
C500-ASC04 ASCII Unit
Operation Manual
Revised February 2001

No. 6182

OMRON Corporation

Please read and understand this manual before using the product. Please consult your OMRON
representative if you have any questions or comments.

Read and Understand this Manual

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a
period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE
PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS
DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES,
LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS,
WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT
LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which
liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS
REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS
WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO
CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.
1

No. 6182
Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the
combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying
ratings and limitations of use that apply to the products. This information by itself is not sufficient for a
complete determination of the suitability of the products in combination with the end product, machine,
system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not
intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses
listed may be suitable for the products:

• Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or
uses not described in this manual.

• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical
equipment, amusement machines, vehicles, safety equipment, and installations subject to separate
industry or government regulations.

• Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED
FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any
consequence thereof.
2

No. 6182
Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other
reasons.

It is our practice to change model numbers when published ratings or features are changed, or when
significant construction changes are made. However, some specifications of the products may be changed
without any notice. When in doubt, special model numbers may be assigned to fix or establish key
specifications for your application on your request. Please consult with your OMRON representative at any
time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when
tolerances are shown.

PERFORMANCE DATA

Performance data given in this manual is provided as a guide for the user in determining suitability and does
not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must
correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and
Limitations of Liability.

ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate; however, no
responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.
3

iv

!

!

!

v

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify warnings in this manual. Always heed the
information provided with them.

 DANGER Indicates information that, if not heeded, is likely to result in loss of life or serious injury.

WARNING Indicates information that, if not heeded, could possibly result in loss of life or serious injury.

Caution Indicates information that, if not heeded, could result in relatively serious or minor injury, dam-
age to the product, or faulty operation.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 1991
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

vi

TABLE OF CONTENTS

vii

PRECAUTIONS .
1 Intended Audience .
2 General Precautions .
3 Safety Precautions .
4 Operating Environment Precautions .
5 Application Precautions .

SECTION 1
Hardware .

1-1 Front Panel .
1-2 Back Panel .
1-3 ASCII Unit Internal Configuration .
1-4 System Configuration .
1-5 Mounting .

SECTION 2
Data Allocations .

2-1 Bits and Words .
2-2 Data Configuration .

SECTION 3
Programming and Communications

3-1 Programs .
3-2 Program Transfer .
3-3 Running the BASIC Program .
3-4 Assembly Routines .

SECTION 4
BASIC Programming .

4-1 Program Configuration .
4-2 Commands, Statements, and Functions .

SECTION 5
Assembly Programming .

5-1 Assembly Language Programming .
5-2 Terminology and Formatting .
5-3 Monitor Mode Commands .

SECTION 6
Program Examples .

6-1 Timing Considerations .
6-2 Programs in Two-word Mode .
6-3 Programs in Four-word Mode .
6-4 Assembly Language Examples .

Appendices
A Standard Models .
B Specifications .
C PC Statements and Refresh Timing .
D Formatting and Data Conversion .
E Memory Map .
F Troubleshooting .
G BASIC Commands, Statements, and Functions .

Glossary .
Index .
Revision History .

ix

About this Manual:

This manual describes the installation and operation of the C500-ASC04 ASCII Unit. The ASCII Unit can
be mounted to a C500, C1000H, C2000H, or CV-series PC to control ASCII data I/O through a BASIC
program stored in the ASCII Unit. The C500-ASC04 must be used with a PC that supports the I/O READ
and I/O WRITE instructions (READ(88) and WRIT(87) or READ(190) and WRIT(191)).

It has been assumed in the writing of this manual that the reader is already familiar with the hardware,
programming, and terminology of OMRON PC’s. If a review of this information is necessary, the reader
should refer to the appropriate OMRON PC manuals for assistance.

This manual contains the following sections. Please read this manual completely and be sure you under-
stand the information provide before attempting to install and operation the ASCII Unit.

Section 7 explains the external hardware of the ASCII Unit and how it connects to a PC system.

Section 8 explains the format of the PC memory area accessed by the ASCII Unit. This area is where the
ASCII Unit and the PC exchange data.

Section 9 explains how the ASCII Unit program and the PC program communicate as well as how to write,
load, save, and run an BASIC program for the ASCII Unit.

Section 10 presents the BASIC programming language used by the ASCII Unit. Since many of the BASIC
commands are nonstandard and peculiar to an ASCII Unit-PC system, it is recommended that even read-
ers already proficient in BASIC pay careful attention to this section.

Section 11 explains the assembly language programming environment and how it relates to the ASCII
Unit’s BASIC program. It also explains in detail how to write, edit, and run an assembly language program.

Section 12 presents programming examples that are meant to bring together all of the concepts pres-
ented in this manual. Most of the programs deal with data transfer and illustrate how the ASCII Unit and
the PC work together in various applications. Also in this section are several examples used to illustrate
the execution sequence of the hardware during execution of the ASCII Unit and PC programs.

Detailed technical information not immediately necessary for the understanding of a particular section
has been put into one of the seven appendices and should be used for reference when needed. For a list
of the appendices, see the table of contents.

Note In this manual, ladder diagram instructions are given by mnemonics with the function codes in
parentheses following them. The first function code is for C-series PCs and the second function
code is for CV-series PCs. For example, in MOV(21/030) (the MOVE instruction), the function
code for C-series PCs is 21; for CV-series PCs, 030.

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

!

xi

PRECAUTIONS

This section provides general precautions for using the Programmable Controller (PC) and related devices.

The information contained in this section is important for the safe and reliable application of the PC. You must read
this section and understand the information contained before attempting to set up or operate a PC system.

1 Intended Audience .
2 General Precautions .
3 Safety Precautions .
4 Operating Environment Precautions .
5 Application Precautions .

!

!

!

!

!

4Operating Environment Precautions

xii

1 Intended Audience
This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement
machines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating OMRON PCs.
Be sure to read this manual before attempting to use the software and keep this
manual close at hand for reference during operation.

WARNING It is extreme important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the abovementioned
applications.

3 Safety Precautions

WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

WARNING Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so
may result in malfunction, fire, or electric shock.

4 Operating Environment Precautions

Caution Do not operate the control system in the following locations:

• Locations subject to direct sunlight.

• Locations subject to temperatures or humidity outside the range specified in
the specifications.

• Locations subject to condensation as the result of severe changes in tempera-
ture.

!

!

!

!

5Application Precautions

xiii

• Locations subject to corrosive or flammable gases.

• Locations subject to dust (especially iron dust) or salts.

• Locations subject to exposure to water, oil, or chemicals.

• Locations subject to shock or vibration.

Caution Take appropriate and sufficient countermeasures when installing systems in the
following locations:

• Locations subject to static electricity or other forms of noise.

• Locations subject to strong electromagnetic fields.

• Locations subject to possible exposure to radioactivity.

• Locations close to power supplies.

Caution The operating environment of the PC system can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC system. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions
Observe the following precautions when using the PC system.

WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

• Always ground the system to 100 Ω or less when installing the Units. Not con-
necting to a ground of 100 Ω or less may result in electric shock.

• Always turn OFF the power supply to the PC before attempting any of the fol-
lowing. Not turning OFF the power supply may result in malfunction or electric
shock.

• Mounting or dismounting I/O Units, CPU Units, Memory Units Power Sup-
ply Units, or any other Units.

• Assembling the Units.

• Setting DIP switches or rotary switches.

• Connecting cables or wiring the system.

• Connecting or disconnecting the connectors.

Caution Failure to abide by the following precautions could lead to faulty operation of the
PC or the system, or could damage the PC or PC Units. Always heed these pre-
cautions.

• Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes.

• Always use the power supply voltages specified in this manual. An incorrect
voltage may result in malfunction or burning.

• Take appropriate measures to ensure that the specified power with the rated
voltage and frequency is supplied. Be particularly careful in places where the
power supply is unstable. An incorrect power supply may result in malfunction.

• Install external breakers and take other safety measures against short-circuit-
ing in external wiring. Insufficient safety measures against short-circuiting may
result in burning.

5Application Precautions

xiv

• Do not apply voltages to the Input Units in excess of the rated input voltage.
Excess voltages may result in burning.

• Do not apply voltages or connect loads to the Output Units in excess of the
maximum switching capacity. Excess voltage or loads may result in burning.

• Disconnect the functional ground terminal when performing withstand voltage
tests. Not disconnecting the functional ground terminal may result in burning.

• Be sure that all the mounting screws, terminal screws, and cable connector
screws are tightened to the torque specified in this manual. Incorrect tighten-
ing torque may result in malfunction.

• Leave the label attached to the Unit when wiring. Removing the label may re-
sult in malfunction if foreign matter enters the Unit.

• Remove the label after the completion of wiring to ensure proper heat dissipa-
tion. Leaving the label attached may result in malfunction.

• Double-check all wiring and switch settings before turning ON the power sup-
ply. Incorrect wiring may result in burning.

• Wire correctly. Incorrect wiring may result in burning.

• Mount Units only after checking terminal blocks and connectors completely.

• Be sure that the terminal blocks, Memory Units, expansion cables, and other
items with locking devices are properly locked into place. Improper locking
may result in malfunction.

• Check the user program for proper execution before actually running it on the
Unit. Not checking the program may result in an unexpected operation.

• Confirm that no adverse effect will occur in the system before attempting any of
the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PC.

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Resume operation only after transferring to the new CPU Unit the contents of
the DM Area, HR Area, and other data required for resuming operation. Not
doing so may result in an unexpected operation.

• Do not pull on the cables or bend the cables beyond their natural limit. Doing
either of these may break the cables.

• Do not place objects on top of the cables or other wiring lines. Doing so may
break the cables.

• Use crimp terminals for wiring. Do not connect bare stranded wires directly to
terminals. Connection of bare stranded wires may result in burning.

• When replacing parts, be sure to confirm that the rating of a new part is correct.
Not doing so may result in malfunction or burning.

• Before touching a Unit, be sure to first touch a grounded metallic object in order
to discharge any static built-up. Not doing so may result in malfunction or dam-
age.

1

SECTION 1
Hardware

This section describes the external hardware of the ASCII Unit. The front and back panels of the ASCII Unit contain switches,
buttons, connectors, and indicators which enable the user to setup, control, and monitor ASCII Unit operations. The ASCII
Unit’s internal configuration as well as a typical system configuration are also illustrated.

1-1 Front Panel .
1-2 Back Panel .
1-3 ASCII Unit Internal Configuration .
1-4 System Configuration .
1-5 Mounting .

2

1-1 Front Panel
On the front panel of the ASCII Unit, there are six indicator lights, the reset
switch, the START/STOP switch, two RS-232C connectors, and a battery com-
partment. In addition, behind the LED Display Panel, is an 8-pin DIP switch used
for setting various control parameters.

Ports The front panel of the ASCII Unit contains two RS-232C ports. These ports
are used for connecting peripheral I/O devices to the ASCII Unit. Both ports
can be used for communication devices such as printers, terminals, and mo-
dems. Only port 1 can be used for uploading or downloading a BASIC pro-
gram. The standard configuration is a personal computer connected to port 1
and a printer or other I/O device connected to port 2.

Switches The START/STOP switch is a toggle switch and is used for initiating and halt-
ing execution of the ASCII Unit program.

The RESET switch is used for resetting the ASCII Unit.

Battery Compartment The battery compartment holds the C500-BAT08 Battery.

Front Panel

LED display
Indicates the operating
status of the ASCII Unit.

RESET switch
Resets the ASCII Unit

START/STOP switch
Starts/stops BASIC
program execution.

DIP switch
DIP switch is visible when the
indicator panel is removed.

RS-232C connector port 1
Connects peripheral devices. Is generally
used to input the BASIC program but can be
used for other peripheral devices as well.

RS-232C connector port 2
Connects peripheral devices. Cannot be
used to input a BASIC program. Is generally
used for a printer or other RS-232C devices.

Battery compartment
Holds the C500-BAT08 Battery.

The following table describes the ASCII Unit’s indicators.

Name Indication Function

RUN Lit (green) Lit when the ASCII Unit is operating normally. Unlit if an error
occurs.

T/R for ports 1 and 2 Blinking (green) Blinks during data transmission (port 1 and port 2).

ERROR 1 (port 1)
ERROR 2 (port 2)

Lit (red) Lit if a reception buffer overflows or an error such as parity error
occurs (see note), or while the ASCII Unit is waiting for specific
transmission conditions to be satisfied.

BASIC Lit (green) Lit while the BASIC program is running.

Blinking (green) Blinks when the BASIC program stops, or when the ASCII Unit is
waiting for input while the BASIC program is running.

Unlit (green) Unlit when in monitor mode.

BAT ERR Blinking (red) Blinks when the battery voltage has fallen below the rated level or
if the battery is not inserted correctly.

4CH Lit (green) Lit when the ASCII Unit is set for 4-word mode. Unlit when the
ASCII Unit is set for 2-word mode.

Indicator LEDs

Front Panel Section 1-1

3

Note When a reception buffer overflows or transmission error occurs, the red indicator
is lit and will not be turned off even if the transmission error or reception buffer
overflow is corrected, because the error log must be kept. To turn off the indica-
tor, execute the CLOSE instruction or stop the program.

In order to access the front panel DIP switch, the indicator cover must be re-
moved with a standard screwdriver as shown in the illustration below. To set the
DIP switch, the power to the ASCII Unit must be OFF. The DIP switch must be set
before the ASCII Unit is mounted to the PC. Make sure the power to the PC is off
when mounting the ASCII Unit.

Standard
Screwdriver

Front Panel DIP Switch

Front Panel Section 1-1

4

DIP Switch Settings

Manual start mode

In this mode, the BASIC program is
not started upon power application.
To start the program, either press
the START/STOP switch or issue a
start command from the personal
computer connected to port 1.

OFF
ON

: 0
: 1 1 2 3 4 5 6 7 8

Start mode

Pin No. 1 Function

Setting

0

1

Automatic start mode

In this mode, the BASIC program
is started automatically on power
application.

Automatic program transfer from EEPROM to RAM

Pin No. Function

Set this pin to “0” if only the
RAM is to be used.

2

Set this pin to “1” to automati-
cally transfer the program
from the EEPROM to RAM on
power application or reset.

0

1

Setting

Program No.

Pin No. Function3 4

0 0

1 0

0 1

1 1

No. 1

No. 2

No. 3

Setting

Screen size

Pin No. Screen Size

Setting 40 columns x 7 lines

40 columns x 8 lines

40 columns x 15 lines

40 columns x 16 lines

80 columns x 16 lines

80 columns x 15 lines

80 columns x 24 lines

80 columns x 25 lines

6 7 8

0 0 0

1

1

11

1

1

1 1

111

0 0

00

0

00

0

0

1

These pins select which program will be executed on power
application or reset. The program number can be changed
later with the PGEN command.

Specifies 2 or 4 word setting for
the Data Section.

Pin No. Function5

0

1

Setting Two word setting. Choose this setting
to use WRIT(87/191)/READ(88/190)

Four word setting. This setting is used
when the ASCII Unit is mounted to a
Slave Rack or when the PC does not
support WRIT(87/191)/READ(88/190).

Front Panel Section 1-1

5

1-2 Back Panel
The back panel of the ASCII Unit houses the PC connector and an 8-pin DIP
switch used for setting the communication parameters.

Back Panel

Mounting Screw
For mounting the ASCII Unit
to the PC Rack

Connector
Connects the ASCII Unit
to the PC

DIP Switch
For setting the communi-
cation parameters Mounting Screw

For mounting the ASCII Unit
to the PC Rack

Back Panel DIP Switch
• Pins 1, 2, and 3 are used for setting the baud rate of port 1.

• Pins 4, 5, and 6 are used for setting the baud rate of port 2.

• Pins 7 and 8 are not used but must be set to OFF. If they are left ON, the Hard-
ware Test program will be executed and all RAM data will be lost.

The DIP switch settings are described in more detail in the following diagram.

OFF
ON

: 0
: 1 1 2 3 4 5 6 7 8

Pin No.

Setting

4 5 6

0 0 0

1

1

11

1

1

1 1

111

0 0

00

0

00

0

0

1

Pin No.

Setting

1 2 3

0 0 0

1

1

11

1

1

1 1

111

0 0

00

0

00

0

0

1

300 bps

600 bps

1,200 bps

2,400 bps

4,800 bps

9,600 bps

300 bps

600 bps

1,200 bps

2,400 bps

4,800 bps

9,600 bps

19,200 bps

Baud rate selection for port 1

Baud Rate
Not used (Always set these pins to OFF.)

Baud rate selection for port 2

Baud Rate

Back Panel Section 1-2

6

1-3 ASCII Unit Internal Configuration
The Common Memory can be accessed using the ASCII Unit’s PC READ or PC
WRITE statements. It can also be accessed using the PC’s WRIT(87/191) and
READ(88/190) instructions. I/O data can be accessed using the ASCII Unit’s PC
GET, PC PUT, and ON PC statements. It can also be accessed using the
MOV(21/030) instruction.

The following figure illustrates these instructions and their relationship to the
Common Memory and the I/O data.

CPU

System
Memory

Work
Memory

BASIC
Program
Memory

BASIC Data
Memory

RS-232C
Interface

RS-232C
Interface

CPU I/O Bus Interface
Circuit

Common
Memory

I/O Data

EEPROM

I/O
LED Indicators

DIP Switches

RESET START
/STOP

ASCII Unit

PC

RS-232C

Connectors

Port 1

Port 2

ASCII Unit Internal Configuration Section 1-3

7

1-4 System Configuration
The ASCII Unit can be mounted to any slot on the CPU Backplane. Before
mounting the ASCII Unit, the DIP switches must be set. Make sure that the pow-
er supply to the PC is turned OFF during installation of the ASCII Unit. A personal
computer used for entering the BASIC program should be connected to Port 1
and other peripheral I/O devices such as a printer or a display terminal can be
connected to Port 2 (refer to the following diagram). For more detailed informa-
tion on peripheral interface connections and timing, refer to Appendix B.

C500/C1000H/C2000H CV SeriesC120

C500
Expansion
I/O Rack

Plasma Display

PrinterPersonal Computer Bar-code Reader

1-5 Mounting
The ASCII Unit can be mounted to any I/O slot. The control panel must allow
enough space for the connectors, as shown in the figure below.

*1. Height of the ASCII Unit including the base (100
mm)

*2. Height of the ASCII Unit with an RS-232C con-
nector attached (approximately 160 to 180 mm)

Mounting Section 1-5

9

SECTION 2
Data Allocations

This section explains the words of the PC used to communicate with the ASCII Unit.

2-1 Bits and Words .
2-2 Data Configuration .

2-2-1 Two-word Configuration .
2-2-2 Four-Word Configuration .

10

2-1 Bits and Words
The PC’s memory is divided up into many sections, each of which has its own
unique name and purpose. The ASCII Unit can access any of these memory
areas using the BASIC READ and WRITE statements (this is explained in more
detail in Section 4 BASIC Programming). However, there are words in the PC’s
IR data area that are uniquely assigned to each ASCII Unit.
The PC’s memory is organized into units called words. Information is usually
stored in word or multiple word units. Each word has a unique address in the
computer memory and can be accessed by specifying its address.
Each word contains 16 bits. A bit is the smallest piece of information that can be
stored or accessed by a computer. A bit is always in one of two states: zero or
one (OFF or ON). Certain bits can be accessed individually and are used as
flags. A flag is turned ON and OFF by the hardware to indicate some state of the
computer or to enable or disable certain operations. Bits can also be set or
cleared by the programmer to communicate certain parameters or conditions to
the CPU.
For example, when the ASCII Unit program requests data to be sent from the PC
using the BASIC GET statement, the PC’s Write Flag is turned OFF, indicating
that the ASCII Unit must wait while the PC prepares the data. When the PC has
collected the data, it turns ON the Write Flag, signaling the ASCII Unit that it may
proceed to read the data.

2-2 Data Configuration
Each ASCII Unit is assigned a section of memory in the PC. The data has two
configurations, two-word and four-word. The data configuration is selected by
setting pin 5 of the front panel DIP switch before power is applied to the ASCII
Unit.
The basic difference between the two-word and four-word configurations is that
in two-word mode the WRIT(87/191)/READ(88/190) instructions are supported
for data transfer while in four-word mode they are not supported. The structure
and application of the words in each of the two modes is explained next.

2-2-1 Two-word Configuration
WRIT(87/191) and READ(88/190) are supported in the two-word configuration.
WRIT(87/191) is the PC’s I/O WRITE instruction and READ(88/190) is the PC’s
I/O READ instruction.
When the PC uses these instructions for data transfer, up to 255 words of data
can be transferred at one time. In order to transfer multiple data words at the
same time, however, the ASCII Unit must be programmed to use the PC READ
or PC WRITE statements. In addition the A or S formats must be used. Refer to
Appendix D for more information on formats.
The following PCs support WRIT(87/191)/READ(88/190):
C500: 3G2C3-CPU11-EV1
C120: 3G2C4-SC024-EV1
All C1000H, C2000H, CV-series PCs.
When WRIT(87/191)/READ(88/190) are not supported or not used, data is
transferred using the PC’s MOV(21/030) instruction. When the MOV(21/030) is
used, only one word of data is transferred at a time.
To output (word n) data using the MOV(21/030), set bits 00, 01, 02 and 03 to
zero.

The following table identifies the individual bits in the two words allocated to the
ASCII Unit. In the following Bit Definition table, entries in the Bit column enclosed

Data Bit Definitions

Data Configuration Section 2-2

11

in parentheses are reserved for use by WRIT(87/191)/READ(88/190) and are
not available for general programming application.

Word Bit Function Description

n (00) PC busy Reserved for WRIT(87/191)/READ(88/190)

(01) PC WRITE complete

(02) PC READ complete

03 Restart The ASCII Unit is activated when this bit goes OFF

04 to 07 --- Not Used

08 to 15 Output data bits 0 to
7

Data output from the PC to the ASCII Unit. Read by the PC GET statement.

n+1 (00) ASCII busy Reserved for WRIT(87/191)/READ(88/190)

(01) PC READ complete

(02) PC WRITE complete

03 ASCII error Turns ON when an error occurs in the ASCII Unit, when the RESET
activates, or when the ASCII Unit restarts.

04 Port 1 error Turns ON when a buffer overflows or transmission error occurs in Port 1.
Turns OFF when the CLOSE statement is executed or the program is
stopped.

05 Port 2 error Turns ON when a reception buffer overflows or transmission error occurs in
Port 2. Turns OFF when the CLOSE statement is executed or the program is
stopped.

06 Battery error Turns ON when the battery is low or removed

07 BASIC RUN Turns ON when a BASIC program is running

08 to 15 Input data bits 0 to 7 Data output from the ASCII Unit to the PC. Written by the PC PUT
statement.

Note When the reset switch is turned ON, the data in word n+1 will be $FFF9. Restart-
ing can be checked using bit 03 of word n+1.
When the ASCII Unit is restarted, the data of word n+1 will be 0000.

The following diagram illustrates how the words and bits allocated to the ASCII
Unit relate to program execution.

WRIT(87/191) is executed when the data communication condition for
WRIT(87/191) is satisfied and the ASCII busy flag is cleared. If these conditions
are not met, the WRIT(87/191) is treated as a NOP.

READ(88/190) is executed when the data communication condition is satisfied
and the ASCII busy flag and ASCII write complete flag are OFF. If these condi-
tions are not met, the READ(88/190) is treated as a NOP.

PC ASCII Unit

Application
Program

WRIT(87/191)

READ(88/190)

(n)

(n+1)

MOV(21/030)/OUT Output Data

Input Data PC PUT

PC GET

PC WRITE

PC READ

BASIC
Program

Common
Memory

(n) 08 to 15

(n+1) 08 to 15
MOV(21/030)/LD/OR

Write Data in n

Read data in n+1

Timing The WRIT(87/191) and READ(88/190) instructions are executed and the com-
mon memory is refreshed every time the PC completes one cycle of the pro-
gram. I/O data, however, does not use the common memory (see above dia-
gram) and is refreshed when the PC refreshes all the I/O data. Consequently

Program Execution

Data Configuration Section 2-2

12

there is a time difference between when common memory data is set and when
I/O data is set. This time difference must be taken into consideration when pre-
paring both the ASCII Unit and PC programs.

1 cycle

MOV(21/030) WRIT(87/191)
I/O refresh

Output data setData set in common
memory

With WRIT(87/191) time

The following diagram illustrates the various timing relationships between the
PC and ASCII Unit during data transfer.

Relationship between READ and WRITE Timing

PC busy: n (00)

Write/Read data: n or n+1

PC write complete: n (01)

PC read complete: n (02)

ASCII busy n+1 (00)

ASCII read complete: n+1 (01)

Read data

PC Unit ↔ common memory

common memory → ASCII

Write data
ASCII → common memory

ASCII write complete: n+1 (02)

PC WRITE PC READ

PC → ASCII ASCII → PC

PC READ

PC WRITE

Application Program

BASIC Program

Relationship between Output and Input Timing

Output data
PC → ASCII: n (08 to 15)

Input data
ASCII → PC: n+1 (08 to 15)

I/O refresh

PC → ASCII

ASCII → PC

PC → ASCII

ASCII → PC

2-2-2 Four-Word Configuration
In four-word mode, WRIT(87/191) and READ(88/190) instructions cannot be
used. The ASCII Unit can be set to four-word mode by setting pin 5 of the front
panel DIP switch to ON.

Bit Allocation The following two tables identify the individual bits in the four words allocated to
the ASCII Unit. Notice that words n and n+1 are used for output and words n+2

Data Configuration Section 2-2

13

and n+3 are used for input. In this case, input and output are from the point of
view of the PC.

00

01

02

04

05

06

07

08

09

10

11

12

13

14

15

Bit Word n (OUT) Word n+1 (OUT) Word n+2 (IN) Word n+3 (IN)

03

Write Data 00 Read Data 00PC busy

PC write complete

PC read complete

Restart

Interrupt No. 00

Output Data 00

ASCII busy

ASCII read complete

ASCII write complete

ASCII error

Port 1 error

Port 2 error

Battery error

BASIC RUN

Input Data 00

Write Data 01

Write Data 02

Write Data 03

Write Data 04

Write Data 05

Write Data 06

Write Data 07

Write Data 08

Write Data 09

Write Data 10

Write Data 11

Write Data 12

Write Data 13

Write Data 14

Write Data 15

Read Data 01

Read Data 02

Read Data 03

Read Data 04

Read Data 05

Read Data 06

Read Data 07

Read Data 08

Read Data 09

Read Data 10

Read Data 11

Read Data 12

Read Data 13

Read Data 14

Read Data 15

Output Data 01

Output Data 02

Output Data 03

Output Data 04

Output Data 05

Output Data 06

Output Data 07

Input Data 01

Input Data 02

Input Data 03

Input Data 04

Input Data 05

Input Data 06

Input Data 07

Interrupt No. 01

Interrupt No. 02

Interrupt No. 03

Data Configuration Section 2-2

14

Bit Definitions
Word Bit Function Description

n 00 to 15 Write data bits
00 to 15

Data that will be written to the common memory from the PC by the MOV(21/030)
and read with the PC READ statement.

n+1 00 PC busy Set by the PC program when the PC accesses common memory, and cleared
when memory access is terminated. The ASCII Unit cannot access the common
memory while this bit is set.

01 PC write
complete

Momentarily set by the PC program when the PC has completed writing data to
the common memory. When this bit goes ON, the ASCII Unit read complete flag
n+3 (01) goes ON as well.

02 PC read
complete

Momentarily set by the PC program when the PC has completed reading data
from the common memory. When this bit goes ON, the ASCII Unit write complete
flag n+3 (02) goes OFF as well.

03 Restart The ASCII Unit is activated at the trailing edge of this flag (when the flag goes
OFF). A differentiated signal must be used for the Restart signal.

04 to 07 Interrupt number
bits 00 to 03

Serves as an interrupt number when the ON PC statement is used.When bits 00
to 03 are converted into hexadecimal 00 to 15, 00 is ignored and 01 to 15 are
used as valid interrupt numbers.

08 to 15 Output data bits
00 to 07

Data output from the PC to the ASCII Unit, written by the MOV and read with the
PC GET statement.

n+2 00 to 15 Read data bits
00 to 15

Data that will be written to the common memory from the ASCII Unit with the PC
WRITE statement and read with the MOV.

n+3 00 ASCII busy Set when the ASCII Unit accesses the common memory and cleared when
memory access is terminated. The PC cannot access common memory while this
bit is set.

01 ASCII read
complete

Momentarily set when the PC write complete flag goes ON enabling the ASCII
Unit to read from common memory. This flag is cleared when the ASCII Unit
terminates the read operation.

02 ASCII write
complete

Set at the time the ASCII Unit terminates a write operation to the common
memory and cleared when the PC read complete flag goes ON.

03 ASCII error Set when an ASCII Unit error occurs, when RESET is activated, or when the
ASCII Unit restarts.

04 Port 1 error Set when a reception buffer overflows or transmission error occurs at Port 1.
Turns OFF when the CLOSE statement is executed or the program is stopped.

05 Port 2 error Set when a reception buffer overflows or transmission error occurs at Port 2.
Turns OFF when the CLOSE statement is executed or the program is stopped.

06 Battery error Set when the battery is low or removed.

07 BASIC RUN Set when the BASIC program is running.

08 to 15 Input data bits
00 to 07

Data written with the PC PUT statement and read with the MOV.

Note 1. Apart from the data used to read bit 00 to 15 of word n+2, the input data of bit
08 to 15 of word n+2 can be used for program control of the PC by transmit-
ting the 8-bit data to the PC.

2. When the reset switch is turned ON, the data in word n+1 will be $FFF9. Re-
starting can be checked using bit 03 of word n+1.
When the ASCII Unit is restarted, the data of word n+1 will be 0000.

Data Configuration Section 2-2

15

The following diagram illustrates how the words and bits allocated to the ASCII
Unit relate to program execution.

PC ASCII Unit

Application
Program

MOV/OUT Output Data

Input Data PC PUT

PC GET

PC WRITE

PC READ

BASIC
Program

Common
Memory

n+1 08 to 15

n+3 08 to 15
MOV/LD/OR

MOV(21/030)

MOV(21/030)

Write data in n

Read data in n+2

Timing The following diagram illustrates the various timing relationships between the
PC and ASCII Unit during data transfer.

Relationship between READ and WRITE Timing

PC busy: n+1 (00)

Write/Read data: n or n+2

PC write complete: n+1 (01)

PC read complete: n+1 (02)

ASCII busy n+3 (00)

ASCII read complete: n+3 (01)

Read data: n

PC Unit ↔ common memory

common memory → ASCII

Write data: n+2
ASCII → common memory

ASCII write complete: n+3 (02)

PC WRITE PC READ

PC → ASCII ASCII → PC

PC READ

PC WRITE

ASCII READ ASCII WRITE

Application program

BASIC Program

Relationship between Output and Input Timing

Output data
PC → ASCII: n+1 (08 to 15)

Input data
ASCII → PC: n+3 (08 to 15)

I/O refresh

PC → ASCII

ASCII → PC

PC → ASCII

ASCII → PC

Program Execution

Data Configuration Section 2-2

17

SECTION 3
Programming and Communications

The first part of this section explains how the ASCII Unit and the PC exchange information.

The second part of this section explains how to transfer programs from one device to another. The ASCII Unit’s BASIC pro-
gram is written on a personal computer. To run the program, it must be transferred to the RAM of the ASCII Unit. The ASCII
Unit program can be permanently stored in the ASCII Unit’s EEPROM and also loaded from the EEPROM. The program can
also be transferred back to the personal computer or other storage device.

The last part of this section explains how to run a BASIC program once it has been transferred to the ASCII Unit.

3-1 Programs .
3-2 Program Transfer .
3-3 Running the BASIC Program .
3-4 Assembly Routines .

18

3-1 Programs
To use the ASCII Unit in conjunction with the PC, an ASCII Unit program written
in BASIC is needed. A data exchange routine must also be incorporated into the
PC program. The PC data exchange routine must set the number of words to be
transferred, the base address, and the specific memory area. This can be done
using the PC’s MOV(21/030) instruction.
There are two ways the ASCII Unit can communicate with the PC. In the first
method, the PC controls the timing of the data transfer between the two devices.
The ASCII Unit “requests” access to the PC data memory area using the PC
READ, PC WRITE, PC GET, or PC PUT statements, and then waits for the PC to
respond by setting either the read or write flag. The PC data exchange routine
performs the designated operations. When the PC is ready, the appropriate flag
is set and the ASCII Unit proceeds with the data transfer.
In the second method, the WRIT(87/191) and READ(88/190) instructions are
used in conjunction with the PC READ, PC WRITE, PC GET, and PC PUT state-
ments to transfer data.
This diagram illustrates the PC and ASCII Unit programs.

PC program

General Program

General Program

Data exchange
code

ASCII Unit program

Data exchange
processing or I/O
program

This diagram illustrates the relationship between the PC data exchange code
and the ASCII Unit program.

MOV(21/030)

MOV(21/030), OUT, etc.

 PC READ command

 PC WRITE command

 PC PUT command

Write/read
data
exchange

PC program

I/O data
exchange

 ASCII Unit program

Common
memory

I/O
memory

MOV(21/030), OUT, etc.

MOV(21/030)

 PC GET command

3-2 Program Transfer
Preparation For the personal computer to communicate with the ASCII Unit, set the comput-

er communication software as follows:
Baud rate: same as ASCII Unit
Data length: 8 bits
Parity: none
No. stop bits: 2
Also: Full duplex, no echo, no XON/XOFF buffer busy control, no auto line feed.
Set the ASCII Unit DIP switches to the desired configuration (refer to Section 1
Hardware).

Program Transfer Section 3-2

19

Transfer The ASCII Unit’s BASIC or assembly language program must be written on a
personal computer which is connected to port 1 of the ASCII Unit through an
RS-232C interface. A program can be transferred to the ASCII Unit from the per-
sonal computer or any other storage device connected to one of the communi-
cation ports with the BASIC LOAD command or the S and L commands. Pro-
grams can also be transferred from the ASCII Unit’s EEPROM to the ASCII
Unit’s RAM using the LOAD command.

Programs can be transferred from the ASCII Unit’s RAM to the EEPROM or to a
personal computer or other storage device connected to one of the communica-
tion ports using the BASIC SAVE command.

The ASCII Unit can be booted on power up by a program stored in the EEPROM.
To do this set pin 2 of the front panel DIP switch on the ASCII Unit to ON.

Note 1. During data transfer, an overflow may occur if the buffering capacity of the
baud rate settings of the computer and the ASCII Unit are not matched. If an
overflow error does occur, set either a slower baud rate or specify XON with
the OPEN command.

2. Programs named with PNAME cannot be transferred. Delete the name by
executing PNAME “ ” if necessary before attempting to transfer a program.

The FIT or LSS can be used to back up BASIC programs onto floppy disks, con-
sult the FIT or LSS Operation Manual.

The following figure illustrates the direction of data transfer when using the
SAVE and LOAD commands.

Computer or
other periph-
eral device

Computer or
other periph-
eral device

SAVE #1, “COMU:”

LOAD #1, “COMU:”

SAVE #2, “COMU:”

LOAD #2, “COMU:”

(1)

(2)

Note 1. The EEPROM’sn lifetime is limited to 5,000 write operations.

2. Refer to the explanation of the OPEN statement for details on
COMU.

Program Transfer Section 3-2

20

3-3 Running the BASIC Program
The ASCII Unit can store and access three separate BASIC programs. Each
program has an associated program number. The user can specify which pro-
gram is to be used by setting pins 3 and 4 of the front panel DIP switch. This must
be done before the Unit is activated.

There are three ways to execute the specified BASIC program:

• Enter the RUN command from the keyboard of the personal computer. (Keying
in CTRL+X will abort the program.)

• Press the START/STOP switch. Press it again to stop the program.

• If pin 1 of the front panel DIP switch is set to the ON position, the specified pro-
gram will be executed automatically when the Unit is turned ON or reset.

3-4 Assembly Routines
Use the monitor mode of the ASCII Unit for writing assembly language routines
to execute operations that cannot be processed with BASIC programs. The
ASCII Unit incorporates the Hitachi HD6303 CPU.

Assembly language routines can be written for the ASCII Unit and called from
the BASIC program with the USR statement. An assembly program can be
saved to the personal computer with the S command and loaded from the per-
sonal computer with the L command. Assembly programs are stored in the S
format.

Assembly Routines Section 3-4

21

SECTION 4
BASIC Programming

This section contains an explanation of the terminology, components, structure, and use of the BASIC programming language
on the ASCII Unit. Even those familiar with BASIC should study this section carefully as many of the ASCII Unit BASIC
commands, statements, and functions are non-standard, especially those that control I/O operations. Readers should pay spe-
cial attention to the explanations of statements that are prefixed with “PC.” Also pay special attention to the OPEN statement.

4-1 Program Configuration .
4-2 Commands, Statements, and Functions .

4-2-1 BASIC Format .
4-2-2 Commands .
4-2-3 General Statements .
4-2-4 Device Control Statements .
4-2-5 Arithmetic Operation Functions .
4-2-6 Character String Functions .
4-2-7 Special Functions .

22

4-1 Program Configuration
A BASIC program consists of commands, statements, and functions.

BASIC Language Command

Function

Arithmetic operation function

Character string function

Special function

Statement

General statement

Device control statement

Basic Statements designate and control the flow of programs and are generally
used in program lines within a program. Statements are usually created as pro-
grams and executed by the RUN command. Statements can be directly input
and executed from the keyboard.

Basic Commands are usually entered from the command line and control oper-
ations external to the program such as printing and listing. Commands must be
directly input and executed from the keyboard. Commands cannot be inserted
into programs and executed by the RUN command. If commands are inserted
into programs and executed, the commands may not work properly.

Examples: print, list, run

Functions are self-contained programs which accept one or more arguments,
perform predefined calculations, and return a result(s). There are predefined
BASIC functions for arithmetic and string operations as well as user defined
functions.

Examples: INT(x), LOG(x), SQR(x)

A program written in BASIC is a series of lines, each of which consists of one or
more statements. If several statement are written on the same line, they must be
separated with colons(:). A line can be no longer than 255 characters. Use single
quote marks (’) to separate comments.

Example of four statements on a line:

10 FOR L=1 TO 100: J=L*I: PRINT J: NEXT L

Line Numbers Every BASIC program line begins with a line number. Line numbers indicate the
order in which the program lines are stored in memory and are also used as ref-
erences for branching and editing. Line numbers must be in the range of 0 to
63999. A period may be used in AUTO, DELETE, EDIT, and LIST commands to
refer to the current line.

Examples: LIST. EDIT. AUTO DEL 100–

Character Set The BASIC character set is comprised of alphabetical characters, numeric char-
acters, and special characters.

The alphabetic characters in BASIC are the upper case and lower case letters of
the alphabet. The numeric characters in BASIC are the digits 0 through 9.

The following special characters are recognized by BASIC:

SP (space) ! ” # $ & ’ () * + , – . / : ; < = > ? [\ } ^ _

Constants The following can be used as constants:

Lines and Statements

Program Configuration Section 4-1

23

Constants Character

Numeric Integer Decimal
Octal
Hexadecimal

Real Number Single-precision

Double-precision

A character constant is a character string enclosed by double quotation marks
(”). It can be up to 255 characters long. If it has no character, it is called an “empty
character string” or a null string.

Example: “CF-BASIC”

Whole numbers between –32768 and 32767 can be used. An optional percent
sign (%) can be added to specifically indicate an integer constant. Integer con-
stants do not have decimal points.

Examples: 1234 –1234 12

Octal Constants Octal numbers from 0 to 7 beginning with the prefix “&” and within the range of &0
to &177777 can be used.

Examples: &0127 &7777

Hexadecimal numbers with the prefix “&H”, from 0 to F (0 to 9,A,B,C,D,E,F) and
in the range &H0000 to &HFFFF can be used.

Examples: &H5E &HBF4

Single precision: This type of constant is stored with seven-digit precision and is
output as a six-digit constant with the seventh digit rounded off. It is represented
by one of the following methods:

1, 2, 3... 1. As a number with seven or less digits: 1234.5

2. As a number in exponential form using E: 1.2E+3

3. As a number with the character “!” at the end: 2.34!

Double precision: This type of constant is stored with 16-digit precision and is
output as 16 digits or less. It is represented by one of the following methods:

1, 2, 3... 1. As a number with 8 or more valid digits: 1.23456789

2. As a number in exponential form using D: –1.2D–3

3. As a number with the character “#” at the end: 2.34#

Variables Variables are names used to represent values that are used in a BASIC pro-
gram. The value of a variable may be assigned as the result of calculations or
explicitly by the programmer with an assignment statement. If no value is as-
signed to a numeric variable, it is assumed to be zero. If no value is assigned to a
character variable, it is assumed to be a null string.

Variable Name A variable may be up to 255 alphanumeric characters long, but only the first 16
characters are actually valid. No variable can start with “FN” or a valid BASIC
command name.

Note A syntax error will occur if a variable begins with a reserved word (i.e., in the case
of TOTAL or ABSOL, a syntax error will occur because TO and ABS are reserved
words).

Type Declarator The variable TYPE must be declared. This is done using a type declarator which
is placed after the variable name. Even if two variables have the same name,
they will be treated differently if they are declared as different types of variables.

Integer: Uses 2 bytes per variable.

Character Constants

Integers Constants

Hexadecimal
Constants

Floating Point
Constants

Program Configuration Section 4-1

24

! Single-precision real: Uses 4 bytes per variable.

Double-precision real: Uses 8 bytes per variable.

$ Character: Uses a maximum of 255 characters.

There is a second way to declare variable types. The BASIC statements DE-
FINT, DEFSTR, DEFSNG, and DEFDBL may be used to declare the types for
certain variable names.

Variable Array An array is a group of values of the same TYPE that is stored and referenced as a
unit by the same variable name. Each element in an array has a unique position
and is referenced by the name of the array subscripted with an integer or integer
expression.

There can be many dimensions to an array. The most common types are one,
two, and three dimensional arrays. An array has one subscript for each dimen-
sion in the array.

For example, T(4) would reference the fourth element in the one-dimensional
array T. R(2,3) would reference the value located in the second row and third
column of the two-dimensional array R.

The maximum number of dimensions of an array is 255. The maximum number
of elements per dimension is 32767. The array size and number of dimensions
must be declared with the DIM statement. The subscript value zero is the posi-
tion of the first element in an array. All elements of an array must be of the same
TYPE.

Type Conversion When necessary, BASIC will convert a numeric constant from one TYPE to
another. The following rules and examples apply:

1, 2, 3... 1. If the numeric data on the right side of an assignment statement differs from
the type of data on the left side, the right side is converted to match the left.
However, character data cannot be converted to numerical data, or vice ver-
sa.

Example: A = 12.3: if A is an integer then, “12” is assigned to A.

2. Double-precision data is converted to single-precision data when assigned
to a single-precision variable.

Example:

IF “A” is a single-precision variable and the statement:

LET A = 12.3456789# occurs in a program, then 12.3456789# will be con-
verted to a single-precision number and then assigned to “A.”

3. When an arithmetic operation is performed using both single-precision and
double-precision values, the single-precision value is converted to
double-precision first, and then the operation is performed. Therefore, the
result is a double-precision value.

Example: 0#/3 (double-precision)

4. In logic operations, all numeric data is first converted into integer data. If any
value cannot be converted into an integer within the range of –32768 to
32767, an error will occur.

Example: LET A = NOT 12.34, –13 is assigned as A.

5. When a real number is converted into an integer, everything to the right of
the decimal point is rounded off.

Example: A = 12.3: “12” is assigned to A.

Expressions Expressions refer to constants, variables, and functions that have been com-
bined by operators. Numeric values, variables, or characters alone can also
form expressions. There are four types of expressions:

• Arithmetic

Program Configuration Section 4-1

25

• Relational

• Logical

• Character

Of these, the first three produce numeric values as a result, and are thus called,
“numeric expressions.” The last type is called a “character expression.”

An arithmetic expression is made up of constants, variables, and functions com-
bined using arithmetic operators. A list of valid arithmetic operators is shown in
the following table.

Arithmetic Operator Example Operation

+

–

*

/

MOD

^

A + B

A – B, –A

A * B

A / B

A \ B

A MOD B

A ^ B

Addition

Subtraction or negation

Multiplication

Real number division

Integer division

Remainder after integer division

Exponentiation

\

Note If A or B is a real number in an expression using the \ or MOD operator, the deci-
mal part is first rounded up to convert the real number into an integer, and then
the operation is performed.

Relational operators compare two values. The output is “–1” (&HFFFF) if the two
values are equal and “0” if they are not.

Relational Operator Example Operation

=

<>,><

<

>

A = B

A <> B

A < B

A > B

A ≤ B

A ≥ B

Equal

Not equal

Less than

Greater than

Less than or equal to

Greater than or equal to

≤

≥

Character Operator A character expression is made up of character constants and variables that are
linked with the character operator “+”. Instead of adding characters together, the
“+” operator links the characters together to form one character value.

Input: A$=“CF” B$=“BASIC” PRINT A$+“–”+B$

Output: “CF–BASIC” is displayed.

Logical Operators Logical Operators perform tests on multiple relations, bit manipulation, or bool-
ean operations. The logical operator returns a bit result which is either “true” (not
0) or “false” (0). In an expression, logical operations are performed after arithme-
tic and relational operations. The outcome of a logical operation is determined

Arithmetic Operators

Relational Operators

Program Configuration Section 4-1

26

as shown in the following table. The operators are listed in the order of prece-
dence.

Logical Operator Description, Example, and Result

A

1

0

NOT A

0

1

NOT (negation)

AND (logical product) A B A AND B

1 1

1 0

0 1

0 0

1

0

0

0

OR (logical sum) A B A OR B

1 1

1 0

0 1

0 0

1

0

XOR (exclusive-OR) A B A XOR B

1 1

1 0

0 1

0 0 0

IMP (implication)

EQV (equivalence)

A B A IMP B

1 1

1 0

0 1

0 0

1

0

A B A EQV B

1 1

1 0

0 1

0 0

1

0

0

1

1

1

1

1

1

1

0

Operator Priority Arithmetic and logical operations are performed in the following order. Note,
however, that an expression or function enclosed by parentheses is executed
first, irrespective of operator priority.

1. ^ (exponentiation) 8. NOT

2. – (negation) 9. AND

3. *, / 10. OR

4. \ 11. XOR

5. MOD 12. EQV

6. +. – 13. IMP

7. Relational operators

Program Configuration Section 4-1

27

Calculation Examples of Logical Expressions
NOT (negation)

A =1= 0000000000000001
NOT 1 = 1111111111111110 = –2
NOT A = –2

AND (logical product)
A = 5 = 0000000000000101
B = 6 = 0000000000000110
A AND B = 0000000000000100 = 4

OR (logical sum)
A = 4 = 0000000000000100
B = 3 = 0000000000000011
A OR B = 0000000000000111 = 7

XOR (exclusive OR)
A = –4 = 1111111111111100
B = 5 = 0000000000000101
A XOR B = 1111111111111001 = –7

EQV (equivalent)
A = –4 =1111111111111100
B = 5 = 0000000000000101
A EQV B = 0000000000000110 = 6

IMP (implication)
A = –4 = 1111111111111100
B = 5 = 0000000000000101
A IMP B = 0000000000000111 = 7

4-2 Commands, Statements, and Functions
This section explains, in detail, the BASIC commands, statements and func-
tions. They are presented in alphabetical order by section. Each description is
formatted as described below.

4-2-1 BASIC Format
Purpose: Explains the purpose or use of the instruction

Format: Shows the correct format for the instruction

The following rules apply to the format descriptions of all commands, instruc-
tions, and functions:
• Items in CAPITAL LETTERS must be input as shown.
• Items in lower case letters enclosed in angle brackets (< >) are to be supplied

by the user.
• Items in square brackets ([]) are optional.
• All punctuation marks except angle and square brackets (i.e., comas, hy-

phens, semicolons, parentheses, and equal signs) must be included where
shown.

• Arguments to functions are always enclosed in parentheses. In the formats
given for the functions in this chapter, the arguments have been abbreviated as
follows:

x and y : represent numeric expressions
I and J : represent integer expressions
A$ and B$: represent string expressions

Commands, Statements, and Functions Section 4-2

28

Remarks: Explain in detail how to use the instruction

Examples: Show sample code to demonstrate the use of the instruction

4-2-2 Commands
This section describes all of the BASIC commands for the ASCII Unit.

AUTO Command
Purpose: To automatically generate line numbers for each line of the pro-

gram

Format: AUTO [<line>][,[<increment>]]

<line> is a an integer from 0 to 63999.

<increment> is an integer value that specifies the increment of
the generated line numbers.

Examples: AUTO 100, 10

AUTO 500, 100

Remarks:

Auto begins numbering at <line> and increments each subsequent line number
by <increment>. The default value for both <line> and <increment> is 10.

The AUTO Command can be canceled by entering CTRL+C.

If an already existing line number is specified, an asterisk (*) is displayed imme-
diately after the line number. If a new line number is input followed by a CR key,
the new line number will be used instead. Pressing only the CR key leaves the
line number unchanged.

CONT Command
Purpose: To resume execution of a program after a Ctrl+Break has been

typed, a STOP or END statement has been executed, or an error
has occurred

Format: CONT

Remarks:

Execution resumes at the point where the break occurred. If CTRL+X is pressed
during data exchange with an external device, execution is aborted and the pro-
gram cannot be resumed.

If the program is modified after execution has been stopped, the program can
not be resumed.

CONT is usually used in conjunction with STOP for debugging.

DEL Command
Purpose: To Delete the specified program lines

Format: DEL [<first>] [-<last>] or DEL <first> -

<first> is the first line number deleted.

<last> is the last line number deleted.

Examples:
DEL 100 Deletes line 100

DEL 100- Deletes all lines from line 100

DEL -150 Deletes all lines up to line 150

DEL 100-150 Deletes all lines between 100 and 150

Commands, Statements, and Functions Section 4-2

29

Remarks:
A period may be used in place of the line number to indicate the current line.

EDIT Command
Purpose: To Edit one line of the program

Format: EDIT <line>

<line> is the line number to be edited.

Remarks:

The EDIT Command is used to display a specified line and to position the cursor
at the beginning of that line. The cursor can then be moved within the specified
line and characters can be inserted or deleted. Executing “EDIT .” will bring up
the previously entered program line. “.” refers to the last line referenced by an
EDIT statement, LIST statement, of error message.

LIST Command
Purpose: To list the program currently in memory on the screen or other

specified device

Format: LIST [<line>] [-[<line>]]

LLIST [<line>] [-[<line>]]

<line> is a valid line number from 0 to 63339.

Remarks:
LIST displays a program or a range of lines on the screen or other specified de-
vice.
If the line range is omitted, the entire program is listed. “LIST.” displays or prints
the line that was last input or was last displayed.
Output can be aborted by entering CTRL+B or CTRL+X. If CTRL+B is used, list-
ing can be resumed by entering CTRL+B again.
LIST/LLIST Commands can be written into the program, but the following state-
ment will not be executed and the ASCII Unit will enter command input wait sta-
tus.
The LIST Command automatically outputs to port 1 and the LLIST Command
automatically outputs to port 2.
The LLIST Command outputs data to the device “LPRT” independently of the
OPEN statement.
When the dash (-) is used in a line range, three options are available:

1, 2, 3... 1. If only the first number is given, that line and all higher numbered lines are
listed.

2. If only the second number is given, all lines from the beginning of the pro-
gram through the given line are listed.

3. If both numbers are given, the inclusive range is listed.
Examples:
LIST -500 List everything up to line 500
LIST 10-100 List all lines ranging from 10 through 100
LIST 200- List everything from line 200 on

LOAD Command
Purpose: To load a program from the EPROM into memory

Format: LOAD

Remarks:

The contents of the program area specified with the MSET Command are
loaded from the EEPROM.

Commands, Statements, and Functions Section 4-2

30

Purpose: To load a program sent from an RS-232C device to the current
program area

Format: LOAD #<port>,“COMU:[<spec>,<vsl>]

<port> is either port 1 or port 2.

<spec>: see OPEN statement tables.

<vsl>: valid signal line––refer to the OPEN statement tables.

Example: LOAD #1,”COMU:(43)

Remarks:

When this command is executed, the BASIC indicator LED will begin blinking
rapidly. Make sure the RS-232C device is connected at this time.

During execution of the LOAD command, the START/STOP switch and key in-
put from port 1 will not be acknowledged.

The program area currently used is cleared immediately after the LOAD com-
mand is executed.

For details on communication parameters, valid signal lines, and COMU refer to
the OPEN instruction.

MON Command
Purpose: To change to monitor mode

Format: MON

Remarks:

This Command passes control from BASIC mode to monitor mode.

To return to BASIC mode, enter CTRL+B.

In monitor mode, all Roman characters used must be in upper case.

MSET Command
Purpose: To reserve memory space for an assembly program

Format: MSET [<address>]

<address> is a hexadecimal number between &H200 and
&H7FFF.

Example: MSET &H5000

Remarks:

When an assembly program is to be used in conjunction with a BASIC program,
special memory space must be reserved for the assembly program.

The MSET command sets the lowest possible address that a BASIC program
can occupy. The assembly program is then stored “below” the BASIC program in
memory. It is necessary to reserve enough space for the assembly program to
“fit”.

If no MSET address is specified, the default MSET boundary address will be set
at &H2000. Do not specify an address higher than &H7FFF or the system stack
will be overwritten.

The address specified by this command is maintained even if system power is
turned OFF. To cancel the effect of this command, execute MSET &H2000.

Commands, Statements, and Functions Section 4-2

31

This diagram illustrates the PC memory map before and after the MSET com-
mand is executed.

ÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ

Under normal conditions

&H0000

&H0020

&H2000

&H8000

&HFFFF

I/O Area

System area

Basic text area

System stack area

Character String area

System area

(Standard 1K byte)

&H0000

&H0020

&H2000

&H8000

&HFFFF

When MSET is executed

I/O Area

System area

Assembly language
program area

Basic text area

System stack area

System area

Character String area

(Standard 1K byte)

&H5000

NEW Command
Purpose: To delete the program currently in memory and clear all variables

Format: NEW

Remarks:

New is used to clear memory before a new program is entered. New causes all
files and ports to be closed.

Programs named with the PNAME command cannot be erased. The name must
therefore be erased first by executing PNAME “ ” before the NEW command is
executed.

PGEN Command
Purpose: To select one of three program areas for the current program

Format: PGEN <num>

<num> is an integer of value 1, 2, or 3.

Remarks:

The occupied capacity of the selected program area will be displayed. (Refer to
the discussion of the PINF command.)

PINF Command
Purpose: To display memory area information

Format: PINF [<arg>]

<arg> is either an integer of value 1, 2, or 3 or the character
string “ALL”. ALL is entered without quotes.

Examples: PINF 1

PINF ALL

Remarks:

This Command displays the amount of program area currently being used and
the program names that have been assigned by the PNAME command. Specify
1, 2, or 3 as <arg> for a specific program area.

Commands, Statements, and Functions Section 4-2

32

If <arg> is not specified, information on the area currently being used is dis-
played.

If ALL is specified, information on all three program areas will be displayed.

PNAME Command
Purpose: To assign a name to a program stored in the area specified with

the PGEN command or to cancel a previously assigned program
name

Format: PNAME <string>

<string> is the chosen name (enclosed in quotes) for the pro-
gram or the null string, “ ”.

Examples: PNAME “PROG1”

PNAME “ ”

Remarks:

The chosen name must be eight characters or less.

Program areas assigned a name with the PNAME command are protected from
execution of the LOAD and NEW commands which erase program area con-
tents. It is necessary to erase all assigned program names with the PNAME “ ”
command before execution of the LOAD or NEW commands.

RENUM Command
Purpose: To renumber program lines

Format: RENUM [<new number>] [,[<old number>][,<inc>]]

<new number> is the first line number to be used in the new se-
quence. The default is 10.

<old number> is the line in the current program where the re-
numbering is to begin. The default is the first line of the program.

<inc> is the increment to be used in the new sequence. The de-
fault is 10.

Examples: RENUM 200

RENUM 500, 200, 10

Remarks:

RENUM will also change all line number references following GOTO, GOSUB,
THEN, ELSE, ON ... GOTO, ON ... GOSUB, RESTORE, RENAME, and ERL
statements to reflect the new line numbers.

Statement numbers greater than 63999 cannot be used.

RUN Command
Purpose: To execute a program

Format: RUN [<line>]

<line> is any line number less than 63999.

Remarks:

If a line number is specified, execution begins from that line. If the line number is
omitted, execution starts from the first line of the program.

The RUN command clears all variables and closes all open files before execut-
ing the designated program.

Program execution can be aborted with CTRL+X, or the START/STOP switch.
Program execution can also be aborted from within the program by an END or
STOP statement.

Commands, Statements, and Functions Section 4-2

33

SAVE Command
Purpose: To write the program area to the EEPROM

Format: SAVE

Remarks:

The contents of the BASIC program area and the assembly language program
area reserved with the MSET command are written to the EEPROM.

If the START/STOP switch is pressed during execution of the SAVE command,
the process will be aborted.
Purpose: To write a program in the current program area to a storage de-

vice connected to one of the ports.

Format: SAVE #<port>,“COMU:[(<valid signal line>)]”

<port> is one of the two ports (1,2).

<valid signal line>: refer to the OPEN statement tables.

Example: SAVE #1,“COMU:(43)”

Remarks:

When this command is executed, the BASIC LED indicator on the ASCII Unit will
blink rapidly warning the user to prepare the peripheral device for data transfer.
When the device is set, press the START/STOP switch.

During execution of this command the START/STOP switch and key input
through port 1 are inhibited.

For further details on COMU refer to the OPEN command.

TRON and TROFF Commands
Purpose: To trace execution of a program

Format: TRON

Remarks:

The TRON command is a debugging tool that enables the programmer to follow
the execution of a program line by line. Execution of the TRON command will
cause the line numbers of subsequent program statements to be displayed on
the screen as they are executed.

The trace can be canceled with the TROFF command, the NEW command, by
turning off the power or, with the RESET switch.

VERIFY Command
Purpose: To verify the contents of the EEPROM by comparing them to the

contents of the program area

Format: VERIFY

Remarks:

If the contents of the program area are identical to those of the EEPROM, the
message “READY” will be displayed; otherwise, the message “PROM ERROR”
is displayed.

4-2-3 General Statements
CLEAR Statement

Purpose: To initialize numeric and character variables and set the size of
the character memory area

Example: CLEAR [<size>]

<size> is the size of memory area used to process character
strings and is specified in byte units.

Commands, Statements, and Functions Section 4-2

34

Remarks:

This command initializes numeric variables to zero and character strings to
empty. It also clears all user functions defined by the DEF FN statement.

This statement must be executed before the ON ERROR GOTO statement.

<size> is automatically set to 200 bytes upon power application or after reset.

COM Statement
Purpose: To enable, disable, or stop an interrupt defined by the ON COM

GOSUB statement.

Format: COM[<port number>] ON/OFF/STOP

<port number> is an integer (1 or 2).

Example: COM1 ON

Remarks:

The COM ON statement enables an interrupt defined by the ON COM GOSUB
statement.

After this statement has been executed, an interrupt will be generated each time
data is written to the specified port buffer. The interrupt will cause program ex-
ecution to branch to a routine defined by the associated ON COM GOSUB state-
ment.

The COM OFF statement disables the com port interrupts. Even if data is written
to a com port buffer, branching will not take place.

The COM STOP statement stops the com port interrupts from branching pro-
gram execution. However, if the COM ON statement is subsequently executed,
branching to the specified interrupt service routine based on the “STOPPED” in-
terrupt will then take place.

If no port number is specified, port 1 is selected as the default port.

Execute the COM OFF statement at the end of the program.

The COM ON/OFF/STOP statement can be executed only after the ON COM
GOSUB statement has been executed.
Program Example:

10 OPEN #2, “COMU:”

20 ON COM2 GOSUB 100

30 COM2 ON

40 GOTO 40

100 IF LOC(2)<>0 THEN A$=INPUT$ (LOC(2), #2)

110 RETURN

DATA Statement
Purpose: Defines numeric and character constants to be specified in a

subsequent READ statement

Format: DATA <constant>[,<constant>]...

<constant> may be a numeric constant in any format; i.e.,
fixed-point, floating-point, or integer. <constant> can also be a
character string. Quotes are only necessary if the constant con-
tains comas, colons, or spaces.

Example: DATA CF, 10, 2.5, “A.:B”

Remarks:

Any number of DATA statements can be used in a program. READ statements
access DATA statements in order (by line number). The data contained therein

Commands, Statements, and Functions Section 4-2

35

may be thought of as one continuous list of items, regardless of how many items
are on a line or where the lines are placed in the program.

DATA statements are non-executable and can be placed anywhere in a pro-
gram. A data statement can contain as many constants as will fit on one line
(separated by comas).

The variable type given in the READ statement must agree with the correspond-
ing constant in the DATA statement.

DATA statements may be re-read from the beginning by use of the RESTORE
statement.

No comment (with “:” or “’”) can be written after the DATA statement.

DEF FN statement
Purpose: To define and name a function written by the user

Format: DEF FN<name>[(<arg1>[,<arg2>]...)] = <def>

<name>, which must be a legal variable name, is the name of
the function.

<argn> is a list of variable names called parameters that will be
replaced with values calculated when the function is called. The
items in the list are separated by comas.

<def> is an expression that performs the operation of the func-
tion and is limited to one line.

Example: DEF FNA (X, Y, Z) = SQR(X**2 + Y**2 + Z**2)

Remarks:

A user function must be defined with the DEF FN statement before it can be
called. To call a user function once it has been defined, append FN to the as-
signed name of the function and set it equal to some variable.

distance = FNA(X,5,5)

Variable names that appear in the defining expression serve only to define the
function; they do not affect program variables that have the same name.

The variables in the parameter list represent, on a one-to-one basis, the
argument variables or values that will be given in the function call.

This statement may define either numeric or string functions. If a type is speci-
fied in the function name, the value of the expression is forced to that type before
it is returned to the calling statement.

If a type is specified in the function name and the argument type does not match,
an error will occur.

DEF INT/SNG/DBL/STR Statement
Purpose: To declare variable types as integer, single-precision,

double-precision, or string

Format: DEF <type><letter>[-<letter>]

[<letter>[-<letter>]]...

<type> is INT, SNG, DBL, or STR

Remarks:

Any variable names beginning with the <letter(s)> listed will automatically be as-
signed to the specified variable type.

The “”, “!”, and “$” declaration characters take precedence over a DEF <type>
statement.

If no type declaration statements are encountered, BASIC assumes all variables
without declaration characters to be single-precision variables.

Commands, Statements, and Functions Section 4-2

36

Example: DEFINT A-D, X

All variables beginning with A, B, C, D, and X will be integer variables.

DEF USER Statement
Purpose: To specify the starting address of an assembly language subrou-

tine that will be called via the USR function

Format: DEF USR [<digit>] = <offset>

<digit> is an integer from 0 to 9. The digit corresponds to the
USR routine number whose address is being specified. If <digit>
is omitted, DEF USR0 is assumed.

<offset> is the starting address of the USR routine.

Remarks:

Any number of DEF USR statements may appear in a program to redefine sub-
routine starting addresses, thus allowing access to as many subroutines as nec-
essary.

Program Example:
100 DEF USR1=&H2100

110 POKE &H2100, &H39

120 A=USR1 (A)

130 PRINT A

DIM Statement
Purpose: To specify the maximum values for array variable subscripts and

allocate storage accordingly

Format: DIM <variable>(<subscripts>)

[,<variable>(<subscripts>)]...

<variable> is a legal variable name.

<subscripts> are the maximum number of elements for each di-
mension of the array. There can be up to 255 subscripts but the
maximum size of the array cannot exceed the amount of memory
available.

Example: DIM A (10,20), B$(30)

Remarks:

If an array variable name is used without a DIM statement, the maximum value of
the array’s subscript(s) is assumed to be 10. If a subscript is used that is greater
than the maximum specified, an error will occur. The minimum value for a sub-
script is zero.

The DIM statement initializes all the elements of numeric arrays to zero. String
array elements are initialized to NULL.

END Statement
Purpose: To terminate program execution, close all files, and return to

command level

Format: END

Remarks:

END statements may be placed anywhere in the program to terminate execu-
tion. Unlike the STOP statement, END closes all open files or devices. An END
statement at the end of the program is optional. BASIC always returns to com-
mand level after an END is executed.

Commands, Statements, and Functions Section 4-2

37

ERROR Statement
Purpose: To simulate the occurrence of an error, or to allow error codes to

be defined by the user

Format: ERROR <n>

<n> is the error code to be simulated.

Remarks:

Error code numbers 1 to 255 are predefined and reserved by BASIC. Higher
numbers can be used for user-defined error code messages. User-defined error
codes can be used together with the ON ERROR GOTO statement to branch the
program to an error handling routine.

When the ERROR statement is executed without an accompanying ON ERROR
GOTO statement, the error message corresponding to the specified error num-
ber is output and program execution is stopped. The message UNDEFINED ER-
ROR is displayed if an undefined error occurs.

The error number is assigned to the variable ERR and the line number where the
error occurred is assigned to the variable ERL.

FOR and NEXT Statements
Purpose: To allow a series of instructions to be performed in a loop a given

number of times

Format: For <var>=<x> TO <y> [STEP<z>]

<x>, <y>, and <z> are numeric expressions.

Example: 100 FOR Y = base TO 10 STEP 2

110 NEXT Y

Remarks:

<var> is used as a counter. The first numeric expression (<x>) is the initial value
of the counter. The second numeric expression (<y>) is the final value of the
counter.

The program lines following the FOR statement are executed until the NEXT
statement is encountered. Then the counter is incremented by the amount spe-
cified by STEP.

A check is performed to see if the value of the counter is now greater than the
final value (<y>). If it is not greater, execution branches back to the first state-
ment after the FOR statement and the process is repeated. If it is greater, execu-
tion continues with the statement following the NEXT statement. This is a
FOR...NEXT loop.

If STEP is not specified, the increment is assumed to be one. If STEP is negative,
the counter will count down instead of up. In this case, the loop will be executed
until the counter is less than the final value.

The body of the loop will never be executed if the initial value of the loop is great-
er than the final value.

NESTED LOOPS

FOR...NEXT loops may be nested, that is, a loop can be placed inside of another
loop. When loops are nested, each loop must have a unique variable name for its
counter. The NEXT statement for the inside loop must come before the NEXT
statement for the outer loop.

If nested loops have the same end point, the same NEXT statement can be used
for both of them.

If a NEXT statement is encountered before its corresponding FOR statement,
an error message is issued and execution is terminated.

Commands, Statements, and Functions Section 4-2

38

GOSUB and RETURN Statements
Purpose: To branch to and return from a subroutine

Format: GOSUB <line>

<line> is the first line number of the subroutine.

Remarks:

A subroutine may be called any number of times in a program, and a subroutine
may be called from within another subroutine.

The RETURN statement(s) in a subroutine causes execution to branch back to
the statement following the most recent GOSUB statement.

A subroutine may contain more than one RETURN statement should logic dic-
tate a return at different points in the subroutine.

Subroutines can appear anywhere in the program, but it is recommended that
subroutines be readily distinguishable from the main program.

To prevent inadvertent entry into a subroutine, the subroutine may be preceded
by a STOP, END, or GOTO statement to direct program execution around the
subroutine.

Program Example:
10 T = Time

20 GOSUB 100

30 {stuff}

40 .

50 .

60 .

 90 GOTO 150

100

110 T = T + TIME

120 RETURN

130 {stuff}

GOTO Statement
Purpose: To unconditionally branch program execution to the specified line

number

Format: GOTO <line>

<line> is a valid line number.

Remarks:

If <line> is a non-executable statement, execution will proceed at the first ex-
ecutable statement encountered after <line>.

IF...THEN Statements
Purpose: To control program flow based on the results returned by an

arithmetic or logical expression

Format: IF <expression> [,] THEN <statement(s)> or <line>

[ELSE <statement(s)> or <line>]

IF <expression> [,] GOTO <line>

[[,] ELSE <statement(s)> or <line>]

Example: IF B=10 THEN PRINT “hello” ELSE 500

Commands, Statements, and Functions Section 4-2

39

Remarks:

If the result of <expression> is not zero, the THEN or GOTO clause will be ex-
ecuted (GOTO is always followed by a line number). THEN may be followed by
either a line number for branching or one or more statements to be executed.

If the result of <expression> is zero, the THEN or GOTO clause will be ignored
and the ELSE clause, if present, will be executed. IF there is no ELSE clause,
execution will continue with the next executable statement.

INPUT Statement
Purpose: To allow input from the keyboard during program execution

Format: INPUT [;] [#<port>][<“prompt”>;]<variable>

[,<variable>]...

#<port> is the port number (1 or 2).

<“prompt”> is a message that will be displayed when the INPUT
statement is executed.

Examples: INPUT “DATA” : A$

INPUT #2, “DATA” , A$, B$

Remarks:

When an INPUT statement is executed, program execution pauses and a ques-
tion mark is displayed to indicate the program is waiting for data. If <“prompt”> is
included, the string is displayed before the question mark. The program will not
continue execution until the user has entered the required data.

A coma may be used instead of a semicolon after the prompt string to suppress
the question mark.

Data is not excepted by the INPUT statement until a carriage return is entered.
Therefore input can be edited with the backspace and delete keys.

When more than two variables are input, they must be delimited by a coma(s).

The data entered is assigned to the variables specified by the INPUT statement.
The number of values entered must be the same as the number of variables in
the INPUT statement.

The variable names in the list may be numeric or string variable types as well as
subscripted variables (array variable). The type of each entered data item must
agree with the type specified by the variable name.

Strings input to an INPUT statement need not be surrounded by quotation
marks.

Responding to INPUT with too many or too few items will cause an error mes-
sage to be displayed prompting the user to re-enter the data.

If a peripheral device other than TERM or COMU is selected by the OPEN state-
ment, neither the prompt statement nor “?” is displayed.

To eliminate “?” when COMU, etc., is selected by the OPEN statement, use the
LINE INPUT command.

The INPUT statement cannot be executed in direct mode. If the port number is
omitted, port 1 is assumed as the default port.

KEY(n) Statement
Purpose: To enable, disable, or stop an interrupt invoked by key input and

defined by the ON KEY GOTO or ON KEY GOSUB statements

Format: KEY(<n>) ON/OFF/STOP

<n> is the key number (1-8).

Example: KEY(4) ON

Commands, Statements, and Functions Section 4-2

40

Remarks:

The KEY ON statement enables an interrupt invoked by keyboard input. After
this statement has been executed, an interrupt will be triggered each time the
specified key is input. Program execution then branches to an interrupt service
routine defined with the ON KEY GOTO or ON KEY GOSUB statements.

The KEY OFF statement disables the interrupt; key input will no longer trigger an
interrupt.

The KEY STOP statement also disables the interrupt. However, if the interrupt is
subsequently enabled with the KEY ON statement, execution will then branch to
the interrupt service routine defined by the ON KEY GOTO or ON KEY GOSUB
statements.

Execute the KEY OFF statement at the end of the program.

Program Example:
10 OPEN #1, “TERM:(42)”

20 ON KEY 1 GOSUB 100

30 On KEY 2 GOSUB 200

40 A=0

50 KEY ON

60 GOTO 60

100 PC READ “14”;A

110 RETURN

200 PC WRITE “14”;A

210 RETURN

LET Statement
Purpose: To assign the value of an expression on the right side of an equal

sign to the variable on the left side

Format: [LET] <variable>=<expression>

Example: LET A = 1.2

Remarks:

Notice the word LET is optional, i.e., the equal sign is sufficient when assigning
an expression to a variable name.

Assignment of a character variable to a numeric variable, and the reverse, are
not permitted.

When assigning unmatched types of numeric variables, the variable type on the
right side of the equal sign is converted into the type on the left before the assign-
ment is performed.

String assignments should be enclosed in double quotation marks.

LINE INPUT Statement
Purpose: To input an entire line of characters (up to 255) from the key-

board or other input device without the use of delimiters

Format: LINE INPUT [#<port>,] [“<prompt>”;]<string>

<port> is the port number (1 or 2).

“<prompt>” is a message displayed on the screen prompting the
user for input.

<string> is a string variable that is assigned to the input charac-
ter string.

Example: LINE INPUT #2,”DATE”;A$

Commands, Statements, and Functions Section 4-2

41

Remarks:

All of the characters input from the end of the prompt to the carriage return are
assigned to the character variable as a series of data. (Comas and colons are
also treated as character data.)

A question mark is not displayed unless it is part of the prompt string.

The prompt statement is not displayed if a peripheral device other than TERM or
COMU is selected with the OPEN statement.

The character string is not assigned to the variable until the carriage return key is
pressed. Until then, the BASIC LED indicator on the ASCII Unit will blink indicat-
ing that the Unit is waiting for input of a carriage return.

If the port number is omitted, port 1 is assumed as the default port.

MID$ Statement
Purpose: To replace a portion of one string with another string

Format: MID$(<string 1>,<n>[,<m>]) = <string 2>

<string 1> is a string variable.

<n> is an integer expression from 1 to 255.

<m> is an integer expression from 0 to 255.

<string 2> is a string expression.

Example: MID$(A$,2,4) = “ABCDEFGH”

Remarks:

The characters in <string 1>, beginning at position <n> are replaced by the char-
acters in <string 2>.

The optional <m> refers to the number of characters from <string 2> that will be
used in the replacement. If <m> is omitted, all of <string 2> is used. However,
regardless of whether <m> is included or not, the replacement of characters
never goes beyond the original length of <string 1>.

Refer to the discussion of the MID$ function

ON COM GOSUB Statement
Purpose: Defines an interrupt service routine to handle data coming into a

com port buffer

Format: ON COM(<n>) GOSUB <line>

<n> is the port number (1 or 2).

<line> is the line number of the first statement of the interrupt
service routine.

Example: ON COM1 GOSUB 1000

Remarks:

This statement is not valid unless it is executed after the specified port has been
opened.

An interrupt service routine cannot be interrupted by another interrupt. If a new
interrupt occurs during processing of a previous interrupt, branching to handle
the new interrupt will not take place until after the RETURN statement of the first
interrupt service routine is executed. This means that, depending on the branch
timing, nothing may be in the buffer when execution branches to the interrupt
routine. It is therefore necessary to check whether data is in the buffer by execut-
ing the LOC or EOF Command at the beginning of the interrupt routine.

All subroutines must end with a RETURN statement.

If a statement specified by the branch line number is non-executable, execution
will begin with the first executable statement following the branch line number.

Commands, Statements, and Functions Section 4-2

42

If zero is specified as the branch line number, it is assumed that the COM OFF
statement has been executed.

If the port number is omitted, port 1 is selected.

The ON COM GOTO statement is enabled with the COM ON statement and dis-
abled with the COM OFF statement.

Program Example:
10 OPEN #1, “COMU:(40)”

20 ON COM GOSUB 100

30 COM ON

40 PC READ “2I4”;A,B

50 PRINT A, B

60 GOTO 30

100 IF LOC (1)=0 THEN 120

110 PRINT INPUT$ (LOC(1),#1)

120 RETURN

Program Remarks:

If an interrupt from port 1 is detected, the buffer contents are displayed.

ON ERROR Statement
Purpose: To enable error processing and to specify the first line number of

the error handling routine

Format: ON ERROR GOTO <line>

<line> is any valid line number.

Remarks:

When an error occurs, this statement directs execution to the proper error handl-
ing routine. When an error is detected, the error number is assigned to the vari-
able ERR and the line number where the error occurred is assigned to ERL.

To disable error processing, execute ON ERROR GOTO 0. Subsequent errors
will cause an error message to be printed and execution to be halted.

If an error occurs during execution of an error handling subroutine, a BASIC er-
ror message will be printed and execution terminated.

Refer to the discussion of the RESUME Command, and the ERR and ERL func-
tions.

ON GOSUB and ON GOTO Statements
Purpose: To branch to one of several specified line numbers, depending

on the resultant evaluation of a numeric or logical expression

Format: ON <expression> GOTO <list>

ON <expression> GOSUB <list>

<expression> is any valid expression.

<list> is a list of valid line numbers separated by comas.

Example: ON X–2 GOSUB 50,100,150

Remarks:

The value of <expression> determines which line number in the list will be used
for branching. For example, if the result is 2, then the second line number in the
list will be chosen for branching. If the resultant value is not an integer, the frac-
tional part is rounded off.

In the ON...GOSUB statement, each line number in the list must be the first line
number of a subroutine.

Commands, Statements, and Functions Section 4-2

43

If the value of <expression> is zero or greater than the number of items in the list,
execution continues with the next executable statement. If the value of <expres-
sion> is negative or greater than 255, an error message will be displayed.

ON KEY GOSUB Statement
Purpose: Defines an interrupt service subroutine to handle specific key-

board input

Format: ON KEY(<n>) GOSUB <line>

<n> is a numeric expression from one to eight indicating a spe-
cific key.

Example: ON KEY 1 GOSUB 1000

Remarks:

An interrupt service routine cannot be interrupted by another interrupt. If a new
interrupt occurs during processing of a previous interrupt, branching to handle
the new interrupt will not take place until after the RETURN statement of the first
interrupt service routine is executed.

If a statement specified by the branch line number is non-executable, execution
will begin with the first executable statement following the branch line number.

If zero is specified as the branch line number, it is assumed that the KEY OFF
statement has been executed.

If the port number is omitted, port 1 is selected.

There should be only one ON KEY GOTO statement for each key number.

Key input will not be processed during execution of an assembly language pro-
gram.

The ON KEY GOSUB statement is enabled with the KEY ON statement and dis-
abled with the KEY OFF statement.

Program Example:
10 OPEN #1,“TERM:(42)”

20 ON KEY 1 GOSUB 100

30 ON KEY 2 GOSUB 200

40 ON KEY 3 GOSUB 300

50 KEY ON

100 PRINT A

110 RETURN

200 PRINT B

210 RETURN

300 PRINT C

310 RETURN

Program Remarks:

“A”, “B”, and “C” are displayed by pressing keys 1, 2, and 3, respectively. To can-
cel the specification, write 0 as the branch destination.

ON KEY GOTO Statement
Purpose: To branch program execution to a specified line number in re-

sponse to a specific key input

Format: ON KEY<n> GOTO <line>

<n> is an integer in the range of 1 to 8.

<line> is any valid line number.

Commands, Statements, and Functions Section 4-2

44

Example: ON KEY 1 GOTO 1000

Remarks:

If a statement specified by the branch line number is non-executable, execution
will begin with the first executable statement following the branch line number.

If zero is specified as the branch line number, it is assumed that the KEY OFF
statement has been executed.

If the port number is omitted, port 1 is selected.

There should be only one ON KEY GOTO statement for each key number.

Key input will not be processed during execution of an assembly language pro-
gram.

The ON KEY GOTO statement is enabled with the KEY ON statement and dis-
abled with the KEY OFF statement.

Program Example:
10 OPEN #1,“TERM:(42)”

20 ON KEY 1 GOTO 100

30 ON KEY 2 GOTO 200

40 ON KEY 3 GOTO 300

50 KEY ON

100 PRINT “A”

110 GOTO 500

200 PRINT “B”

210 GOTO 5000

300 PRINT “C”

500 {cont. processing}

Program Remarks:

“A”, “B”, and “C” are displayed by pressing keys 1, 2, and 3, respectively. To can-
cel the specification, write 0 as the branch destination.

ON PC ... GOSUB Statement
Purpose: Defines an interrupt service routine invoked by the PC

Format: ON PC [<int num>] GOSUB <line>

<int num> is an integer from 1 to 15.

<line> is a valid line number.

Example: ON PC 3 GOSUB 1000

Remarks:

In four-word mode, the interrupt source number is indicated with bits 04 to 07 (1
to F in hexadecimal) of word n+1. In two-word mode, the interrupt source num-
ber is indicated with bits 00 to 07 of word n.

An interrupt routine invoked by the ON PC statement cannot be interrupted by
another interrupt. If a new interrupt occurs during processing of a previous inter-
rupt, branching to handle the new interrupt will not take place until after the RE-
TURN statement of the first interrupt service routine is executed.

If the statement specified by the branch line number is non-executable, execu-
tion will begin with the first executable statement following the branch line num-
ber.

If zero is specified as the branch line number, it is assumed that the KEY OFF
statement has been executed.

If the interrupt number is omitted, the same branch destination is assumed for all
interrupt numbers, 1 to 15.

Commands, Statements, and Functions Section 4-2

45

The ON PC GOSUB statement is enabled with the PC ON statement and dis-
abled with the PC OFF statement.

Program Example:
10 ON PC 1 GOSUB 100

20 ON PC 2 GOSUB 200

30 PC ON

40 GOTO 40

100 PC READ “H4,I2”;I, J

110 PRINT I, J

120 RETURN

200 INPUT A

210 PC READ “H4,I2”;K,L

220 PC WRITE “14”; A

230 RETURN

Program Remarks:

When interrupt 1 is invoked, program execution branches to statement 100,
reads two words of data from the PC, and displays them on the CRT.

When interrupt 2 is invoked, program execution branches to statement 200 and
writes data entered through the keyboard to the PC.

PC GET Statement
Purpose: To read output data from the PC

Format: PC GET <var 1>[,<var 2>]

Example: PC GET I,J

Remarks:

In two-word mode, bits 0 to 7 of word (n) are read and assigned to <var 1>. Bits 8
to 15 of data word (n) are read and assigned to <var 2>. In four-word mode, the
same bits are assigned from word (n+1).

The ASCII Unit converts the hexadecimal data into decimal data (0 to 255) be-
fore assigning it to the specified variables.

PC ... ON/STOP Statements
Purpose: To enable or stop a PC interrupt defined with an ON PC GOSUB

statement

Format: PC [<num>] ON/STOP

<num> is a specific interrupt number.

Remarks:

The PC ON statement enables an interrupt defined by the ON PC GOSUB state-
ment.

After this statement has been executed, each PC interrupt will cause program
execution to branch to a routine defined by the associated ON PC GOSUB state-
ment.

The PC STOP statement disables PC interrupts from branching program execu-
tion. However, if the PC ON statement is subsequently executed, execution will
branch to the specified interrupt service routine based on the “STOPPED” inter-
rupt.

The PC ON/STOP statements can be executed only after the ON PC GOSUB
statement has been executed.

If there is more than one interrupt routine in the program the specific interrupt
number should be specified. If there are two or more routines and the interrupt

Commands, Statements, and Functions Section 4-2

46

number is not specified, the routine closest to the end of the program or at the
highest line number will be executed regardless of which interrupt is invoked.
After the ON PC GOSUB statement is executed, PC ON becomes valid. Refer to
the following example.
Program Example:

10 ON PC GOSUB 100

20 PC ON

 30 GOTO 30

100 PC READ “3I2”; A, B, C

110 PRINT A, B, C

120 RETURN

PC PUT Statement
Purpose: To write data to the PC’s ASCII Unit Data Memory Area

Format: PC PUT <num exp>

<num exp> is a valid numeric expression between 0 and 255.

Examples: PC PUT I

PC PUT 123

Remarks:
In two-word mode, data is written to bits 8 to 15 of word n+1. In four-word mode,
data is written to bits 8 to 15 of word n+3.
If the value of the numeric expression is not an integer, the INT function is inter-
nally executed to round it off. If the value of the numeric expression is negative or
greater than 255, zero is written to the PC.

PC READ Statement
Purpose: To read data from the PC

Format: PC READ “<format>[,<format>,<format>, ...]”;
<var1>[,<var2>,]...

<format> specifies how the data will be read. For specific format
information, refer to Appendix C.

Examples:
PC READ “2H1, A3, I4, O2”; X, Y, A$, I, J
Remarks:
When the PC has written the data to the ASCII Unit, the PC READ statement is
executed.
If the PC has not written the data to the ASCII Unit, the ASCII Unit will wait for the
data, and the PC READ statement is not executed until the data comes.
If the number of data items output by the PC is greater than that specified by the
format parameters, the excess part of the output data will be ignored.
The maximum number of data items that can be transferred with one READ
statement specification is 255 in the S or A formats.
If an amount of memory greater than the actual memory area is specified by the
READ statement, a FORMAT ERROR will occur.
The PC READ statement’s formatting parameters can be assigned to a single
character variable and that variable may then be used in the PC READ state-
ment.
Refer to Appendix C for details on READ and WRITE statement formatting.
Example:
A$ = “2H1, A3, I4, O2”
PC READ A$;X, Y, A$, I, J

Commands, Statements, and Functions Section 4-2

47

PC WRITE Statement
Purpose: To write data to the PC

Format: PC WRITE “<format>[,<format> ...]”;<exp1>
[,<exp2>, ...]

Note For parameter definitions, refer to the PC READ instruction.

Examples:

PC WRITE “H4, A2, I3, O4”; 1234, “AB”, K, L

Remarks:

If the data of the previous PC WRITE statement has not been read by the PC, the
next PC WRITE statement cannot be executed until the previous one is com-
pleted.

The maximum number of data items that can be transferred with one WRITE
statement specification is 255 in the S or A formats.

If an amount of memory greater than the actual memory area is specified by the
WRITE instruction, a FORMAT ERROR will occur.

If the value of <exp> is not an integer, the INF function is internally executed to
round it off.

Single-precision and double-precision numeric expressions are internally con-
verted into integer expressions.

The PC WRITE statement’s formatting parameters can be assigned to a single
character variable and that variable may then be used in the PC WRITE state-
ment.

Example:

A$=“H4, A2, I3, O4”

PC WRITE A$; 1234, “AB”, K, L

POKE Statement
Purpose: To write one byte to a specified memory address

Format: POKE <address>,<data>

<address> is the memory location where data will be POKEd.

<data> is an integer from 0 to 255.

Example: POKE &H2000,&H39

Remarks:

The address must be a 2-byte integer ranging from 0 to 65535 (&HFFFF). Do not
write data to addresses &H0000 to &H1FFF, and &H8000 to &HFFFF; they are
reserved for system use.

PRINT Statement
Purpose: To output data and text to the screen or printer

Format: PRINT [#<port>,] [<list of exp>][;]

LPRINT

<port> is an integer (1 or 2).

<list of exp> can be numeric or character expressions. Character
expressions should be enclosed in double quotation marks.

Example: PRINT #1,A,B$;“BASIC”

Remarks:

The list of expressions must be separated by comas, semicolons, or blanks.
When the expressions are separated with blanks or semicolons, the next value

Commands, Statements, and Functions Section 4-2

48

is output immediately after the preceding value. When the expressions are sep-
arated with comas, the values are output at intervals of nine characters.

If the list of expressions is not terminated with a semicolon, a carriage return is
appended after the last expression.

If numeric expressions are used, a blank is output before and after the resultant
value. The blank before the value is used for a minus sign, if one is required.

If <list of exp> is omitted, execution of this statement causes a carriage return to
be output.

If the port specification is omitted, port 1 is assumed for the PRINT statement,
and port 2 for the LPRINT statement.

The LPRINT statement outputs data under control of the device connected to
port 2, irrespective of the OPEN statement directives.

LPRINT USING Statement
Purpose: To output strings or numbers according to a specified format

Format: PRINT [#<port>,] USING “<format>”; <list of exp>

Example: PRINT #1, USING “####,# \\###”;A;B

Remarks:

The following characters control the format of the output:
! Outputs the first character only.

& & Outputs the characters enclosed by &.

@ Outputs the corresponding character string.

Outputs the corresponding character string.

. Inserts a decimal point at any desired place.

+ Places a plus sign before and after a numeric value.

- Places a minus sign before and after a numeric value. (Write this
character at the end of the format character string.)

** Places two asterisks in the blank, upper digit positions of a nu-
meric value.

\\ Places one \ in the blank digit position immediately before a nu-
meric value.

**\ Combines the functions of ** and \\.

’ Delimits an integer at every third digit position from the right.

^^^^ Indicates the output in exponential format (E+nn). Add this char-
acter after #.

”” is output before the numeric value if the specified number of dig-
its is too great.

If the port number is omitted, port 1 is assumed for the PRINT USING statement
and port 2 for the LPRINT USING statement.

The LPRINT statement outputs data under control of the peripheral device con-
nected to port 2 irrespective of the OPEN statement directives.

RANDOM Statement
Purpose: To reseed the random number generator

Format: RANDOM [<exp>]

<exp> is a single or double-precision integer that is used as the
random number seed.

Commands, Statements, and Functions Section 4-2

49

Example: RANDOM 5649

Remarks:

The value of <exp> should be from -32768 to 32767. If the expression is omitted,
a message requesting the random number seed will be displayed.

If the random number generator is not reseeded, the RND function returns the
same sequence of random numbers each time the program is run. To change
the sequence of random numbers each time the program is RUN, place a RAN-
DOM statement at the beginning of the program and change the seed with each
RUN.

For more information, refer to the explanation of RND.

READ Statement
Purpose: To read values from a DATA statement and assign them to the

specified variables

Format: READ <list of var>

Example: READ A,B$

Remarks:

A read statement must always be used in conjunction with a DATA statement.
READ statements assign variables to DATA statement values on a one-to-one
basis. READ statement variables may be numeric or string, and the values read
must be the same type as the corresponding variable. If they do not agree, a syn-
tax error will occur.

A single READ statement may access one or more DATA statements (they will
be accessed in order), or several READ statements may access the same DATA
statement.

If the number of variables in <list of var> exceeds the number of elements in the
DATA statement(s), an error message will be displayed. If the number of vari-
ables specified is fewer than the number of elements in the DATA statement(s),
subsequent READ statements will begin reading data at the first unread ele-
ment. If there are no subsequent READ statements, the extra data is ignored.

To reread DATA statements from the beginning, use the RESTORE statement.

REM Statement
Purpose: To insert non-executable comments in a program

Format: REM <remark>

<remark> text does not need to be enclosed in quotes.

Example: REM SAMPLE PROGRAM

Remarks:

The REM statement is used to provide titles to programs and to insert helpful
comments to be used during program debugging or modification.

Remarks may be added to the end of a line by preceding the remark with a single
quotation mark instead of REM.

Do not use a REM statement in a DATA statement as it will be taken as legal
data.

RESTORE Statement
Purpose: To allow DATA statements to be reread from a specified line

Format: RESTORE [<line>]

<line> should be the line number of a valid DATA statement.

Example: RESTORE 1000

Commands, Statements, and Functions Section 4-2

50

Remarks:

This statement causes the next READ statement to read the first element in the
first DATA statement that exists in the program. If <line> is specified, the next
READ statement accesses the first item in the specified DATA statement.

RESUME Statement
Purpose: To resume program execution after an error handling procedure

has been performed

Formats: RESUME [0]: execution resumes at the statement which caused
the error.

RESUME NEXT: execution resumes at the statement immediate-
ly following the one which caused the error.

RESUME <line>: execution resumes at <line>.

Example: RESUME 100

Remarks: Any one of the above formats may be used.

STOP Statement
Purpose: To terminate program execution and return to the BASIC com-

mand level

Format: STOP

Remarks:

Execution of this statement causes the message “BREAK IN xxxx” to be dis-
played and the ASCII Unit to return to the command level.

The ports will not be closed.

Program execution can be resumed with the CONT command.

WAIT Statement
Purpose: Sets a time limit for the execution of a specific statement

Format: WAIT “<wait time>”[,<line number>]

<wait time> is the allowable time for the monitored statement to
be executed.

<line number> is any valid line number.

Example: WAIT “10:30.5”,100

Remarks:

The delay time is set in the form MM.SS.F, where:

MM is the number of minutes - up to 59

SS is the number of seconds

F is tenths of seconds.

The statement immediately following the WAIT statement is the monitored state-
ment. If execution of this statement is not completed within the set wait time, pro-
gram execution will branch to <line number>.

Interrupts invoked by the ON COM, ON KEY, ON PC, or ON ERROR statements
will not be recognized until after the WAIT statement or the monitored statement
has been processed.

The WAIT statement can monitor the following statements:

INPUT, INPUT$, LINE INPUT, PC READ, PC WRITE, PRINT, LPRINT, PRINT
USING, LPRINT USING

If a statement other than one of those listed above is specified to be monitored by
a WAIT statement, and if execution of that statement is not completed within the
set time of the WAIT statement, an error will occur.

Commands, Statements, and Functions Section 4-2

51

Program Example:
10 WAIT “10.0”, 100

20 PC READ “3I4”; A, B, C,

30 PRINT A, B, C

40 END

100 PRINT “PC ERR”

110 GOTO 40

Program Remarks:

This example will display the message “PC ERR” if the PC READ statement is
not executed within 10 seconds.

4-2-4 Device Control Statements
This section describes statements that control hardware and communications.

CLOSE Statement
Purpose: To close a port

Format: CLOSE [#<port>]

<port> is an integer (1 or 2).

Remarks:

If the port number is omitted, both ports will be closed.

Once the port has been closed, it cannot be used for data transfer until it is
opened again.

Be sure to execute the CLOSE statement to correctly end the output process.
CLOSE dumps any data remaining in the buffer from output operations. It does
not dump data from input operations.

To turn OFF the error indicators at Port 1 and Port 2 or error bits that are ON due
to a transmission error or reception buffer overflow, execute the CLOSE state-
ment.

The END statement and the NEW command automatically close the ports, but
the STOP statement does not.

CLS Statement
Purpose: To clear the screen

Format: CLS [#<port>]

<port> is an integer (1 or 2).

Remarks:

This statement clears the screen and moves the cursor to the home position. If
the port number is omitted, port 1 is assumed.

OPEN Statement
Purpose: To allow input/output operations to take place through the speci-

fied port

Format: OPEN #<port>, “<device name>:[(<com spec. or vsl>)]”

<port> is an integer (1 or 2).

<device name> identifies the device.

<com spec> stands for the communication specifications.

<vsl> stands for valid signal line.

Examples: OPEN #1,“KYBD:”

OPEN #2,“COMU:(14)”

Commands, Statements, and Functions Section 4-2

52

The following three tables define the communication parameters for the OPEN
Statement.

Peripheral Device Name Output from
ASCII Unit

Input to ASCII
Unit

Terminal TERM: YES YES

Keyboard KYBD: NO YES

Display SCRN: YES NO

Printer LPRT: YES NO

RS-232C device COMU: YES YES

Note TERM cannot be used with port 2.

Communication
Specifications

Character Length Parity Stop Bit

0 7 bits Even 2 bits

1 7 bits Odd 2 bits

2 7 bits Even 1 bit

3 7 bits Odd 1 bit

4 8 bits None 2 bits

5 8 bits None 1 bit

6 8 bits Even 1 bit

7 8 bits Odd 1 bit

Signal Line CTS DSR RTS XON / XOFF

0 Valid Valid Valid Invalid
1 Valid Valid Invalid

2 Valid Invalid Valid

3 Valid Invalid Invalid

4 Invalid Valid Valid

5 Invalid Valid Invalid

6 Invalid Invalid Valid

7 Invalid Invalid Invalid

8 Valid Valid Valid Valid

9 Valid Valid Invalid

A Valid Invalid Valid

B Valid Invalid Invalid

C Invalid Valid Valid

D Invalid Valid Invalid

E Invalid Invalid Valid

F Invalid Invalid Invalid

Note To make the CTS signal invalid at port 2, pull the CTS line high or connect it to the
RTS line.

When the RTS is specified to be ON (valid), the RTS signal goes high when the
port is opened and remains high until the port is closed. When the RTS signal is
specified to be OFF (invalid), the RTS signal remains low unless an I/O state-
ment such as PRINT or INPUT is executed.
If XON is designated, the XOFF code will be transmitted and the ASCII Unit will
request the interruption of transmission when the buffer is 3/4 full at the time of
data reception. The XON code will be transmitted and the ASCII Unit will request
the restart of transmission if the buffer becomes 1/4 full. Data transmission will
be interrupted if the XOFF code is received and data transmission will restart
when the XON code is received. If XOFF is designated, control is not possible.
This means, if the buffer is full, no more data can be received.

Commands, Statements, and Functions Section 4-2

53

If the communication specification and the valid signal line are omitted, their de-
faults are:

Peripheral Device Communication
Conditions

Valid Signal Line

Terminal 4 3

Keyboard 4 3

Display 4 3

RS-232C device 4 3

Printer 4 3

Ports already open cannot be opened again. When the OPEN and CLOSE
statements are used, port 1 is assumed to be for a terminal and port 2 is as-
sumed to be for a printer. Port 2 cannot be selected for a terminal.

I/O statements specifying #<port> cannot be used to transfer data through a port
that has not been opened with the OPEN statement. To input/output data in the
case where the OPEN statement has not been executed, use the I/O statements
without the #<port> specification.

The following two tables illustrate peripheral device output levels during execu-
tion of the OPEN statement.

Device When Opened During Operation

RTS DTR RTS DTR

TERM LOW HIGH HIGH No change

SCRN LOW LOW HIGH No change

KEYB LOW HIGH HIGH No change

COMU LOW HIGH HIGH No change

LPRT LOW LOW HIGH No change

Device When Closed

RTS DTR

1 LOW HIGH

2 LOW LOW

Note The default selection for the ports is as follows:

Port 1: Terminal device

Port 2: Printer

The following table presents the output control codes for the terminal, printer,
and COMU device.

SCRN TERM Clears the screen buffer when code &H0C (CLR) is output.The column position is set to 0 (i.e., the
leftmost position) when code &H0A (LF), &H0D (CR), &H0B (HOME), or &H08 (BS) is output. The
cursor is moved as specified on the screen when code &H08 (BS), &H1C (->), or &H1D (<-) is
output. Codes &H00 to &H09 and &H0E to &H1B are ignored (no output) at Port 1 but are output at
Port 2.

When Closed: Nothing is executed.

LPRT Set the column position to 0 (i.e., the leftmost position) when code &H0A, &H0D, &H0B, or &H0C is
output. Characters exceeding 80th character are output with code &H0A (LF) appended.

When Closed: If characters (80 characters or less) remain in the buffer, they are output along with
&H0A (LF).

COMU If characters are input to the buffer, they are output.

When Closed: If characters remain in the buffer, they are output.

Commands, Statements, and Functions Section 4-2

54

4-2-5 Arithmetic Operation Functions
ABS Function

Purpose: To return the absolute value of the numeric expression specified
by the argument

Format: ABS(<x>)

Example: A = ABS (-1.5)

ACOS Function
Purpose: To return the arc cosine of the numeric expression given by the

argument

Format: ACOS(<x>)

<x> is a number in the range of -1 to 1.

Example: A = ACOS (1)

Remarks: The arc cosine is given in radian units in the range of 0 to pi.

ASIN Function
Purpose: To return the arc sine of the value given by the argument

Format: ASIN(<x>)

<x> is a number in the range of -1 to 1.

Example: A = ASIN (1)

Remarks: The arc sine is given in radian units in the range of -pi/2 to pi/2.

ATN Function
Purpose: To return the arc tangent of the value given by the argument

Format: ATN(<x>)

<x> is a number in the range of -1 to 1.

Example: A = ATN (1)

Remarks: The arc tangent is given in radian units in the range of -pi/2 to
pi/2.

CDBL Function
Purpose: To convert a single-precision numeric value into double-precision

Format: CDBL(<x>)

Example: CDBL (2/3)

CINT Function
Purpose: To round off a numeric value at the decimal point and convert it

into an integer

Format: CINT(<x>)

Example: A = CINT(B#)

COS Function
Purpose: To return the cosine of the numeric value given by the argument

Format: COS(<x>)

<x> is an expression in radian units.

Example: A = COS(pi/2)

Commands, Statements, and Functions Section 4-2

55

CSNG Function
Purpose: To convert a numeric value into a single-precision real number

Format: CSNG(<x>)

Example: B = CSNG(C#)

FIX Function
Purpose: To return the integer part of the expression specified by the argu-

ment

Format: FIX(<x>)

Example: A = FIX(B/3)

Remarks: If the value of the argument is negative, this function returns a
different value than the INF function returns.

INT Function
Purpose: To return the truncated integer of a numeric value

Format: INT(<x>)

Example: A = INT(B)

Remarks: Returns the largest integer value less than or equal to the value
specified by the argument.
If the value of the argument is negative, this function returns a
different value than the FIX function returns.

LOG Function
Purpose: To return the natural logarithm of the argument

Format: LOG(<x>)

<x> must be greater than 0.

Example: A = LOG(5)

RND Function
Purpose: To return a random number between 0 and 1.

Format: RND [<x>]

Example: A = RND(1)

Remarks:

If <x> is negative, a new random number is generated.

If <x> is omitted, or if it is positive, the next random number of the sequence is
generated.

If <x> is 0, the last generated random number is repeated.

The sequence can be changed by executing the RANDOM statement.

SGN Function
Purpose: To return the sign of an argument

Format: SIGN(<x>)

Example: B = SGN(A)

Remarks:

If the value of <x> is positive, SGN returns 1.

If the value of <x> is negative, SGN returns -1.

If the the value of <x> is 0, SGN returns 0.

Commands, Statements, and Functions Section 4-2

56

SIN Function
Purpose: To return the sine of the numeric value given by the argument

Format: SIN(<x>)

<x> is an expression in radian units.

Example: A = SIN(pi)

TAN Function
Purpose: To return the tangent of the numeric value given by the argument

Format: TAN(<x>)

<x> is an expression in radian units.

Example: A = TAN(3.141592/2)

4-2-6 Character String Functions
ASC Function

Purpose: To return the ASCII character code of the first character of the
given string

Format: ASC(<x$>)

Example: A = ASC(A$)

Remarks:

An empty string cannot be specified. The word R$ function performs the inverse
operation.

CHR$ Function
Purpose: To return a character corresponding to the specified character

code

Format: CHR$(<i>)

Example: A$ = word R$(&H41)

Remarks:

<i> must be from 0 to 255. If <i> is a real number, it will be rounded off and con-
verted into an integer. The ASC function performs the inverse operation.

HEX$ Function
Purpose: To return a string which represents the hexadecimal value of the

decimal argument

Format: HEX$(<x>)

Example: A$ = HEX$(52)

Remarks: If the value of the decimal number includes a decimal point, the
INF function is internally executed to round it off to an integer.

INSTR Function
Purpose: To return the position of the first occurrence of string <y$> within

string <$x>

Format: INSTR([<i>,]<x$>,<y$>)

 <i> is the position from where the search starts. <i> must be be-
tween one and 255.

<x$> is the string to be searched.

<y$> is the desired string.

Commands, Statements, and Functions Section 4-2

57

Example: A = INSTR(5,B$,“BASIC”)

Remarks: If <i> is omitted, the search begins with the first character in
<x$>. If the data cannot be found, 0 is returned as the function
value. If <y$> is an empty string, INSTR returns <i> or 1.

LEFT$ Function
Purpose: To return the specified number of characters beginning from the

leftmost character of the character string

Format: LEFT$(<x$>,<i>)

<x$> is the string to be searched.

<i> is the number of characters to be returned.

Example: A$ = LEFT$(B$,5)

Remarks: <i> must be an integer from 0 to 255. If <i> is 0, an empty string
is returned as the function value. If <i> is greater than the num-
ber of characters in <x$>, the entire character string is returned.

LEN Function
Purpose: To return the number of characters in a character string

Format: LEN(<x$>)

Example: A = LEN(A$)

Remarks: A value of 0 is returned if the “character expression” is an empty
string.

MID$ Function
Purpose: To return the requested part of a given string

Format: MID$(<x$>,<i>[,<j>])

 <x$> is the given string.

<i> is the position of the first character to be returned.

<j> is the number of characters to be returned.

Example:B$ = MID$(A$,2,5)

Remarks:

<i> must be from 1 to 255.

<j> must be from 0 to 255.

If <j> is 0, or if the value of the specified character position (<i>) is greater than
the number of characters in the character expression (x$), an empty string is re-
turned.

If <j> is omitted, or if <j> exceeds the number of characters to the right of the
specified position (<i>) in the character expression, all the characters to the right
are returned.

OCT$ Function
Purpose: To convert the specified decimal number into an octal character

string

Format: OCT$(<x>)

<x> is a numeric expression in the range of -32768 to 32767.

Example: A$ = OCT$(B)

Commands, Statements, and Functions Section 4-2

58

Remarks:

If the value of <x> includes a decimal point, the INT function is internally ex-
ecuted to round it off.

RIGHT$ Function
Purpose: To return the specified number of characters from the rightmost

character of the character string

Format: RIGHT$(<x$>,<i>)

<x$> is the string to be searched.

<i> is the number of characters to be returned.

Example: A$ = RIGHT$(B$,5)

Remarks:

<i> must be an integer from 0 to 255. If <i> is 0, an empty string is returned as the
function value. If <i> is greater than the number of characters in <x$>, the entire
character string is returned.

SPACE$ Function
Purpose: To return a string of spaces of the specified length

Format: SPACE$(<x>)

<x> is the number of spaces.

Example: A$ = “CF”+SPACE$(5)+“BASIC”

Remarks:

<x> must be from 0 to 255. If <x> is not an integer, it will be rounded off. If 0 is
specified, an empty character string is returned.

STR$ Function
Purpose: Converts the specified numeric value into a character string

Format: STR$(<x>)

Example: B$ = “A”+STR$(123)

Remarks: The VAL function performs the inverse operation.

STRING$ Function
Purpose: To return a character string of the specified character and length

Formats: STRING$(<i>,<j>)

STRING$(<i>,<x$>)

<i> is the number of characters to be returned.

<j> is the ASCII code of some character.

<x$> is a given string.

Example: A$ = STRING$(10,“A”)

Remarks:

<i> and <j> must be from 0 to 255.

An empty string is returned if the <i> is 0.

If the <x$> is made up of two or more characters, only the first character is used.

TAB Function
Purpose: To move the cursor to a specific position on the terminal display

Format: TAB(<i>)

Commands, Statements, and Functions Section 4-2

59

<i> is the cursor position counting from the leftmost side of the
display.

Example: PRINT “CF” TAB (10) “BASIC”

Remarks:

The “column position” must be from 1 to 255.

If the current print position is already beyond <i>, the cursor moves to the <i>th
position on the next line. TAB is only valid for the PRINT and LPRINT state-
ments.

VAL Function
Purpose: To convert a character string into a numeric value

Format: VAL(<x$>)

Example: A = VAL(A$)

Remarks:

The VAL function also strips leading blanks, tabs, and linefeeds from the argu-
ment string. If the first character of <x$> is not numeric, zero is returned.

4-2-7 Special Functions
DATE$ Function

Purpose: To set or display the current date

Format: As a statement: DATE$ = <x$>

As a variable: <y$> = DATE$

<x$>: the date in one of the following formats:

mm-dd-yy

mm-dd-yyyy

mm/dd/yy

mm/dd/yyyy
<y$>: A ten character string in mm-dd-yyyy format:

mm: two digit value for the month (01-12)

dd: two digit value for the day (01-31)

yy: two digit value for the year

yyyy: for digit value for the year
Example: DATE$ = “89/05/23”

Remarks:

If DATE$ is on the right side of the assignment statement or in a PRINT state-
ment, the current date is assigned or printed, respectively. If DATE$ is on the left
side of the assignment, the right side of the assignment statement becomes the
new current date. If any of the values are out of range or are missing, an error
message will be displayed.

DAY Function
Purpose: To give or set the current day of the week

Format: DAY = <num>
I = DAY

Remarks:

In the first format, DAY returns a number between 0 and 6, corresponding to
Sunday through Saturday. In the second format, the day of the week is assigned
to DAY.

Commands, Statements, and Functions Section 4-2

60

EOF Function
Purpose: To check whether the specified port buffer is empty

Format: EOF (<port#>)

Example: IF EOF (2) THEN CLOSE#1 ELSE GOTO 100

Remarks:

This function returns true (-1) if the specified port is empty. If not, it returns false
(0). Note that the port specified by <port#> must already be open and in the input
mode.

ERR and ERL Variables
Purpose: To return the error code and the location (line number) of the

error

Format: x = ERL

y = ERR

Remarks:

When an error occurs, the error code is assigned to the variable ERR and the
statement number is assigned to ERL.

If the statement that caused the error was executed in direct mode, statement
number 65535 is assigned to ERL.

ERL and ERR can be used in error handling routines to control the execution
flow of the program.

FRE Function
Purpose: To return the amount of unused memory

Format: FRE(0)

FRE(<x$>)

Example: PRINT FRE (0)

Remarks:

If the argument is numeric, the number of unused bytes in the program area is
given.

If the argument is a character expression, the number of unused bytes in the
character variable area is given.

When this instruction is executed, the unnecessary parameter area will be filled.

To avoid long interruption times, execute this instruction intermittently so that
each interruption will be a short one.

INKEY$ Function
Purpose: To return the character code of the key being pressed

Format: INKEY$ [#<port>]

Example: A$ = INKEY$

Remarks:

A null string is returned if no key is being pressed. Any key input other than
CTRL+X is valid. Port 1 is the default port.

INPUT$ Function
Purpose: To Read a string of characters from the keyboard or from a pe-

ripheral device

Format: INPUT$ (<num>[,#<port>])

<num> is the number of characters to be input. <num> must be
from 1 to 255.

Commands, Statements, and Functions Section 4-2

61

<port> is the port number (1 or 2).

Example: A$ = INPUT$(10,#1)

Remarks:

All characters except CTRL+X can be read, including CR and LF: CR and LF
cannot be read with the LINE INPUT statement.

The BASIC LED indicator on the ASCII Unit will blink indicating that the unit is
waiting for input. It will continue blinking until the specified number of characters
is entered.

Example Program:
10 CLS

20 A$ = INPUT$ (1)

30 A$ = HEX$ (ASC(A$))

40 PRINT A$

50 GOTO 20

Remarks:

displays key character codes.

LOC Function
Purpose: To return the number of data items in the specified port buffer.

Format: x = LOC(<port#>)

Example: A = LOC(2)

Remarks:

The port specified must already be open and in input mode. The number of data
items in the buffer of the specified port is given in byte units.

PEEK Function
Purpose: To read the contents of a specified memory address

Format: PEEK(<I>)

<I> is the memory location and must be in the range of 0 to
65535 (&HFFFF).

Example: A = PEEK(&H3000)

Remarks:

If the specified address is not an integer, it is converted into one.

Do not try to read reserved system addresses &H0000 to &H1FFF and &H8000
to HFFFF.

TIME$ Function
Purpose: Sets or gives the time

Format: TIME$ = <x$>

<y$> = TIME$

<x$> is a string expression indicating the time to be set. The fol-
lowing formats may be used:

hh: sets the hour (minutes and seconds 00)

hh:mm: sets the hours and minutes (seconds 00)

hh:mm:ss: sets the hours, minutes, and seconds
<y$> is a string variable to which the current value of the time is
to be assigned.

Commands, Statements, and Functions Section 4-2

62

Example: TIME$ = “09:10:00”

PRINT TIME$

Remarks:

In the form <y$> = TIME$, TIME$ returns an eight character string in the

form: hh:mm:ss. If <x$> is not a valid string, an error message will be displayed.

USR Function
Purpose: To call a user-written assembly language program.

Format: USR [<number>](<argument>)[,W]

<number> is a digit from 1 to 9 that was previously assigned to
the given assembly program with the DEF USR statement.

<x> is an argument used to pass data from the BASIC program
to the assembly program.

Example: J = USR2(I),W

Remarks:

If <number> is omitted, the default value is zero.

If the W parameter in the USR statement is not specified then the watchdog timer
refresh will be performed as usual. If the W parameter is specified, then the user
must include a watchdog timer refresh routine in the assembly program.

The watchdog timer prevents the program from overrunning. When the set time
has run out, the ASCII Unit is reset, and the message “I/O ERR” is displayed on
the programming console of the PC.

By refreshing the watchdog timer before its set value is up, the program can be
continuously executed.

To refresh the watchdog timer in the assembly program, execute the following
two steps every 90 milliseconds when, W has been designated:

AIM #DF,03
OIM #20,03

The following table lists the Argument type and its corresponding Accumulator
code number.

Accumulator
Value

Argument Type

2 Integer
3 Character

4 Single-precision, real number
5 Double-precision, real number

Index register X contains the memory address where the argument is stored.
The address differs as shown below depending on the type of the argument.

Commands, Statements, and Functions Section 4-2

63

Integer Type

Higher 8 bits

Lower 8 bits

← X

Character Type

Length of character string

Address storing argument (higher)

Address storing argument (lower)

← X

← X
(MSB is always 1.)

Single-Precision, Real
Number Type

Exponent

Higher 8 bits of mantissa

Middle 8 bits of mantissa

Lower 8 bits of mantissa

Sign (most significant bit)

← X
(MSB is always 1.)

Double-Precision, Real
Number Type

Exponent

Higher 8 bits of mantissa

Lower 8 bits of mantissa

Sign (most significant bit)

Program Example:

BASIC Program :
100 A$ = &H1234

110 DEF USR0 = &H2000

120 A = USER (A)

130 PRINT A

140 END

Assembly Language Program:
2000 PSHA

2001 PSHX

2002 LDD 2,X

2004 ADD #10

2007 STD 2,X

2009 PULX

2010 PULA

2011 RTS

Program Remarks:

When program execution branches to the assembly language routine, the TYPE
of <argument> is stored in the accumulator A, and the memory address where
the argument is stored is input to the index register X. The value of the argument
is stored in the accumulator D, to whose contents 10 will be added. The result of
the addition is written to the address of <argument>

VARPTR Function
Purpose: Returns the memory address of the variable argument

Commands, Statements, and Functions Section 4-2

64

Format: <x> = VARPTR(<variable>)

<variable> is a number, string, or array variable.

Example: B = VARPTR (A)

Remarks:

The VARPTR function returns the address of the first byte of data identified with
the variable. A value must be assigned to the variable prior to the call to VARPTR
or an error will result. Any type variable name may be used (numeric, string,
array).

Note that all simple variables should be assigned before calling VARPTR for an
array because addresses of arrays change whenever a new simple variable is
assigned.

VARPTR is used to obtain the address of a variable or array so that it may be
passed to an assembly language subroutine. A function call of the form
VARPTR(A(0)) is specified when passing an array, so that the lowest addressed
element of the array is returned.

The following figure illustrates the relationship between the variable type and the
address indicated by VARPTR.

Integer Type

0010 Variable name length -1

Variable name

Higher 8 bits

Lower 8 bits

← Address

≈

Character Type

0011 Variable name length -1

Variable name

← Address

≈≈

Storage address of variable (MSB)

Storage address of variable (LSB)

Length of character string

Single-precision, Real Number Type

0100 Variable name length -1

Variable name

← Address

Double-precision, Real Number Type

1000 Variable name length -1

Variable name

← Address

≈≈ ≈≈

Sign and higher 7 bits of mantissa

ExponentExponent

Sign and higher 7 bits of mantissa

Middle 8 bits of mantissa

Lower 8 bits of mantissa

Lower 8 bits of mantissa

≈

Commands, Statements, and Functions Section 4-2

65

Address→

≈≈

≈≈

Address→

Address→

Address→

Integer Array Type

0010 Variable name length -1

Variable name

Higher 8 bits of total data length

Lower 8 bits of total data length

← Address

≈≈

Character Array Type

0011 Variable name length -1

Variable name

Storage address of element (0, 0--0) (MSB)

Storage address of element (0, 0--0) (LSB)

Length of character string of element (0, 0--0))

Length of character string of element (1, 0--0)

Storage address of element (1, 0--0) (MSB)

Storage address of element (1, 0--0) (LSB)

Length of character string of element (2, 0--0)

Storage address of element 2 (MSB)

Storage address of element 2 (LSB)

Length of character string of element (a, b--x)

Storage address of element (a, b--x) (MSB)

Storage address of element (a, b--x) (LSB)

*Each element of array requires specification.

Number of subscripts
(Dimension number of array)

Size of subscript n (MSB)

Size of subscript n (LSB)

≈≈

Size of subscript 2 (MSB)

Size of subscript 2 (LSB)

Size of subscript 1 (MSB)

Size of subscript 1 (LSB)

Element data (0,0---0) (MSB)

Element data (0,0---0) (LSB)

Element data (1,0---0) (MSB)

Element data (1,0---0) (LSB)

Element data (2,0---0) (MSB)

Element data (2,0---0) (LSB)

≈≈

Element data (a,b---x) (MSB)

Element data (a,b---x) (LSB)

*Each element of array requires to be specified.

← Address

← Address

← Address

Subscript
information

Actual data

≈≈

Number of subscripts (Dimension num-
ber of array)

Size of subscript n (MSB)

Size of subscript n (LSB)

Size of subscript 2 (MSB)

Size of subscript 2 (LSB)

Size of subscript 1 (MSB)

Size of subscript 1 (LSB)

Subscript
informa-
tion

Actual
data in-
formation

Element (a, b---x) The subscripts will be stored one.
after another when they change.

Subscript 3

Subscript 2

Subscript 1

Higher 8 bits of total data length

Lower 8 bits of total data length

Note The total number of bytes from the higher 8 bits of total data length (in the above
diagram) to element data (a,b---x) comprise the total length of the data.

Commands, Statements, and Functions Section 4-2

67

SECTION 5
Assembly Programming

This section explains how to create, edit, transfer, and use an assembly language program. Assembly programs are faster and
use memory more efficiently than higher level programs such as BASIC. In certain situations it is advantageous to use assem-
bly routines instead of BASIC to perform specialized functions. An assembly routine can be called from the BASIC program
and used in much the same way as a BASIC subroutine.

Assembly programs are written, edited, and tested in what is called Monitor Mode. The monitor mode commands and exam-
ples of their use are presented in this section.

5-1 Assembly Language Programming .
5-2 Terminology and Formatting .
5-3 Monitor Mode Commands .

68

5-1 Assembly Language Programming
The Hitachi HD6303X CPU is incorporated into the ASCII Unit. Mnemonics used
are those found in the HD6303X operation manual.

Memory Area Special memory space for assembly language programs must be reserved with
the MSET command. When programming in assembly language, you cannot
use the BASIC program area to store the assembly program. The MSET com-
mand will move an existing BASIC program to another part of memory.

There are two ways to write an assembly language program:

• By using the monitor functions

• By directly writing the program to the memory using the POKE statement in
BASIC.

In most cases the first method is quicker and easier, however, the second meth-
od can be used to create short programs consisting of only a few steps.

Assembly language programs can be written to and read from RAM using the S
and L commands, respectively. They can also be written to or read from the EE-
PROM by using the SAVE and LOAD commands, respectively.

Addresses &H0000 to &H1FFF and &H8000 to &HFFFF are reserved for the
ASCII Unit operating system and must not be altered by the user.

Note When it is necessary to load or save data using a peripheral device other than
the input terminal connected to port 1, follow the peripheral data transfer proce-
dure described below.

1, 2, 3... 1. Enter the command and key in a carriage return.

2. Disconnect the input terminal from port 1 and connect the peripheral device.

3. Press the START/STOP switch on the ASCII Unit to start data transfer.

4. Reconnect the input terminal and key in CTRL+x.

An assembly language program can be called from BASIC with the USR func-
tion:

USR [<number>][<argument>]

Before the USR function can be used, the DEF USR statement must be ex-
ecuted to reserve space for the assembly routine. When the USR function is ex-
ecuted, it calls the specified assembly routine and passes it an argument defined
in the BASIC program.

Variables other than the argument specified by the USR function can also be
passed to the assembly language program by using the VARPTR function.

The following arguments are passed to the assembly program:
Accumulator A contents: type of <argument>

Index register X contents: address of <argument>

The RTS command should be the last command of the assembly routine; it re-
turns execution back to the BASIC program.

The value of the stack pointer must not be altered by the assembly routine.
Therefore, the data should be pushed on the stack at the beginning of the routine
and then pulled off before executing the RTS command.

The assembly routine must store any data needed by the BASIC program in the
same address as that of the argument(s) passed by the USR or VARPTR func-
tions. Any data passed back to the BASIC program must be of the same TYPE
as the USR or VARPTR Function argument(s).

Do not disable any interrupts in the assembly language program.

It is recommended that the assembly language program be saved on an exter-
nal storage device or in the EEPROM for safety.

Writing an Assembly
Program

The Assembly Language
Program

Assembly Language Programming Section 5-1

69

Monitor Mode

To enter monitor mode from BASIC mode, key in “mon” followed by a carriage
return when the message “READY” is displayed on the console:

READY
mon
*

When in monitor mode a “*” is displayed on the left-side of the screen. Also,
when in monitor mode, the BASIC LED on the ASCII Unit front panel is unlit.

To return to BASIC mode, key in CTRL+B.

5-2 Terminology and Formatting
Terminology Start address refers to the first memory address where a group of values stored

in consecutive memory locations is stored: e.g., an array or a block of data.

For some monitor mode commands, indicating a start address is optional. For
these commands, the address immediately following the highest or largest ad-
dress used by the previous monitor command is taken to be the start address for
the current monitor command. To simplify following explanations, this address
will be called the base address.

An assembly language program can be edited, traced, and debugged in moni-
tor mode .

Note that the address held in the program counter is the base address used for
displaying and writing data when using the monitor commands.

Format The left and right arrow brackets “<” and “>” that have been previously used to
denote “user supplied text” in BASIC programming format statements are used
as actual operators in monitor mode. Therefore, whenever you see an arrow
bracket character in a monitor mode command, it must be entered as such.
The arrow character is used to delineate address ranges.

For monitor format statements only, left and right parentheses “()” will be used to
denote user supplied text.

Brackets “[]” still indicate optional entry. Pay close attention to periods “.”; they
must be entered as such whenever indicated.

The carriage return key is indicated with ↵ . Whenever this appears in a com-
mand, a carriage return must be entered by the user.

Do not insert spaces within a monitor command unless explicitly indi-
cated.

In the following examples and also on the actual terminal the “*” character indi-
cates that the user must enter a command. Lines of text that do not start with a “*”
are generated by the computer in response to a user command.

5-3 Monitor Mode Commands
The following table lists the monitor mode commands with a short description of
each command’s function as well as the page number on which its detailed ex-
planation can be found.

To enter monitor mode, type mon and carriage return at the READY prompt.

Note Enter all command in all-caps while in monitor mode. Do not use lower case.

Monitor Mode Commands Section 5-3

70

Page Command Purpose

70 address Displays/changes memory contents at the specified
address.

71 M Transfers memory contents.

72 C Compares memory contents.

72 R Displays/changes register contents.

73 BP Sets/displays break points.

73 N Clears break points.

73 I Disassembler

74 S Outputs data to a port.

74 L Loads data from a port.

75 V Verifies data.

75 G Executes a program.

75 T Single-step program execution

76 Mini-assembler Single-line assembly

76 Arithmetic Addition/subtraction of hexadecimal numbers.

DUMP Command
Purpose: To display the contents of memory in hexadecimal

Format: [(display start address)].[(display end address)]

Remarks:

If the carriage return ↵ is input by itself, eight bytes of data, starting from the base
address will be displayed (refer to example 2.)

If an address is entered preceded by a dot, e.g., “.3000”, data stored in all the
addresses from the base address to the entered address will be displayed (refer
to examples 3 and 4.)

New data can be stored in memory as well; this data will overwrite existing data.
Input data must be in hexadecimal. Upper case characters must be used for the
alphanumeric values of A to F (hex). When the leftmost digit is a “0”, it can be
omitted.

There are two ways to poke data (directly store data to a specific address).

1, 2, 3... 1. Specify the first address followed by a colon. Directly after the colon, enter
the data (1 or 2 byte hexadecimal values only) separated by spaces. Then
type a carriage return (refer to example 5.)

2. Enter a colon followed by the data and type a carriage return. Data will be
stored starting from the base address (refer to example 6.)

Examples:

1. Enter: *4000 ↵
Displayed: 4000–10

• Displays 1 byte of data from the specified address.

2. Enter: * ↵
Displayed: *20 30 50 60 70 80 90 9F

• Displays 8 bytes of data, starting from the base address.

3. Enter: *.4010A ↵
Displayed: 4008–A0 B0 C0 D0 E0 F0 00 10

4010–01 02 03 04 05 06 07 08

4018–12 34 56

• Displays all of the data from the base address to the specified address.

Monitor Mode Commands Section 5-3

71

4. Enter: *.3000 ↵
Displayed: 401B–78

• If the “dot” address format is used and the entered address is lower than
the base address, the contents of the specified address will not be dis-
played. The contents of the base address will be displayed instead.

5. Enter: *3000:9 8 7 6 5 4 3 2 1 ↵
*3000.3007 ↵

Displayed: 3000–09 08 07 06 05 04 03 21

• Pokes data in a series of addresses starting from the specified address.

6. Enter: *:11 22 33 44 55 ↵
*3000.3007 ↵

Displayed: 3000–11 22 33 44 55 04 03 21

• Pokes data in a series of addresses starting from the base address.

Move Command
Purpose: To transfer the data stored in a consecutive range of addresses

to another place in memory

Format: M(destination start address)< (source start address). (source
end address)

Remarks:

This command will transfer a block of data starting from (source start address)
and ending at (source end address) to (destination start address). Note that the
source address range must not overlap the destination address range; other-
wise, the data will not be transferred correctly.

Example:

Enter: *M3000<4000.4007 ↵
*4000.4007 ↵

Displayed: 4000–01 02 03 04 05 06 07 08

Enter: *3000.3007 ↵
Displayed: 3000–01 02 03 04 05 06 07 08

Example Remarks:

In the above example, the contents of addresses 4000 to 4007 are transferred to
an address range starting at address 3000.

The following diagram illustrates correct and incorrect usage of the Move com-
mand.

Monitor Mode Commands Section 5-3

72

Source start
address

Source end
address

Destination
address

Source start
address

Source end
address

Destination
address

Source start
address

Source end
address

Destination
address

Proper Data Movement

Improper Data Movement

In this example, the source start address is
smaller than the destination address and
the destination address is equal to or
smaller than the source end address.
Consequently, the data is not transferred
correctly. Transfer the data to an area that
has not been overlapped and transfer the
data again.

Compare Command
Purpose: To compare two blocks of data

Format: (start address 1)<(start address 2).(end address 2)

Remarks:

Compares the data stored from (start address 2) to (end address 2) to a block of
data of the same size starting at (start address 1). If the contents of the two ad-
dress ranges differ, the corresponding address(es) where the data is not the
same is displayed with its contents.

Example:

Enter: *C3000<4000.4007 ↵
Displayed: 4003–FF (03)

Enter: *3000.3007 ↵
Displayed: 3000–00 01 02 03 04 05 06 07

Enter: *4000.4007 ↵
Displayed: 4000–00 01 02 FF 04 05 06 07

Example Remarks:

In the above example, data stored in addresses 3000 to 3007 is compared with
data stored in addresses 4000 to 4007. In this example, the data stored in ad-
dress 3003 has been found to differ from the data stored in address 4003. Con-
sequently, the data stored in address 4003 (FF) and the data stored in address
3003 (03) are displayed.

Register Command
Purpose: To display or change the contents of a register.

Format: R(register) = (data)
(register) is one of the hardware registers: C, A, B, X, S, or P.
(data) is a one or two digit hexadecimal number.

Monitor Mode Commands Section 5-3

73

Remarks:

If R is entered by itself, all of the registers and their contents will be displayed.

Examples:

1. Enter: *R ↵
Displayed: C–C0 A–00 B–01 X–ABCD S–2EFF P–5000

• The contents of all the registers are displayed.

2. Enter: *A=12 ↵
*X=FF00 ↵
*R ↵

Displayed: C–C0 A–12 B–01 X–FF00 S–2EFF P–5000

• The contents of the specified registers (A and X) are rewritten as speci-
fied.

Break Point Command
Purpose: To set a break point at a specified address

Format: BP[(address)]

Remarks:

Up to two break points can be set at the same time. If BP is entered by itself, the
current break point(s) will be displayed. If BP is followed by an address, a new
break point will be set at that address.
Examples:

1. Enter: *BP3000 ↵
• Sets a Break point.

2. Enter: *BP ↵
Displayed: BP=3000

• Displays the currently set bread points.

3. Enter: *BP5000 ↵
*BP ↵

Displayed: BP=5000 3000

• Up to two bread points can be set.

New Command
Purpose: To clear all bread points.

Format: N

Example:

Enter: *N ↵

*BP ↵
Displayed: BP=0000 0000

Example Remarks:

Clears all the bread points currently set.

Disassembler Command
Purpose: To disassemble and display 20 lines of code starting from the

specified address.

Format: I(address)

Monitor Mode Commands Section 5-3

74

Examples:

1. Enter: *I 3000

Displayed: 3000–CE 10 00 LDX #$1000

3003–FF 40 00 STX $4000

3006–86 80 LDAA #$80

. . .

. . .

3030–81 12 CMPA #$12

• Disassembles and displays 20 lines of code starting from the specified
address.

2. Enter: *I, I ↵
Displayed: 3032–26 02 BNE $3036

3034–A7 00 STAA $00, X

3036–39 RTS

 . .

 . .

3080–08 INX

• Each time I,I is subsequently entered, the next 20 lines of code will be dis-
played.

Save Command
Purpose: To transfer the specified block of data to port 1 in S format

Format: S(start address).(end address)

Remarks:

Transfers the data stored from (start address) to (end address) in S format to the
port 1 buffer.

Example:

Step 1: *S3000.300F ↵
Step 2: Press the START/STOP switch.

Example Remarks:

The data stored from &H3000 to &H300F will be transferred to port 1. If a periph-
eral device other than the input terminal needs to be connected for the data
transfer, follow the peripheral data transfer procedure explained at the begin-
ning of this section.

Load Command
Purpose: To load a data file in S format through port 1

Format: L[(offset)]

Examples:

1. Enter: *L ↵
Enter: *L100 ↵

Press the START/STOP switch.

• Loads a data file in S format through port 1 and stores the file in memory.

2. Enter: *3100.310F ↵
Displayed: 3100–CE 00 00 08 26 FD 08 26

3108–FD 86 55 97 17 CE 00 00

• When an offset address is specified, the loaded file is stored in memory
starting from an address whose value is the specified address plus the

Monitor Mode Commands Section 5-3

75

offset. Data transfer will not start until the ASCII Unit START/STOP switch
is pressed.

Verify Command
Purpose: To verify whether data sent through port 1 is the same as data

stored in the specified memory locations

Format: V[(offset)]

Example:

Enter: *V100 ↵
Press the START/STOP switch.

Displayed: 3120–12

Remarks:

The input data is compared with the data stored in the specified address range.
The base address for data comparison is the specified address plus the offset.

If a discrepancy is found, the address at which it occurs and the data contained
therein are both displayed. Data will not be verified until the ASCII Unit START/
STOP switch is pressed.

If a peripheral device other than the input terminal needs to be connected for
data transfer, follow the peripheral data transfer procedure explained at the be-
ginning of this section.

Go Command
Purpose: To execute a program

Format: G[(address)]

Example:

Enter: *I3000 ↵
Displayed: 3000–86 80 LDAA #$80

3002–B7 40 00 STAA $4000

3005–20 F9 BRA $3000

Enter: *BP3005 ↵
*G3000 ↵

Displayed: C–C8 A–80 B–FF X–0000 S–2EFF P–3005

Remarks:

If an address is specified, the user program is executed starting from that ad-
dress. If no address is specified, execution will start from the address indicated
by the program counter.

If program execution is aborted due to a bread point, SW1, or an interrupt, the
register contents will be displayed.

If the stack pointer is not set to the assembly language area, this command will
not execute correctly.

Step Command
Purpose: To execute a program one step at a time. This command is used

for debugging.

Format: T[(address)]

Example:

Enter: *T3000 ↵
Displayed: 3000–86 80 LDAA #$80

C–C8 A–80 B–00 X–0000 S–2EFF P–3002

Monitor Mode Commands Section 5-3

76

Remarks:

When (address) is specified, the instruction stored starting at (address) is ex-
ecuted. If (address) is not specified, the instruction stored at the address indi-
cated by the program counter is executed. To execute several program steps,
execute the Step command as many times as required.

When Step is executed, the instruction stored at the specified address is dis-
played as well as the contents of all the hardware registers.

Mini-assembler
Purpose: To assemble one line of the program at a time.

Note Mnemonics used in Hitachi’s HD6303X CPU operation manual are used here.

Procedure:

1, 2, 3... 1. Key in CTRL+A

2. Type in one line of code and a carriage return.

3. To stop, key in X followed by a carriage return.

Remarks:

Keying in CTRL+A puts the monitor in mini-assembler mode. Each time a line of
code followed by a carriage return is subsequently entered, the mini-assembler
will assemble and display it. To exit mini-assembler mode enter “x” followed by a
carriage return.

Note Always enter a space after the prompt (!) when using command without address-
es. Always enter a space between operands.

Example:

Enter: *CTRL+A ↵
!_3000:LDAA_ #$80 ↵

Displayed: 3000–86 80 LDAA #$80

Enter: !_LDAB_#$7F ↵
Displayed: 3002–C6 7F LDAB #$7F

Enter: !_STD_$4000 ↵
Displayed: 3004–FD 40 00 STD $4000

Enter: !_ASLA ↵
Displayed: 3007 48 ASLA

Enter: !_BNE_$3000 ↵
Displayed: 3008 26 F6 BNE $3000

Enter: !X ↵
Arithmetic Using Hexadecimal

Purpose: To add or subtract 4-digit hexadecimal data.

Format: (hex data)+(hex data)
(hex data)–(hex data)

Examples:

Enter: *1234+5678 ↵
Displayed: 1234+5678=68AC

Enter: *ABCD+EF01 ↵
Displayed: ABCD+EF01=9ACE

Enter: *AB–12 ↵
Displayed: AB–12=0099

Monitor Mode Commands Section 5-3

77

SECTION 6
Program Examples

In order for the PC and the ASCII Unit to communicate with each other, both an ASCII Unit program written in BASIC and a
PC program must be prepared. These two programs work with each other to coordinate the timing of communications and data
transfer between the two devices.

The ASCII Unit can be set in one of two modes: two-word mode or four-word mode. If the ASCII Unit is set in two-word
mode, the PC can use READ(88/190) and WRIT(87/191) for data transfer with the ASCII Unit. If the ASCII Unit is set in
four-word mode, the PC must use the MOV(21/030) instruction to transfer data with the ASCII Unit.

The first part of this section presents an explanation of the timing between the ASCII Unit and the PC when READ(88/190)
and WRIT(87/191) are used with the PC READ, PC WRITE, PC GET, and PC PUT statements. In order to understand the
programming examples in this section, it is necessary to fully understand the timing explained in this section. Please study this
section carefully before going on to the examples.

The second part of this section presents example programs written for the ASCII Unit and PC with the ASCII Unit set in
two-word mode.

The third part of this section presents example programs written for the ASCII Unit and PC with the ASCII Unit set in
four-word mode.

The fourth and last part of this section presents an assembly language programming example.

Some of the examples also present detailed explanations of what the PC and ASCII Unit are doing during execution of each
devices respective programs. When this material is present, it is listed under the heading Execution Sequence.

6-1 Timing Considerations .
6-2 Programs in Two-word Mode .
6-3 Programs in Four-word Mode .
6-4 Assembly Language Examples .

78

6-1 Timing Considerations
READ(88/190) is the I/O READ instruction and WRIT(87/191) is I/O WRITE in-
struction. These are PC commands and are executed from within the PC ladder
diagram program. READ(88/190) and WRIT(87/191) give the PC the ability to
transfer large blocks of data during one cycle time: up to 255 words at a time. The
MOV(21/030) instruction can only transfer one word of data per cycle.

Because variable sized blocks of data can be transferred with one
READ(88/190)/WRIT(87/191) instruction, the amount of time needed to com-
plete execution of the READ(88/190)/WRIT(87/191) instruction will vary de-
pending on how many words of data are being transferred. Therefore, the PC
must have a method of informing the ASCII Unit when the data transfer opera-
tion is completed. The PC uses the Equals Flag for this purpose. When the PC is
in the midst of executing a READ(88/190)/WRIT(87/191) instruction, this flag is
turned OFF. When the READ(88/190)/WRIT(87/191) instruction finishes ex-
ecuting, this flag is turned ON.

The diagram on the following page illustrates the timing relationships between
READ(88/190) and the PC WRITE statement and WRIT(87/191) and the PC
READ statement.

Whenever the ASCII Unit is writing data with the PC WRITE statement, the PC is
reading data with READ(88/190) and whenever the PC is writing data with
WRIT(87/191), the ASCII Unit is reading data with the PC READ statement. This
illustrates two important points:

• Whenever the ASCII Unit and the PC communicate, one of them is reading and
the other one is writing.

• The device which is writing data always initiates data transfer.

The following rules are illustrated in the diagram on the next page:
B. If a READ(88/190) is executed before its corresponding PC WRITE

statement, it is treated as a NOP.

3. If a PC WRITE statement is executed before processing of a pre-
vious PC WRITE statement is completed, it must wait for execution
of the next READ(88/190) before data transfer can begin.

6. If a PC READ statement is executed before processing of a pre-
vious PC READ statement is completed, it must wait for the next
WRIT(87/191).

H. If a WRIT(87/191) instruction is executed before processing of the
previous WRIT(87/191) instruction is completed, it is treated as a
NOP.

Timing Considerations Section 6-1

79

Timing Between PC and ASCII Unit Instructions

1 cycle 1 cycle 1 cycle 1 cycle

UM
Execution

End
Refresh

UM
Execution

End
Refresh

UM
Execution

End
Refresh

B C D E F G H
READ(88/190) READ(88/190) READ(88/190) WRIT(87/191)WRIT(87/191) WRIT(87/191)WRIT(87/191)

EQ=1 EQ=1 EQ=1 EQ=1 EQ=1 EQ=1EQ=0
PC

ASCII
UNIT

EXECUTABLE YES YES YES YES YES YESNO NO

Common Memory
is full

READ(88/190) ← PC WRITE, WRIT(87/191) → PC READ

1 2 3 5 6 7
PC WRITE PC WRITE PC WRITE PC READ PC READ PC READ

3. Waits until data previously written to the
common memory is written to the PC.

wait
wait

6. Waits until the data being read is transferred to
the common memory

No data in
common memory

A
READ(88/190)

End
Refresh

UM
Execution

X X

1 cycle 1 cycle 1 cycle 1 cycle

UM
Execution

End
Refresh

UM
Execution

End
Refresh

UM
Execution

End
Refresh

UM
Execution

End
Refresh

K L M N O

PC

ASCII
UNIT

MOV(21/030)
(or OUT)
bit 08 to 15

MOV(21/030)
(or OUT)
bit 08 to 15
(Previous Data)

Same Same
13 Data

PC GET
(previous
 data)

PC
GET
K data

PC
GET
K data

PC PUT13

MOV(21/030) ← PC GET, MOV(21/030) → PC PUT

(Previous Data)

Same
13 Data

Timing Considerations Section 6-1

80

6-2 Programs in Two-word Mode
The following programs are executed with the ASCII Unit set in two-word mode.

For all of the following examples:

• printer is connected to port 2

• 8 bits/ no parity/ 2 stop bits

Example 1
Purpose: To write data from the PC using WRIT(87/191) and to the

ASCII Unit using the PC READ statement.

Equals Flag

To next process

Number of words to be transferred

First word to transfer (DM 000)

Destination word address

PC Program ASCII Unit Program

WRIT(87/191)

#0005

DM000

00

PC READ “5I4” ;A, B, C, D, E

Execution condition

#0005:

DM000:

00:

Remarks:

When the execution condition goes ON, WRIT(87/191) is executed. The ASCII
Unit reads five words of data starting at DM 000, converts them into BCD, and
assigns them to the variables A through E. When execution of WRIT(87/191) is
completed, the Equals Flag is turned ON.

Example 2
Purpose: To write data from the ASCII Unit using the PC WRITE

statement to the PC using the READ(88/190) instruction.

Equals Flag

To next process

Number of words to be transferred

First word to transfer

Destination word address

PC Program ASCII Unit Program

READ(88/190)

#0003

01

DM010

PC WRITE “3I4”;P,Q,R

#0003:

01:

DM010:

Remarks:

When the ASCII Unit executes the PC WRITE statement, the variables P, Q, and
R are converted into BCD and stored in DM 010, 011, and 012.

Programs in Two-word Mode Section 6-2

81

Example 3
Purpose: To enter characters from the keyboard and write them to

the PC using the PC WRITE statement and
READ(88/190).

Equals Flag

To next process

PC Program ASCII Unit Program

READ(88/190)

#0002

01

DM020 OPEN #2, “KYBD:”

INPUT #2, A$

PC WRITE “2A2”; A$

Number of words to be transferred

First word to transfer

Destination word address

#0002:

01:

DM020:

Remarks:

When the PC WRITE statement is executed, the first four characters of charac-
ter string A$ are converted into ASCII code and stored in DM 0020 and 0021.

Example 4
Purpose: The PC uses interrupt number 3 to direct the ASCII Unit to

read five words of data from the specified DM addresses.

Equals Flag

To next process

Number of words to be transferred

First word to transfer (DM 000)

Destination word address

PC Program ASCII Unit Program

WRIT(87/191)

#0005

DM000

00

50 ON PC 3 GOSUB 200
60 PC 3 ON

MOV(21/030)

#0003

DM 000

200 PC READ “5H4” ; A, B, C, D, E

#0005:

DM000:

00:

Remarks:

When the Interrupt Input goes ON, the PC writes the interrupt number to DM 000
with the MOV(21/030) instruction and the ASCII Unit branches to the interrupt
service routine at line 200. WRIT(87/191) then writes 5 words of data to the
ASCII Unit which stores them in variables “A” through “E”.

Example 5
Purpose: To read and print PC data at specific times using the ASCII

Unit PC READ statement and WRIT(87/191)

Programs in Two-word Mode Section 6-2

82

Equals Flag

To next process

Number of words to be transferred

First word to transfer (DM 000)

Destination word address

PC Program ASCII Unit Program

WRIT(87/191)

#0001

DM000

00

10 OPEN #2,“LPRT:(47)”

20 A$ = “00:00”

30 B$ = MID$ (TIME$, 4, 5)

40 IF B$ <:> A$ GOTO 30

50 PC PUT 1

60 PC READ, “I4” ; X

70 PC PUT 0

80 PRINT #2, “DM=” ; X

90 GOTO 30

#0001:

DM000:

00:

DIFU 3200
0108

3200

Example 6
Purpose: To accept input from the keyboard and write it to the PC us-

ing the PC WRITE statement and READ(88/190)

Equals Flag

To next process

PC Program ASCII Unit Program

READ(88/190)

#0001

DM 000 10 INPUT I

20 PC WRITE “I4”; I

30 GOTO 10

01

Number of words to be transferred

First word to transfer

Destination word address

#0001:

01:

DM000:

Example 7
Purpose: To display the state of PC bit 1000 on a display device con-

nected to port 2

Equals Flag

To next process

Number of words to be transferred

First word to transfer (DM 000)

Destination word address

PC Program ASCII Unit Program

WRIT(87/191)

#0001

DM000

00
10 OPEN #2, “SCRN:(40)”

20 PC READ “B0”; R

30 RS$ = “ON”

40 IF R = 0 THEN RS$ = “OFF”

50 PRINT #2, “RELAY = ”; RS$

60 GOTO 20
#0001:

DM000:

00:

Programs in Two-word Mode Section 6-2

83

Example 8
Purpose: To retrieve and print several types of data from the PC us-

ing the PC GET statement and WRIT(87/191)

 10 OPEN #2, “LPRT : (47)”
 20 PC READ “2I4” ; X, Y
 30 PC GET I, J
 40 IF J = 1 THEN GOTO 100
 50 IF J = 2 THEN GOTO 200
 60 GOTO 30

100 PRINT #2, “DATA1 = ” ;X

200 PRINT #2, “DATA2 = ” ;Y

PC Program ASCII Unit Program

MOV(21/030)

#0100

00

SW1

MOV(21/030)

#0200

00

SW1

Start 3200

Equals Flag

WRIT(87/191)

#0002

DM000

00

Start

3200

3200

Remarks:

The two MOV(21/030) instructions place the data in the memory locations that
will be read by the PC READ statement. After the MOV(21/030) instructions are
executed, the Start flag is turned ON and WRIT(87/191) is executed.

Two lot size areas, stored in PC DM 000 and 001, are retrieved and printed.

Programs in Two-word Mode Section 6-2

84

Example 9
Purpose: To use PC interrupts to direct execution of the ASCII Unit

PC Program ASCII Unit Program

MOV(21/030)

#0001

DM 000

Start 1 Start 2 Start 3

Start 2 Start 1 Start 3

Start 3 Start 1 Start 2

 10 OPEN #2, “LPRT: (47)”
 20 ON PC 1 GOSUB 100
 30 ON PC 2 GOSUB 200
 40 ON PC 3 GOSUB 300
 50 PC ON
 60 GOTO 60

100 PC READ “2I4” ; X1, X2
110 PRINT #2, “DM1 = ”; X2
120 RETURN

200 PC READ “3I4” ; X1, X2, X3
210 PRINT #2, “DM11 = ” ; X2
220 PRINT #2, “DM12 = ” ; X3
230 RETURN

300 PC READ “4I4” ; X1, X2, X3, X4
310 PRINT #2, “DM101 = ” ; X2
320 PRINT #2, “DM102 = ” ; X3
330 PRINT #2, “DM103 = ” ; X4
340 RETURN

WRIT(87/191)

#0002

DM000

00

WRIT(87/191)

#0003

DM010

00

WRIT(87/191)

#0004

DM100

00

MOV(21/030)

#0002

DM 010

MOV(21/030)

#0003

DM 100

Always ON

Remarks:

Three ON PC GOSUB statements are used to direct program execution to three
different interrupt service routines. After the branch destinations are defined by
the ON PC GOSUB statements, the ON PC statement is executed enabling the
interrupts. The statement “GOTO 60” at line 60 causes the program to “sit and
wait” for a PC interrupt to initiate further action.

If PC interrupt 1 interrupts the ASCII Unit, the contents of DM 000 will be printed.
If PC interrupt 2 interrupts the ASCII Unit, the contents of DM 010 and 011 will be
printed. If PC interrupt 3 interrupts the ASCII Unit, the contents of DM 100, 101,
and 102 will be printed.

Connect the printer to port 2 and set the baud rate to 4,800 bps.

The lot sizes are stored in DM words as follows:

Programs in Two-word Mode Section 6-2

85

DM0000 DM0010

DM0011

DM0100

DM0101

DM0102

1 2 2

Lot size Lot size

Lot size

Lot size

Lot size

Lot size

Example 10
Purpose: To print PC data and the time of data transfer

PC Program ASCII Unit Program

10 OPEN #2, “LPRT: (47)”
20 C READ “2I4 ” ; D1, D2
30 PRINT #2, “DATA1 = ” ; D1,
 “DATA2 = ” ; D2, “TIME = ” ; TIME$
40 GOTO 20

Equals Flag

To next process

WRIT(87/191)

#0002

DM100

00

Start condition

Data 1

Data 2

DM100

DM101

Number of words to be transferred

First word to transfer (DM 000)

Destination word address

#0002:

DM100:

00:

Remarks:

When the start condition is activated, PC data and the time of transfer are output
to a printer connected to port 2 of the ASCII Unit. The PC read statement and
WRIT(87/191) are used to obtain the data from the PC.

Output:

DATA1 = 5678

DATA1 = 3249

DATA2 = 9876

DATA2 = 12

TIME = 13:45:03

TIME = I4:02:51

Example 11
Purpose: To input data from a bar code reader using the PC WRITE

statement

Remarks: Connect the bar code reader to port 2.

The following figure defines the output format of the bar code reader.

STX Data 1 ETXData 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10

Programs in Two-word Mode Section 6-2

86

Equals Flag

To next process

PC Program ASCII Unit Program

READ(88/190)

#0005

DM000

10 OPEN #2, “COMU:(22)”

20 A$ = INPUT$ (1, #2)

30 IF A$ = CHR$(2) GOTO 50

40 GOTO 20

50 B$ = INPUT$(11, #2)

60 IF CHR$(3) = RIGHT$ (B$, 1)

 THEN B$ = MID$(B$, 1, 10)

 ELSE GOTO 20

70 PC WRITE “5A3” ; B$

80 GOTO 20
DM000

DM001

Data 1

Data 3

DM002

DM003

Data 5

Data 7

DM004 Data 9

Data 2

Data 4

Data 6

Data 8

Data 10

01

Number of words to be transferred

First word to transfer

Destination word address

#0005:

01:

DM000:

Example 12
Purpose: To transfer data from the PC to the ASCII Unit with the

ASCII Unit maintaining control

PC Program ASCII Unit Program

DIFU(13/013) 3200

0108

3200

3201

3201

100 PC PUT 1
110 PC READ “5I4” ; A1, A2, A3, A4, A5
120 PC PUT 0
130 PRINT A1, A2, A3, A4, A5

WRIT(87/191)

#0005

DM100

00

3201

3202

Equals Flag

3202

Execution Sequence:
1. ASCII: The PC PUT 1 statement turns ON bit 0108

2. PC: The self-holding bit (3201) is set on the positive edge tran-
sition of bit 0108.

3. PC: WRIT(87/191) is executed.

Programs in Two-word Mode Section 6-2

87

4. PC: When execution of WRIT(87/191) is complete, the Equals
Flag is turned ON and the self-holding bit is turned OFF.

5. ASCII: The data is read from the PC using PC READ

6. ASCII: Turns OFF bit 0108 using the PC PUT 0 statement

7. ASCII: Displays the data which is read in step 5.

Example 13
Purpose: To transfer data from the ASCII Unit to the PC with the

ASCII Unit maintaining control

PC Program ASCII Unit Program

100 PC PUT 2
110 PC WRITE “5I4” ; A1, A2, A3, A4, A5
120 FOR J = 1 TO 100 : NEXT J
130 PC PUT 0

READ(88/190)

#0005

DM300

01

DIFU(13/013) 3400

0109

3400

3401

3401

3401

3402

Equals Flag

3402

Execution Sequence:
1. ASCII: Turns ON bit 0109 with the PC PUT 2 statement and ex-

ecutes the PC WRITE statement.

2. PC: The self-holding bit (3401) is set on the positive edge tran-
sition of bit 0109.

3. PC: Executes READ(88/190) when the self-holding bit (3401)
is turned ON.

4. PC: Turns ON the Equals Flag after execution of
READ(88/190) is completed and then turns OFF the
self-holding bit (3401).

5. ASCII: Waits at line 120 until bit 0109 is turned ON by the PC. The
wait time should be adjusted to the cycle time of the PC.

6. ASCII: Turns OFF bit 0109 with the PC PUT 0 statement.

Remarks:

If the time required to transfer data from the ASCII Unit to the PC is shorter than
one PC scan cycle, the PC cannot execute READ(88/190). In the above exam-
ple, the ASCII Unit waits for the PC signal to be received at line 120.

Programs in Two-word Mode Section 6-2

88

Example 14
Purpose: To transfer data from the PC to the ASCII Unit with the PC

maintaining control.

 10 ON PC 1 GOSUB 100
 20 PC 1 ON

 90 GOTO 20
100 PC READ SUBROUTINE
110 PC READ “5I4” ; A1, A2, A3, A4, A5
120 PRINT A1, A2, A3, A4, A5
130 RETURN

PC Program ASCII Unit Program

DIFU(13/013) 3300

Start Input

3300

3301

3301
WRIT(87/191)

#0005

DM200

00

3301

3302

Equals Flag

3302

Execution Sequence:
1. PC: The self-holding bit (3301) is set on the leading edge of the

start statement signal.

2. PC: WRIT(87/191) is executed.

3. PC: When execution of WRIT(87/191) is complete, the Equals
Flag is turned ON and the self-holding bit is turned OFF.

4. ASCII: When the PC interrupts the ASCII Unit, execution
branches to line 100 of the BASIC program and the data is
read by the PC READ statement.

5. ASCII: Displays the data and processing returns to line 20 to await
the next interrupt.

Programs in Two-word Mode Section 6-2

89

Example 15
Purpose: To transfer data from the ASCII Unit to the PC with the PC

maintaining control.

TIM 000

#0005

PC Program ASCII Unit Program

DIFU(13/013) 3500

Start Input

3500

3501

3501
READ(88/190)

#0005

DM100

3501

3502

Equals Flag

3502

3501

0009

01

TIM000

0009

100 PC GET I, J
110 K = J AND 2
120 IF K <> 2 THEN GOTO 100
130 PC WRITE “5I4” ; A1, A2, A3, A4,
A5

Execution Sequence:
1. PC: The self-holding bit (3501) is set on the leading edge of the

Start Input signal.

2. PC: Turns ON bit 0009 for 0.5 seconds with the TIM command
after the self-holding bit has been turned ON.

3. PC: Executes READ(88/190)

4. PC: Turns ON the Equals Flag after READ(88/190) has been
executed and then turns OFF the self-holding bit (3501).

5. ASCII: Monitors the setting of bit 0009 at lines 100 to 120.

6. ASCII: Executes the PC WRITE statement.

Example 16
Purpose: To process data with the ASCII Unit

Remarks:

This program transfers 10 words of data from the PC to the ASCII Unit (starting
from PC DM 100) each time bit 1000 is turned ON. The ASCII Unit performs
some calculations with the data and the results are sent back to the PC and
stored in DM 200 to 214.

Programs in Two-word Mode Section 6-2

90

PC Program ASCII Unit Program

DIFU(13/013) 3200

Start Input

3200

0008

3201
WRIT(87/191)

#0010

DM100

0008

3203

6306
Equals Flag

0108

3200

3201

00

3202

3201

 100 PC GET J, K
 110 L = K AND 1
 120 IF L=1 THEN GOSUB 1000

 (other processing)
 990 GOTO 100
1000 SUBROUTINE
1010 PC PUT 1
1020 PC READ “10H4” ; A1, A2, , A10
1030 (computation processing: assigns the
 values to B1 through B10)
1090
1100 PC WRITE “15H4” ; B1, B2, . . . , B15
1110 PC GET J, K
1120 L = K AND 1
1130 IF L = 0 THEN GOTO 1150
1140 GOTO 1110
1150 PC PUT 0
1160 RETURN

3201

3202

3202
READ(88/190)

#0015

DM200

01

3202

6306
Equals
Flag 3203

Execution Sequence:
1. PC: Detects the positive edge transition of Start Input and turns

ON bit 0008.
2. PC: Executes WRIT(87/191) when bit 3201 is turned ON.
3. PC: Turns ON the Equals Flag after the execution of

WRIT(87/191) is completed.
4. ASCII: Reads the status of bit 0008 with the PC GET statement.
5. ASCII: If bit 0008 has been turned ON, execution branches to the

subroutine beginning at line 1000.
6. ASCII: Turns ON bit 0108 with the PC PUT 1 statement at line

1010 and the self-holding bit (0008) is turned OFF.
7. ASCII: Executes the PC READ statement at line 1020 which as-

signs the PC data to variables A1 through A10.
8. ASCII: Performs computations on variables A1 through A10 and

assigns the results to B1 through B15.
9. ASCII: Writes B1 through B15 to the PC at line 1100.
10.ASCII: Waits for bit 0008 to be cleared at lines 1110 through 1140.
11.ASCII: Turns OFF bit 0108 with the PC PUT 0 statement at line

1150.
12.PC: Transfers data written from the ASCII Unit to DM 200

through 214 using the READ(88/190).

Programs in Two-word Mode Section 6-2

91

13.PC: Turns ON the Equals Flag after execution of
READ(88/190) has been completed and then turns OFF
the self-holding bit.

Example 17
Purpose: To transfer data input through the ASCII Unit keyboard to

the PC and then back to the ASCII Unit after computations
have been performed by the PC.

PC Program ASCII Unit Program

100 INPUT A1, A2, A3
110 PC PUT 1
120 PC WRITE “3I4” ; A1, A2, A3
130 PC READ “4I4” ; B1, B2, B3, B4
140 PC PUT 0
150 PRINT B1, B2, B3, B4
160 GOTO 100

DIFU(13/013) 3200

Start Input

3200

3201

3201
READ(88/190)

#0003

DM100

0008

3202

3201

3202

01

3203

3202

WRIT(87/191)

#0004

DM200

00

3203

6306
Equals Flag

3202

3202

Processing

6306
Equals
 Flag

Execution Sequence:
1. ASCII: Excepts input from the keyboard at line 100.
2. ASCII: Turns ON bit 0108 with the PC PUT 1 statement and then

writes the entered data to the PC at line 120.
3. PC: Detects the positive-edge transition of bit 0108 and then

turns ON the self-holding bit (3201).
4. PC: Executes READ(88/190) after bit 3201 is turned ON and

reads data written from the ASCII Unit. The data is then
transferred to DM 100 through 102.

5. PC: Turns ON the Equals Flag after execution of
READ(88/190) has been completed. The self-holding bit
(3201) is turned ON and the self-holding bit (3202) is turned
OFF.

6. PC: Executes WRIT(87/191) after data processing has been
completed and bit 3202 is turned ON. The data is then
transferred to the ASCII Unit.

Programs in Two-word Mode Section 6-2

92

7. PC: Turns ON the Equals Flag when execution of
WRIT(87/191) has been completed and then turns OFF the
self-holding bit (3202).

8. ASCII: Data is read at line 130 and the results are assigned to the
variables B1 through B4 and then displayed.

Example 18
Purpose: To initiate data transfer with the START switch using the

WAIT statement

PC Program ASCII Unit Program

100 PRINT “START”

110 WAIT “10:00.0” , 1000

120 PC READ “I4” ; A, B, C, D, E

130 PRINT A, B, C, D, E

I40 END

1000 PRINT “ERROR READY? Y/N”

1010 F$ = INKEY$

1020 IF F$ = “Y” THEN 100

1030 IF F$ = “N” THEN END

ELSE 1010

Start Input
WRIT(87/191)

#0005

DM100

00

Equals Flag
Next Process

Remarks:

Pressing the PC START switch will cause specified PC data to be transferred to
the ASCII Unit and displayed on the monitor. When the program is executed the
message “Ready” will be displayed on the screen. If the START switch is not
pressed within ten minutes, an error message will be displayed.

Example 19
Purpose: To direct processing using different interrupts

 10 OPEN #1, “TERM:(42)”
 20 OPEN #2, “COMU:(42)”
 30 ON KEY 1 GOTO 100
 40 ON KEY 2 GOTO 200
 50 ON PC GOSUB 300
 60 ON COM2 GOSUB 400
 70 KEY ON: COM2 STOP
 80 GOTO 80
100 ’ KEY 1 PROCESSING
110 COM2 ON: PC ON
120 GOTO 120
200 ’ KEY 2 PROCESSING
210 COM2 ON
220 IF A = 1 THEN GOSUB 300
230 GOTO 220
300 ’ PC INTERRUPT PROCESSING
310 PC READ “2I4” ; P, Q
320 LENG = LEN(A$)
330 PCWRITE “I4, 10A3” ; LENG, A$
340 A = 0
350 RETURN
400 ’COM INTERRUPT PROCESSING
410 IF EOF(2) THEN RETURN
420 A$ = INPUT$ (LOC(2), #2)
430 A = 1
440 RETURN

PC Program ASCII Unit Program

Start Input
WRIT(87/191)

#0002

DM000

00

READ(88/190)

#0011

DM100

01

0102

Programs in Two-word Mode Section 6-2

93

Remarks:

In this example, a terminal is connected to port 1 and an RS-232C communica-
tion device is connected to port 2. Initially, all the interrupts are disabled. The pro-
gram will wait for one of two inputs from the keyboard –– KEY 1 or KEY 2, each of
which will direct the program to process subsequent interrupts in a unique way.

1. If key 1 is pressed, the COM2 and PC interrupts will be enabled. When
COM2 interrupts the ASCII Unit, a character is read from the communication
device and assigned to the variable A$. When the PC subsequently inter-
rupts the ASCII Unit, the character will be written to the PC.

2. If key 2 is pressed, only the COM 2 interrupt is enabled. When COM 2 inter-
rupts the ASCII Unit, the data is read and written directly to the PC.

6-3 Programs in Four-word Mode

This section presents example programs with the ASCII Unit set in four-word
mode. There are also several ASCII programs that do not require a PC program
in order to run.

For all of the following examples:

• printer is connected to port 2

• 8 bits/ no parity/ 2 stop bits

Example 1
Purpose: To print data at fixed time intervals using the LPRINT state-

ment

This example does not require a PC data transfer routine.

ASCII Unit Program:

100 TH$ = MID$(TIME$,1,2)

110 IF TH$ = TH0$ GOTO 200

120 TH0$ = TH$

130 LPRINT TIME$,A

Remarks:

This program example prints a value (A) and the present time (TIME$), on a
printer, every hour, on the hour. The PRINT statement is executed when the
“hours” change on the internal clock (for example, when the time changes from
9:59 to 10:00). The clock (24-hour) must be set prior to program execution.

Example 2
Purpose: To direct execution of the ASCII Unit from the PC using the

PC GET statement

Another way to externally control program execution is through poling. Poling is
the process of continuously checking the value of a specified bit or word. If the
value of the bit or word matches a condition set in the program, a corresponding
branch instruction is executed.

In the following program, the ASCII Unit PC GET statement is used to pole a spe-
cific word of the PC.

Programs in Four-word Mode Section 6-3

94

10 PC GET I, J
20 K = J AND 3
30 IF K = 1 GOTO 100
40 IF K = 2 GOTO 200
50 IF K = 3 GOTO 300
60 GOTO 10

0008

PC Program ASCII Unit Program

Condition 1

Condition 3

Condition 2

Condition 3

0009

Remarks:

The PC GET statement reads bits 10008 to 10015 of the PC as a word. The word
is logically ANDed with 3 (00000011) and the result of this operation is used to
branch the program. When bit 10008 is turned ON, k will be equal to 1 and the
program will branch to line 100. If bit 10009 is turned ON, k will be equal to 2 and
the program will branch to line 200.

Example 3
Purpose: To control execution of the PC from the ASCII Unit using the

PC PUT statement

Remarks:

Using the PC PUT statement, the ASCII Unit can write data to bits 08 to 15 of
word n+3 of the PC. If the value of this data matches a condition set in the PC
program, a corresponding branch instruction will be executed.

PC Program ASCII Unit Program

Execution
condition 0108

0109

0110

Processing

Processing

Processing

10 OPEN #2, “KYBD:”
20 INPUT #2, A
30 PC PUT A

1

2

3

Remarks:

In the above program, the ASCII Unit accepts external input from a keyboard
using the INPUT statement and transfers that data to the PC with the PC PUT
statement.

If the number “1” is input by the device which is connected to port #2 (A=1), bit
0108 of the PC is turned ON, allowing process 1 to be executed.

If the number “2” is input by the device which is connected to port #2 (A=2), bit
0109 of the PC is turned ON, allowing process 2 to be executed.

If the number “3” is input by the device which is connected to port #2 (A=3), bit
0110 of the PC is turned ON, allowing process 3 to be executed.

Programs in Four-word Mode Section 6-3

95

Example 4
Purpose: To print out production data every hour from DM000.

10 ’ DM PRINTING PROGRAM
20 OPEN #2, “LPRT: (47)”
30 A$ = 00 : 00”
40 B$ = MID$(TIME$, 4, 5)
50 IF B$ <> A$ GOTO 40
60 PC PUT 1
70 PC READ “I4” ; X
80 PRINT #2, “DM = ” ; X

190 PC PUT 0
100 GOTO 40

PC Program ASCII Unit Program

0308

MOV(21/030)

DM000

00

0101

3200

3201

DIFU 3200

DIFD 3201

Example 5
Purpose: To accept input from the keyboard and write it to the PC us-

ing the PC WRITE statement

MOV(21/030)

PC Program ASCII Unit Program

0302
10 INPUT I
20 PC WRITE “I4” ; I
30 GOTO 10

0102

02

DM000

0102

Remarks:

Product codes stored in DM memory are replaced by data input through a key-
board. The data is represented as 4-digit hexadecimal numbers.

Example 6
Purpose: To read data from an input file through a communications

port

ASCII Unit Program
10 CLEAR 1000

100 OPEN #1,“COMU:”

110 OPEN #2,“COMU:”

120 ON COM1 GOSUB 1000

130 ON COM2 GOSUB 2000

140 COM1 ON:COM2 ON

150 GOTO 150

1000 A = LOC(1)

1010 IF A<>0 THEN

A$ = A$+INPUT$(A,#1)

1020 RETURN

Programs in Four-word Mode Section 6-3

96

2000 B = LOC(2)

2010 IF B<>0 THEN

B$ = B$+INPUT$(B,#2)

2020 RETURN

Example 7
Purpose: To transfer multi-word data from the ASCII Unit to the PC in

four-word mode by using the PC WRITE statement contin-
uously.

1, 2, 3... 1. Data transfer from the ASCII Unit starts when bit 15 of the Wd (n+3) is turned
ON with PC PUT.

2. The length of the first parameter is transferred to the PC.

3. The given ASCII data of the parameter is transferred to the PC in groups of
two characters.

4. If the number of data items is an odd number, * is added to the end of the data
before transfer.

5. Data transfer from the ASCII Unit is complete when bit 15 of the Wd (n+3) is
turned OFF with PC PUT.

ASCII Unit Program

100 ’ ***** Writes word-by-word to the PC when four-word mode is set on the ASCII Unit. *****

110 ’ ***** The number of characters and the character string of A$ are transferred to the *****

120 ’ ***** PC in groups of two characters. If the number of characters is an odd number *****

130 ’ ***** ”*” will be added. *****

140 ’ ***** A$=”1234567” –––> DM0000 0007 The length of the number of characters *****

150 ’ ***** DM0001 3132 Data 1 and 2 *****

160 ’ ***** DM0002 3334 Data 3 and 4 *****

170 ’ ***** DM0003 3536 Data 5 and 6 *****

180 ’ ***** DM0004 372A Data 7. If an odd number, *(2A) added *****

190 A$=”1234567890ABCDEFGHIJK” ’Data transferred.

200 L=LEN(A$) ’Calculation of the number of characters.

210 IF L MOD 2 = 1 THEN A$=A$+”*” ’Make the number of characters to be an even number.

220 M%=L/2 ’Round M to the nearest whole number.

230 PC PUT 128 ’Turn ON bit 15 of Wd(n+3) after transfer starts.

240 PC WRITE ”I4”;L ’PC WRITE the number of characters.

250 PC READ ”H4”;X ’Confirm the completion on the PC side.

260 FOR T=1 TO M%

270 B$=MID$(A$, T*2–1, 2) ’Take out in groups of two characters.

280 PC WRITE ”A3”;B$ ’Write to the PC.

290 PC READ ”H4”;X ’Confirm completion on the PC side.

300 NEXT T

310 PC PUT 0 ’Turn OFF bit 15 of Wd(n+3) on transfer completion.

320 END

Programs in Four-word Mode Section 6-3

97

DIFU(13) 01000

00315

MOV(21)

#0000

DM0100

DIFU(13) 01001

00315

01000

DIFD(14) 01002

01001

00102

MOV(21)

002

*DM0100

01002

00101

DIFD(14) 01003

00315

INC(38)

DM0100

(PC PUT data)

(ASCII write complete)
00302

(PC PUT data)

Processing after completion of data transfer

Transfer starts

Pointer initialization

Detects ASCII write complete

1 cycle delay

PC READ complete
(at falling edge)

Data storage

Pointer + 1

PC WRITE complete
(data storage completion)

Transfer completion

01003

PC Program

Remarks:

After 00315 is ON, store data from the ASCII Unit in sequence from DM 0000
onward.

On PC WRITE completion, the ASCII Unit will be informed that the data has
been stored.

Transfer completion is detected when 00315 is OFF.

Programs in Four-word Mode Section 6-3

98

0000

0001

0002

0003

0004

0005

DM0100

(1)

(3)

(5)

(7)

(2)

(4)

(6)

A$ =” (1)(2)(3)(4)(5)(6)(7).......”

Data length

Data

Pointer

First cycle Second cycle

1 cycle

00315

01000

00302

01001

00102

01002

00101

01003

DM

In
di

re
ct

 d
es

ig
na

tio
n

Example 8
Purpose: To transfer multi-word data from the PC to the ASCII Unit in

four-word mode by using the PC READ statement continu-
ously.

1, 2, 3... 1. Data transfer from the PC starts when the PC turns ON bit 15 of Wd(n+1),
and continues until the program reaches PC GET.

2. When bit 15 of Wd(n+1) is turned ON, PC READ is executed and the charac-
ter string is continued.

3. The PC is informed of PC READ completion by PC WRITE. From word 2 on,
PC READ and PC WRITE are repeated until bit 15 of Wd(n+1) is turned
OFF.

4. Transfer is complete when bit 15 of Wd(n+1) is turned OFF.

ASCII Unit Program

800 ’ ***** *****

810 ’ ***** Reads word-by-word from the PC when four-word mode is set on the *****

820 ’ ***** ASCII Unit. Data read is stored in A$. *****

830 ’ ***** DM0100 0004 The length of the number of characters *****

840 ’ ***** DM0101 3132 Data 1 and 2 –––> A$=”1234ABCD” *****

850 ’ ***** DM0102 3334 Data 3 and 4 *****

860 ’ ***** DM0103 4142 Data 5 and 6 *****

870 ’ ***** DM0104 4344 Data 7 and 8 *****

880 ’ ***** *****

890 A$=” ” ’Initialization of the parameters to be stored.

900 PC GET H, I ’Check bit 15 of Wd(n+1).

910 IF I AND 128 <> 128 GOTO 900 ’Transfer start?

920 PC READ ”A3”; B$ ’One word read.

930 PC WRITE ”A3”; B$ ’Inform the PC of the completion of READ.

940 A$=A$+B$ ’Edit read data.

Programs in Four-word Mode Section 6-3

99

950 PC GET H, I ’Check bit 15 of Wd(n+1).

960 IF I AND 128 = 128 GOTO 920 ’Completion of transfer?

970 END

DIFU(13) 01004

01015

MOV(21)

#0100

DM0200

DIFU(13) 01005

00302

01004

00101

MOV(21)

*DM0200

000

00115

00115

INC(38)

DM0200

MOV(21)

DM1010

DM0201

01004

01005

00102

DIFU(14) 01006

DIFD(14) 01007

DEC(38)

DM0201

DIFU(13) 01008

01006

01004

01007

01008

Pointer initialization

Counter preset

Transfer flag (Bit 7 of PC GET)

ASCII side data storage
completion

PC READ complete

1 cycle delay

Data transfer

Pointer + 1

1 cycle delay

Counter – 1

Transfer completion

PC WRITE complete

Start Input

25506(=)

(ASCII write complete)

PC Program

Remarks:

After Start Input is ON, the PC transfers the data from DM 0101 onward based on
the contents of DM 0100 as the data length. From word 2 on, the data is trans-
ferred whenever the ASCII write complete instruction is ON.

When data transfer starts, 00115 is turned ON and when data transfer is com-
pleted, 00115 is turned OFF to inform the ASCII Unit of data transfer and
completion.

Programs in Four-word Mode Section 6-3

100

0100

0101

0102

0103

0104

DM0200

DM0201

00

(1)

(3)

(5)

(7)

04

(2)

(4)

(6)

(8)

A$ =” (1)(2)(3)(4)(5)(6)(7)”
1 cycle

01015

01004

00115

01007

00302

01005

01006

Data transfer
Pointer + 1
Counter – 1

First cycle Second cycle

PC write complete Data length = 0

ASCII write complete

Data length

Data

Pointer

Counter

In
di

re
ct

 d
es

ig
na

tio
n

6-4 Assembly Language Examples
Example 1: Classification of Characters

This program divides characters that are input from the keyboard into numeric
and character strings and then recombines them.

BASIC Program
100 DEF USR0=&H2000

110 INPUT A$

120 A$=USR0(A$)

130 PRINT A$

140 END

1, 2, 3... 1. Use MSET &H3000 to reserves an assembly language program area.

2. Key in MON to initiate assembly language monitor mode.

3. Key in CTRL+A <- Sets mini-assembler mode.

4. Key in the program sequentially from $2000.

5. Key in CTRL+B after the program has been input to return to BASIC mode.

The following memory areas are used as a program area, work area, and buffer
area:

Program Area

$2000 to $24FF Program area

Work Area

$2500 to $2501 Stores buffer 1 (stores numerals) pointer

$2502 to $2503 Stores buffer 2 (stores characters) pointer

$2504 to $2505 Stores transfer source word

$2506 to $2507 Stores transfer destination word

Buffer Area

$25600 to $26FF Numeral storage area

$2700 to $27FF Character storage area

Assembly Language Examples Section 6-4

101

Assembly Program
Assembly language program operation:

The numbers and characters are separated and stored in the number storage
buffer and the character storage buffer, respectively. Then numeric strings and
character strings are restored as the original character variables. This program
has no practical application; it’s just an example.

$2000 PSHA Saves registers

PSHB

PSHX

LDD #$2600 Sets first address of buffer 1 in
point 1

STD $2500

LDD #$2700 Sets first address of buffer 2 in
point 2

STD $2502

LDAB 0,X Number of characters to GET

LDX 1,XC Character variable first ad-
dress GET

STX $2504

$2016 LDX $2504 DOUNTIL (number of times
equal to the number of charac-
ters)

LDAA 0,X Character GET

INX Character variable address pointer +1

STX $2504

CMPA #$30 IF (minimum $30)

BLT $2032 THEN

CMPA #$39 IF (numeral less than $39)

BHI $2032 THEN

LDX $2500 Stores numeral in buffer 1

STAA 0,X

INX

STX $2500

BRA $203B

$2032 LDX $2502 ENDIF

STAA 0,X Stores character in buffer 2

INX

STX $2502

$203B DECB Updates counter

BNE $2016 ENDDO

LDD $2500

LDX #$2600 Transfer from buffer 1 to a
character variable

STX $2504

SUBD #$2600

PULX

PSHX

PSHB

LDX 1,X

STX $2506

JSR $2100

LDX #$2700 Transfer from buffer 2 to a
character variable

STX $2504

PULB

PULX

PSHX

LDX 1,X

ABX

STX $2506

LDD $2502

SUBD #$2700

JSR $2100

PULX

PULB

PULA

RTS

$2100 LDX $2504 Data transfer subroutine

LDAA 0,X

INX

STX $2504

LDX $2506

STAA 0,X

INX

STX $2506

DECB

BNE $2100

RTS

Example 2: Use of More than One Parameter
This program singles out the larger of two character strings.

Three parameters are used (i.e., the two original character strings for compari-
son and the other for result storage).

BASIC Program

100 ’ ***** ***** Assembly language

110 ’ ***** Program to single out the larger of two character ***** program $2170 to

120 ’ ***** strings ***** $21AF. Work area

Assembly Language Examples Section 6-4

102

130 ’ ***** ***** $2000 to $2005.

140 CDX$=”13426285903581693417” ’Original character string for comparison CDX$.

150 CDY$=”57201674337291551930” ’Original character string for comparison CDY$.

160 ANS$=”00000000000000000000” ’Result storage character string ANS$.

170 DEF USR0=&H2170 ’Storage address definition of assembly language function.

180 CX%=VARPTR(CDY$)+1 ’Calculation of the storage address of CDX$.

190 POKE &H2000, CX% \ 256 ’Leftmost storage address of CDX$ --> Work area

200 POKE &H2001, CX% MOD 256 ’Rightmost storage address of CDX$ --> Work area

210 CY%=VARPTR(CDY$)+1 ’Calculation of the storage address of CDY$.

220 POKE &H2002, CY% / 256 ’Leftmost storage address of CDY$ --> Work area

230 POKE &H2003, CY% MOD 256 ’Rightmost storage address of CDY$ --> Work area

240 ANS$=USR0(ANS$) ’Execute assembly language function.

250 PRINT ANS$

260 END

Operation

Use VARPTR to obtain the addresses of parameters to be used in the assembly
language function program and store them in the work area in advance. In the
above example, three parameters are used in the assembly language function
program.

Note The addresses of parameters are calculated as integral parameters.

Parameters with the parameter name format “XXXX” will not be stored in the pa-
rameter area but the data in the source program will be used. Therefore, after the
execution of line 240, the value between the quotation marks in line 160 will
change.

Assembly Program

2170 E8 00 LDAB $00, X ’The length of ANS$ � B register

2172 EE 01 LDX $01, X

2174 FF 20 04 STX $2004 ’ANS$ address memory.

2177 FF 20 00 LDX $2000

217A EE 00 LDX $00, X

217C FF 20 00 STX $2000 ’SDX$ address memory.

217F FE 20 02 LDX $2002

2182 EE 00 LDX $00, X

2184 FF 20 02 STX $2002 ’SDY$ address memory.

2187 FE 20 00 LDX $2000

218A A6 00 LDAA $00, X ’SDX$ data read.

218C 08 INX

218D FF 20 00 STX $2000

2190 FE 20 02 LDX $2002

2193 A1 00 CMPA $00, X ’Comparison with the data of SDY$.

2195 24 02 BCC $2199 ’The data of SDX$ < the data of SDY$?

2197 A6 00 LDAA $00, X ’SDY$ data read.

2199 08 INX

219A FF 20 02 STX $2002

219D FE 20 04 LDX $2004

Assembly Language Examples Section 6-4

103

21A0 A7 00 STAA $00, X ’Writes the larger character string to ANS$.

21A2 08 INX

21A3 FF 20 04 STX $2004

21A6 5A DECB

21A7 26 DE BNE $2187 ’Complete?

21A9 39 RTS

Work Area

$2000
$2001
$2002
$2003
$2004
$2005

Storage address memory area of parameter SDX$.

Storage address memory area of parameter SDY$.

Storage address memory area of parameter ANS$.

Example 3: FCS Calculation
This program calculates the FCS to be used in the host link assembly language.

Character strings to be calculated are DA$ and character strings in which cal-
culation results are stored as FCS$.

BASIC Program (100 to 230 Lines)

100 ’ ***** FCS calculation (using *****

110’ ***** assembly language function) ***** Assembly language program $2100 to $213F.

120 ’ ***** Calculate the FCS of DA$ and ***** Work area $2000 to $2001.

130 ’ ***** obtain the result as ANS$ *****

140 DA$=”@10RR00310123” ’The DATA string to calculate the FCS.

150 FCS$=”43” ’FCS storage character string. (The contents of “XX” will be
substituted and converted when the program runs.)

160 DEFUSR0=&H2100 ’Storage address definition of assembly language function

170 B%=VARPTR(FCS$)+1 ’Calculation of the storage address of FCS$.

180 POKE &H2000, B% \ 256 ’Leftmost storage address of FCS$ --> Work area

190 POKE &2001, B% MOD 256 ’Rightmost storage address of FCS$ --> Work area

200 DA$=USR0(DA$) ’Execute assembly language function.

210 ANS$=DA$+FCS$ ’Create a character string added with the FCS.

220 PRINT ANS$

230 END

240 ’

500 ’ ***** FCS calculations (BASIC *****

510 ’ ***** instructions only) *****

520 ’ *****Calculate the FCS of DA$ and *****

530 ’ ***** obtain the result as ANS$ *****

540 DA$=”@10RR00310123”

550 L=LEN(DA$)

560 Q=0

570 FOR N=1 TO L

580 Q=ASC(MID$(DA$, N, 1)) XOR Q

590 NEXT

600 FCS$=HEX$(Q)

Assembly Language Examples Section 6-4

104

610 IF LEN(FCS$)=1 THEN FCS$=”0”+FCS$

620 ANS$=DA$+FCS$

630 PRINT ANS$

640 END

As seen above, there is a program which is calculated using BASIC instructions
in lines 500 to 640 for purposes of comparison.

The execution times required by the assembly language functions and BASIC
instructions are as follows:

Assembly language functions (lines 140 to 220): 29 ms
BASIC instructions (lines 540 to 630): 160 ms

Assembly Program

2100 E6 00 LDAB $00, X ’The length of DA$ � B register

2102 EE 01 LDX $01, X ’The storage of DA$ � X register

2104 4F CLRA

2105 A8 00 EORA $00, X ’Calculate the EOR.

2107 08 INX

2108 5A DECB

2109 26 FA BNE $2105 ’Repeat for the number of character strings.

210B 16 TAB

210C C4 0F ANDB #$0F ’ASCII conversion of the FCS value.

210E C1 0A CMPB #$0A

2110 25 02 BCS $2114 ’If the rightmost digit of the FCS � 10

2112 CB 09 ADDB #$07 ’ THEN convert to A to F.

2114 CB 30 ADDB #$30

2116 44 LSRA

2117 44 LSRA

2118 44 LSRA

2119 44 LSRA

211A 81 0A CMPA #$0A

211C 25 02 BCS $2120 ’If the leftmost digit of the FCS � 10

211E 8B 09 ADDA #$07 ’ THEN convert to A to F.

2120 8B 30 ADDA #$30

2122 FE 20 00 LDX $2000

2125 EE 00 LDX $00, X

2127 ED 00 STD $00, X ’Store the data in the FCS$ area.

2129 39 RTS

Work Area

$2000
$2001 Storage address memory area of parameter FCS$.

Note The address of parameter FCS$ is stored in $2000 and $2001 before retrieving
the assembly program.

Assembly Language Examples Section 6-4

105

Appendix A
Standard Models

Item Description Model No.

ASCII Unit EEPROM C500-ASC04

Battery Set Backup battery for C500 only C500-BAT08

107

Appendix B
Specifications

Item Specifications

Communication mode Half duplex

Synchronization Start-stop

Baud rate Port 1: 300/600/1,200/2,400/4,800/9,600 bps
Port 2: 300/600/1,200/2,400/4,800/9,600/19,200 bps (switch selectable)

Transmission mode Point-to-point

Transmission distance 15 m max.

Interface Conforms to RS-232C. Two ports (D-sub 25P connectors)

Memory capacity BASIC program area and BASIC data area: 24K bytes (RAM) (memory is protected by
built-in battery backup)
BASIC program storage area: 24K bytes (EEPROM)
The program memory area can be segmented into 3 individual program areas.

Transfer capacity 255 words at a maximum of 20 words per cycle

Timer function Year, month, day, date, hour, minute, second (leap year can be programmed)
Accuracy: month + 30 seconds (at 25°C)

Diagnostic functions CPU watchdog timer, battery voltage drop

Battery life 5 years at 25°C. (The life of the battery is shortened if the ASCII Unit is used at higher
temperatures.)

Internal current consumption 200 mA max. at 5 VDC

Dimensions 34.5 x 250 x 93 (HxWxD) mm

Weight 300 grams max.

EEPROM Has a lifetime of 5,000 saves

Note Abnormal data may be output on the ports when power is turned ON. Set up the device receiving the data to
ignore (e.g., clear) any abnormal data output during startup procedures.

Front Panel DIP Switch

Pin
No.

Function Description

1 Start mode Sets automatic or manual mode for power-on start-up of a BASIC
program.

2 Automatic program transfer from
EEPROM to RAM

Specifies whether the BASIC program is automatically transferred
from the EEPROM to RAM on power application or reset

3 and 4 Program No. This pin sets the program number. The program number can be
changed by the PGEN command.

5 Data Section mode selector This pin sets the Data Section to either two-word or four-word mode
6 to 8 Screen size Sets the screen size of the of the input device

Back Panel DIP Switch

Pin No. Function Description
1 to 3 Baud rate for Port 1 Sets the baud rate for Port 1.

4 to 6 Baud rate for Port 2 Sets the baud rate for Port 2.
7 and 8 Not used Always set these pins to OFF.

Appendix BSpecifications

108

RS-232 Interface
The ASCII Unit is connected to peripheral devices through two RS-232C interfaces. To connect peripheral devices
to the ASCII Unit, use the included connectors.

The following figure shows the RS-232C connectors on the ASCII Unit. The electrical characteristics of these con-
nectors conform to the EIA-RS-232C standards. Signal directions are oriented from the point of view of the ASCII
Unit.

Pin
No. Symbol Name Direction

1 FG Frame ground

2 SD Send data Output

3 RD Receive data Input

4 RTS Request to send Output

5 CTS Clear to send Input

6

Not used

7 SG

Data send ready

8 to 19 ---

Data terminal ready Output20 DTR

Signal ground

21 to 25

DSR

Not used

Input

1 14

13 25

1 14

13 25

Appendix BSpecifications

109

Connections to Peripheral Devices

FG

SG

SD

CTS

DSR

2

5

6

1

3

20

FG

SG

RXD

DTR

1

7 7

ASCII Unit Printer

(Shielded cable)

FG

SG

SD

RD

RTS

2

3

4

7

3

4

GND

TXD

RXD

RTS

1

7

2

ASCII Unit

Display Terminal

(Shielded cable)

CTS

DSR

5

6

8

20

DCD

DTR

FG

SG

SD

RD

RTS

2

3

4

1

7

CTS

DSR

5

6

FG

SG

SD

RD

RTS

CTS

DSR

DTR 20 DTR

1

7

2

3

4

5

6

20

ASCII Unit Personal Computer

(Shielded cable)

FG

SG

SD

RD

RTS

2

3

4

1

7

CTS

DSR

5

6

FG

SG

SD

RD

RTS

CTS

CD

DTR 20 DTR

1

7

2

3

4

5

8

20

ASCII Unit Bar-code Reader

(Shielded cable)

Appendix BSpecifications

110

Interface Signal Timing
Before using any port after the ASCII Unit is turned on or restarted, Port 1 is assigned to the peripheral device
TERM and Port 2 is assigned to LPRT. When there is an input or output at a port, the RTS, STS, DTR, and DSR
signals are treated as described below.

Transmission from the ASCII Unit to a Peripheral Device

The default setting of the DTR signal is ON at Port 1 and OFF at Port 2. When the OPEN instruction is executed, the
condition of the DTR signal varies with the peripheral device as follows:

Peripheral device TERM SCRN KEYB COMU LRPT

Condition of DTR ON OFF ON ON OFF

Note ON: HIGH
OFF: LOW

The RTS signal will be OFF if the effective signal wire is X (normally OFF) when the OPEN instruction is executed.
If the effective signal wire is O (normally ON), the RTS signal will be ON from the execution of the OPEN instruction
until the execution of the CLOSE instruction.

When the PRINT instruction is executed, the RTS signal will be ON and the ASCII Unit will transmit data after
confirming that the CTS and DSR signals are both ON. If these signals are not ON, the ERROR indicator will be lit
and the ASCII Unit will wait for the CTS and DSR signals to be turned ON. If the CTS signal is OFF during data
transmission, the output operation of the ASCII Unit will be interrupted.

Note If the DSR or CTS signal is disabled, these signals will be ignored. However, if the CTS signal to Port 2
needs to be disabled, either turn it ON or connect Port 2 to the RTS signal.

If the CLOSE statement is executed, TERM is assigned to Port 1 and LPRT is assigned to Port 2.

The following timing chart applies if the peripheral devices are TERM and COMU when the OPEN instruction is
executed.

 Port 1

Port 2

Data transmission Data transmission

CLOSE

ON

OFF
DTR (output)

RTS (output)

DSR (input)

CTS (input)

ON

OFF

Data

OPEN

ON
OFF

ON
OFF

Always ON

Normally OFF

Check

Check

Check

Check

Always ON

Normally OFF

PRINT
completesPRINT starts

Appendix BSpecifications

111

The following timing chart applies when the peripheral devices are SCRN and LPRT when the OPEN instruction is
executed.

 Port 1

Port 2

Data transmission Data transmission

CLOSE

ON

OFF
DTR (output)

RTS (output)

DSR (input)

CTS (input)

ON

OFF

Data

OPEN

ON
OFF

ON
OFF

Always ON

Normally OFF

Check

Check

Check

Check

Always ON

Normally OFF

PRINT
completesPRINT starts

Transmission from a Peripheral Device to the ASCII Unit
The DTR signal is ON when the KEYB or COMU is selected as the peripheral device with the OPEN instruction.

The RTS signal will be OFF if the effective signal wire is X (normally OFF) when the OPEN instruction is executed.
If the effective signal wire is O (normally ON), the RTS signal will be ON from the execution of the OPEN instruction
until the execution of the CLOSE instruction.

When the RTS signal is always ON, reception data will be stored in the buffer regardless of whether or not the
INPUT instruction has been executed.

The INPUT, INPUT#, or INPUT$ instruction turns the RTS signal ON and data, if any, will be input. The CTS and
DSR signals will not be checked.

When the CLOSE instruction is executed, Port 1 will be assigned to TERM and Port 2 will be assigned to LPRT.

Data transmission Data transmission

CLOSE

ON

OFF
DTR (output)

RTS (output) ON

OFF

 Port 1
Port 2

Always ON

Normally OFF

Always ON

Normally
OFF

INPUT
completeINPUT startsOPEN

Data

Transmission from peripheral devices is possible when the RTS signal is ON.

Appendix BSpecifications

112

Difference in Output According to Opened Peripheral Device
The following table shows the difference in instruction output, such as the PRINT instruction output, among the
peripheral devices designated by the OPEN instruction. After RESET, Port 1 is assigned to TERM and Port 2 is
assigned to LPRT automatically. There is no difference in output between Port 2 set to SCRN and Port 2 set to
COMU.

� Output
∆ Output with a code added
X Not output

Code Abbreviation TERM (see note
1)

SCRN (see note
2)

LPRT (see note 3) COMU

Hexa-
deci-
mal

Deci-
mal

Port 1 Port 2 Port 1 Port 2 Port 1 Port 2 Port 1 Port 2

00 0 NUL X Not
used

X � � � � �

01 1 SH SOM X X � � � � �

02 2 SX EOA X X � � � � �

03 3 EX EOM X � � � � �

04 4 ET EOT X X � � � � �

05 5 EQ WRU X X � � � � �

06 6 AK RU X X � � � � �

07 7 BL BEL X X � � � � �

08 8 BS FEO ∆ (see
note 4)

∆ (see
note 4)

� � � � �

09 9 HT TAB X X � � � � �

0A 10 LF LF X X � � � � �

0B 11 HM VT � � � � � � �

0C 12 CL FF � � � � � � �

0D 13 CR CR ∆ (see
note 5)

∆ (see
note 5)

� � � � �

0E 14 SO SO X X � � � � �

0F 15 SI SI X X � � � � �

10 16 DE DCO X Not
used

X � � � � �

11 17 D1 XON X X � � � � �

12 18 D2 TAP X X � � � � �

13 19 D3 XOF X X � � � � �

14 20 D4 TAP X X � � � � �

15 21 NK ERR X X � � � � �

16 22 SN SYN X X X � � � �

17 23 EB LEM X X X � � � �

18 24 CN CAN X X � � � � �

19 25 EM S1 X X � � � � �

1A 26 SB EOF X X � � � � �

1B 27 EC ESC X X � � � � �

1C 28 → S4 � � � � � � �

1D 29 ← S5 � � � � � � �

1E 30 ↑ S6 � � � � � � �

1F 31 ↓ S7 � � � � � � �

Note 1. Only port 1 can be assigned to TERM.

2. The SCRN outputs all codes from Port 2 except &H16 (cursor ON) and &H17 (cursor OFF).

Appendix BSpecifications

113

3. If the LPRT receives the &H0A (LF), &H0B (HM), &H0C (CL), or &H0D (CR) code. &H0A (LF) will be
added to the code and output. Any other code will be stored in the buffer and when the number of charac-
ters of the stored codes reaches 80, &H0A (LD) will be added to each of the codes and output. When the
CLOSE instruction is executed, the port will close after all remaining data in the buffer is output.

4. A cursor shift code corresponding to the present display position is output and the cursor is shifted one
character to the left.

5. The ASCII Unit outputs &H0C (CR) added with &H0A (LF).

6. If the COMU receives codes &H00 to &H1F, in the case of the C500-ASC01/02, the code is output
immediately. Each code from &H20 to &HFF will be stored in the buffer and when the number of charac-
ters of the stored codes reaches 256, the codes will be output. In the case of the C500-ASC03/04, each
code is output whenever the buffer receives the code.

7. If Port 1 is opened by a peripheral device other than TERM, be sure to execute the CLOSE instruction to
stop the program. If key-in is not accepted from the terminal after the program stops, press the CTRL + X
Keys.

115

Appendix C
PC Statements and Refresh Timing

Instructions and Refresh Timing
Data transfer between the ASCII Unit and the PC is executed during PC I/O refresh.

I/O Refresh
Cycle Time

I/O Refresh

Instruction Execution Instruction Execution

Data Transfer Data Transfer

Processing in BASIC programASCII Unit

C500 CPU

BASIC Statements and PC Cycle Time

PC GET
The ASCII Unit takes in data obtained in the last PC I/O refresh before execution of PC GET.

I/O Refresh I/O Refresh

ASCII Unit

C500 CPU Instruction Execution Instruction Execution

PC GET Statement PC GET Statement

Data from before

PC PUT
The ASCII Unit transfers data during the first PC I/O refresh after execution of PC PUT.

PC PUT Statement

I/O Refresh I/O Refresh

ASCII Unit

C500 CPU Instruction Execution Instruction Execution

PC PUT Statement

Data Transfer Data Transfer

Appendix CPC Statements and Refresh Timing

116

PC READ
In four-word mode, when the PC’s WRITE flag is set, the base address is transferred. By the next I/O refresh the
data is read.

I/O Refresh

ASCII Unit

C500 CPU

Instruction Execution

I/O Refresh I/O Refresh I/O Refresh

Write Flag (word n bit 01)

* ASCII Busy (word n+3 bit 00)

Instruction Execution

Instruction Execution

PC READ statement

READ
Transfer Words

First Transfer Word

* When PC READ is executed in two-word mode using READ(88), n+3 becomes n+1.

PC WRITE
In four-word mode, when the PC’s READ flag is set during I/O refresh, the PC WRITE statement obtains the base
word address and the number of words to be transferred. With the next I/O refresh, data is transferred.

I/O Refresh

ASCII Unit

C500 CPU

Instruction Execution

I/O Refresh I/O Refresh I/O Refresh

READ Flag (word n bit 02)

* ASCII Busy (word n+3 bit 00)

Instruction Execution

Instruction Execution

PC WRITE statement

Transfer Words

First Transfer Word

WRITE

* When PC WRITE is executed in two-word mode using WRIT(87), n+3 becomes n+1.

Appendix CPC Statements and Refresh Timing

117

ON PC GOSUB
After the ON PC GOSUB statement is executed, the PC’s categorized number allocation is written in. When the
Write flag is set, the GOSUB statement is executed. Only when the WRITE flag is set will the ON PC GOSUB
statement be executed.

I/O Refresh I/O Refresh I/O Refresh

Instruction Execution Instruction ExecutionInstruction Execution

ASCII Unit

C500 CPU

I/O Refresh

ON PC GOSUB Statement Execution ON PC GOSUB Statement Execution
Categorized Number Al-
location (word n bit 04
to 07)

WRITE Flag (word n bit 01)

ASCII Unit (word n+3 bit 00)

PC ON
After the ON PC GOSUB statement is executed, the PC’s categorized number allocation is written in. When the
Write flag is set, the GOSUB statement is executed. Only when the WRITE flag is set will the ON PC GOSUB
statement be executed.

I/O Refresh I/O Refresh I/O Refresh

Instruction Execution Instruction ExecutionInstruction Execution

ASCII Unit

C500 CPU

I/O Refresh

PC ON Statement Execution PC ON Statement Execution
Categorized Number Al-
location (word n bit 04
to 07)

WRITE Flag (word n bit 01)

ASCII Unit (word n+3 bit 00)

Appendix CPC Statements and Refresh Timing

118

PC STOP
After the ON PC GOSUB statement is executed, the PC’s categorized number allocation is written in. When the
Write flag is set, the ASCII Unit busy flag is set for one cycle time, but the GOSUB statement is not executed. Only
after the PC ON statement is executed will the ON PC GOSUB statement be executed.

I/O Refresh I/O Refresh I/O Refresh

Instruction Execution Instruction ExecutionInstruction Execution

ASCII Unit

C500 CPU

I/O Refresh

PC STOP Statement Execution PC STOP Statement Execution

Categorized Number Al-
location (word n bit 04
to 07)

WRITE Flag (word n bit 01)

ASCII Unit (word n+3 bit 00)

119

Appendix D
Formatting and Data Conversion

Format Meaning Name

mIn Indicates the nth byte of m decimal words I format

mHn Indicates the nth byte of m hexadecimal words H format

mOn Indicates the nth byte of m octal words O format

mBn Indicates the nth bit of of m binary words B format

mAn Indicates the nth byte of m ASCII words A format

SmXn Indicates the nth bit/byte of m words S format

When m is omitted, the default value is one. When using the A format, one format designator corresponds to only
one variable in the variable list: e.g., the first format designator corresponds to the first variable in the list, the sec-
ond format designator corresponds to the second variable in the list, etc.

In all formats except A and S, one format designator can apply to many variables. For example:“5H2”; A, B, C, D, E.
This is the same as “1H2, 1H2, 1H2, 1H2, 1H2”; A, B, C, D, E.

All format designators must be in uppercase characters.

Under normal conditions, the maximum number of words that can be transferred at one time is 255. When using
the A or B formats, however, the maximum number of words that can be transferred is between 50 and 60.

I Format (mIn)
This format is used for decimal numbers (0 to 9):

m: number of words

I: decimal format designator

n: the nth digit of the word

Digit n Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 --- --- --- x 100

2 --- --- x 101 x 100

3 --- x 102 x 101 x 100

4 x 103 x 102 x 101 x 100

Example: 2I3 ... Indicates 2 decimal words of 3 digits each.

H Format (mHn)
This format is used for hexadecimal numbers (0 to F):

m: number of words

H: hexadecimal format designator

n: the nth digit of the word

Digit n Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 --- --- --- x 160

2 --- --- x 161 x 160

3 --- x 162 x 161 x 160

4 x 163 x 162 x 161 x 160

Example: 3H4 ... Three hexadecimal words of 4 digits each.

 O Format (mOn)
This format is used for octal numbers (0 to 7):

Appendix DFormatting and Data Conversion

120

m: number of words

O: octal format designator

n: the nth byte of the word

Digit n Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 --- --- --- x 80

2 --- --- x 81 x 80

3 --- x 82 x 81 x 80

4 x 83 x 82 x 81 x 80

Example: 4O2 ... Indicates four octal words of two digits each

B Format (mBn)
This format is used for binary numbers (0 to 1):

m: number of words

B: binary format designator

n: the nth bit of the word

Digit n
Bit

1

2

3

4

__ __ __ __ __ __ __ __ __ __ __ __ __ __ __

__ __ __ __ __ __ __ __ __ __ __ __ __ __ __

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__

__

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__

__

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__

__

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__

__

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__

__

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__

__

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__ __ __ __ __ __ __ __ __ __ __ __ __ __

__

__

5

6

7

8

9

10

11

12

13

14

15

0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

x215

x214

x213

x212

x211

x210

x29

x28

x27

x26

x25

x24

x23

x22

x21

x20

Appendix DFormatting and Data Conversion

121

Example: 5B14... Indicates five binary words of 14 bits each.

 A Format (mAn)
This format is used for ASCII characters:

m: number of words

A: ASCII format designator

n: the nth byte of the word

Digit n Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 --- ASCII code

2 ASCII code ---

3 ASCII code ASCII code

Example: 6A2... Indicates six ASCII words of two characters each.

A maximum of 255 words can be transferred at one time when the A format is used because many PC words can
be represented by one BASIC variable.

Example: PC READ “50A3, 100A2, 30A1, 75A3”; A$, B$, C$, D$

A$: Fifty PC words (50 words x 2 characters = 100 characters) indicated by 50A3 are assigned to this variable.

B$: One hundred PC words (100 words x 1 character = 100 characters) indicated by 100A2 are assigned to this
variable.

C$: Thirty PC words (30 words x 1 character = 30 characters) indicated by 30A1 are assigned to this variable.

D$: Seventy-five PC words (75 words x 2 characters = 150 characters) indicated by 75A3 are assigned to this
variable.

S Format (SmIn, SmHn, SmOn, SmBn)
This format is used for array variables.

S: format designator

m: number of words

n: the nth bit/byte of the word

Format Meaning

SmIn Indicates an array in decimal format.

SmHn Indicates an array in hexadecimal format.

SmOn Indicates an array in octal format.

SmBn Indicates an array in binary format.

Each S Format designator corresponds to one variable from the variable list: the first designator corresponds to
the first variable in the list, etc.

The array variables must be one dimensional. Each array variable in the list must indicate (with a subscript) a
specific element within the array. The number of words to be written to or read from the array will be incremented
from the specified element. For example: if the array variable T(4) is specified in a READ statement and the corre-
sponding format is S100I4, then 100 words will be read from the array, starting at T(4) and ending at T(104).

Example: PC READ “S100I4, S75H2, S80O3”; A(1), B(11), C(51)

A(1) to A(100): A hundred words of 4-digit decimal data indicated by S100I4 are read to these variables.

B(11) to B(85): Seventy-five words of 2-digit hexadecimal data indicated by S75H2 are read to these variables.

C(51) to C(130): Eighty words of 3-digit octal data indicated by S80O3 are read to these variables.

Examples of PC READ Format Conversion
I Format

Appendix DFormatting and Data Conversion

122

Contents of PC word

1 2 3 4

PC READ “ I 1 ” ; J → J = 4
PC READ “ I 2 ” ; J → J = 3 4
PC READ “ I 3 ” ; J → J = 2 3 4
PC READ “ I 4 ” ; J → J = 1 2 3 4

Integer variable

Character variable

PC READ “ I 1 ” ; A$ → A$ = “ 4 ”
PC READ “ I 2 ” ; A$ → A$ = “ 3 4 ”
PC READ “ I 3 ” ; A$ → A$ = “ 2 3 4 ”
PC READ “ I 4 ” ; A$ → A$ = “ 1 2 3 4 ”

H Format

8 9 A B

PC READ “ H 1 ” ; J → J = & H B = 11
PC READ “ H 2 ” ; J → J = & H A B = 171
PC READ “ H 3 ” ; J → J = & H 9 A B = 2475
PC READ “ H 4 ” ; J → J = & H 8 9 A B = –30293

PC READ “ H 1 ” ; A $ → A $ = “ B ”
PC READ “ H 2 ” ; A $ → A $ = “ A B ”
PC READ “ H 3 ” ; A $ → A $ = “ 9 A B ”
PC READ “ H 4 ” ; A $ → A $ = “ 8 9 A B ”

Contents of PC word

Integer variable

Character variable

O Format

PC READ “ O 1 ” ; J → J = & 4
PC READ “ O 2 ” ; J → J = & 3 4
PC READ “ O 3 ” ; J → J = & 2 3 4
PC READ “ O 4 ” ; J → J = & 1 2 3 4

= 4
= 2 8
= 1 5 6
= 6 6 8

PC READ “ O 1 ” ; A $ → A $ = “ 4 ”
PC READ “ O 2 ” ; A $ → A $ = “ 3 4 ”
PC READ “ O 3 ” ; A $ → A $ = “ 2 3 4 ”
PC READ “ O 4 ” ; A $ → A $ = “ 1 2 3 4 ”

1 2 3 4

Contents of PC word

Integer variable

Character variable

B Format

Contents of PC word

C 1 2 2

PC READ “ B 1 ” ; J → J = 2
PC READ “ B 2 ” ; J → J = 0
PC READ “ B 5 ” ; J → J = 3 2
PC READ “ B 1 4 ” ; J→ J = 1 6 3 8 4
PC READ “ B 1 5 ” ; J→ J = – 3 2 7 6 8

Integer variable

Character variable

PC READ “ B 1 ” ; A $ → A $ = “ 2 ”
PC READ “ B 2 ” ; A $ → A $ = “ 0 ”
PC READ “ B 5 ” ; A $ → A $ = “ 3 2 ”
PC READ “ B 1 4 ” ; A $ → A $ = “ 1 6 3 8 4 ”
PC READ “ B 1 5 ” ; A $ → A $ = “ – 3 2 7 6 8 ”

Note: The integer variable causes an error be-
cause it does not match the binary data for-
mat.

A Format

Appendix DFormatting and Data Conversion

123

5 1 5 2
PC READ “ 2 A 1 ” ; A $ → A $ = “ R T ”
PC READ “ 2 A 2 ” ; A $ → A $ = “ Q S ”
PC READ “ 2 A 3 ” ; A $ → A $ = “ Q R S T ”

Contents of PC word

Character variable5 3 5 4

Q : & H 5 1
R : & H 5 2
S : & H 5 3
T : & H 5 4

S Format

0 1 2 3 PC READ “ S 4 I 4 ” ; A (1)

Contents of PC word

4 5 6 7

Integer variable
(in format I)

8 9 0 1

2 3 4 5

→ A (1) = 1 2 3
→ A (2) = 4 5 6 7
→ A (3) = 8 9 0 1
→ A (4) = 2 3 4 5

Examples of PC Write Format Conversion
I Format

Contents of PC word

0 0 0 4 PC WRITE “ I 1 ” ; J

Integer variable

Character variable

0 0 3 4 PC WRITE “ I 2 ” ; J

0 2 3 4 PC WRITE “ I 3 ” ; J

1 2 3 4 PC WRITE “ I 4 ” ; J

← J = 1 2 3 4

0 0 0 1 PC WRITE “ I 1 ” ; A $

0 0 1 2 PC WRITE “ I 2 ” ; A $

0 1 2 3 PC WRITE “ I 3 ” ; A $

1 2 3 4 PC WRITE “ I 4 ” ; A $

← A $ = “ 1 2 3 4 ”

Appendix DFormatting and Data Conversion

124

H Format

Contents of PC word

0 0 0 B PC WRITE “ H 1 ” ; J

Integer variable

Character variable

0 0 A B PC WRITE “ H 2 ” ; J

0 9 A B PC WRITE “ H 3 ” ; J

8 9 A B PC WRITE “ H 4 ” ; J

← J = – 3 0 2 9 3 = & H 8 9 A B

0 0 0 8 PC WRITE “ H 1 ” ; A $

0 0 8 9 PC WRITE “ H 2 ” ; A $

0 8 9 A PC WRITE “ H 3 ” ; A $

8 9 A B PC WRITE “ H 4 ” ; A $

← A $ = “ 8 9 A B ”

O Format

Contents of PC word

0 0 0 4 PC WRITE “ O 1 ” ; J

Integer variable

Character variable

0 0 3 4 PC WRITE “ O 2 ” ; J

0 2 3 4 PC WRITE “ O 3 ” ; J

1 2 3 4 PC WRITE “ O 4 ” ; J

← J = 6 6 8 = & 1 2 3 4

0 0 0 1 PC WRITE “ O 1 ” ; A $

0 0 1 2 PC WRITE “ O 2 ” ; A $

0 1 2 3 PC WRITE “ O 3 ” ; A $

1 2 3 4 PC WRITE “ O 4 ” ; A $

← A $ = “ 1 2 3 4 ”

Appendix DFormatting and Data Conversion

125

B Format

Contents of PC word

0 0 0 1 PC WRITE “ B 0 ” ; J

Integer variable

0 0 0 2 PC WRITE “ B 1 ” ; J

0 0 1 0 PC WRITE “ B 4 ” ; J

8 0 0 0 PC WRITE “ B 15 ” ; J

← J = – 3 2 7 4 9 = & H 8 0 1 3

Note: Integer variables in B format will cause an error.

A Format

Contents of PC word

0 0 5 1
PC WRITE “ 2 A 1 ” ; A $

0 0 5 2

PC WRITE “ 2 A 2 ” ; A $
5 1 0 0

PC WRITE “ 2 A 3 ” ; A $

5 2 0 0
← A $ = “ Q R S T ”

5 1 5 2

5 3 5 4

Character variable

Q : & H 5 1
R : & H 5 2
S : & H 5 3
T : & H 5 4

S Format

← A (1) = 1 2 3
A (2) = 4 5 6 7
A (3) = 8 9 0 1
A (4) = 2 3 4 5

9 8 7 6

Contents of PC word

5 4 3 2

1 0 9 8

7 6 5 4

PC WRITE “ S 4 I 4 ” ; A (1) Integer variable
(in format I)

Appendix DFormatting and Data Conversion

126

Execution Times
Command Execution

Time (ms)

PC READ “ I 4 ” ; A 44 µs

PC READ “ 5 I 4 ” ; A, B, C, D, E 0.2

PC READ “ 1 0 I 4 ” ; A, B, C, D, E, G, H, I, J 0.4

PC READ “ 1 0 0 A 3, 1 0 0 A 3, 5 5 A 3 ” ; A $, B $, C $ 10.2

PC WRITE “ I 4 ” ; A 42 µs

PC WRITE “ 5 I 4 ” ; A, B, C, D, E 0.2

PC WRITE “ 1 0 I 4 ” ; A, B, C, D, E, G, H, I, J 0.4

PC WRITE “ 1 0 0 A 3, 1 0 0 A 3, 5 5 A 3 ” ; A $, B $, C $ 10.4

The following table lists execution times for several different data transfer configurations using WRIT(87/191) and
READ(88/190).

Instruction

WRIT(87/191)

#0001

00

DM 000

1 word

WRIT(87/191)

#0255

00

DM 000

5 words

READ(88/190)

#0001

DM 000

10 words

01

READ(88/190)

#0255

DM 000

100 words

01

C500 Executed 0.37 ms 3.64 ms 0.38 ms 3.66 ms

Not executed 22 µs

C1000H Executed 1.3 ms 6.4 ms 1.3 ms 7.0 ms

Not executed 6 µs

C2000H Executed 0.83 ms 4.21 ms 0.83 ms 4.62 ms

Not executed 4 µs

CV500 Executed 0.66 ms 4.91 ms 0.56 ms 4.63 ms

Not executed 1.35 µs

CV1000 Executed 0.55 ms 4.09 ms 0.47 ms 3.86 ms

Not executed 1.13 µs

127

Appendix E
Memory Map

This appendix provides the memory map of the ASCII Unit.

Memory Area Base
Address

Remarks

I/O area 1 &H0000 This area is for internal ports of the microprocessor 63B03.

System work area &H0020 This area is used by the system.

Assembly language program area &H2000 Stores assembly language program. The size of this area can be
changed with MSET command.

BASIC Text area --- Stores intermediate language codes of BASIC program. The size of
this area can be changed with the MSET command.

System stack area --- Stack area used by the system.

Character string area --- Stores character strings. The size of this area is normally 200 bytes,
but can be changed with the CLEAR command.

Common memory area or the
Data Section

&H8000 RAM area for interfacing between ASCII Unit and PC. When this area
is accessed, an I/O UNIT ERROR may occur. Do not access this area.

I/O area 2 &H9000 Area to which ports ACIA, PTM, and RTC are assigned.

System area &HA000 This is the ROM area.

Port Address Assignments
Address R/W Contents System

Default Value

$0010 R/W Transfer rate/mode control register $34

$0011 R/W TX/RX control status register $001

$0012 R Receive data register None

$0013 W Transmit data register None

$9400 R Status register None

$9400 W Control register $11

$9401 R Receive data register None

$9401 W Transmit data register None

Appendix EMemory Map

128

Communication Flags
Communication Input Flags

Address
$0015

START

/STOP

____CTS1 DSR2 DSR1

BAT

LOW

1
IRQ2 IRQ1

___ ___ ___ ___ ___

7 6 5 4 3 2 1 0

Port for interrupts from ACIA and PTM

Port for interrupts from START/STOP
switch and PC

0 when START/STOP switch is ON

Normally 1

1 when battery voltage drops

Port 1 DSR signal, active low

Port 2 DSR signal, active low

Port 1 CTS signal, active low

Communication Output Flags

Address
$0003 BANK2 BANK1 WDREF DTR2 DTR1

___ ___

7 6 5 4 3 2 1 0

TXD1 RXD1 RTS1

Port 1 DTR signal, active low

Port 2 DTR signal, active low

1 RTS signal, active low

1 receive data

Port 1 transfer data

Watchdog timer refresh port

Bank ports (Do not change
these ports.)

Appendix EMemory Map

129

Devices
Address R/W Contents System

Default Value
Remarks

$9800 R 0 None

W Control registers #1 and #3 $82 Writes to #3

$9801 R Status register None

W Control register #2 $00

$9802 R Higher byte of timer #1 counter None

W Higher byte (MSB) of buffer register None

$9803 R Lower byte (LSB) of buffer register None

W Lower byte of timer 1 latch None

$9804 R Higher byte of timer #2 counter None

W Higher byte (MSB) of buffer register None

$9805 R Lower byte (LSB) of buffer register None

W Lower byte of timer #2 latch None

$9806 R Higher byte of timer #3 counter None

W Higher byte (MSB) of buffer register None Changes depend on
transfer rate

$9807 R Lower byte (LSB) of buffer register None

W Lower byte of timer #3 latch None

Address R/W Contents System Default Value

$9000 R/W 1-second digit : 0 through 9 None

$9001 R/W 10-second digit : 0 through 5 None

$9002 R/W 1-minute digit : 0 through 9 None

$9003 R/W 10-minute digit : 0 through 5 None

$9004 R/W 1-hour digit : 0 through 9 None

$9005 R/W 10-hour digit : 0 through 2 None

$9006 R/W 1-day digit : 0 through 9 None

$9007 R/W 10-day digit : 0 through 3 None

$9008 R/W 1-month digit : 0 through 9 None

$9009 R/W 10-month digit : 0 and 1 None

$900A R/W 1-year digit : 0 through 9 None

$900B R/W 10-year digit : 0 through 9 None

$900C R/W Week digit : 0 through 6 None

$900D R/W Control register D 0 is set in D0.

$900E R/W Control register E None

$900F R/W Control register F 0 is set in D0, 1, and 3.

Note A 4.9152-MHz clock is supplied to the MPU and a 1.2288-MHz clock is supplied to the ACIA and PTM.

Appendix EMemory Map

130

Address Contents

$0145 Port 1 Port storage pointer (reception)
$0146 Data extraction pointer (reception)

$0147 Data storage pointer (transfer)

$0148 Reception buffer, 256 bytes

$024B Port 2 Data storage pointer (reception)

$024C Data extraction pointer (reception)

$024D Data storage pointer (transfer)

$024E Reception buffer, 256 bytes

$1440 Port 1 Transfer buffer, 256 bytes

$1540 Port 2 Transfer buffer, 256 bytes

131

Appendix F
Troubleshooting

Error Message Format
When an error occurs during BASIC program execution, the error messages shown in the following tables are
output to the screen of the terminal. If a device other than a terminal is connected to port 1, the program stops, and
the messages are reserved until the terminal is attached and CTRL+X is keyed in.

Example of a displayed message:

SYNTAX ERROR IN xxxx

xxxx is displayed when a command is executed with a number specified.

Error Message Error
Code

Explanation

BAD DATA IN PORT ERROR 58 Format of data read from port is wrong.

BAD I/O MODE ERROR 51 Wrong port or peripheral device has been specified.

BAD PORT DESCRIPTOR ERROR 55 Descriptor is incorrect.

BAD PORT NUMBER ERROR 50 Port number is incorrect.

BAD SUBSCRIPT ERROR 9 Subscript outside predetermined range is used.
Assign subscript of maximum value with the DIM command.

CAN’T CONTINUE ERROR 17 Program execution cannot be resumed. Execute program with
RUN command.

DEVICE I/O ERROR 53 Error has occurred during communication with a peripheral
device.

DEVICE UNAVAILABLE ERROR 60 Wrong device name has been specified.

DIVISION BY ZERO ERROR 11 Attempt is made to divide data by 0.

DIRECT STATEMENT IN PORT ERROR 56 Unnumbered line has been read while program is being loaded.

DUPLICATE DEFINITION ERROR 10 Array, or user function, is defined in duplicate.

FORMAT ERROR 67 Incorrect format or memory area designator, number of words to
be transferred or base address has not been specified.

FOR WITHOUT NEXT ERROR 23 FOR and NEXT statements are not correctly used in pairs.

ILLEGAL DIRECT ERROR 12 Attempt is made to execute statements that cannot be executed
in direct mode. INPUT and LINE INPUT can be executed in
BASIC program only.

ILLEGAL FUNCTION CALL ERROR 5 Statement or function is called incorrectly.

INPUT PAST END ERROR 54 All data in port has been read.

MISSING OPERAND ERROR 22 Necessary parameter is missing.

NEXT WITHOUT FOR ERROR 1 NEXT and FOR statements are not used in pairs.

NO RESUME ERROR 19 RESUME statement is missing in error processing routine.

NO SUPPORT ERROR 64 That operation is not supported.

OUT OF DATA ERROR 4 No data exists to be read by READ statement. Check number of
variables in READ statements and number of constants in DATA
statements.

OUT OF MEMORY ERROR 7 Memory capacity is full. Expand BASIC program area by CLEAR
and MSET commands.

OUT OF STRING SPACE ERROR 14 Character area is insufficient. Expand area by CLEAR command.

OVERFLOW ERROR 6 Numeric value exceeds predetermined range.

PORT ALREADY OPEN ERROR 52 Port with specified number has already been opened. Attempt is
made to open port more than once with the OPEN statement.
Delete unnecessary OPEN statements.

PORT NOT OPEN ERROR 57 Unopened port or I/O device is specified. Open port with the
OPEN statement.

Appendix FTroubleshooting

132

Error Message ExplanationError
Code

PROM ERROR 65 EEPROM is malfunctioning, or nothing is written in the EEPROM.

PROTECTED PROGRAM ERROR 62 Program is protected. To change program, delete name with
PNAME command.

RESUME WITHOUT ERROR 20 RESUME statement is executed when no error exists.

RETURN WITHOUT GOSUB ERROR 3 RETURN statement is encountered before execution of GOSUB
statement.

STRING FORMULA TOO COMPLEX
ERROR

16 Character expression is too complex.

STRING TOO LONG ERROR 15 Character string is too long.

SYNTAX ERROR 2 Program does not conform to syntax.

TYPE MISMATCH ERROR 13 Variable types do not match.

UNDEFINED LINE NUMBER ERROR 8 Specified line number is wrong.

UNDEFINED USER FUNCTION ERROR 18 User function is not defined. Define execution start address with
the DEF USR statement.

VERIFY ERROR 66 Error occurs during EEPROM verification.

Item Cause Correction

All Indicators do not light Power to PC is OFF. Turn ON power to PC.

ASCII Unit is not mounted on PC
securely.

Tighten mounting screws.

ERROR indicator is ON. Power to peripheral device is OFF. Turn ON power to device.

Cable for device is disconnected. Correctly connect cable, and tighten screws.

Breakage in cable or faulty contact
exists.

Repair or replace cable.

Transfer rates and communication
conditions of ASCII Unit and
peripheral device do not match.

Correct transfer rates and communication conditions.

BAT ERR indicator is ON Battery connector is disconnected. Correctly connect battery connector.

Battery voltage has dropped. Replace battery.

Initial screen is
<<PROGRAM MEMORY
ERROR>>, and CTRL+X
is ineffective.

BASIC program is damaged. Press CTRL+I, and BASIC program will be erased. (If
program is backed up in EEPROM, program can later
be restored by LOAD command.)

Cannot program correctly Operating System is damaged Execute the following steps and then press the Reset
switch.
MSET &H2000
MON
13A: 0_0

After executing these steps, turn off pin #2 on the
front-panel DIP switch. The following message will be
displayed on the initial screen:
 <PROGRAM MEMORY ERROR>
When this message is displayed enter CTRL+I

Inspection Items
The following items should be periodically inspected.

Item Particulars Criteria Remarks

Environment Is ambient temperature
appropriate?

0° to 55°C Thermometer

Is ambient humidity appropriate? 35% to 85% (without condensation) Hygrometer

Is dust built up? Must be free from dust. Visual inspection

Mounting condition Are cable screws loose? Must not be loose. Standard screwdriver

Is cable broken? Must be mounted properly. Visual inspection

Appendix FTroubleshooting

133

Maintenance Parts
The battery life is 5 years at 25oC. If the battery is used at higher temperatures, its life is shortened. When the
battery voltage drops, the BAT ERR LED indicator blinks, and the Battery Low Flag (bit 06 of word n+1 in 2 word
mode and n+3 in 4 word mode, where n = 100 + 10 x machine number) turns ON. Replace the battery within 1 week
after the indicator blinks.

To replace the battery, take the following steps:
1. Turn OFF the power to the ASCII Unit. If power is not supplied to the Unit, apply power to the Unit

for at least one minute and then turn it OFF.
2. Press the upper side of the battery storage cover, and slide it down to remove.
3. Disconnect the battery and connector and replace them with new ones.
4. Replace the battery storage cover.

Notes on Handling
Turning off the power to the PC before replacing the ASCII Unit.

When returning a defective unit to OMRON, inform us of the abnormal symptoms in as much detail as possible.

135

Appendix G
BASIC Commands, Statements, and

Functions

The following tables list the BASIC commands, statements, and functions alphabetically.

The characters in the Command, Statement, and, Function columns denote the following:

Gen: General statement Char: Character String function
Dev: Device Control statement Spec: Special function
Arith: Arithmetic Operation function Comm: Command

Item Description Command Statement Function Page

ABS Returns the absolute value of a number Arith 54

ACOS Returns the arc cosine of a number Arith 54

ASC Returns the value of the first character in a
character string.

Char 56

ASIN Returns the arc sine of a number Arith 54

ATN Returns the arc tangent of a number Arith 54

AUTO Automatically generates line numbers Comm 28

CDBL Rounds off a numeric value to make an integer Arith 54

CHR$ Returns the character corresponding to the ASCII
code given by the argument

Char 56

CINT Converts a numeric value into a double-precision
real number

Arith 54

CLEAR Initializes numeric and character variables Gen 33

CLOSE Closes a port Dev 51

CLS Clears the screen Dev 51

COM ON/
OFF/STOP

Enables, disables, or stops an interrupt from a
communication port

Gen 34

CONT Resumes execution of a program that has been
stopped

Comm 28

COS Returns the cosine of a number Arith 54

CSNG Converts a numeric value into a single-precision
real number

Arith 55

DATA Defines numeric and character variables for
subsequent READ statements

Gen 34

DATE$ Sets or assigns the date Spec 59

DAY Sets or assigns the day (in numbers) Spec 59

DEF FN Defines and names a user-generated function Gen 35

DEF
INT/SNG/DBL/
STR

Declares the variable type as integer,
single-precision, double-precision or string

Gen 35

DEF USR Specifies the start address of the assembly
language subroutine called from memory by USR

Gen 36

DEL Deletes a line or portion of a line in the program Comm 28

DIM Specifies the maximum values for array variables
and assigns the area

Gen 36

EDIT Edits one line of the program Comm 29

END Terminates the execution of a program and closes
all files

Gen 36

EOF Verifies that the port buffer of the specified port is
empty

Spec 60

Appendix GBASIC Commands, Statements, and Functions

136

Item PageFunctionStatementCommandDescription

ERL/ERR Returns the error code and the line number where
the error has occurred

Spec 60

ERROR Simulates an error and allows error codes to be
defined

Gen 37

FIX Returns the integer part of a number Arith 55

FOR...TO...
STEP~NEXT

Repeats a FOR to NEXT loop a specified number of
times

Gen 37

FRE Returns the range of available memory Spec 60

GOSUB~
RETURN

Calls and executes the subroutine and returns to
the original program line with a “RETURN”
statement

Gen 38

GOTO Branches to a specified line number Gen 38

HEX$ Returns a string representing the hexadecimal value
of the decimal argument

Char 56

IF...THEN...
ELSE...GOTO
ELSE

Selects the statement to be executed or branch
destination as the result of an expression

Gen 38

INKEY$ Returns a character read from the keyboard Spec 60

INPUT Reads key input and assigns it to the specified
variable

Gen 39

INPUT$ Returns a character string read from the keyboard
and assigns it to the specified variable

Spec 60

INSTR Searches for the first occurrence of a character
string and returns its position

Char 56

INT Shortens an expression to a whole number Arith 55

KEY
ON/OFF/STOP

Controls initiation, cancellation, and halting of key
input interrupt

Gen 39

LEFT$ Returns a character string of the specified number
of characters, beginning at the left of the string

Char 57

LEN Returns the total number of characters in a
specified character string

Char 57

LET Assigns the result of the expression to the variable Gen 40

LINE INPUT Reads one line of input from the keyboard and
assigns it to a character string variable

Gen 40

LIST/LLIST Displays or prints a program Comm 29

LOAD Loads the program from the EEPROM or from a
port

Comm 29

LOC Returns the number of characters in the input queue
waiting to be read

Spec 61

LOG Returns the natural logarithm Arith 55

MID$ Returns the specified number of characters starting
from the specified character position

Gen Char 41

MON Sets the terminal to monitor mode Comm 30

MSET Sets the address boundary for an assembly
program

Comm 30

NEW Clears the program and all currently defined
variables

Comm 31

OCT$ Returns a string which represents the octal value of
the decimal argument

Char 57

ON COM
GOSUB

Defines the branch destination of a subroutine
invoked by an interrupt from a communication port

Gen 41

ON ERROR
GOTO

Causes branching to the specified line in the event
of an error

Gen 42

ON GOSUB
GOTO

Causes branching to the specified line when
“expression” is “true”

Gen 42

Appendix GBASIC Commands, Statements, and Functions

137

Item PageFunctionStatementCommandDescription

ON KEY GOTO
ON KEY
GOSUB

Causes branching to the specified line when the
specified key is input

Gen 43, 43

ON PC GOSUB Defines an interrupt number and its associated
subroutine branch line number

Gen 44

OPEN Opens a port Dev 51

PC GET Reads data from the PC output area and assigns it
to the specified variable

Gen 45

PC ON/STOP Enables or stops an interrupt invoked by the PC Gen 45

PC PUT Writes the value of a numeric expression to the PC
input data area

Gen 46

PC READ Reads data from the specified PC memory area,
converts it to the specified format, and assigns it to
the specified variables

Gen 46

PC WRITE Converts data to the specified format and writes it to
the specified PC memory area

Gen 47

PEEK Reads the contents of a specified memory address Spec 61

PGEN Sets the program memory area to be used Comm 31

PINF Displays the program area currently being used Comm 31

PNAME Names, or deletes the name, of the program
selected

Comm 32

POKE Writes data to a specified memory address Gen 47

PRINT/LPRINT Displays or prints the value of an expression Gen 47

PRINT USING
LPRINT USING

Displays or prints a character string in the specified
format

Gen 48

RANDOM Reseeds the random number generator Gen 48

READ Reads values from a data statement and assigns
them to variables

Gen 49

REM Inserts a comment statement into the program Gen 49

RENUM Reassigns line numbers in the program Comm 32

RESTORE Specifies which DATA statement will be used by the
next READ statement

Gen 49

RESUME Specifies the line where execution will resume after
error processing

Gen 50

RIGHT$ Returns the number of characters in a string starting
from the right

Char 58

RND Returns a random number between 0 and 1 Arith 55

RUN Executes the program Comm 32

SAVE Saves the program to the EEPROM or to a device
connected to a communication port

Comm 33

SGN Returns the sign of an argument Arith 55

SIN Returns the sine of a number Arith 56

SPACE$ Returns an empty string of the specified number of
characters

Char 58

STOP Stops program execution Gen 50

STR$ Converts a numeric value into a character string Char 58

STRING$ Returns a character string of the specified length Char 58

TAB Outputs spaces up to the specified column position Char 58

TAN Returns the tangent of a number Arith 56

TIME$ Sets or gives the time Spec 58

TRON/TROFF Specifies or cancels a program trace Comm 33

USR Calls an assembly language function routine defined
by a DEF USR statement

Spec 62

Appendix GBASIC Commands, Statements, and Functions

138

Item PageFunctionStatementCommandDescription

VAL Converts a character string into a numeric value Char 59

VERIFY Verifies the program and the EEPROM contents Comm 33

VARPTR Returns the memory address where the variable is
stored

Spec 63

WAIT Sets a delay before the next command is executed Gen 50

• MID$ Function is located on page 57

List of Program Examples
Programs in Two-word Mode

Example
No.

Description Page

1 To write data from the PC using the WRIT(87) to the ASCII Unit using the PC READ statement. 80

2 To write data from the ASCII Unit using the PC WRITE statement to the PC using the READ(88). 80

3 To enter characters from the keyboard and write them to the PC using the PC WRITE statement
and WRIT(87).

81

4 The PC uses interrupt number 3 to direct the ASCII Unit to read five words of data from the
specified DM addresses.

81

5 To read and print PC data at specific times using the ASCII Unit PC READ statement and
WRIT(87)

81

6 To accept input from the keyboard and write it to the PC using the PC WRITE statement and
READ(88)

82

7 To display the state of PC bit 1000 on a display device connected to port 2 82

8 To retrieve and print several types of data from the PC using the PC GET statement and WRIT(87) 83

9 To use PC interrupts to direct execution of the ASCII Unit 84

10 To print PC data and the time of data transfer 85

11 To input data from a bar code reader using the PC WRITE statement 85

12 To transfer data from the PC to the ASCII Unit with the ASCII Unit maintaining control 86

13 To transfer data from the ASCII Unit to the PC with the ASCII Unit maintaining control 87

14 To transfer data from the PC to the ASCII Unit with the PC maintaining control 88

15 To transfer data from the ASCII Unit to the PC with the PC maintaining control 89

16 To process data with the ASCII Unit 89

17 To transfer data input through the ASCII Unit keyboard to the PC and then back to the ASCII Unit
after computations have been performed by the PC

91

18 To initiate data transfer with the START switch using the WAIT statement 92

19 To direct processing using different interrupts 92

Programs in Four-word Mode

Example
No.

Description Page

1 To print data at fixed time intervals using the LPRINT statement 93

2 To direct execution of the ASCII Unit from the PC using the PC GET statement 93

3 To control execution of the PC from the ASCII Unit using the PC PUT statement 94

4 To print out production data every hour from DM000. 95

5 To accept input from the keyboard and write it to the PC using the PC WRITE statement 95

6 To read data from an input file through a communication port 95

7 To transfer multi-word data from the ASCII Unit to the PC in four-word mode by using the PC
WRITE statement continuously

96

8 To transfer multi-word data from the PC to the ASCII Unit in four-word mode by using the PC
READ statement continuously

98

Appendix GBASIC Commands, Statements, and Functions

139

Assembly Language Example

Example
No.

Description Page

1 Classification of characters 100

2 Use of more than one parameter 101

3 FCS calculation 103

141

Glossary

accumulator register The arithmetic hardware register of the microprocessor.

ASCII Unit program The BASIC program that runs the ASCII Unit and communicates with the PC
program.

Backplane A rack of hardware slots sharing a common bus line to which the CPU and all of
its I/O Units are connected.

base address The first address of a block of memory or data. When a block of data is to be
transferred with one of the I/O commands, the base address must be specified.

baud rate The speed at which data is transferred during I/O operations. The baud rate for
the two ports is set with the right-side DIP switch. The standard baud rates are
300, 1200, 2400, 4800, 9600, and 19,200.

binary The number system that all computers are based on. A binary digit can have only
two values, zero and one. The octal and hexadecimal number systems are
based on binary digits.

bit The smallest piece of information that can be represented on a computer. A bit
has the value of either zero or one. A bit is one binary digit.

boot program The BASIC program that is automatically loaded into the ASCII Unit RAM upon
power up or reset.

byte A group of eight bits that is regarded as one unit.

communications port A connector through which external peripheral devices can communicate with a
host computer or microprocessor. The ASCII Unit has two communications
ports used to connect to a personal computer, printer, or other I/O devices.

data transfer routine The PC requires a dedicated data transfer routine incorporated into its program
in order to communicate with the ASCII Unit. A data transfer routine is not neces-
sary when the memory area designator parameter is used with the PC READ
and PC WRITE statements.

data word PC data is organized into units called words. Each word contains 16 bits and has
a unique address in the PC memory. When transferring a block of data between
the PC and the ASCII Unit, it is necessary to specify the address of the first data
word in the block as well as the number of data words to be transferred. Through-
out this manual the terms word and data word are used interchangeably.

device control codes Keyboard strokes entered with the control key depressed that send control mes-
sages to peripheral devices such as a terminal display or a printer. For example,
control codes can be used to position the cursor on a display or to cause the
printer to print a line of text as it is being typed.

DIP switches There are two sets of DIP switches on the back panel of the ASCII Unit. Each DIP
switch has eight pins which can be set to either zero or one. These DIP switches
are used for setting hardware parameters such as the baud rate and the start up
mode.

EPROM/EEPROM Nonvolatile memory (retains data when power is disconnected) is used for per-
manent storage of up to three ASCII Unit programs. If the start mode is set to

Glossary

142

automatic, the boot program will be loaded to the RAM from the EPROM upon
power up or reset. Programs can be read from and written to the EPROM with
the LOAD and SAVE commands, respectively.

execution sequence The order of operation in which the PC and ASCII Unit hardware execute their
respective programs.

flag A hardware flag is a bit that is set or cleared by the machine to indicate a particu-
lar state or condition of the Unit to a peripheral device or to the program. Exam-
ples of PC hardware flags are the Read and Write flags. A software flag is set or
cleared by the user to indicate to the hardware a particular choice or option. For
instance, software flags are sometimes used for setting the direction of data
transfer or the baud rate of a communication device.

hexadecimal Hexadecimal or hex is a numerical system based on the number 16. One hex
digit can be represented by four binary digits in the range of zero to 15. The num-
bers 10 through 15 are represented by the letters A through F, respectively.

index register One of the microprocessor’s hardware registers. It is used for assembly lan-
guage programming.

interrupt number A code that is sent from the interrupting device to the microprocessor indicating
which device is “calling.” The interrupt number is especially important if there is
more than one peripheral device connected to a microprocessor.

interrupt A signal sent to the microprocessor from a peripheral device that causes the mi-
croprocessor to alter its normal processing routine. An interrupt says to the mi-
croprocessor, “stop what you’re doing and pay attention to me !” When an inter-
rupt is acknowledged by the microprocessor, program execution will branch to
an interrupt service routine specifically written to handle the given interrupt.

I/O device I/O stands for input/output. Some examples of I/O devices are printers, mo-
dems, fax machines, and display terminals.

machine no. switch Used to select the unit number for the allocation of PC words. The Machine No.
switch is located on the front panel of the ASCII Unit.

mantissa The part of a numerical expression to the right of the decimal point.

memory area designator (@) A parameter of the PC READ and PC WRITE statements used to access specif-
ic PC data areas. When using the memory area designator for data transfer, the
ASCII Unit does not need an accompanying PC data transfer routine.

monitor mode The mode or environment where assembly language programs are written,
edited, and tested.

monitor mode commands The commands used in monitor mode for writing, editing, and debugging an as-
sembly language program.

MSB/LSB MSB stands for Most Signicant Byte and refers to the upper or left half of a data
word (a data word contains two bytes). The Least Significant Byte refers to the
lower or right half of a data word.

octal A numerical system based on the number eight. One octal digit is made up of
three binary digits in the range of zero to seven.

parameter/argument A parameter is a value or symbol supplied to a BASIC or assembly language
command. A parameter either directs a command to implement a particular op-

Glossary

143

tion or format, or supplies a memory address where data can be stored. Similar
to a parameter and sometimes used interchangeably is the term “argument”.
Where a parameter usually supplies some type of control information to the
function or command, an argument is usually a variable that supplies needed
data.

PC program A program that runs the PC; it is written in the Ladder Diagram programming lan-
guage.

polling A process whereby the microprocessor periodically checks the value of a speci-
fied bit or byte, and depending on that value, the microprocessor takes some
specified action.

port buffer Special memory that is used to temporarily store data that has just been re-
ceived or is about to be sent out through a communication port.

program counter A microprocessor register that keeps track of program execution. It is used for
assembly language programming.

RAM Stands for Random Access Memory and is used for running the ASCII Unit pro-
gram. RAM will not retain data when power is disconnected. Therefore data
should not be stored in RAM.

Read Flag A PC hardware flag that indicates when data can be read from the PC. When this
flag is set, data can be accessed by a peripheral device.

reading/writing When something is read, it is taken or copied from a remote location and brought
to the reference point. When something is written, it is sent from the reference
point to a remote or peripheral device.

RS-232C interface The industry standard connector for serial communications. The ASCII Unit
communication ports use RS-232C connectors.

cycle time and refreshing The PC is constantly scanning through its program, checking all of its inputs and
adjusting its outputs. The time required for the PC to run through its program one
time is called the cycle time. Each time the PC completes one cycle of its pro-
gram, it updates or refreshes its outputs. The ASCII Unit cannot read data from
the PC during data refresh.

stack pointer A microprocessor index register used for assembly language programming.

start address The starting address of a block of data. This term is used as a parameter in many
of the assembly language monitor mode commands.

start mode Indicates how the ASCII Unit starts up when power is first applied or the Unit is
reset. The two choices are manual mode and automatic mode. The mode can be
selected by setting pins one and two of the left-side DIP switch.

START/STOP switch A toggle switch on the front panel of the ASCII Unit used for starting and stopping
execution of the ASCII Unit program.

upload/download Upload usually refers to the transfer of a program or information from a remote
device to a computer or other controlling device. Download usually refers to data
transfer from a computer or other controlling device to a remote device. From the
users point of view, if data is being sent to another device, it is being down-
loaded. If data is being received from another device, it is being uploaded.

valid signal line A parameter of the OPEN command which specifies which communication sig-
nals (CTS, DSR, RTS) are to be used for handshaking.

Glossary

144

watchdog timer A clock on the PC that measures the time it takes the PC program to complete
one cycle. If the cycle time is longer than 100 ms, a warning is issued. If the cycle
time is longer than 130 ms, the PC will suspend operation. The watchdog timer is
reset at the beginning of each cycle.

word A word is made up of two bytes or 16 bits. The term “word” is used interchange-
ably with the term “data word” to indicate a single unit of data. Blocks of data are
transferred in word units. For data transfer, the address of a data block’s first
word and the number of words to be transferred must be specified.

Write Flag A PC hardware flag that indicates when data can be written to the PC. When this
flag is set, data can be written to the PC.

XON/XOFF OPEN statement parameters that control the rate at which the port buffers re-
ceive and transmit data. If the XON command is specified to be ON by the OPEN
statement, then when the port buffer becomes 3/4 full, the ASCII Unit will sus-
pend data transfer until the port buffer is less than 1/4 full. In a case where a
transmitting device is sending data at a faster baud rate than the ASCII Unit is set
for, the XON command will keep the transmitted data from being written over.

145

Index

A
applications, precautions,

ASCII Unit
internal configuration,
system configuration,

Assembly language
Accumulator,
base address,
DEF USR statement,
format,
Index register,
LOAD command,
monitor commands

Compare,
Disassembler,
Dump, ,
Go,
Hexadecimal math,
Load,
Mini–assembler,
Move,
New,
Register,
Save,
Step,
Verify,

monitor mode,
MSET command,
program counter,
RAM,
S and L commands, ,
SAVE command,
stack pointer,
start address,
terminology,
USR function,
VARPTR function,

B
back panel

diagram,
DIP switch settings,

backplane,

base address,

BASIC
arrays,
character set,
commands, ,
configuration,
constants,
data types,
expressions,

format,
functions,
operator priority,
operators,
statements,

general,
type conversion,
variables,

BASIC program
execution,
storage,
transfer,

battery case,

battery life,

baud rate,

baud rate setting
Port 1,
Port 2,

C–D
communication flags,

communication mode,

communication parameters,

current rating,

data configuration,
four-word mode,

bit definitions,
program execution,
timing,

two-word mode,
bit definitions,
program execution,
timing,

data format conversion,

data formats, ,
A format,
B format,
H format,
I format,
O format,
S format,

data transfer
LOAD command,
SAVE command,

DIP switch settings
back panel,
baud rate,
boot mode,
data section mode,
front panel,
screen size,
start mode,

Index

146

DIP switches
back panel,
front panel,

F–M
front panel

contains . . .,
DIP switch diagram,
DIP switch settings,
Indicator LEDs,

Indicator LEDs,

inspection items,

installation, precautions,

interface signal timing,

interrupt, assembly program,

maintenance,

memory, capacity,

memory configuration
bits,
data allocation,
flags,
words,

O–X
operating environment, precautions,

PC cycle time,

PC program,

PC statement execution times,

personal computer, communication settings,

physical dimensions,

port address assignments,

ports,

precautions,
applications,
operating environment,
safety,

program transfer,

refresh timing
BASIC statements,
ON PC GOSUB statement,
PC GET statement,
PC ON statement,
PC PUT statement,
PC READ statement,
PC STOP statement,
PC WRITE statement,

RS–232C pin definitions,

safety precautions. See precautions

stack pointer,

switches
RESET,
START/STOP,

system configuration,

transfer capacity,

transmission mode,

transmission signal timing,

WRIT(87/191) and READ(88/190),

XON,

147

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W186-E1-4

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 October 1991 Original production with additions and
changes to enable application with CV-se-
ries PCs made along with the following
changes.

Page ix : Information on applicable PCs
added.
Page 3: Battery model number cor-
rected.
Page 26: First and last paragraphs of
Transfer section rewritten.

Page 89: Addition made to fifth para-
graph in Remarks section.

Page 92: Page added following this
page.

Page 129: Missing items added to table.

Page 175: Execution times added for
CV-series PCs.

Page 184: Last column in bottom row of
table corrected.

2 January 1994 Page 84: Ladder diagram corrected and line 60 of the program deleted.
Page 88: Lines 20 and 100 of the program corrected. Execution sequence 1
rewritten.

Revision History

148

Revision code Revised contentDate

3 July 1996 Section of precautions added before section 1 and adjustments made to signal
words for precautions.

Scan time changed to cycle time throughout the manual.
Page 3: Extra indication for T/R added to the table. Note added.
Page 7: Reference changed.
Page 10: Sentence above Data Bit Definitions corrected.
Page 11: Descriptions of bits 03, 04, and 05 of word n+1 rewritten. Note
added.
Page 14: Descriptions of bits 03, 04, and 05 of word n+3 rewritten. Notes
added.
Page 19: Note added on PNAME.
Page 20: Information added to 3-4 Assembly Routines.
Page 22: Basic Statements and Basic Commands descriptions clarified.
Pages 23, 52, 76: Note added.
Page 30: Text added to MON Command.
Page 45: Line 40 added to program.
Page 47: Remarks for POKE Statement corrected.
Page 51: Sentence added to CLOSE Statement Remarks.
Pages 52, 53: Text at the bottom of page 52 and the top of page 53 rewritten.
Page 54: Last sentence of SCRN TERM rewritten.
Page 60: Remarks added to FRE Function.
Page 65: Integer and Character Array Type diagrams corrected. Note added.
Page 68: Text added to the top of the page.
Page 72: Text added to the data movement diagrams.
Page 82: Example 5 corrected.
Page 84: Line 60 added to program.
Pages 86, 87: Execution sequence 2 rewritten.
Page 89: Execution sequence 1 rewritten.
Pages 90, 91: Minor alterations to Examples 16 and 17.
Page 95: Example 4 corrected.
Pages 96, 97: Program examples added.
Page 100: Sentence after Assembly Language Example changed. Program
area table corrected.
Pages 104, 105: Page completely rewritten and information added. Device
Control Codes section deleted.
Page 131: Note added on clocks.

4 February 2001 Pages xii to xiv: PLP information updated.
Page xiii: ”Power Supply Units” added in middle of page.
Page 7: First sentence corrected.
Pages 11 and 14: Note corrected.
Page 107: Note added.

