR (TC 0 to TR 7) Not accessible as words. TR bits can only be used in the Load and Output
instructions to store and retrieve execution conditions.
Storing and retrieving execution conditions is necessary
when programming certain types of branching ladder
diagrams.

Data Areas Appendix E

354

Dedicated Bits
Most of the bits in the SR and AR area are dedicated for specific purposes. These are summarized in the fol-
lowing tables. Refer to 3-4 SR Area and 3-5 AR Area for details.

SR Area
As a rule, SR area bits can be used only for the purposes for which they are dedicated. SR 237 through SR
251 can be used as work bits if the Systems for which they are intended are not used in the PC System.

Word(s) Bit(s) Function

237 00 to 07 Completion code output area following execution of
SEND(90)/RECV(98) for SYSMAC LINK System

08 to 15 Not used

238 to 241 00 to 15 Data link status output area for operating level 0 of
SYSMAC LINK or SYSMAC NET Link System

242 to 245 00 to 15 Data link status output area for operating level 1 of
SYSMAC LINK or SYSMAC NET Link System

246 00 to 15 Not used

247 to 250 00 to 07 PC Link Unit Run Flags or data link status for operating
level 1

08 to 15 PC Link Unit Run Flags or data link status for operating
level 1

251 00 to 15 Remote I/O Error Flags

252 00 and 01 Not used

02 Operating Level 0 Data Link Operating Flag

03 SEND(90)/RECV(98) Error Flag

04 SEND(90)/RECV(98) Enable Flag

05 Operating Level 1 Data Link Operating Flag

06 Rack-mounting Host Link Unit Level 1 Error Flag

08 CPU-mounting Host Link Unit Error Flag

09 CPU-mounting Host Link Unit Restart Bit

10 Leave set to 0

12 Data Retention Control Bit

13 Rack-mounting Host Link Unit Restart Bit

14 Leave set to 0

15 Output OFF Bit

253 00 to 07 FAL number output area.

08 Low Battery Flag

09 Cycle Time Error Flag

10 I/O Verification Error Flag

11 Rack-mounting Host Link Unit Level 0 Error Flag

12 Remote I/O Error Flag

13 Normally ON Flag

14 Normally OFF Flag

15 First Cycle

Appendix EData Areas

355

Word(s) FunctionBit(s)

254 00 1-minute clock pulse bit

01 0.02-second clock pulse bit

07 Step Flag

08 to 12 Duplex System flags

255 00 0.1-second clock pulse bit

01 0.2-second clock pulse bit

02 1.0-second clock pulse bit

03 Instruction Execution Error (ER) Flag

04 Carry (CY) Flag

05 Greater Than (GR) Flag

06 Equals (EQ) Flag

07 Less Than (LE) Flag

AR Area

Word(s) Bit(s) Function

07 00 to 03 Data Link setting for operating level 0 of SYSMAC LINK
System

05 to 07 Data Link setting for operating level 1 of SYSMAC LINK
System

08 to 15 Not used. May be used as work bits.

08 to 10 00 to 15 Active Node Flags for SYSMAC LINK System nodes of

11 00 to 13 operating level 0

11 14 Communications Controller Error Flag for operating level
0

15 EEPROM Error Flag for operating level 0

12 to 14 00 to 15 Node Active Flags for SYSMAC LINK System nodes of

15 00 to 13 operating level 1

15 14 Communications Controller Error Flag for operating level
1

15 EEPROM Error Flag for operating level 1

16 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating
level 0 service time per cycle

17 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating
level 1 service time per cycle

18 12 Trace Complete Flag

13 Tracing Flag

14 Trace Start Bit

15 Sampling Start Bit

Data Areas Appendix E

356

Word(s) FunctionBit(s)

19 00 File Memory Unit Error Reset Bit

01 FM Data Transfer Flag

02 FM Write/Read Flag

03 FM Blocks Different Error Flag

04 FM Write-protected Error Flag

05 Unsuccessful FM Write Flag

06 FM Checksum Error Flag

07 File Memory Unit Low Battery Flag

08 FM Blocks 0 to 249 Write-protect Bit

09 FM Blocks 250 to 499 Write-protect Bit

10 FM Blocks 500 to 749 Write-protect Bit

11 FM Blocks 750 to 999 Write-protect Bit

12 FM Blocks 1,000 to 1,249 Write-protect Bit

13 FM Blocks 1,250 to 1,499 Write-protect Bit

14 FM Blocks 1,500 to 1,749 Write-protect Bit

15 FM Blocks 1,750 to 1,999 Write-protect Bit

20 00 to 15 FM Blocks Counter

21 00 to 15 Remaining FM Blocks Counter

22 00 to 11 On-line Removal First Word Indicator

12 to 14 Number of Words Indicator for On-line Removal

15 On-line Removal Flag

23 00 to 15 Power-Off Counter

24 00 to 03 Leftmost digit of FALS-generating address

(AR 25 contains the other four digits)

04 and 05 Not used and not accessible by user.

06 Level 1 Network Parameter Flag

07 Level 0 Network Parameter Flag

08 to 10 Not used and not accessible by user.

11 PC Link Unit Level 1 Mounted Flag

12 PC Link Unit Level 0 or Single-level PC Link Unit
Mounted Flag

13 SYSMAC NET Link Unit Mounted Flag

14 Rack-mounting Host Link Unit Mounted Flag

15 CPU-mounting Device Flag

25 00 to 15 Rightmost four digits of FALS-generating address
(AR 2400 to AR 2403 contain the fifth digit)

26 00 to 15 Maximum cycle time

27 00 to 15 Present cycle time

357

Appendix F
I/O Assignment Records Sheets

This appendix contains sheets that can be copied by the programmer to record I/O bit allocations and terminal
assignments on the Racks, as well as details of work bits, data storage areas, timers, and counters.

I/O Assignment Records Sheets Appendix F

358

Programmer: Program: Date: Page:

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

I/O Bits

Appendix FI/O Assignment Records Sheets

359

Programmer: Program: Date: Page:

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Work Bits

I/O Assignment Records Sheets Appendix F

360

Programmer: Program: Date: Page:

Word Contents Notes Word Contents Notes

Data Storage

Appendix FI/O Assignment Records Sheets

361

Programmer: Program: Date: Page:

TC address T or C Set value Notes TC address T or C Set value Notes

Timers and Counters

363

Appendix G
Program Coding Sheet

The following page can be copied for use in coding ladder diagram programs. It is designed for flexibility, al-
lowing the user to input all required addresses and instructions.

When coding programs, be sure to specify all function codes for instructions and data areas (or # for constant)
for operands. These will be necessary when inputting programs though a Programming Console or other Pe-
ripheral Device.

Program Coding Sheet Appendix G

364

Programmer: Program: Date: Page:

Address Instruction Operand(s) Address Instruction Operand(s)

Appendix GProgram Coding Sheet

365

Programmer: Program: Date: Page:

Address Instruction Operand(s) Address Instruction Operand(s)

367

Appendix H
Data Conversion Table

Decimal BCD Hex Binary

00 00000000 00 00000000

01 00000001 01 00000001

02 00000010 02 00000010

03 00000011 03 00000011

04 00000100 04 00000100

05 00000101 05 00000101

06 00000110 06 00000110

07 00000111 07 00000111

08 00001000 08 00001000

09 00001001 09 00001001

10 00010000 0A 00001010

11 00010001 0B 00001011

12 00010010 0C 00001100

13 00010011 0D 00001101

14 00010100 0E 00001110

15 00010101 0F 00001111

16 00010110 10 00010000

17 00010111 11 00010001

18 00011000 12 00010010

19 00011001 13 00010011

20 00100000 14 00010100

21 00100001 15 00010101

22 00100010 16 00010110

23 00100011 17 00010111

24 00100100 18 00011000

25 00100101 19 00011001

26 00100110 1A 00011010

27 00100111 1B 00011011

28 00101000 1C 00011100

29 00101001 1D 00011101

30 00110000 1E 00011110

31 00110001 1F 00011111

32 00110010 20 00100000

369

Appendix I
Extended ASCII

ASCII Codes

Bits 0 to 3 Bits 4 to 7

BIN 0000 0001 0010 0011 0100 0101 0110 0111 1010 1011 1100 1101 1110 1111

HEX 0 1 2 3 4 5 6 7 A B C D E F

0000 0 NUL DLE Space � 7 � 8 9 � 7 � 8 9

0001 1 SOH DC1 : � � ; < = : � � ; < =

0010 2 STX DC2 > � � ? @ > � � ? @

0011 3 ETX DC3 - � � 	 4 A - � � 	 4 A

0100 4 EOT DC4 B * � � C D B * � � C D

0101 5 ENQ NAK E + � � F G E + � � F G

0110 6 ACK SYN H 1 � � I J H 1 � � I J

0111 7 BEL ETB K % �
 L M K % �
 L M

1000 8 BS CAN 0 � , N O 0 � , N O

1001 9 HT EM ! $ � � P Q ! $ � � P Q

1010 A LF SUB (5 / � R S (5 / � R S

1011 B VT ESC 2 T & U V W 2 T & U V W

1100 C FF FS X � � Y Z [X � � Y Z [

1101 D CR GS " # � \] ^ " # � \] ^

1110 E S0 RS . � � 3 _ ` . � � 3 _

1111 F S1 US � � � a b) � � � a b)

371

Glossary

address The location in memory where data is stored. For data areas, an address
consists of a two-letter data area designation and a number that designates
the word and/or bit location. For the UM area, an address designates the in-
struction location (UM area). In the FM area, the address designates the
block location, etc.

allocation The process by which the PC assigns certain bits or words in memory for
various functions. This includes pairing I/O bits to I/O points on Units.

AND A logic operation whereby the result is true if and only if both premises are
true. In ladder-diagram programming the premises are usually ON/OFF
states of bits or the logical combination of such states called execution condi-
tions.

APF Acronym for all plastic fiber-optic cable.

AR area A PC data area allocated to flags, control bits, and work bits.

arithmetic shift A shift operation wherein the carry flag is included in the shift.

ASCII Short for American Standard Code for Information Interchange. ASCII is
used to code characters for output to printers and other external devices.

ASCII Unit A Special I/O Unit used to program in BASIC. When connected to an NSU on
a SYSMAC NET Link System, commands can be sent to other nodes.

Backplane A base onto which Units are mounted to form a Rack. Backplanes provide a
series of connectors for these Units along with wiring to connect them to the
CPU. Backplanes also provide connectors used to connect them to other
Backplanes. In some Systems, different Backplanes are used for different
Racks; in other Systems, Racks differ only according to the Units mounted to
them.

BCD Short for binary-coded decimal.

BCD calculation An arithmetic calculation that uses numbers expressed in binary-coded deci-
mal.

binary A number system where all numbers are expressed to the base 2, i.e., any
number can be written using only 1’s or 2’s. Each group of four binary bits is
equivalent to one hexadecimal digit.

binary calculation An arithmetic calculation that uses numbers expressed in binary.

binary-coded decimal A system used to represent numbers so that each group of four binary bits is
numerically equivalent to one decimal digit.

bit A binary digit; hence a unit of data in binary notation. The smallest unit of
information that can be electronically stored in a PC. The status of a bit is
either ON or OFF. Different bits at particular addresses are allocated to spe-

Glossary

372

cial purposes, such as holding the status input from external devices, while
other bits are available for general use in programming.

bit address The location in memory where a bit of data is stored. A bit address must
specify (sometimes by default) the data area and word that is being ad-
dressed, as well as the number of the bit.

bit designator An operand that is used to designate the bit or bits of a word to be used by
an instruction.

bit number A number that indicates the location of a bit within a word. Bit 00 is the right-
most (least-significant) bit; bit 15 is the leftmost (most-significant) bit.

block Block can refer to one of three aspects of PC operation: a block in the FM
area, a block instruction (program), or a logic block. A block in the FM is the
unit used to transfer data to and from the File Memory Unit and equals 128
words. Refer to block instruction, block program, and logic block for defini-
tions of these.

block instruction A special class of instruction used within ladder-diagram programming to al-
low flowchart-like coding, which is often difficult to write with ladder diagrams.
Function codes for block instructions are indicated between pointed paren-
theses <like this>.

block program A section of program written within a ladder diagram but based on block in-
structions. Block programs can also contain some, but not all, of the lad-
der-diagram instructions.

buffer A temporary storage space for data in a computerized device.

building-block PC A PC that is constructed from individual components, or “building blocks.”
With building-block PCs, there is no one Unit that is independently identifi-
able as a PC. The PC is rather a functional assembly of components.

bus bar The line leading down the left and sometimes right side of a ladder diagram.
Instruction execution proceeds down the bus bar, which is the starting point
for all instruction lines.

call A process by which instruction execution shifts from the main program to a
subroutine. The subroutine may be called by an instruction or by an interrupt.

carry flag A flag that is used with arithmetic operations to hold a carry from an addition
or multiplication operation, or to indicate that the result is negative in a sub-
traction operation. The carry flag is also used with certain types of shift oper-
ations.

clock pulse A pulse available at a certain bit in memory for use in timing operations. Vari-
ous clock pulses are available with different pulse widths.

clock pulse bit A bit in memory that supplies a pulse that can be used to time operations.
Various clock pulse bits are available with different pulse widths, and there-
fore different frequencies.

common data Data that is stored in the LR Area of a PC and which is shared by other PCs
in the same the same system. Each PC has a specified section of the LR
Area allocated to it. This allocation is the same in each LR Area of each PC.

Glossary

373

condition An message placed in an instruction line to direct the way in which the termi-
nal instructions, on the right side, are to be executed. Each condition is as-
signed to a bit in memory that determines its status. The status of the bit as-
signed to each condition determines, in turn, the execution condition for each
instruction up to a terminal instruction on the right side of the ladder diagram.

constant An operand for which the actual numeric value is specified by the user, and
which is then stored in a particular address in the data memory.

control bit A bit in a memory area that is set either through the program or via a Pro-
gramming Device to achieve a specific purpose, e.g., a Restart bit is turned
ON and OFF to restart a Unit.

Control System All of the hardware and software components used to control other devices.
A Control System includes the PC System, the PC programs, and all I/O de-
vices that are used to control or obtain feedback from the controlled system.

controlled system The devices that are being controlled by a PC System.

control signal A signal sent from the PC to effect the operation of the controlled system.

counter A dedicated group of digits or words in memory used to count the number of
times a specific process has occurred, or a location in memory accessed
through a TC bit and used to count the number of times the status of a bit or
an execution condition has changed from OFF to ON.

CPU An acronym for central processing unit. In a PC System, the CPU executes
the program, processes I/O signals, communicates with external devices,
etc.

CPU Backplane A Backplane which is used to create a CPU Rack.

CPU Rack Part of a building-block PC, the CPU Rack contains the CPU, a power sup-
ply, and other Units. With most PCs, the CPU Rack is the only Rack that pro-
vides linkable slots.

CTS An acronym for clear-to-send, a signal used in communications between
electronic devices to indicate that the receiver is ready to accept incoming
data.

cycle The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in
turn based on execution conditions.

cycle time The time required for a single cycle of the ladder-diagram program.

data area An area in the PC’s memory that is designed to hold a specific type of data,
e.g., the LR area is designed to hold common data in a PC Link System.
Memory areas that hold programs are not considered data areas.

data area boundary The highest address available within a data area. When designating an oper-
and that requires multiple words, it is necessary to ensure that the highest
address in the data area is not exceeded.

data sharing An aspect of PC Link Systems and of Data Links in SYSMAC NET Link Sys-
tems in which common data areas or common data words are created be-
tween two or more PCs.

Glossary

374

debug A process by which a draft program is corrected until it operates as intended.
Debugging includes both the removal of syntax errors, as well as the
fine-tuning of timing and coordination of control operations.

decimal A number system where all numbers are expressed to the base 10. In a PC
all data is ultimately stored in binary form, four binary bits are often used to
represent one decimal digit, via a system called binary-coded decimal.

decrement Decreasing a numeric value.

default A value automatically set by the PC when the user omits to set a specific val-
ue. Many devices will assume such default conditions upon the application of
power.

definer A number used as an operand for an instruction but that serves to define the
instruction itself, rather that the data on which the instruction is to operate.
Definers include jump numbers, subroutine numbers, etc.

delay In tracing, a value that specifies where tracing is to begin in relationship to
the trigger. A delay can be either positive or negative, i.e., can designate an
offset on either side of the trigger.

destination The location where an instruction is to place the data on which it is operating,
as opposed to the location from which data is taken for use in the instruction.
The location from which data is taken is called the source.

differentiated instruction An instruction that is executed only once each time its execution condition
goes from OFF to ON. Nondifferentiated instructions are executed each cycle
as long as the execution condition stays ON.

differentiation instruction An instruction used to ensure that the operand bit is never turned ON for
more than one cycle after the execution condition goes either from OFF to
ON for a Differentiate Up instruction or from ON to OFF for a Differentiate
Down instruction.

digit A unit of storage in memory that consists of four bits.

digit designator An operand that is used to designate the digit or digits of a word to be used
by an instruction.

distributed control An automation concept in which control of each portion of an automated sys-
tem is located near the devices actually being controlled, i.e., control is de-
centralized and ‘distributed’ over the system. Distributed control is one of the
fundamental concepts of PC Systems.

DM area A data area used to hold only word data. Words in the DM area cannot be
accessed bit by bit.

download The process of transferring a program or data from a higher-level computer
to a lower-level computer or PC.

Duplex CPU A CPU arrangement available for a C2000H PC in which there are actually
two CPUs. Each of the CPUs holds the same program and the same data.
One of the CPUs is active and controls current PC operation; the other CPU
serves as a backup and takes over PC operation if the active CPU fails.

Glossary

375

Duplex System A C2000H PC System that uses a Duplex CPU.

Duplex Unit The Unit that coordinates the CPU activities of a Duplex System.

electrical noise Random variations of one or more electrical characteristics such as voltage,
current, and data, which might interfere with the normal operation of a de-
vice.

error code A numeric code generated to indicate that an error exists, and something
about the nature of the error. Some error codes are generated by the system;
others are defined in the program by the operator.

exclusive OR A logic operation whereby the result is true if one, and only one, of the prem-
ises is true. In ladder-diagram programming the premises are usually the ON/
OFF states of bits, or the logical combination of such states, called execution
conditions.

exclusive NOR A logic operation whereby the result is true if both of the premises are true or
both of the premises are false. In ladder-diagram programming the premises
are usually the ON/OFF states of bits, or the logical combination of such
states, called execution conditions.

exection condition The ON or OFF status under which an instruction is executed. The execution
condition is determined by the logical combination of conditions on the same
instruction line and up to the instruction currently being executed.

execution time The time required for the CPU to execute either an individual instruction or
an entire program.

Expansion I/O Backplane A Backplane which is used to create an Expansion I/O Rack.

Expansion I/O Rack Part of a building-block PC, an Expansion I/O Rack is connected to either a
CPU Rack or another Expansion I/O Rack to increase the number of slots
available for mounting Units.

extended counter A counter created in a program by using two or more count instructions in
succession. Such a counter is capable of counting higher than any of the
standard counters provided by the individual instructions.

extended timer A timer created in a program by using two or more timers in succession.
Such a timer is capable of timing longer than any of the standard timers pro-
vided by the individual instructions.

Factory Intelligent Terminal A programming device provided with advanced programming and debugging
capabilities to facilitate PC operation. The Factory Intelligent Terminal also
provides various interfaces for external devices, such as floppy disk drives.

fatal error An error that stops PC operation and requires correction before operation
can continue.

FIT Abbreviation for Factory Intelligent Terminal.

flag A dedicated bit in memory that is set by the system to indicate some type of
operating status. Some flags, such as the carry flag, can also be set by the
operator or via the program.

Glossary

376

flicker bit A bit that is programmed to turn ON and OFF at a specific frequency.

floating point decimal A decimal number expressed as a number between 0 and 1 (the mantissa)
multiplied by a power of 10, e.g., 0.538 x 10-5.

Floppy Disk Interface Unit A Unit used to interface a floppy disk drive to a PC so that programs and/or
data can be stored on floppy disks.

FM area A memory area located in a File Memory Unit used to store or backup pro-
grams and/or data.

force reset The process of forcibly turning OFF a bit via a programming device. Bits are
usually turned OFF as a result of program execution.

force set The process of forcibly turning ON a bit via a programming device. Bits are
usually turned ON as a result of program execution.

function code A two-digit number used to input an instruction into the PC.

GPC Acronym for Graphic Programming Console.

A programming device with advanced programming and debugging capabili-
ties to facilitate PC operation. A Graphic Programming Console is provided
with a large display onto which ladder-diagram programs can be written di-
rectly in ladder-diagram symbols for input into the PC without conversion to
mnemonic form.

hardware error An error originating in the hardware structure (electronic components) of the
PC, as opposed to a software error, which originates in software (i.e., pro-
grams).

hexadecimal A number system where all numbers are expressed to the base 16. In a PC
all data is ultimately stored in binary form, however, displays and inputs on
Programming Devices are often expressed in hexadecimal to simplify opera-
tion. Each group of four binary bits is numerically equivalent to one hexadeci-
mal digit.

Host Link System A system with one or more host computers connected to one or more PCs
via Host Link Units so that the host computer can be used to transfer data to
and from the PC(s). Host Link Systems enable centralized management and
control of PC Systems.

Host Link Unit An interface used to connect a PC to a host computer in a Host Link System.

host computer A computer that is used to transfer data or programs to from a PC in a Host
Link System. The host computer is used for data management and overall
system control. Host computers are generally personal or business comput-
ers.

HR area A data area used to store and manipulate data, and to preserve data when
power to the PC is turned OFF.

increment Increasing a numeric value.

indirect address An address whose contents indicates another address. The contents of the
second address will be used as the operand. Indirect addressing is possible
in the DM area only .

Graphic Programming
Console

Glossary

377

initialization error An error that occurs either in hardware or software during the PC System
startup, i.e., during initialization.

initialize Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

input The signal coming from an external device into the PC. The term input is of-
ten used abstractly or collectively to refer to incoming signals.

input bit A bit in the IR area that is allocated to hold the status of an input.

input device An external device that sends signals into the PC System.

input point The point at which an input enters the PC System. Input points correspond
physically to terminals or connector pins.

input signal A change in the status of a connection entering the PC. Generally an input
signal is said to exist when, for example, a connection point goes from low to
high voltage or from a nonconductive to a conductive state.

instruction A direction given in the program that tells the PC of an action to be carried
out, and which data is to be used in carrying out the action. Instructions can
be used to simply turn a bit ON or OFF, or they can perform much more com-
plex actions, such as converting and/or transferring large blocks of data.

instruction block A group of instructions that is logically related in a ladder-diagram program.
Although any logically related group of instructions could be called an instruc-
tion block, the term is generally used to refer to blocks of instructions called
logic blocks that require logic block instructions to relate them to other in-
structions or logic blocks.

instruction execution time The time required to execute an instruction. The execution time for any one
instruction can vary with the execution conditions for the instruction and the
operands used within it.

instruction line A group of conditions that lie together on the same horizontal line of a ladder
diagram. Instruction lines can branch apart or join together to form instruction
blocks.

interface An interface is the conceptual boundary between systems or devices and
usually involves changes in the way the communicated data is represented.
Interface devices such as NSBs perform operations like changing the coding,
format, or speed of the data.

interlock A programming method used to treat a number of instructions as a group so
that the entire group can be reset together when individual execution is not
required. An interlocked program section is executed normally for an ON ex-
ecution condition and partially reset for an OFF execution condition.

interrupt (signal) A signal that stops normal program execution and causes a subroutine to be
run.

Interrupt Input Unit A Rack-mounting Unit used to input external interrupts into a PC System.

I/O capacity The number of inputs and outputs that a PC is able to handle. This number
ranges from around one hundred for smaller PCs to two thousand for the
largest ones.

Glossary

378

I/O Control Unit A Unit mounted to the CPU Rack in certain PCs to monitor and control I/O
points on Expansion I/O Units.

I/O devices The devices to which terminals on I/O Units or Special I/O Units, or other
Units are connected. I/O devices may be either part of the Control System, if
they function to help control other devices, or they may be part of the con-
trolled system.

I/O Interface Unit A Unit mounted to an Expansion I/O Rack in certain PCs to interface the Ex-
pansion I/O Rack to the CPU Rack.

I/O Link Created in an Optical Remote I/O System to enable input/output of one or
two IR words directly between PCs. The words are input/output between the
PC controlling the Master and a PC connected to the Remote I/O System
through an I/O Link Unit or an I/O Link Rack.

I/O Link Unit A Unit used with certain PCs to create an I/O Link in an Optical Remote I/O
System.

I/O point The place at which an input signal enters the PC System, or at which an out-
put signal leaves the PC System. In physical terms, I/O points correspond to
terminals or connector pins on a Unit; in terms of programming, an I/O points
correspond to I/O bits in the IR area.

I/O response time The time required for an output signal to be sent from the PC in response to
an input signal received from an external device.

I/O table A table created within the memory of the PC that lists the IR area words allo-
cated to each Unit in the PC System. The I/O table can be created by, or mo-
dified from, a Programming Device.

I/O Unit The most basic type of Unit mounted to a backplane to create a Rack. I/O
Units include Input Units and Output Units, each of which is available in a
range of specifications. I/O Units do not include Special I/O Units, Link Units,
etc.

I/O word A word in the IR area that is allocated to a Unit in the PC System.

IR area A data area whose principal function is to hold the status of inputs coming
into the system and that of outputs that are to be set out of the system. Bits
and words in the IR that are used this way are called I/O bits and I/O words.
The remaining bits in the IR area are work bits.

JIS Acronym for Japanese Industrial Standards.

jump A type of programming where execution moves directly from one point in a
program to another, without sequentially executing any instructions inbe-
tween. Jumps are usually conditional on an execution condition.

jump number A definer used with a jump that defines the points from and to which a jump
is to be made.

ladder diagram (program) A form of program arising out of relay-based control systems that uses cir-
cuit-type diagrams to represent the logic flow of programming instructions.
The appearance of the program is similar to a ladder, and thus the name.

Glossary

379

ladder diagram symbol A symbol used in a ladder-diagram program.

ladder instruction An instruction that represents the ‘rung’ portion of a ladder-diagram program.
The other instructions in a ladder diagram fall along the right side of the dia-
gram and are called terminal instructions.

Ladder Support Software A software package that provides most of the functions of the Factory Intelli-
gent Terminal on an IBM AT, IBM XT, or compatible computer.

LAN An acronym for local area network.

leftmost (bit/word) The highest numbered bits of a group of bits, generally of an entire word, or
the highest numbered words of a group of words. These bits/words are often
called most-significant bits/words.

Link Adapter A Unit used to connect communications lines, either to branch the lines or to
convert between different types of cable. There are two types of Link
Adapter: Branching Link Adapters and Converting Link Adapters.

link A hardware or software connection formed between two Units. “Link” can
refer either to a part of the physical connection between two Units (e.g., opti-
cal links in Wired Remote I/O Systems) or a software connection created to
data existing at another location (Network Data Links).

linkable slot A slot on either a CPU or Expansion I/O Backplane to which a Link Unit can
be mounted. Backplanes differ in the slots to which Link Units can be
mounted.

Link System A system that includes one or more of the following systems: Remote I/O
System, PC Link System, Host Link System, or SYSMAC NET Link System.

Link Unit Any of the Units used to connect a PC to a Link System. These are Remote
I/O Units, I/O Link Units, PC Link Units, Host Link Units, and SYSMAC NET
Link Units.

load The processes of copying data either from an external device or from a stor-
age area to an active portion of the system such as a display buffer. Also, an
output device connected to the PC is called a load.

local area network A network consisting of nodes or positions in a loop arrangement. Each node
can be any one of a number of devices, which can transfer data to and from
each other.

logic block A group of instructions that is logically related in a ladder-diagram program
and that requires logic block instructions to relate it to other instructions or
logic blocks.

logic block instruction An instruction used to locally combine the execution condition resulting from
a logic block with a current execution condition. The current execution condi-
tion could be the result of a single condition, or of another logic block. AND
Load and OR Load are the two logic block instructions.

logic instruction Instructions used to logically combine the content of two words and output
the logical results to a specified result word. The logic instructions combine
all the same-numbered bits in the two words and output the result to the bit of
the same number in the specified result word.

Glossary

380

loop A group of instructions that can be executed more than once in succession
(i.e., repeated) depending on an execution condition or bit status.

LR area A data area that is used in a PC Link System so that data can be transferred
between two or more PCs. If a PC Link System is not used, the LR area is
available for use as work bits.

LSS Abbreviation for Ladder Support Software.

main program All of a program except for the subroutines.

masking ‘Covering’ an interrupt signal so that the interrupt is not effective until the
mask is removed.

Master Short for Remote I/O Master Unit.

memory area Any of the areas in the PC used to hold data or programs.

mnemonic code A form of a ladder-diagram program that consists of a sequential list of the
instructions without using a ladder diagram. Mnemonic code is required to
input a program into a PC when using a Programming Console.

MONITOR mode A mode of PC operation in which normal program execution is possible, and
which allows modification of data held in memory. Used for monitoring or de-
bugging the PC.

most-significant (bit/word) See leftmost (bit/word).

NC input An input that is normally closed, i.e., the input signal is considered to be
present when the circuit connected to the input opens.

nest Programming one loop within another loop, programming a call to a subrou-
tine within another subroutine, or programming an IF-ELSE programming
section within another IF-ELSE section.

Network Service Board A device with an interface to connect devices other than PCs to a SYSMAC
NET Link System.

Network Service Unit A Unit that provides two interfaces to connect peripheral devices to a SYS-
MAC NET Link System.

node One of the positions in a LAN. Each node incorporates a device that can
communicate with the devices at all of the other nodes. The device at a node
is identified by the node number. One loop of a SYSMAC NET Link System
(OMRON’s LAN) can consist of up to 126 nodes. Each node is occupied by a
SYSMAC NET Link Unit mounted to a PC or a device providing an interface
to a computer or other peripheral device.

NO input An input that is normally open, i.e., the input signal is considered to be pres-
ent when the circuit connected to the input closes.

noise interference Disturbances in signals caused by electrical noise.

nonfatal error A hardware or software error that produces a warning but does not stop the
PC from operating.

Glossary

381

normally closed condition A condition that produces an ON execution condition when the bit assigned
to it is OFF, and an OFF execution condition when the bit assigned to it is
ON.

normally closed condition A condition that produces an ON execution condition when the bit assigned
to it is ON, and an OFF execution condition when the bit assigned to it is
OFF.

NOT A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND operation with the opposite of the actual status of the
operand bit.

NSB An acronym for Network Service Board.

NSU An acronym for Network Service Unit.

OFF The status of an input or output when a signal is said not to be present. The
OFF state is generally represented by a low voltage or by non-conductivity,
but can be defined as the opposite of either.

OFF delay The delay between the time when a signal is switched OFF (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an
OFF signal (i.e., as no signal) by a receiving party (e.g., output device or
PC).

ON The status of an input or output when a signal is said to be present. The ON
state is generally represented by a high voltage or by conductivity, but can be
defined as the opposite of either.

ON delay The delay between the time when an ON signal is initiated (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an
ON signal by a receiving party (e.g., output device or PC).

one-shot bit A bit that is turned ON or OFF for a specified interval of time which is longer
than one cycle.

on-line removal Removing a Rack-mounted Unit for replacement or maintenance during PC
operation.

operand Bit(s) or word(s) designated as the data to be used for an instruction. An op-
erand can be input as a constant expressing the actual numeric value to be
used or as an address to express the location in memory of the data to be
used.

operand bit A bit designated as an operand for an instruction.

operand word A word designated as an operand for an instruction.

operating error An error that occurs during actual PC operation as opposed to an initializa-
tion error, which occurs before actual operations can begin.

Optical I/O Unit A Unit that is connected in an Optical Remote I/O System to provide 8 I/O
points. Optical I/O Units are not mounted to a Rack.

Optical Slave Rack A Slave Rack connected through an Optical Remote I/O Slave Unit.

Glossary

382

OR A logic operation whereby the result is true if either of two premises is true, or
if both are true. In ladder-diagram programming the premises are usually ON/
OFF states of bits or the logical combination of such states called execution
conditions.

output The signal sent from the PC to an external device. the term output is often
used abstractly or collectively to refer to outgoing signals.

output bit A bit in the IR area that is allocated to hold the status to be sent to an output
device.

output device An external device that receives signals from the PC System.

output point The point at which an output leaves the PC System. Output points corre-
spond physically to terminals or connector pins.

output signal A signal being sent to an external device. Generally an output signal is said
to exist when, for example, a connection point goes from low to high voltage
or from a nonconductive to a conductive state.

overseeing Part of the processing performed by the CPU that includes general tasks re-
quired to operate the PC.

overwrite Changing the content of a memory location so that the previous content is
lost.

parity Adjustment of the number of ON bits in a word or other unit of data so that
the total is always an even number or always an odd number. Parity is gener-
ally used to check the accuracy of data after being transmitted by confirming
that the number of ON bits is still even or still odd.

PC An acronym for Programmable Controller.

PCB An acronym for printed circuit board.

PC configuration The arrangement and interconnections of the Units that are put together to
form a functional PC.

PCF Acronym for plastic-clad optical fiber cable.

PC Link System A system in which PCs are connected through PC Link Units to enable them
to share common data areas, i.e., each of the PCs writes to certain words in
the LR area and receives the data of the words written by all other PC Link
Units connected in series with it.

PC Link Unit The Unit used to connect PCs in a PC Link System.

PC System With building-block PCs, all of the Racks and independent Units connected
directly to them up to, but not including the I/O devices. The boundaries of a
PC System are the PC and the program in its CPU at the upper end; and the
I/O Units, Special I/O Units, Optical I/O Units, Remote Terminals, etc., at the
lower end.

peripheral device Devices connected to a PC System to aid in system operation. Peripheral
devices include printers, programming devices, external storage media, etc.

Glossary

383

port A connector on a PC or computer that serves as a connection to an external
device.

present value The current value registered in a device at any instant during its operation.
Present value is abbreviated as PV.

printed circuit board A board onto which electrical circuits are printed for mounting into a comput-
er or electrical device.

Printer Interface Unit A Unit used to interface a printer so that ladder diagrams and other data can
be printed out.

program The list of instructions that tells the PC the sequence of control actions to be
carried out.

Programmable Controller A computerized device that can accept inputs from external devices and gen-
erate outputs to external devices according to a program held in memory.
Programmable Controllers are used to automate control of external devices.
Although single-component Programmable Controllers are available, build-
ing-block Programmable Controllers are constructed from separate compo-
nents. Such building-block Programmable Controllers are formed only when
enough of these separate components are assembled to form a functional
assembly, i.e., no one individual Unit is called a PC.

programmed alarm An alarm given as a result of execution of an instruction designed to gener-
ate the alarm in the program, as opposed to one generated by the system.

programmed error An error arising as a result of the execution of an instruction designed to gen-
erate the error in the program, as opposed to one generated by the system.

programmed message A message generated as a result of execution of an instruction designed to
generate the message in the program, as opposed to one generated by the
system.

Programming Console The simplest form or programming device available for a PC. Programming
Consoles are available both as hand-held models and as CPU-mounting
models.

Programming Device A peripheral device used to input a program into a PC or to alter or monitor a
program already held in the PC. There are dedicated programming devices,
such as Programming Consoles, and there are non-dedicated devices, such
as a host computer.

PROGRAM mode A mode of operation that allows inputting and debugging of programs to be
carried out, but that does not permit normal execution of the program.

PROM Writer A peripheral device used to write programs and other data into a ROM for
permanent storage and application.

prompt A message or symbol that appears on a display to request input from the op-
erator.

PV Acronym for present value.

Rack An assembly of various Units on a Backplane that forms a functional unit in a
building-block PC System. Racks include CPU Racks, Expansion I/O Racks,
I/O Racks, and Slave Racks.

Glossary

384

refresh The process of updating output status sent to external devices so that it
agrees with the status of output bits held in memory and of updating input
bits in memory so that they agree with the status of inputs from external de-
vices.

relay-based control The forerunner of PCs. In relay-based control, groups of relays are intercon-
nected to form control circuits. In a PC, these are replaced by programmable
circuits.

Remote I/O Master Unit The Unit in a Remote I/O System through which signals are sent to all other
Remote I/O Units. The Remote I/O Master Unit is mounted either to a CPU
Rack or an Expansion I/O Rack connected to the CPU Rack. Remote I/O
Master Unit is generally abbreviated to Master.

Remote I/O Slave Unit A Unit mounted to a Backplane to form a Slave Rack. Remote I/O Slave Unit
is generally abbreviated to Slave.

Remote I/O System A system in which remote I/O points are controlled through a Master
mounted to a CPU Rack or an Expansion I/O Rack connected to the CPU
Rack.

Remote I/O Unit Any of the Units in a Remote I/O System. Remote I/O Units include Masters,
Slaves, Optical I/O Units, I/O Link Units, and Remote Terminals.

remote I/O word An I/O word allocated to a Unit in a Remote I/O System.

reset The process of turning a bit or signal OFF or of changing the present value of
a timer or counter to its set value or to zero.

return The process by which instruction execution shifts from a subroutine back to
the main program (usually the point from which the subroutine was called).

reversible counter A counter that can be both incremented and decremented depending on the
specified conditions.

reversible shift register A shift register that can shift data in either direction depending on the speci-
fied conditions.

right-hand instruction Another term for terminal instruction.

rightmost (bit/word) The lowest numbered bits of a group of bits, generally of an entire word, or
the lowest numbered words of a group of words. These bits/words are often
called least-significant bits/words.

rotate register A shift register in which the data moved out from one end is placed back into
the shift register at the other end.

RUN mode The operating mode used by the PC for normal control operations.

scheduled interrupt An interrupt that is automatically generated by the system at a specific time
or program location specified by the operator. Scheduled interrupts result in
the execution of specific subroutines that can be used for instructions that
must be executed repeatedly for a specified period of time.

self diagnosis A process whereby the system checks its own operation and generates a
warning or error if an abnormality is discovered.

Glossary

385

self-maintaining bit A bit that is programmed to maintain either an OFF or ON status until set or
reset by specified conditions.

servicing The process whereby the PC provides data to or receives data from external
devices or remote I/O Units, or otherwise handles data transactions for Link
Systems.

set The process of turning a bit or signal ON.

set value The value from which a decrementing counter starts counting down or to
which an incrementing counter counts up (i.e., the maximum count), or the
time from which or for which a timer starts timing. Set value is abbreviated
SV.

shift register One or more words in which data is shifted a specified number of units to the
right or left in bit, digit, or word units. In a rotate register, data shifted out one
end is shifted back into the other end. In other shift registers, new data (ei-
ther specified data, zero(s) or one(s)) is shifted into one end and the data
shifted out at the other end is lost.

Simplex CPU A C2000H PC that uses only a single CPU as opposed to a Duplex CPU.
This term is meaningless with other PCs, which are only available with sim-
plex operation.

Simplex System A C2000H PC System that uses a Simplex CPU.

Slave Short for Remote I/O Slave Unit.

Slave Rack A Rack containing a Remote I/O Slave Unit and controlled through a Remote
I/O Master Unit. Slave Racks are generally located away from the CPU Rack.

slot A position on a Rack (Backplane) to which a Unit can be mounted.

software error An error that originates in a software program.

software protect A means of protecting data from being changed that uses software as op-
posed to a physical switch or other hardware setting.

source The location from which data is taken for use in an instruction, as opposed to
the location to which the result of an instruction is to be written. The latter is
called the destination.

Special I/O Unit A dedicated Unit that is designed for a specific purpose. Special I/O Units
include Position Control Units, High-Speed Counter Units, Analog I/O Units,
ASCII Units, Ladder Diagram I/O Units, etc.

SR area A data area in a PC used mainly for flags, control bits, and other information
provided about PC operation. The status of only certain SR bits may be con-
trolled by the operator, i.e., most SR bits can only be read.

subroutine A group of instructions placed after the main program and executed only if
called from the main program or activated by an interrupt.

subroutine number A definer used to identify the subroutine that a subroutine call or interrupt
activates.

Glossary

386

SV Abbreviation for set value.

switching capacity The maximum voltage/current that a relay can safely switch on and off.

syntax error An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exist), mistakes in
specifying operands within acceptable parameters (e.g., specifying reserved
SR bits as a destination), and mistakes in actual application of instructions
(e.g., a call to a subroutine that does not exist).

SYSMAC NET Link System An optical LAN formed from PCs and other devices connected through SYS-
MAC NET Link Units, NSBs, and NSUs. A SYSMAC NET Link System also
normally contains nodes interfacing computers and other peripheral devices.
PCs in the SYSMAC NET Link System can pass data back and forth, receive
commands from any interfaced computer, and share any interfaced periph-
eral device.

SYSMAC NET Link Unit The Unit used to connect PCs to a SYSMAC NET Link System.

system configuration The arrangement in which Units in a system are connected.

system error An error generated by the system, as opposed to one resulting from execu-
tion of an instruction designed to generate an error.

system error message An error message generated by the system, as opposed to one resulting
from execution of an instruction designed to generate a message.

TC area A data area that can be used only for timers and counters. Each bit in the TC
area serves as the access point for the SV, PV, and Completion flag for the
timer or counter defined with that bit.

TC number A definer that corresponds to a bit in the TC area and used to define the bit
as either a timer or a counter.

terminal instruction An instruction placed on the right side of a ladder diagram that uses the final
execution conditions of an instruction line.

terminator The code comprising an asterisk and a carriage return (* CR) which indicates
the end of a block of data, whether it is a single-frame or multi-frame block.
Frames within a multi-frame block are separated by delimiters.

timer A location in memory accessed through a TC bit and used to time down from
the timer’s set value. Timers are turned ON and reset according to their ex-
ecution conditions.

TM area A memory area used to store the results of a trace.

transmission distance The distance that a signal can be transmitted.

TR area A data area used to store execution conditions so that they can be reloaded
later for use with other instructions.

trace An operation whereby the program is executed and the resulting data is
stored in TM memory to enable step-by-step analysis and debugging.

Glossary

387

transfer The process of moving data from one location to another within the PC, or
between the PC and external devices. When data is transferred, generally a
copy of the data is sent to the destination, i.e., the content of the source of
the transfer is not changed.

trigger address An address in the program that defines the beginning point for tracing. The
actual beginning point can be altered from the trigger by defining either a
positive or negative delay.

UM area The memory area used to hold the active program, i.e., the program that is
being currently executed.

Unit In OMRON PC terminology, the word Unit is capitalized to indicate any prod-
uct sold for a PC System. Though most of the names of these products end
with the word Unit, not all do, e.g., a Remote Terminal is referred to in a col-
lective sense as a Unit. Context generally makes any limitations of this word
clear.

unit number A number assigned to some Link Units and Special I/O Units to facilitate
identification when assigning words or other operating parameters to it.

watchdog timer A timer within the system that ensures that the cycle time stays within speci-
fied limits. When limits are reached, either warnings are given or PC opera-
tion is stopped depending on the particular limit that is reached.

Wired Slave Rack A Slave Rack connected through a Wired Remote I/O Slave Unit.

word A unit of data storage in memory that consists of 16 bits. All data areas con-
sists of words. Some data areas can be accessed only by words; others, by
either words or bits.

word address The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that
is being addressed.

word multiplier A value between 0 and 3 that is assigned to a Master in a Remote I/O Sys-
tem so that words can be allocated to non-Rack-mounting Units within the
System. The word setting made on the Unit is added to 32 times the word
multiplier to arrive at the actual word to be allocated.

work bit A bit in a work word.

work word A word that can be used for data calculation or other manipulation in pro-
gramming, i.e., a ‘work space’ in memory. A large portion of the IR area is
always reserved for work words. Parts of other areas not required for special
purposes may also be used as work words, e.g., LR words not used in a PC
Link or SYSMAC NET Link System.

389

Index

�

address, in data area, 17

address tracing. See tracing, data tracing.

AR area, 31–36

arithmetic flags, 103

arithmetic operations, flags, 31

ASCII, converting data, 157

assembly tool, 300

�

backup
DM area data, 280
program, 277–278

battery, Low Battery Flag, 29

BCD
calculations, 158–173
converting, 17
definition, 17

binary
calculations, 174
definition, 17

bits
controlling, 109
force set/reset, 255
monitoring, 252–255

block instructions, converting to mnemonic code, 107

block programs
instructions, 190–199
restricted instructions, 190

branching
block programs, 191
exiting block programs, 197

�

cassette tape operation, 276–284
comparing Program Memory data, 278–280
error messages, 277
restoring Program Memory data, 278–280
saving Program Memory data, 277

channel. See word

clock pulse bits, 29

comparing Program Memory data, 278–280

constants, operands, 103

control bit
Data Retention, 28
data tracing, 34
definition, 16
File Memory, 34
manipulating, 23
Output OFF, 29

Control System, definition, 3

controlled system, definition, 3

counters
bits in TC area, 37
block programs, 196
changing SV, 263
conditions when reset, 122, 126
creating extended timers, 124
extended, 123
inputting SV, 76
Power-off, 35
reversible, 125

CPU
Device Mounted Flag, 36
operational flow, 229

CPU indicators, 10

CPU Rack, definition, 12

cycle, First Cycle Flag, 29

cycle time, 228–232
calculating, 232–234
Cycle Time Indicators, 36
displaying on Programming Console, 81

Cycle Time Error Flag, 29

�

data
comparison instructions, 142–147
converting, 18, 148–158
decrementing, 159
incrementing, 159
modifying, 260
modifying binary, 262
modifying hex/BCD, 257
moving, 135–141

data areas
definition, 15
structure, 16

data retention
control bit, 28
in AR area, 31
in DM area, 36
in HR area, 37
in IR area, 18
in LR area, 38
in SR area, 23
in TC area, 37
in TR area, 39

Index

390

data tracing, 211–214
control bits and flags, 34

debugging, 244–251
address trace read, 250–251
address tracing, 249–250
execution by instruction address, 246
execution from Programming Console, 248
Programming Console debug operation, 245

decrementing, 159

definers, definition, 102

delay, address tracing, 249

differentiated instructions, 104
function codes, 102

digit numbers, 17–18

displays
converting between hex and ASCII, 258
I/O Unit designations, 73
Programming Console, English/Japanese switch, 61

DM area, 36–37
saving, restoring, and comparing, 280–284

Duplex System, flags, 30

Duplex Unit, indicators, 11

�

ER. See flag, Instruction Execution Error

error codes, programming, 208

error messages, programming, 209

errors
cassette tape operations, 277
clearing messages, 66
displaying and clearing, 244
fatal, 288
initialization, 287
Instruction Execution Error Flag, 30
message tables, 286–289
messages when inputting programs, 78
non-fatal, 287
programming indications, 286
programming messages, 209
reading and clearing messages, 286
resetting, 209
SR and AR area flags, 289
troubleshooting, 290

execution condition, definition, 44

execution time
instructions, 235–240
program, 230

Expansion I/O Rack, definition, 12

�

Factory Intelligent Terminal. See peripheral devices

FAL area, 29, 208

FAL code, FALS-generating Address, 36

fatal operating errors, 288

File Memory, 39
clearing, 266–267
edit, 275
flags and control bits, 34
instructions, 214–217
Programming Console operations, 266–275
read, 272–275
read/write, 275
verify, 270
write, 267

FIT. See peripheral devices

flag
AR and SR area errors, 289
arithmetic, 31

programming example, 142
CPU-mounting Device, 36
CY

clearing, 159
setting, 159

Cycle Time Error, 29
Data Tracing, 34
definition, 16
Duplex System, 30
File Memory, 34
First Cycle, 29
I/O Verification Error, 29
Instruction Execution Error, 30
Link Units, 36
Low Battery, 29
on-line removal of Units, 35
Step, 30

floating-point decimal, division, 169

Floppy Disk Interface Unit. See peripheral devices

force setting/resetting, 255

function codes, 102

�

GPC. See peripheral devices

Graphic Programming Console. See peripheral devices

�

Hard-plastic-clad Quartz Fiber: H-PCF
cables, 299
cords, 299

hexadecimal, definition, 17

Host Link Systems, error bits and flags, 25

HR area, 37

Index

391

	

I/O bit
definition, 18
limits, 18

I/O points, refreshing, 211

I/O Rack, definition, 12

I/O refreshing, time required, 230

I/O response times, 241

I/O table
creating, 19
reading, 71
registering I/O words, 67
registration, 64
transferring, 67
verification, 70
Verification Error Flag, 29

I/O Units
See also Units
changes on-line, 69
numbering for I/O table, 72

I/O words
allocation, 19
definition, 18
limits, 18
number required by Units, 19
reserving in I/O table, 22

incrementing, 159

indicators, Duplex Unit, 11

indirect addressing, 37, 103

input bit
application, 19
definition, 3

input device, definition, 3

input point, definition, 3

input signal, definition, 3

instruction set
ADB(50), 174
ADD(30), 160
ADDL(54), 161
AND, 46, 108

combining with OR, 47
AND LD, 49, 109

combining with OR LD, 51
use in logic blocks, 50

AND NOT, 46, 108
ANDW(34), 180
ASC(86), 157
ASL(25), 131
ASR(26), 132
BCD(24), 149
BCDL(59), 150
BCMP(68), 145
BCNT(67), 210
BEND<01>, 190
BIN(23), 148
BINL(58), 148

BPPS<11>, 198
BPRG(96), 190
BPRS<12>, 198
BSET(71), 136
CLC(41), 159
CMP(20), 142
CNT, 122
CNTR(12), 125
CNTW<14>, 196
COLL(81), 139
COM(29), 179
DEC(39), 159
DIFD(14), 92, 110–111

using in interlocks, 114
using in jumps, 116

DIFU(13), 92, 110–111
using in interlocks, 114
using in jumps, 116

DIST(80), 139
DIV(33), 167
DIVL(57), 168
DMPX(77), 152
DVB(53), 179
ELSE<03>, 191
END(01), 48, 107, 116
execution times, 235–240
EXIT<06>, 197
EXIT<06> NOT, 197
FAL(06), 208
FALS(07), 208
FDIV(79), 169
FILP(44), 216
FILR(42), 215
FILW(43), 216
IEND<04>, 191
IF<02>, 191
IF<02> NOT, 191
IL(02), 88, 113–115
ILC(03), 88, 113–115
INC(38), 159
INT(89), 185
IORF(97), 211
JME(05), 115
JMP(04), 115
JMP(04) and JME(05), 90
KEEP(11), 112

in controlling bit status, 92
ladder instructions, 45
LD, 45, 108
LD NOT, 45, 108
LEND<10>, 197
LEND<10> NOT, 197
LOOP<09>, 197
MLB(52), 178
MLPX(76), 150
MOV(21), 135
MOVB(82), 140
MOVD(83), 141
MSG(46), 209
MUL(32), 165
MULL(56), 166
MVN(22), 136
NOP(00), 116
NOT, 43
operands, 42

Index

392

OR, 46, 108
combining with AND, 47

OR LD, 50, 109
combining with AND LD, 51
use in logic blocks, 51

OR NOT, 46, 108
ORW(35), 180
OUT, 48, 109
OUT NOT, 48, 109
READ(88), 218
RECV(98), 221
RET(93), 183
ROL(27), 132
ROOT(72), 172
ROR(28), 133
RSET<08>, 191
SBB(51), 176
SBN(92), 183
SBS(91), 183
SDEC(78), 154
SEND(90), 219
SET<07>, 191
SFT(10), 127
SFTR(84), 129
SLD(74), 133
SNXT(09), 199
SRD(75), 134
STC(40), 159
STEP(08), 199
SUB(31), 162
SUBL(55), 164
TCMP(85), 146
terminology, 42
TIM, 118
TIMH(15), 121
TIMW<13>, 195
TMHW<15>, 195
TRSM(45), 211
WAIT<05>, 193
WDT(94), 211
WRIT(87), 218
WSFT(16), 134
XCHG(73), 138
XFER(70), 138
XNRW(37), 182
XORW(36), 181

instructions, designations when inputting, 77

intelligent I/O instructions, 217–219

interlocks, 113–115
converting to mnemonic code, 114
using self-maintaining bits in, 93

Interrupt Input Units, 186–187

interrupts, 182
clearing, 186
control, 185
masking/unmasking, 186
priority, 189
scheduled, 187–188

example, 188

IR area, 18–23

jump numbers, 115

jumps, 115–116

�

ladder diagram
branching, 86

IL(02) and ILC(03), 88
using TR bits, 86

controlling bit status
using DIFU(13) and DIFD(14), 92, 110–111
using KEEP(11), 112–117
using OUT and OUT NOT, 48

converting to mnemonic code, 44–58
display via GPC, FIT, or LSS, 43
instructions

combining, AND LD and OR LD, 51
controlling bit status

using KEEP(11), 92
using OUT and OUT NOT, 109

format, 102
notation, 102
structure, 43
using logic blocks, 49

ladder diagram instructions, 107–109

Ladder Support Software. See peripheral devices

LEDs. See CPU indicators

leftmost, definition, 17

Link System, flags and control bits, 24–28

Link Systems, servicing, 230

Link Units
See also Units
flags, 36
PC cycle time, 233

logic block instructions, converting to mnemonic code, 49–57

logic blocks. See ladder diagram

logic instructions, 179–182

loops, block programs, 197

LR area, 38–39

LSS. See peripheral devices

�

memory areas
clearing, 62
definition, 15

messages, programming, 209

mnemonic code, converting, 44–58

modifying data, hex/binary, 257

monitoring
binary, 261
three words, 259

mounting Units, location, 13

Index

393

nesting, subroutines, 184

non-fatal operating errors, 287

normally closed condition, definition, 43

NOT, definition, 43

�

on-line I/O Unit changes, 69

on-line removal, flags and other information, 35

operand bit, 44

operands, 102
allowable designations, 102
requirements, 102

operating modes, 59

operation, preparations, 61–74

optical connectors, 300

Optical Power Tester, 300

Optical Power Tester Head Unit, 300

output bit
application, 19
controlling, via Output OFF bit, 29
controlling ON/OFF time, 110
controlling status, 92, 93
definition, 3

output device, definition, 3

output point, definition, 3

output signal, definition, 3

�

password, entering on Programming Console, 61

PC
configuration, 12
definition, 3

PC Link Systems
error bits and flags, 27–28
LR area application, 38

peripheral devices, 5
Factory Intelligent Terminal (FIT), 6
Floppy Disk Interface Unit, 6
Graphic Programming Console (GPC), 6
Ladder Support Software (LSS), 6
Printer Interface Unit, 6
Programming Console, 6, 58–61
PROM Writer, 6
servicing, 230

power supply, Power-off counter, 35

present value. See PV

Printer Interface Unit. See peripheral devices

program execution, 97

Program Memory, 39
backup and restore, 278–280
setting address and reading content, 75–76
structure, 44

programming
backup onto cassette tape, 276–284
checks for syntax, 79–81
displaying and clearing error messages, 244
entering and editing, 76
example, using shift register, 128
inputting, modifying and checking, 75–91
inserting and deleting instructions, 83–85
jumps, 90
pausing/restarting block programs, 198
precautions, 95
preparing data in data areas, 136
searching, 82–83
setting and reading from memory address, 75
simplification with differentiated instructions, 111
writing, 42

Programming Console, 58–61
See also peripheral devices

PROM Writer. See peripheral devices

PV
accessing via PC area, 38
CNTR(12), 126
timers and counters, 117

�

Racks, types, 12

Remote I/O Systems
error bits and flags, 24
I/O word allocation, 21

remote I/O word, 19

response times, I/O, 241–242

rightmost, definition, 17

�

self-maintaining bits, using KEEP(11), 112

set value. See SV

seven-segment displays, converting data, 154

shift registers, 127–135
controlling individual bits, 128

Special I/O Units. See Units

special instructions, 208–211

SR area, 23–31

status indicators. See CPU indicators

status retention, Data Retention Control bit, 28

step execution, Step Flag, 30

step instructions, 199–208

subroutine number, 183

Index

394

subroutines, 182–189

SV
accessing via TC area, 38
changing, 263
CNTR(12), 126
timers and counters, 117

SYSMAC LINK System
Active Node Flags, 33
communications completion code, 25
data link settings, 33
data link status, 26
flags, 25
instructions, 219
LR area application, 38
routing table and monitor timer, 37
service time, 34

SYSMAC NET Link System
data link status, 26
flags, 25
instructions, 219
LR area application, 38
service time, 34

�

TC area, 37–38

TC numbers, 37, 117

Three-word Monitor, 259

timers
bits in TC area, 37
block programs, 195
changing SV, 263
conditions when reset, 118, 122
example using CMP(20), 143
extended, 119
flicker bits, 120
inputting SV, 76
ON/OFF delays, 119
one-shot bits, 120

TR area, 39

TR bits, use in branching, 86

Trace Memory, 39

tracing
See also See data tracing and address tracing.
address trace read, 250–251
address tracing, 249–250

trigger (address), address tracing, 249

troubleshooting, 290

�

Units
changing configuration, 22
definition, 4
I/O Units, definition, 4
Link Units, definition, 4
Special I/O Units, definition, 4
words required by each, 20

�

watchdog timer, 231
extending, 211

word bit, definition, 16

word multiplier, registering in I/O table, 65

words, monitoring, 252

work word, definition, 16

395

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W140-E1-04

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 ––– Original production

2 August 1990 Complete rewrite and reorganization based on resource document 29–93G.

Information on SYSMAC LINK Systems added especially in reference to SR and
AR bits and SEND(90)/RECV(98).

3 September 1993 The sections have been rearranged for greater clarity and ease of understanding.
Sections 7–1 and 7–2 have been deleted and Sections 7–3 and 7–4 have been
moved to Sections 4–5 and 4–6, respectively.
Mnemonic codes have been added throughout the manual.
Terms have been standardized.
The information in Appendices B and C has been given in greater detail and in-
cludes standardized terms.
Scan time has been replaced by cycle time throughout the manual.

Page 7: Catalogue number for the SYSMAC LINK System Manual was cor-
rected.

Page 20: Model number CT041 has been added to High-speed Counter Units
in the table. ID Sensor Unit has been added to the table.

Page 28: “node” corrected to “data link table entry” in the table.

Page 163: Step programming diagram clarified.

Page 165: Step programming diagram clarified and a note has been added.

Page 167: Step programming diagram clarified.

Pages 299 to 311: Model numbers have been updated.

Pages 342 to 344 : Flag bit numbers have been corrected.

3A October 1994 Caution, Warning, and Danger symbols have been added throughout the manual.

Page 7: LSS Operation Manual catalog number changed.

Pages 295 to 305: Model numbers have been updated.

04 May 2003 Page 69: Information on changing Units on-line added.

Page 70: Paragraph at bottom of page removed.

Page 170: Information on valid ranges added.

Page 209: “TC” removed from priority list.

Page 288: One row added to table.

Page 349: Information on SR bit operation added.

OMRON Corporation
FA Systems Division H.Q.
66 Matsumoto
Mishima-city, Shizuoka 411-8511
Japan
Tel: (81)55-977-9181/Fax: (81)55-977-9045

Regional Headquarters

OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568

OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
#11-01, UE Square,
Singapore 239920
Tel: (65)6835-3011/Fax: (65)6835-2711

Cat. No. W140-E1-04 Note: Specifications subject to change without notice. Printed in Japan

Authorized Distributor:

C
at

. N
o

. W
14

0-
E

1-
04

S
Y

S
M

A
C

 C
10

00
H

/C
20

00
H

 P
ro

g
ra

m
m

ab
le

 C
o

n
tr

o
lle

rs
O

P
E

R
A

T
IO

N
 M

A
N

U
A

L

	Programmable Controllers SYSMAC C1000H/C2000H
	TABLE OF CONTENTS
	About this Manual:
	SECTION 1 Introduction
	1-1 Overview
	1-2 Relay Circuits: The Roots of PC Logic
	1-3 PC Terminology
	1-4 OMRON Product Terminology
	1-5 Overview of PC Operation
	1-6 Peripheral Devices
	1-7 Available Manuals

	SECTION 2 Hardware Considerations
	2-1 Indicators
	2-2 PC Configuration

	SECTION 3 Memory Areas
	3-1 Introduction
	3-2 Data Area Structure
	3-3 IR (Internal Relay)Area
	3-4 SR (Special Relay) Area
	3-5 AR (Auxiliary Relay) Area
	3-6 DM (Data Memory) Area
	3-7 HR (Holding Relay) Area
	3-8 TC (Timer/Counter) Area
	3-9 LR (Link Relay) Area
	3-10 Program Memory
	3-11 File Memory
	3-12 Trace Memory
	3-13 TR (Temporary Relay) Area

	SECTION 4 Writing and Inputting the Program
	4-1 Basic Procedure
	4-2 Instruction Terminology
	4-3 Basic Ladder Diagrams
	4-4 The Programming Console
	4-5 Preparation for Operation
	4-6 Inputting, Modifying, and Checking the Program
	4-7 Controlling Bit Status
	4-8 Work Bits (Internal Relays)
	4-9 Programming Precautions
	4-10 Program Execution

	SECTION 5 Instruction Set
	5-1 Notation
	5-2 Instruction Format
	5-3 Data Areas, Definer Values, and Flags
	5-4 Differentiated Instructions
	5-5 Coding Right-hand Instructions
	5-6 Ladder Diagram Instructions
	5-7 Bit Control Instructions
	5-8 INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03)
	5-9 JUMP and JUMP END – JMP(04) and JME(05)
	5-10 END – END(01)
	5-11 NO OPERATION – NOP(00)
	5-12 Timer and Counter Instructions
	5-13 Data Shifting
	5-14 Data Movement
	5-15 Data Comparison
	5-16 Data Conversion
	5-17 BCD Calculations
	5-18 Binary Calculations
	5-19 Logic Instructions
	5-20 Subroutines and Interrupt Control
	5-21 Block Programming Instructions
	5-22 Step Instructions
	5-23 Special Instructions
	5-24 Data Tracing (TRACE MEMORY SAMPLING – TRSM(45))
	5-25 File Memory Instructions
	5-26 Intelligent I/O Instructions
	5-27 Network Instructions

	SECTION 6 Program Execution Timing
	6-1 Cycle Time
	6-2 Calculating Cycle Time
	6-3 Instruction Execution Times
	6-4 I/O Response Time

	SECTION 7 Program Debugging and Execution
	7-1 Debugging
	7-2 Monitoring Operation and Modifying Data
	7-3 File Memory Operations
	7-4 Program Backup and Restore Operations

	SECTION 8 Error Processing
	8-1 Alarm Indicators
	8-2 Programmed Alarms and Error Messages
	8-3 Reading and Clearing Errors and Messages
	8-4 Error Messages
	8-5 Error Flags
	8-6 Troubleshooting

	Appendices
	Appendix A Standard Models
	Appendix B Programming Instructions
	Appendix C Programming Console Operations
	Appendix D Error and Arithmetic Flag Operation
	Appendix E Data Areas
	Appendix F I/O Assignment Records Sheets
	Appendix G Program Coding Sheet
	Appendix H Data Conversion Table
	Appendix I Extended ASCII ASCII Codes

	Glossary
	Index
	Revision History

