VLT® ${ }^{\circledR}$ Series 3000 Instruction Manual

175R5162 - Document Version 5.00

This manual applies to all VLT ${ }^{\circledR}$ Series 3002-3250 Adjustable Frequency Drives with software version 3.02 and 3.12 or newer. To determine software version refer to Parameter 603, Name Plate.

WARNING:
Touching the electrical parts, even when the AC
line has been disconnected, can cause serious
injury or death. Before touching any electrical
components wait at least:
4 minutes for VLT 3002-3032, 230V; 3002-3052, 460V,
14 minutes for VLT types 3032-3052, 230V,
14 minutes for VLT types 3060-3250, all voltages.

	VLT TYPE	3002	3003	3004	3006	3008	3011	3016	3022	3032	3042	3052
		1	2	3	5	7.5	10	15	20	30	40	50
		5.4	7.8	10.6	19.0	25.0	32.0	46.0	61.0	80.0	104.0	130.0
		6.7	12.5	17.0	30.0	40.0	51.2	73.6	97.6	120.0	156.0	195.0
		2.1	3.1	4.2	7.6	10.0	12.7	18.3	24.3	32.0	41.0	52.0
		2.7	4.9	6.7	12.0	15.9	20.4	29.3	38.9	48.0	62.0	78.0
		1.5	3	5	7.5	10	15	20	30	40	50	60
	Quadratic load (VT) Nominal [HP]	1	2	3	7.5	10	15	20	30	40	50	60
	Output current continuous Amps Output continuous [kVA] Max. motor size $[\mathrm{HP}]$	5.4	7.8	10.6	25.0	32.0	46.0	61.0	88.0	104.0	130.0	154.0
		1.9	2.9	4.0	10.0	12.7	18.3	24.3	35.1	41.0	52.0	58.0
		1.5	3	5	10	15	20	25	30	40	50	60
	Max. wire size [AWG]	12	12	12	6	6	6	4	4	2/0	2/0	2/0
	Max. motor cable length	1000 feet, unshielded*										
	Output voltage [\%]	0-100, of AC line voltage										
	Output frequency [Hz]	0-120 or 0-500; programmable										
	Rated motor voltage [V]	$200 / 220$ / 230										
	Rated motor frequency [Hz]	50 / 60 / 87 / 100										
	Thermal protection	Built-in thermal motor protection (electronic); and thermistor acc. to DIN44081										
	Switching on the output	Unlimited (frequent switching may cause cut-out)										
	Ramp times [s]	0.1 to 3600										
	VLT TYPE	3002	30033004		3006	3008	3011	3016	3022	3032	3042	3052
	Max. input constant load [A]	6.8	9.1	13.3	17.5	22.2	26.4	41.7	52.2	78.0	102.0	128.0
	Current quadratic load [A]	6.8	9.1	13.3	23.1	29.6	42.0	56.8	72.3	102.0	128.0	152.0
	Max. wire size [AWG]	12	12	12	6	6	6	4	4	2/0	2/0	2/0
	Max. pre-fuses [A]		25	25	40	50	60	80	125	150	150	150
	AC line voltage [V]	30200 / 220 / $230 \pm 10 \%$										
	AC line frequency [Hz]	50 / 60										
	Power factor $/ \cos \varphi$	0.9 / 1.0										
	Efficiency	0.96, at 100\% load										
	Switching on the input	5 times per minute										
	Radio interference, conducted EMI (with shielded motor cables):	VLT type 3002-04: EN 55011, class A, gr. 1, with option class B, gr. 1										
		VLT type 3006-22 with option: EN 55011, class A, gr. 1										
		VLT type 3032-52 with option: EN 55011, class A, gr. 1										
	VLT TYPE	3002	3003	3004	3006	3008	3011	3016	3022	3032	3042	3052
	Enclosure Open chassis (IP00) type and Chassis (IP20) Unit weight NEMA 1 (IP21) [lb]: NEMA 12 (IP54)	16	16	16	-	-	-	-	-	-	-	-
		-	-	-	55	57	68	108	119	325	325	325
		16	16	16	-	-	-	-	-	-	-	-
		24	24	24	75	82	106	139	152	325	325	325
	Power loss at max. load CT [W] VT [W]	60	105	130	270	425	399	615	935	760	910	1110
		60	105	130	425	580	651	929	1350	950	1110	1290
	Vibration test [g]	0.7										
	Relative humidity [\%]	Max. 95 DIN 40040 cl. E.										
	Ambient temperature $\left[{ }^{\circ} \mathrm{C}\right]$ (acc. VDE 0160): $\left[{ }^{\circ} \mathrm{C}\right]$	$-10 \rightarrow+40$, at full load operation										
		$-25 \rightarrow+65$, storage/transport										
	VLT protection	Ground and short circuit proof										
	EMC applied Emmision standards: Immunity	EN 50081-1, VDE 0875, VDE 0871; EN 50081 - 2, VDE 0875, VDE 0871										
		IEC 801-2, IEC 801-4, IEC 801-5, VDE 0160, SEN 361503										

* If shielded cable is to be used, consult Danfoss for max. cable length.

* If shielded cable is to be used, consult Danfoss for max. cable length.

* If shielded cable is to be used, consult Danfoss for max. cable length.

*If shielded cable is to be used consult Danfoss for max. cable length.

*If shielded cable is to be used consult Danfoss for max. cable length.

WARNING:

The VLT® Series 3000 Adjustable Frequency Drive (AFD) contains dangerous voltages when connected to line voltage. Only a competent electrician should carry out the electrical installation.

Improper installation of the motor or the AFD may cause equipment failure, serious injury or death. Follow this manual and local and national safety codes.

It is possible for the VLT to start upon application of AC power. DO NOT attempt any maintenance on the VLT, motor or system machinery without verifying that the AC power has been disconnected.

DO NOT touch any electrical parts after the AC line has been disconnected for at least 14 minutes. This allows for capacitor discharge.

NOTE: The STOP key on the VLT keypad DOES NOT disconnect the AC line.

The motor may start without warning during operation and programming of the parameters. Activate the STOP key on the VLT keypad when changing data.

It is the responsibility of the user or the person installing the AFD to provide proper grounding and branch circuit protection for incoming power and motor overload protection according to the National Electrical Code (NEC) and local codes.

The Electronic Thermal Relay (ETR) in UL/ cUL listed VLT's provides class 20 motor overload protection in accordance with the NEC in single motor applications, when parameter 315 is set for "TRIP" and parameter 107 is set for nominal motor rated (nameplate) current.

Danfoss VLT ${ }^{\circledR}$ and CE Marking

Danfoss CE marks our VLT® Adjustable Frequency Drives (AFD) according to the Electro Magnetic Compatibility (EMC) Directive 89/336/EEC and Low-Voltage Directive 73/ 23/EEC.

When the installation specification is followed and shielded motor cables are used per instruction manuals provided with the drive, we guarantee the AFD complies with the EMC Directive 89/336/EEC. Please consult the RFI Filter Product Manual and EMC Installation Guidelines (175R5187).

Upon request we will issue a declaration of conformity to the EMC and low-voltage directives. A manufacturer's declaration for the Machinery Directive 89/392/EEC is also available.

inches (mm)								
Type	Input VAC		Dimens W	D	a	Mounting b	mensions	
Chassis* Chassis* Chassis*	$\begin{aligned} & 230 \\ & 380 \\ & 460 \\ & \hline \end{aligned}$	11.81 (300)	11.18 (284)	7.01 (178)	10.16 (258)	7.48 (190)	2.17 (55)	2.17 (55)
NEMA 1* NEMA 1* NEMA 1*	$\begin{aligned} & 230 \\ & 380 \\ & 460 \end{aligned}$	14.17 (360)	11.18 (284)	7.01 (178)	10.16 (258)	7.48 (190)	3.35 (85)	3.35 (85)
NEMA 12 NEMA 12 NEMA 12	$\begin{aligned} & 230 \\ & 380 \\ & 460 \\ & \hline \end{aligned}$	20.87 (530)	11.18 (284)	7.01 (178)	10.16 (258)	12.99 (330)	4.53 (115)	3.35 (85)

VLT 3002 with Integral Dynamic Brake and/or RFI Options

Type	Input VAC	Overall Dimensions			Mounting Dimensions			
		H	W	D	a	b	c	d
Chassis		17.32 (440)					2.17 (55)	2.17 (55)
NEMA 1	Voltages	19.69 (500)	11.18 (284)	7.01 (178)	10.16 (258)	12.99 (330)	3.35 (85)	3.35 (85)
NEMA 12	Voltages	20.87 (530)					4.53 (115)	3.35 (85)

[^0]

VLT 3003 with Integral Dynamic Brake and/or RFI Options

Type	Input	Overall Dimensions			Mounting Dimensions			
	VAC	H	W	D	a	b	C	d
Chassis		17.32 (440)					2.17 (55)	2.17 (55)
NEMA 1	Voltages	19.69 (500)	11.18 (284)	7.01 (178)	10.16 (258)	12.99 (330)	3.35 (85)	3.35 (85)
NEMA 12		20.87 (530)					4.53 (115)	3.35 (85)

* Additional dimensions for Fan Option:

Chassis (all voltages) 2.36 (60) to H; 2.36 (60) to c NEMA 1 (all voltages) 1.18 (30) to \mathbf{H}; 1.18 (30) to \mathbf{c}

VLT 3004 with Integral Dynamic Brake and/or RFI Options

Type	Input	Overall Dimensions			Mounting Dimensions			
	VAC	H	W	D	a	b	c	d
Chassis	All	17.32 (440)					2.17 (55)	2.17 (55)
NEMA 1	230	20.87 (530)	11.18 (284)	7.01 (178)	10.16 (258)	12.99 (330)	4.53 (115)	3.35 (85)
NEMA 1	380/460	19.69 (500)					3.35 (85)	3.35 (85)
NEMA 12	All	20.87 (530)					4.53 (115)	3.35 (85)

* Additional dimensions for Fan Option:

Chassis (all voltages) 2.36 (60) to $\mathbf{H} ; 2.36$ (60) to c
NEMA 1 (380/460 VAC only) 1.18 (30) to $\mathbf{H} ; 1.18$ (30) to c

VLT 3006 with Integral Dynamic Brake and/or RFI Options

Type	Input VAC**	Overall Dimensions			Mounting Dimensions			
		H	W	D	a	b	c	d
Chassis		21.65 (550)					2.17 (55)	2.17 (55)
NEMA 1	380/460	24.02 (610)	11.18 (284)	7.01 (178)	10.16 (258)	17.32 (440)	3.35 (85)	3.35 (85)
NEMA 12		25.20 (640)					4.53 (115)	3.35 (85)

[^1]

VLT 3008 with Integral Dynamic Brake and/or RFI Options

Type	Input	Overall Dimensions			Mounting Dimensions			
	VAC*	H	W	D	a	b	c	d
Chassis		24.02 (610)						2.17 (55)
NEMA 1	380/460	25.20 (640)	11.18 (284)	7.01 (178)	10.16 (258)	17.32 (440)	4.53 (115)	3.35 (85)
NEMA 12		25.20 (640)						3.35 (85)

[^2]

Note: Dynamic Brake/RFI can be built in.

Note: Dynamic Brake/RFI can be built in.

Drawing 1

| Type | Input | Overall Dimensions | | | | Mounting Dimensions | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | VAC | H | W | D | a | b | c | d | | |
| Chassis | 230 | $37.40(950)$ | $12.09(307)$ | $11.65(296)$ | $10.63(270)$ | $36.61(930)$ | | | | |
| Chassis | 380 | $30.71(780)$ | $9.53(242)$ | $10.24(260)$ | $7.87(200)$ | $29.92(760)$ | $0.39(10)$ | 0.39 | (10) | |
| Chassis | 460 | $30.71(780)$ | $9.53(242)$ | $10.24(260)$ | $7.87(200)$ | $29.92(760)$ | | | | |
| NEMA 1 | 230 | $38.89(975)$ | $12.09(307)$ | $11.65(296)$ | $10.63(270)$ | $36.61(930)$ | $1.38(35)$ | | | |
| NEMA 1 | 380 | $31.50(800)$ | $9.53(242)$ | $10.24(260)$ | $7.87(200)$ | $29.92(760)$ | $1.18(30)$ | 0.39 | (10) | |
| NEMA 1 | 460 | $31.50(800)$ | $9.53(242)$ | $10.24(260)$ | $7.87(200)$ | $29.92(760)$ | $1.18(30)$ | | | |

Drawing 2

Type	Input	Overall Dimensions				Mounting Dimensions					
	VAC	H	w	D	a	b	c	d			
NEMA 12	230	37.01	(940)	15.67	(398)		14.72	(374)	27.17	(690)	
NEMA 12	380	31.89	(810)	13.78	(350)	11.02	(280)	12.83	(326)	22.05	(560)
7.09	(180)	2.76	(70)								
NEMA 12	460	31.89	(810)	13.78	(350)		12.83	(326)	22.05	(560)	

Note: Dynamic Brake/RFI can be built in.

inches (mm)

The bottom covers of VLT 3002-3052 NEMA 1 and NEMA 12 enclosure types are provided with wiring access knock-outs.

These units are also supplied with a bonding plate, which must be used for UL and cUL approved applications.

VLT 3002-3006, 230V
VLT 3002-3008, 380 and 460V NEMA 1 (IP21) and NEMA 12 (IP54)

VLT 3008-3011, 230V
VLT 3011-3022, 380 and 460V NEMA 12 (IP 54)

VLT 3016-3022, 230V
VLT 3032-3052, 380 and 460V NEMA 12 (IP54)

The bottom plates of VLT 3006-3022, 230V and VLT 3011-3052, 460V chassis types are provided with wiring access knock-outs.

VLT 3006-3011, 230V
VLT 3011-3022, 380 and 460V Chassis (IP20)

VLT 3016-3022, 230V
VLT 3032-3052, 380 and 460V Chassis (IP20)

\qquad

An Access Plate and gasket have been provided in the bottom of the VLT to make punching holes for conduit connection easier. Caution should be taken not to damage the gasket on the VLT when removing or installing the Access Plate.

CAUTION: The Access Plate must be in place in the final installation to insure proper operation and cooling of the VLT. Failure to properly seal the access area can result in an overtemperature condition.

VLT 3032-3052, 230V
VLT 3060-3075

VLT 3100-3150

VLT 3200-3250

VLT Type
3002-3022,
230 V and
VLT Type
3002-3052, $380 \mathrm{~V}, 460 \mathrm{~V}$

The VLT Series 3000 is cooled by natural or forced air convection. Air must be allowed to pass freely under and over the unit.

The VLT must be mounted on a flat, vertical surface to ensure proper air flow.

To maintain air flow a certain minimum distance free-air clearance must be observed above and beneath the VLT:

Enclosure type	A Ins. (mm)
Chassis (IP00)	$3.9(100)$
NEMA 1 (IP21)	$3.9(100)$
NEMA 12 (IP54)	$5.9(150)$
Chassis (IP20)	$7.9(200)$

VLT Type 3032-3052, 230VAC and VLT Type 3060-3150, 380-500VAC

WARNING: The VLT is unstable when standing vertical. The unit should be mounted to the wall or floor before any further installation is attempted. Failure to observe caution could result in serious injury or equipment damage.

CAUTION: For proper cooling the wiring access plate in the bottom of the VLT must be in place during operation. Failure to properly seal the access area can result in an over-temperature condition.

The VLT Series 3060-3250 units are cooled by forced air circulation. The units use a door fan for cooling the internal components as well as $\operatorname{fan}(\mathrm{s})$ on the rear heatsink. To remain within all specifications minimum distance for air flow must be maintained on the sides, top, bottom and front of the units.

Specifications on each power size are found in the following minimum mounting dimensions chart. Please note that the wall mounted configurations clearance on the sides is limited by mechanical interface only.

NOTE: A minimum front clearance of 6 inches must be observed if the unit is being mounted in another enclosure.

Dimension inches (mm)	VLT Type		
	$\begin{gathered} \hline 3032-3052,230 \mathrm{VAC} \\ 3060-3075,380-500 \mathrm{~V} \end{gathered}$	3100-3150, 380-500V	3200-3250, 380-500V
a	6.7 (170)	9.1 (230)	Floor mount only
b	6.7 (170)	9.1 (230)	
C	Limited only by mechanical interface		

VLT Type
3100-3250
380-500VAC

WARNING: The VLT is unstable when standing vertical. The unit should be mounted to the wall or floor before any further installation is attempted. Failure to observe caution could result in serious injury or equipment damage.

CAUTION: For proper cooling the wiring access plate in the bottom of the VLT must be in place during operation. Failure to properly seal the access area can result in an over-temperature condition.

When utilizing the floor mount pedestal on the VLT 3100-3250 units, it is necessary to provide adequate space on the sides to allow for sufficient airflow through the base vents. Refer to the minimum mounting dimensions chart below.

NOTE: A minimum front clearance of 6 inches must be allowed if the unit is being mounted in another enclosure.

Floor Mounted

Dimension inches (mm)	$3032-3052,230 \mathrm{VAC}$ $3060-3075,380-500 \mathrm{~V}$	$\mathbf{3 1 0 0 - 3 1 5 0 , 3 8 0 - 5 0 0 \mathrm { V }}$	3200-3250, 380-500V
	a	Wall mount only	$9.1(230)$
			$10.3(262)$
		$5.1(130)$	

Pedestal
VLT types 3100-3150 may be mounted using an optional pedestal. VLT types 3200-3250 are mounted with a factory-supplied pedestal only.

The pedestal has a vent opening which must be aligned with the rear of the VLT.

CAUTION: The pedestal also has a removable access plate in the front. For proper cooling this plate, as well as the wiring access plate in the bottom of the VLT, must be in place during operation. Failure to properly seal the access area can result in an over-temperature condition.

VLT 3100-3250

(Side view)

VLT Type	A	B	C	D
$3100-3150$	7.5	5.9	0.9	3.0
	(191)	(151)	(23)	(76)
$3200-3250$	11.3	6.9	0.4	3.9
	(287)	(176)	(10)	(100)

WARNING

Touching the electrical parts, even when the AC line has been disconnected, can cause serious injury or death.

Before touching any electrical components wait at least: 4 minutes for VLT types 3002-3052, 14 minutes for VLT types 3032-3052, 230V, 14 minutes for VLT types 3060-3250.

The VLT Adjustable Frequency Drive contains dangerous voltages when connected to line voltage. Only a competent electrician should carry out the electrical installation.

Improper installation of the motor or the VLT may cause equipment failure, serious injury or death. Follow this manual and national and local safety codes.

CAUTION: It is the responsibility of the user or the person installing the VLT to provide proper grounding, as well as motor overload and branch circuit protection according to the National Electrical Code and local codes.

NOTE: Due to high leakage currents and three phase bridge circuitry, use of Residual Current Detectors (RCD) are not recommended in European Community applications.

Danfoss VLT ${ }^{\circledR}$ and CE Marking

Danfoss CE marks our VLT ${ }^{\circledR}$ Adjustable Frequency Drives (AFD) according to the Electro Magnetic Compatibility (EMC) Directive 89/336/EEC and Low-Voltage Directive 73/23/EEC.

When the installation specification is followed and shielded motor cables are used per instruction manuals provided with the drive, we guarantee the AFD complies with the EMC Directive 89/336/EEC. Please consult the RFI Filter Product Manual and EMC Installation Guidelines (175R5187).

Upon request we will issue a declaration of conformity to the EMC and low-voltage directives. A manufacturer's declaration for the Machinery Directive 89/392/EEC is also available.

Typical

Wire Routing

VLT Type
3002-3004, 230V
3002-3008, 380V
3002-3008, 460V

NOTE: When replacing covers on VLT types 3002-3052 the front cover screws will need to be retightened to 14-23 inch pounds.

The AC line and motor terminals are located in the lower section of the VLT enclosure.

VLT
Type 3006-3022, 230 V 3011-3052, 380 V 3011-3052, 460V

VLT Type

3032-3052, 230V
3060-3250, 380/460V

The VLT types 3032-3052, 230V and VLT types 3060-3250 have an access plate in the bottom of the unit to make punching holes for conduit connection easier.

Caution must be taken not to damage the gasket when removing or installing the access plate.

In the final installation the access plate must be in place to ensure proper operation and cooling of the VLT.

UL/cUL Bonding Plate Installation

On VLT types 3002-3052 NEMA 1 and NEMA 12 models the Bonding Plate supplied with the unit must be used for UL/cUL approved applications.

Place the bonding plate on the bottom cover. Align the pre-punched holes of the bonding plate with the conduit fitting knock-outs in the bottom cover.

Attach the green and yellow bonding plate ground wire to a proper ground connection labled \fallingdotseq) in the VLT Adjustable Frequency Drive.

On Chassis (IP20) type units, the bonding plate has a bus bar (instead of a wire) which aligns with the ground terminals in the VLT Adjustable Frequency Drive.

For typical AC line connection, refer to the appropriate figure for your unit.

The Specification Chart sections in this manual list the proper cable sizes and lengths.

VLT 3002-3022, 230V VLT 3002-3052, 460V Typical Line Connection	Refer to the Terminal Torque chart for proper line terminal torque specifications.	VLT	Max Branch Fuse Amps	
		Type	230V	460 V
		3002	20	10
	Use the following customer supplied input	3003	25	15
	fusing, UL/cUL 230 and 460V Units BUSS	3004	25	20
	KTN-R (230V), KTS-R (500V) or exact	3006	40	25
	equivalent.	3008	50	25
		3011	60	30
	NOTE: These units have a 100,000 AMP short	3016	80	40
	circuit rating when protected by these fuses.	3022	125	50
		3032	-	60
		3042	-	100
		3052	-	125
VLT 3032-3052, 230V	Refer to the Terminal Torque chart for proper line terminal torque specifications.	VLT Type	Max Branch Fuse Amps	
VLT 3060-3250, 460V			230V	460 V
Typical		3032	150	
Line Connection	Fuses supplied by factory; BUSSMANN type JJS or exact equivalent.	3042	150	-
		3052	150	-
		3060	-	150
	NOTE: These units have a 100,000 AMP short circuit rating when protected by the above fuses.	3075	-	150
		3100	-	250
		3125	-	250
		3150	-	300
		3200	-	450
		3250	-	500

Terminal	Observe these terminal torques for proper	VLT type	Line	Motor
Torque	cable connection.	$3002-3016$ (all VAC)	12	12
Specifications	Terminal Torque Specifications are in Lb-In.	$3022-3052$ (all VAC)	31	31
		$3032-3052(230 \mathrm{VAC})$	275	53
	$3060-3075$ (all VAC)	275	53	
	$3100-3150$ (all VAC)	275	87	
		$3200-3250$ (all VAC)	375	52

Motor Wiring

For typical motor connection, refer to the appropriate figure for your unit.

See the chart above for proper motor terminal torque specifications.

NOTE: Shielded motor cables are optional in most U.S. applications. Refer to CE Marking section in this manual.

When parameter 315 is set for TRIP and parameter 107 is set for nominal motor rated (nameplate) current, the Electronic Thermal Relay (ETR) in UL/cUL listed VLT's provides class 20 motor overload protection in accordance with NEC in single motor applications.

Typical
Line and Motor Connection

VLT 3002-3004, 230V
VLT 3002-3008, 380 and 460V

U	V	W	$\Theta P E$
96	97	98	95

Line

VLT 3006-3008, 230V VLT 3011-3022, 380 and 460V

VLT 3011-3022, 230V VLT 3032-3052, 380 and 460V

Typical	VLT 3032-3052,
Line and Motor	230 V
Connection	VLT 3060-3075,
	380 and 460V

VLT 3100-3150, 380 and 460V

VLT 3200-3250,

Control Signal

 Wiring

The control signal cables need to be shielded in order to prevent the possibility of radio frequency (RFI) interference and comply with VDE0875 specifications.

The earth ground wire of the shielded cable is terminated at the control card terminals 38 or 61. The other end of the shielded cable must be cut back and taped off.

If non-shielded cables are used, the control inputs can occasionally be subject to signal disturbance resulting in intermittent operation.

In preventing the possibility of RFI problems the routing of the control signals is very important. The control signals should be kept as far away as possible from high level cables such as the AC line and motor cables. If the control signal cable must be routed within six inches of a power cable, shielded cable such as Beldin 18 gauge is strongly recommended.

The control signals are connected to the terminals as shown in the figure. For ease of wiring, the terminal blocks are removable. Tighten terminal screws to $4.5 \mathrm{Lb}-\mathrm{In}$.

NOTE: To comply with the European Economic Community (EEC) Machinery Directive (89/392/EEC), Electromagnetic Compatibility Directive (89/336/EEC) and Low Voltage Directive (73/23/EEC) follow the installation instructions in this manual and the RFI Filter Product Manual. Optional RFI filter part numbers are provided in the Danfoss Adjustable Speed Drives for AC and DC Motor Control Catalog. Contact your local Danfoss Distributor or the factory for further information.

Switch 04:
When closed, terminal 61 has a direct connection to ground. When open, terminal 61 has connection to ground via an RC link.

Control Terminals

Terminal 01-03;* max. 240V, max. 2 Amp, min. $24 \mathrm{VDC}, 100 \mathrm{~mA}$ or $24 \mathrm{VAC}, 100 \mathrm{~mA}$.

Terminal 04-05;* max. 240V, max. 2 Amp, min. 24VDC, 100 mA or $24 \mathrm{VAC}, 100 \mathrm{~mA}$.
$\begin{array}{ll}\text { Terminal 12; } & 24 \mathrm{VDC}, \max .140 \mathrm{~mA} \\ \text { Terminal 20; } & \text { Common for } \\ & \text { digital inputs } \\ \text { Terminal 16-33; } & 0 / \pm 24 \mathrm{~V} \mathrm{R}_{\mathrm{i}}=2 \mathrm{k} \Omega \\ \text { Terminal 42-45; } & 0 / 4-20 \mathrm{~mA} \text { max. } 470 \Omega\end{array}$
\(\left.$$
\begin{array}{ll}\text { Terminal 39; } & \begin{array}{l}\text { Common for } \\
\text { analog/digital outputs }\end{array}
$$

Terminal 50; \& 10 \mathrm{VDC}, max. 12 \mathrm{~mA}\end{array}\right\}\)| $\pm 0-10 \mathrm{VDC}, \mathrm{R}_{\mathrm{i}}=10 \mathrm{k} \Omega$ | |
| :--- | :--- |
| Terminal 53; | Common for
 Terminal 55; |
| analog reference inputs | |
| Terminal 60; | $0 / 4-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=226 \Omega$ |
| Terminal 68-69; | RS 485 bus |

* In VDE applications; max. 250V, 2 Amp

Control Terminal and

Function Cross-reference

Terminal 16	reset	stop	freeze reference	set-up select	thermistor pulse 100 Hz	pulse 1kHz	pulse 10kHz
Terminal 17	reset	stop	freeze reference				
Terminal 18	start	latched start	no operation				
Terminal 19	reversing	start reverse	no operation				
Terminal 27	motor	quick stop	DC-brake	reset and motor coasting	latched stop		
Terminal 29	jogging	freeze jog	freeze reference	digital reference			
Terminal 32 Terminal 33	speed select	speed up speed down	set-up select	4 set-up extended			

VLT Control Panel

All Danfoss VLT Series 3000 AC drives utilize the same control card throughout the entire 1300 HP range. The VLT control panel consists of a keyboard and a display.

The keyboard is used for two purposes: local control and programming. The display communicates VLT, motor and application information to the operator.

Located on the control panel is a red and green status LED. When the green status LED is illuminated, there is AC power applied to the VLT. The red LED is used for alarm indications. In an ALARM MODE, the LED will flash.

The display is a three-line LCD display. Line A is used for operating displays. It shows the value corresponding to the setting in DISPLAY MODE. The set value remains in the display line during programming of parameters. Line B shows information about parameters and direction of motor operation. Line C shows information about status and setup or data value. It is possible to program the unit to provide two independent operational displays simultaneously (refer to Quick Setup Section).

Initialization

Initialization is used to return to a known status (factory setting). Initialization is required on change of a software version or if so many of the parameters have been changed that the current situation is no longer evident.

Two methods of initialization are possible.
Initializing via Parameter 604 restores all factory settings with exception of:

Communication parameters 500 and 501; Field Bus parameters 820, 821 822, 904, and 918; Operation Data parameter 600; and the Fault Memory parameter 602.

Manual initialization is used to restore all parameters to factory default settings including those which are not changed by Parameter 604 initialization.

For manual initialization:
Remove power and wait for the display to go out.

Press and hold keys MENU, DATA, JOG simultaneously while applying input power.

When "init eeprom" appears in the third line of the display, release the keys and wait for the initialization process to complete.

Programming

Keys

Menu is used to enter MENU MODE from
either DATA MODE or DISPLAY MODE. MENU is also used for entering a specific group of parameters.

Data is used for entering DATA MODE or DISPLAY MODE from MENU MODE. DATA is also used to move the cursor in data values.

The + and $\quad-$ keys are used for
scrolling through Groups, Parameters and Data Value selections. Additionally these keys are used for speed up and down when operating in Local mode.

Operator Keys

Four keys are provided for local control:

With theexception of the Start key the keys can be programmed to be enabled or disabled to prevent unwanted use in certain applications.

Operational Modes

The VLT will be in DISPLAY MODE when the motor is running in normal operation. DISPLAY MODE provides various information concerning the current status of the VLT and motor.

The + and - keys are used to
scroll among the 12 main display readouts:

- Reference
- Frequency Hz
- Display Feedback unit
- Current A
- Torque \%
- Power kW
- Power HP
- Energy kWH
- Output voltage V
- DC voltage V
- Motor ETR value \%
- Inverter ETR value \%

Local Stop: Local Stop is accomplished by pressing the Stop/Reset key on the front control panel. The local stop command has been designed to override all run signals whether local or remote. When a local stop has been made the top line of the display will flash. The only way to resume running from a local stop condition is to initiate a local start.

Local Forward/Reverse: Local Forward/ Reverse will be automatically disabled if remote operation is selected. In remote, it is not possible to make direction changes from the keypad.

The MENU MODE is used to select and
change operating parameters. The +
and $-($ keys are used in the MENU
MODE to select a parameter group or an individual parameter or the data value of a given parameter.

Group	Description	Parameters
0	Operation and Display	$000-099$
1	Load and motor	$100-199$
2	Reference and limits	$200-299$
3	Functions and timers	$300-399$
4	Input and Output	$400-499$
5	Serial data interface	$500-599$
6	Service and diagnostics	$600-699$

Parameter Numbering

Moving through the Program

The parameter number consists of three digits as shown.

The left digit indicates the Group, and the two digits at the right specify the parameter number in the specific Group.

To travel through the available Groups,

Parameters in each group can be entered in

Changing a

 Parameter number in a Groupthe selected group by also using the Menu key followed by ++ or $\square-$ key.

After the first power up, the drive is in DISPLAY MODE. To program the VLT's various Groups, use the MENU key to enter the MENU GROUP MODE.

The Data Value can be a continuous (numerical) value of figures within a specified range (i.e., volts, Hz , etc.), or it can be a discrete value represented by the text.

The new data value will be stored in the software when leaving the DATA MODE.

Please Note: It is necessary to press
to stop the motor before changing the data value of some parameters.

If the data value of the chosen parameter is a discrete value, a text will appear in the display. The text shown represents the chosen parameter. In order to change it, press
 words that can be chosen will be shown one at a time by using the ++ or $-($ key.

Due to space considerations, several words have been abbreviated on the display.

When leaving the DATA MODE, the word shown in the display will be stored.

Please Note: In order to change the data value of some parameters, it is necessary to
press $\left.\begin{array}{c}\text { Stop } \\ \text { Reset }\end{array}\right)$.

If the VLT is left in DATA MODE, a 20 second

Time-out

 time-out will prevent unwanted change of data.The software leaves DATA MODE after 20 seconds if no operation is recorded.

It is possible to return to DATA MODE and program the parameter that was blocked by
the time-out with a single stroke on \square
Note: The 20 second time-out does not occur in parameter 004, Local Reference.
Display Mode
Menu Group Mode

SELECTED DISPLAY READ-OUT, Including unit-00.0 IT
FREQUENCY \rightarrow ROTATION DIRECTION
RUN OK LOCAL 1 -active setup selection
(1-4 CAN BE SELECTED
IN PARAMETER 001)
NAME OF SELECTED DISPLAY READ-OUT- STATUS, Including indication of local operation-

FLASHING PARAMETER NUMBER 00.0 -Z
$0 . .=$ FLASHING CURSER
O.. OPERATION

PARAMETER GROUP
AND DISPLAY

Alarm Mode

* Indicates selection can not differ from setup to setup.

LOCK - Switchpin

To avoid unwanted programming of the VLT, a "LOCK" switchpin (01) has been provided on the Control Card.

An open switchpin will lock out the programming function of the keyboard. Local START/STOP type operation is possible if enabled.

EXAMPLE: You want to set the VLT for local operation and to change the local reference (motor speed) by means of " + " and " - " keys.

Enter menu mode

Enter group 0.
Select parameter 003

Select data $=$ LOCAL

Enter data value

Select parameter 004

Enter data mode

Increase or decrease the output frequency
"Menu" key

0.0 Hz

003 LOCAL/RE REMOTE
"Data" key

LOCAL/REMOTE LOCAL
"Menu" key

0.0 Hz

004 LOCAL SPEE 00.00 "Data"

Programming Keys

When the supply voltage is connected, the VLT is automatically in DISPLAY MODE after startup. Please note that the size and voltage of the VLT are shown on the display during startup. If the voltage and size shown on the display does not correspond to the actual VLT size and AC line voltage, the correct information can be set in parameter 650.

Press Menu once to switch to MENU GROUP
MODE. From MENU GROUP MODE press
Menu once to switch to MENU PARAMETER
MODE.

Use the Data key to switch to DATA MODE.
Data can now be changed.
The + and $-\square$ keys are used to select a group of parameters, one particular parameter or a data value.

Data values can only be changed using the + and - keys. Pressing the Menu key stores the new data values in the memory. This also takes place automatically after 20 seconds if the data values have been changed.

Speed	A potentiometer $1 \mathrm{k} \Omega$ is connected to terminals
Reference	50,53 and 55.

Starting and Stopping

Start the frequency converter by connecting +24 VDC (terminal 12) to start (terminal 18) and freewheel stop (terminal 27)

Initialization

Initialization is used to return to a known status (factory setting). Initialization is required on change of a software version or if so many of the parameters have been changed that the current situation is no longer evident.

Two methods of initialization are possible.
Initializing via Parameter 604 restores all factory settings with exception of:

Communication parameters 500 and 501; Field Bus parameters 820, 821 822, 904, and 918 ; Operation Data parameter 600; and the Fault Memory parameter 602.

Manual initialization is used to restore all parameters to factory default settings including those which are not changed by Parameter 604 initialization.

For manual initialization:
Remove power and wait for the display to go out.

Press and hold keys MENU, DATA, JOG simultaneously while applying input power.

When "init eeprom" appears in the third line of the display, release the keys and wait for the initialization process to complete.

In most cases it is sufficient to program the VLT according to items 1-10 shown below.

If the factory setting has been changed the drive will need to be initialized.

Standard motor running in constant torque application without a brake module on the VLT.

Item	Parameter	Description	Settings	Display
1	000	Language	Select: "English"	ENGLISH
2	103	Motor output	See nameplate and select closest setting	
3	104	Motor voltage	See nameplate	
4	105	Motor frequency	See nameplate	ON
5	106	Auto motor tune	Items 1-4 must be carried out first. Select: "On" The compensation menus 109-113 are now tuned auto- matically. During auto motor tune the motor should be un- loaded or only loaded at max. 50\%. Auto motor tune is not possible in connection with parallel running of several motors on one VLT. This also applies to motor outputs which cannot be set in param- eter 103, and synchronous, reluctance and other special- ized motors. After tuning, the VLT is stopped by pressing the Stop/Reset key and restart by pressing the Start key. WARNING: During auto motor tune the motor will start for a brief period.	
6	201	Min. frequency	Set required frequency	
7	202	Max. frequency	Set required frequency	
8	215	Ramp-up 1	Set required ramp time	
9	216	Ramp-down 1	Set required ramp time	
10	Start VLT	This is by supplying terminals 18 and 27 with 24 VDC from terminal 12 or by using an external 24 VDC supply.		

The following settings are used for local operation and start

Item	Parameter	Description	Settings	Display
1	003	Operation mode	Select: "Local"	LOCAL
2	004	Local reference	Set required output frequency using the " + " or " - " keys	

Dual Display

Parameter 605
Personal Display
Select

You can have two different display read-outs in the display at the same time. The extra readout selected in parameter 605 will be shown in line 2 of the display.

NOTE:
To be able to see both lines simultaneously, the display must be in Display Mode.

EXAMPLE: The frequency in Hz in line 1, indication of frequency in line 2, and indication of status of operation in line 3. The other data values are selected to read another operation value in line 2, so that it is possible to display the frequency in line 1 and current in line 2 simultaneously. There are 14 different data values that can be selected.

Parameter Groups

Group 0: Operation and Display

- Language Select
- Local Remote Operation
- Menu Select

Group 1: Load and Motor

- Open/Closed Loop Control
- Adaptive Motor Tuning
- PID Function (also refer to PI Regulation in the Appendix)

Group 2: References and Limits
 - Min./Max. Frequency
 - Ramp Times
 - Carrier Frequency

Group 3: Functions and Timers
 - Braking
 - Flying Start
 - Motor Thermal Protection

Group 4: Inputs and Outputs

- Digital Inputs
- Output Signals
- Analog Inputs

Group 5: Serial Data Interface
 - RS485 Interface

Group 6: Service and Diagnostics

- Diagnostics
- Nameplate Information
- Personal Display Select

The following is a description of each of the parameters and the Data Value contained within them.

For each function description in the left column, the three-digit parameter number is given with the type of message seen on the LCD display shown in the shaded box. If no shaded box is given, the display reads the same as the text.

The numbers given in brackets [] signify the parameter choice when programming via the RS-485 serial communication port.

The Data Values to be chosen for each parameter are listed in the center column.

The right hand column gives a description of the function that the parameter's Data Value will provide.

000	Value:		
Language Select	* ENGLISH [0]		
	GERMAN		[1]
LANGUAGE	FRENCH [2]		
	DANISH [3]		
	SPANISH [4]		
	ITALIAN [5]		
001 Menu Setup Select	Value:		
	FACTORY SET		
	* SETUP 1		
SETUP OPER	SETUP 2 [2]		
	SETUP 3 [3]		
	SETUP 4 [4]		
	MULTI-SETUP [5]		
	MENU		
	Setup	Term 16 or 32	Term 17 or 33
	1	0	0
	2	1	0
	3	0	1
	4	1	1
	(0 =	1 = closed)	

This parameter selects the language that will be displayed.

Four (4) identical menu sets are available in the VLT software. Each of the menu sets contain all of the parameters listed in the Parameter Chart. The menu sets are identical, but totally independent of each other. This allows the parameters for each menu set to be programmed individually; such as different Current Limits, Slip Comp., etc.

Switching between menu sets can be done locally or by means of a remote input. In local mode select the desired operating menu set from this parameter. For remote selection choose MULTI-SETUP then program terminals 16 and 17 or 32 and 33 for SET-UP SELECT. To select menu sets follow the wiring examples and truth table.

FACTORY SET contains the factory default parameter selections. It is possible to run in the factory setup but parameter changes are not allowed.

NOTE: Parameters which display an (*) asterisk in the lower right hand corner of the display can not be independently set from one step to another.

002

Setup Copy
MENU SET C

Value:

* DO NOT COPY [0]

COPY TO 1 FROM \#
COPY TO 2 FROM \#
COPY TO 3 FROM \#

A menu setup can be copied to one of the other setups or to all the other setups simultaneously.

Choose the setup source, locally from parameter 001 or remotely via terminals 16 and 17 or 23 and 33 . Choose the setup destination at this parameter. The copying process begins when leaving Data Mode either by pressing the Menu button or allowing the Time-Out function to occur. The third line of the display will flash while the copy function is in process. When complete the Data Value will automatically be set to DO NOT COPY.

003

Operation Place

LOCAL/RE

Value:

* REMOTE

LOCAL W/EXTERNAL STOP LOCAL

WARNING:
During data value changes the VLT may recognize that a RUN condition exists.

NOTE: If LOCAL is selected the VLT will only operate from the keyboard, and not recognize any external control signals.

004
 Local Reference
 LOCAL SPEE
 Value:
 $0.00-\mathrm{f}_{\text {MAX }}$ (parameter 202)

This parameter sets the running frequency of the VLT when operating in LOCAL or LOCAL W/ EXTERNAL STOP. Local reference must be enabled in parameter 010 .

CHOOSING LOCAL programs the VLT to be controlled only by the key board display mounted on the front of the VLT. With this selection speed control is only possible via parameter 004. In LOCAL the remote terminal inputs are ignored.

To operate the VLT using remote inputs choose REMOTE Then program the appropriate terminals in the 400 group for desired control functions.
NOTE: Terminal 27 must be connected to terminal 12 via a jumper or a normally closed contact to enable Remote operation.

LOCAL W/EXTERNAL STOP programs the VLT to operate locally but with the possibity of an external remote stop function. The remote stop function must be connected between terminals 12 and 27 with a normally closed contact. Parameter 404 must then be programmed for MOTOR COASTING or RESET and MOTOR COASTING.

Once the cursor is placed on the data value the speed reference is changed by using the "+" and "-" keys on the front of the key board display.

The status of the Local Reference at power loss is determined by the programmed value in parameter 014.

The Time-Out function does not apply to this parameter.

005
 Display Value
 Value:
 1-9999

VALUE AT M

The data value recorded will be read out in the display when the output frequency is equal to the MAX frequency ($\mathrm{f}_{\text {max }}$) recorded in parameter 202. This is useful for customizing the display to represent application specific information; i.e., in./min., ft/sec., etc.

Select the engineering unit to be displayed in parameter 117. When using closed loop control, this display value represents the feedback value. In that case, program this display output in parameters 115, 116, and 117.

EXAMPLE: It is desired to display RPM. Determine the RPM of the driven machine when running at the speed programmed in Fmax, parameter 202. (ie: $F \max =60 \mathrm{~Hz}$, motor base speed $=1725$ RPM at 60 Hz . Enter the value of 1725 in this parameter). Select parameter 117 to display in RPM.

Parameters 006-010 allow the user to enable or disable certain functions of the keypad. Remote control inputs are not effected by these selections.

$\begin{aligned} & 006 \\ & \text { Local Reset } \end{aligned}$	Value: DISABLE * ENABLE	The option of resetting faults from the key board display can be enabled or disabled via this parameter.
LOCAL RESE		Disabling or enabling the Local Reset function does not effect the status of the selection made regarding Local Stop in parameter 007.
007 Local Stop	```Value: \\ DISABLENone```	The ability to stop the VLT from the key board display can be enabled or disabled via this parameter. Select ENABLE if the local stop key is to function.
LOCAL STOP		
	WARNING: During data value changes, the VLT may recognize that a RUN condition exists.	If the VLT is running when the stop function is disabled it will not be possible to stop the VLT from the keypad.
		Disabling or enabling the local stop function does not effect the status of the selection made regarding Local Reset in parameter 006.

008 Value: Local Forward/ * DISABLE Reverse ENABLE	$[0]$	
LOCAL FWD $[1]$		

The ability to change direction of operation
Local Foward

LOCAL FWD
[0] while operating in Local Mode is determined
[1] by this parameter. Select ENABLE if local control of forward and reverse is to be allowed.

Local control of forward and reverse is disabled automatically and will not function if Remote control has been chosen in parameter 003.

009	Value:		This parameter selection enables or disables
Local Jogging	DISABLE	[0]	the function of the jog key on the key board
	ENABLE	[1]	display. When enabled, the jog function is only
LOCAL JOG			active while the jog key is held depressed.

010
 Local Reference

LOC REFERE

Value:
DISABLE

* ENABLE
[1] in parameter 004.
011
Reset Energy
Counter

Counter

Value:

* NO RESET

RESET

The energy counter provides an accumulative [0] total of the kilowatt hours the VLT has [1] consumed since last reset (Reset is initiated when leaving DATA MODE).

ENERGY COU

012
Reset Hour Counter
HOUR COUNT

014
 Power On Mode
 POWER UP M

Value:

AUTO RESTART
Auto restart on local operation, maintain speed reference.

* LOC = STOP

Stopped on local operation, use saved reference.
LOC = STP + REF = 0
Stopped at local operation, set speed reference at 0 .

This parameter determines the Local Mode
[0] operating state of the VLT at power up. In addition, the status of the reference when using remote digital speed up/ speed down is
[1] also effected by this parameter.
Auto Restart is selected if the unit is to power
[3] up under the same conditions that applied at power down. EXAMPLE: If the VLT was running at 60 Hz at power down, the VLT will return to running at 69 Hz when power is reapplied.

Loc = Stop is selected if the unit is to remain stopped at power up until a start command is given. The speed reference as recorded in parameter 004 is saved, and the VLT will return to the programmed speed when started.

Loc $=$ Stop + Ref $=0$ is selected if the VLT is to remain stopped at power up until a start command is given. The speed reference as recorded in parameter 004 will automatically be set to zero.

This selection will also cause the digital speed up/speed down reference to be set to zero, however, the operating state of the VLT will be determined by the remote input status at the time power is applied.

015

Setup Selection
Programming

SETUP PROG

Value:
PREPROGRAMMED (Factory Set) [0] SETUP 1 (Setup 1) [1]
SETUP 2 (Setup 2) [2]
SETUP 3 (Setup 3) [3]
SETUP 4 (Setup 4) [4]

* SETUP=PARAM 001 (Setup=P001) [5]

The menu setup in which the program (change data) can be selected.

It is possible to program the 4 menu setups independently of which setup the VLT is operating in (selected in parameter 001). This concerns programming via the keyboard and the serial bus (RS485).

PREPROGRAMMED contains the factory set data and can be used as a data source if the other setups are to be brought to a known status. The language is always English. It is not possible to change data once this setup has been chosen.

SETUP $1-4$ is 4 individual setups which can be used as required. These can be programmed freely, irrespective of which setup the VLT is running in.

SET = PARAM 001 directs the control to follow the setup as selected in parameter 001.

NOTE: If data is changed in the setup in which the VLT is currently running, the changes have an immediate impact on the unit's function. This applies to both parameters 001 and 015 .

100

 Load LOAD TYPEValue:
VARIABLE TORQUE LOW VARIABLE TORQUE MEDIUM VARIABLE TORQUE HIGH
CT START VT LOW
CT START VT MEDIUM
CT START VT HIGH
CONSTANT TORQUE

* CONSTANT TORQUE COMP

CONSTANT TORQUE WITH
FOUR QUADRANT COMP
(1) Variable Torque Low, (2) Medium, and (3)
[0] High, select between different profiles of the
[1] V/f ratio from 0 to 100% speed. All three of the [2] profiles result in maximum voltage at maximum [3] speed but differ in the voltage dielivered at a [4] given speed. For example; At 60\% speed VT [5] Low delivers approximately 35% voltage and [6] VT High approximately 50% The choice of the [7] curve will effect overall energy consumption and acoustic noise levels.
[8]

For additional breakaway torque capability select a VT curve with CT start. Start Voltage (parameter 109) and Start Compensation (parameter 110) can then be adjusted for maximum performance.

If using parallel or synchronous motors select strictly Constant Torque. This selection removes the compensations from the equation which could otherwise result in motor instability.

Constant Torque Comp is suitable for most standard induction motors running CT loads. To improve speed regulation in applications with over-hauling loads choose Constant Torque with Four Quadrant Comp. This activates Negative Slip Compensation, parameter 113.

101

Speed Control

SPEED CONT

Value:

OPEN LOOP

* SLIP COMPENSATED CLOSED LOOP

Selects between various degrees of speed regulation. Selecting Open Loop cancels the effect of Slip Compensation. By selecting Slip Compensated the slip of the motor can be overcome improving speed regulation to \pm 0.5% over a $10-90 \%$ change in load. Adjust parameter 112 (Slip Compensation) for the optimal level of compensation required. Selecting Closed Loop enables the VLT's internal PID regulator improving speed regulation to $\pm 0.1 \%$. Selecting PID requires the selection of a feedback device (parameter $114)$ and the proper entries to parameter 119 through 123.

When parallel motors are connected select Open Loop to avoid system instability.

Open Loop Mode

Closed Loop Mode

102

Current Limit Control SET CUR LI

Value:
-PROGRAM SET
10VDC SIGNAL 20 mA SIGNAL

Selects the control method for current limit. [0] Program Set provides a fixed level for current [1] limit as is programmed in parameter 209. A [2] voltage or current signal can be used to very the level of current limit from 0\% current to the value programmed in parameter 209. Voltage signals are input on Terminal 53 and current signals are input on Terminal 60. A speed reference either digital or remote must also be provided. If a remote speed or feedback signal is used it can not be the same type of signal as used for controlling current.

103	Value:	
Motor Power	UNDER SIZE	$[0]$
	-NOMINAL SIZE	$[1]$
MOTOR POWE	OVER SIZE	$[2]$

Read the motor rated output of the motor nameplate and record the value in kW. Use the kW to HP conversion table if the motor is only rated in HP. It is possible to record one of three motor sizes in each frequency converter: one size under, nominal size, or one size over. For example, on a VLT 3022 (15 kW motor), you can choose a data value of "11", "15" or "22".

The VLT resets parameters 107 through 113 automatically to a nominal value when parameter 103 is changed.

HP	.75	1	1.5	2	3
KW	.55	.75	1.1	1.5	2.2
HP	5	7	10	15	
KW	4	5.5	7.5	11	
HP	20	30	40	50	
KW	15	22	30	37	
HP	60	75	100	125	
KW	75	90	110	132	
HP	150	200	250	300	
KW	132	160	200	250	

104 Value: Motor Voltage $200-230 \mathrm{~V}$ Range -200 V MOTOR VOLT 220 V 230 V $380-415 \mathrm{~V}$ Range -380 V 400 V 415 V $440-500 \mathrm{~V}$ Range 440 V 460 V 500 V	

(* Indicates factory default settings)

Within the voltage rating of the VLT three motor voltages can be selected. Read the rated
motor voltage from the nameplate of the motor
[1] and enter that value here. Parameters 107 to
[2] 113 will be changed automatically in relation to the voltage selected.

105
Motor Frequency
MOTOR FREQ
106
Adaptive Motor
Tuning
AUTO MOTOR

Value:
$50 \mathrm{~Hz} \quad[0]$
60 Hz [1]
87Hz
100 Hz
Value:
-Tuning OFF
Tuning ON

CAUTION:

During part of the tuning process the motor will run at 20 Hz in the programmed direction. The motor load may not exceed 50 percent of the motors full load capacity.

NOTE: Following the tuning process DO NOT adjust parameters 108 through 113 unless required by the application. Check, and adjust as necessary, the motor current value programmed in parameter 107. This value is not set by the tuning process.

Read the rated motor frequency from the nameplate of the motor and enter that value here. Parameters 107-113 will change automattically in relation to the frequency selected.

Adaptive tuning optimizes the parameter settings of 108 to 113 for the motor connected. This function can only be used if the motors nameplate values for Motor Power, Motor Voltage, and Motor Frequency can be programmed accurately. For motor values other than those available in the Data selection manual programming of parameters 108 through 113 will be required.

To initiate the tuning process; enter the appropriate values in parameters 103, 104, and 105. Select "Tuning On" and provide the VLT with a run command from either the local keypad or the remote terminals. Following the tuning process the VLT will display "Alarm", "Trip" Tuning OK or Tuning Fault. If OK, press the reset button on the keypad. If not OK parameters 108 through 113 must be programmed manually. Parameter 106 will automatically be returned to Tuning Off.

107
Motor Current
MOTOR CURR

Value:

$I_{\text {MAG }}$ (P108) $-I_{\text {VLT, max }}$ (Intermittent amps)
The Electronic Thermal Relay (ETR) in UL listed VLT's provides class 20 motor overload protection in accordence with NEC in single motor applications, when parameter 315 is set for "TRIP" and parameter 107 is set for nominal motor rated (name plate) current.

Read the motors Full Load Amp (F.L.A.) rating from the nameplate and enter that value here. The accuracy of this entry is important for various calculations made by the VLT and to ensure proper protection is provided by the Electronic Thermal Relay if selected in parameter 315.

Note that the motor current value can not be lower than Magnetization Current as set in parameter 108. If a motor that is 2 or more times smaller than the nominal rating of the VLT is connected it will be necessary to lower parameter 108 so the correct current can be entered here.

108

Motor Magnetizing
MOTOR MAG

Value:

$0.3-\mathrm{I}_{\mathrm{M}, \mathrm{S}}(\mathrm{P} 107)$

NOTE: DO NOT reset parameter 108-113 after using Adaptive Motor Tuning.

Enter the magnetizing current of the motor connected. This value is basically yhe current drawn by a motor running unloaded. The absolute value can be found in the manufacturers catalog or on the nameplate of some motors. If unknown, allow the VLT to select the value or choose an approximate value from the table of factory defaults.

109

Start Voltage
START VOLT

Value:

$$
0.0-\left(\mathrm{V}_{\text {мтв, мом }}+10 \%\right)
$$

Start Voltage is used to compensate for inadequate starting torque. The factory setting will be adequate for most applications. For loads requiring high starting torque Start Voltage will most likely need to be increased.

If several motors are connected in parallel Start Voltage will normally have to be increased.

Too much Start Voltage can result in excessive current being drawn at start up and motor instability especially at low speeds.

110 Start Compensation	Value: $0.00-99$ V/A
START COMP	NOTE: For multiple motor applications Start Compensation must be set to Zero
	On VLT models 3060 to 3250, Start Compensation should normally be left at the factory default setting of 0.

111
V/f Ratio
V/F RATIO

Value:

$0.00-20 \mathrm{~V} / \mathrm{Hz}$

Start Compensation provides a voltage supplement to the output as the load increases. This parameter assists in starting loads requiring high starting torques and loads with changing demands as speed increases. Too much Start Compensation can result in excessive current being drawn at start up and motor instability.

The V/F Ratio determines the amount of voltage delivered for each Hertz of frequency. For example a 7.66 V/F Ratio provides 7.66 Volts for every Hz or approximately 460 Volts at 60 Hertz. Adjustment is not required unless the motor voltage and frequency can not be programmed in parameters 104 and 105.

Slip Compensation is used to overcome the loss in speed as the load and the amount of motor slip increases. Properly adjusted, Slip Compensation will provide speed regulation of 0.5% over a 10 to 90% change in load. To adjust, tach the motor speed at minimum load, then tach the speed at maximum load. Adjust the value until the speed at maximum load matches the speed at minimum load. For multiple motor applications Slip Compensation must be set to Zero.

113
 Negative Slip Compensation

NEG. SLIP

Value:

$$
0.0-20 \%
$$

NOTE: For multiple motor applications Negative Slip Compensation must be set to Zero. Negative Slip Comp is only active when parameter 100 has been programmed for "Constant Torque with Four Quadrant Comp"

Negative Slip Compensation is used to overcome the gain in speed when overhauling loads are generated back to the VLT. To adjust, tach the motor speed during non regenerative conditions, then tach the motor speed during regenerative conditions. Adjust the value until the speed of the motor under both conditions is equal.
(* I ndicates factory default settings)

114 Feedback Type	Value: VOLTAGE -CURRENT
FEEDBACK T	PULSES

Value:
CURRENT
[0] the internal PID controller.
Selects the feedback signal type when using
[2] The signal is input on Terminal 17, for pulses, Terminal 53, for voltage, and Terminal 60, for current. The terminal chosen must also be programmed to accept the feedback signal. When choosing the feedback signal the reference set point signal can not be of the same type.

115 Display Value at Minimum Feedback	Value: $0-9999$ \sim
DIS VLU @ MI	
116	Value: $0-9999$ Display Value at Maximum Feedback -100
DIS VLU @ MA	

Parameters 115 and 116 are programmed to provide a display readout that is proportional to the feedback signal when operating in closed loop mode. If for example the feedback signal equates to a motor operating between 1000 and 1500 RPM, the value of 1000 would be entered in parameter 115 and 1500 in parameter 116. Choose display engineering unit in parameter 117.

117 Display Unit	Value: -\%				Choose the engineering unit to be displayed when using parameters 115 and 116.
		[0]		[20]	
	${ }^{\circ} \mathrm{C}$	[1]	${ }^{\circ} \mathrm{F}$	[21]	Parameters 115 through 117 are for display purposes only. Adjustment of these parameters has no other effect on the feedback signal.
DISPLAY UN	PPM	[2]	PPM	[22]	
	Pa	[3]	In HG	[23]	
	bar	[4]	bar	[24]	
	rpm	[5]	RPM	[25]	
	I/sec.	[6]	gal/sec.	[26]	
	$\mathrm{m}^{3} / \mathrm{sec}$	[7]	$\mathrm{ft}^{3} / \mathrm{sec}$.	[27]	
	$1 /$ min	[8]	gal/min.	[28]	
	$\mathrm{m}^{3} / \mathrm{min}$	[9]	$\mathrm{ft}^{3} / \mathrm{min}$.	[29]	
	I/h	[10]	$\mathrm{gal} / \mathrm{hr}$	[30]	
	$\mathrm{m}^{3} / \mathrm{h}$	[11]	$\mathrm{ft}^{3} \mathrm{~h}$	[31]	
	$\mathrm{kg} / \mathrm{sec}$	[12]	LB/sec.	[32]	
	kg/min	[13]	LB/min.	[33]	
	kg/h	[14]	LB/h	[34]	
	T/h	[15]	ton/min.	[35]	
	m	[16]	FT	[36]	
	Nm	[17]	LP FT	[37]	
	$\mathrm{m} / \mathrm{sec}$.	[18]	FT/sec.	[38]	
	$\mathrm{m} / \mathrm{min}$.	[19]	FT/min.	[39]	

Parameters 119 through 125 are used in conjunction with the PID regulator. No adjustment is necessary if PID is not being used.

119
Feed-Forward Factor
:---:
$0-500 \%$

The percentage of Feed Forward determines how much of the reference setpoint is transferred directly to the output, bypassing the PID regulator. Choosing 100 percent means the PID controller regulates speed by making only small changes to the setpoint. Choosing a value less than 100\% would result in the regulator having an effect on a larger portion of the setpoint and in turn may also result in undesirable overshoot.

120 Controller Range	Value:$\begin{aligned} & 0-100 \% \\ & -100 \% \end{aligned}$	The Control Range sets the bandwidth of the output of the PID regulator as a percentage of the maximum frequency programmed in
CONTRL RAN		parameter 202. As the bandwidth is reduced, speed variations will be smaller and if reduced too far will limit the operating range of the PID regulator.
121 Proportional Gain	Value:$\begin{aligned} & \text { OFF - } 10.00 \\ & 0.01 \end{aligned}$	Proportional gain acts as a multiplier to the error signal present between the setpoint and the feedback signal. Sufficient gain is required to reduce the offset between the error signal and the setpoint. High gain selections result in large responses to small errors. Higher gain selections may provide faster regulation response, but may also cause instability in the process.
PROPRT/L G		
122 Integral Time	```Value: 0.01 sec - }9999 se -OFF```	The integral time function is used to reduce or eliminate the offset. The amount of offset error is calculated and added to the proportional correction. For each integral time period, while an error exists, the integral function will add the offset error to the proportional correction. The shorter the integral time, the more often the offset correction is made. Short integral times result in fast dynamic response, but too short results in overshoot and ringing which will cause instability. Long integral times slow the responsiveness and too long may prevent the setpoint from ever being reached.
INTEGRAL T		

(* Indicates factory default settings)

The differential time function is used to eliminate overshoot. The differential function predicts the amount of overshoot. Short differential times create fast responses as the corrections are made immediately at the presence of the error. Longer times result in slower response but larger contributions to the error correction signal. Differential time is normally used in high inertia applications. Since this function predicts overshoot it can also cause instability if rapid setpoint changes are made.

124	Value:$\begin{aligned} & 0-10.00 \mathrm{sec} \\ & \sim 0.00 \end{aligned}$	Establishes a cutoff frequency at which point
Low Pass Filter		the PID regulator will not respond to a
		frequency higher that the cutoff. The value
LOWPASS FI		selected sets the period time of the cutoff

For example: A choice of 0.1 sets the cutoff frequency at $10 \mathrm{~Hz}, 1 / 0.1=10$. The PID regulator will then only respond to feedback signals which vary at a frequency of less than 10 Hz .

125
 Feedback Factor
 Value:
 0-500\%
 -100\%
 FEEDBACK F

The feedback is used if the feedback transmitter can not be selected optimally for the scaled range of the setpoint. For example: If when the setpoint is 50% the feedback is only 25% a factor of 200% could be entered to correct the scaling. $(25 \% \times 200 \%=50 \%)$.

200
Frequency Range
FREQ RANGE

Value:

* $0-120 \mathrm{~Hz}$
$0-500 \mathrm{~Hz}$
[0]

When exceeding 120 hz , verify that motor/ application is properly designed.

$\begin{aligned} & 201 \\ & \text { Min Frequency } \end{aligned}$	Value:$\begin{aligned} & 0-\mathrm{f}_{\text {MAX }} \\ & * 0.00 \mathrm{~Hz} \end{aligned}$	Enter the output frequency corresponding to the minimum reference input.
MIN FREQUE		
202 Max Frequency	Value: $f_{\text {min }}-f_{\text {range }}$ * Depending on unit	Enter the output frequency corresponding to the maximum reference input. The max. frequency will be limited by the Frequency Range set in Parameter 200.
MAX FREQUE		
203 JOG Frequency	Value:$\begin{aligned} & \quad 0-f_{\text {RANGE }} \\ & * \\ & * \\ & 10 \mathrm{~Hz} \end{aligned}$	Provides a preset fixed output frequency during a JOG command. The JOG frequency can be lower than the minimum output frequency recorded in parameter 201.
JOG FREQUE		

204
 Digital Reference Type

DIG REF

205

Digital Reference 1

REF 1 DIG

206

Digital Reference

REF 2 DIG

207

Digital Reference 3

REF 3 DIG

208

Digital Reference 4

REF 4 DIG

Value:

* SUM

RELATIVE
EXT. ON/OFF

Value:
-100% to $+100 \%$

* 0

Value:

-100% to $+100 \%$

* 0

Value:

-100% to $+100 \%$

* 0

Value:

-100% to $+100 \%$

* 0
[0] The digital reference is set in percentage of
[1] $f_{\text {MAX }}$ (sum) or of the analog reference (relative)
[2] (-100% to $+100 \%$). Max. frequency will always limit the output.

Only one of the digital references can be active at any one time.

Activating the digital reference remotely is done on terminal input 32 and 33.

Parameter 405 allows for switching the external control of the digital references ON and OFF externally using terminal input 29.

32	33	
0	0	Digital reference 1
1	0	Digital reference 2
0	1	Digital reference 3
1	1	Digital reference 4

SUM: Will "SUM" the digital reference to the analog input.
RELATIVE: The digital reference will act as a multiplier to the analog input.
EXT. ON/OFF: Switches between analog input and digital reference.

Refer to graph for parameters 209-213

209	Value:
Current Limit	0-I $\mathrm{I}_{\text {litmax }}$
CURRENT L	

Sets the max allowable output current of the VLT. The factory set value corresponds to a 160% load of the nominal motor size. Settings between 105% and 160% may be applied during intermittent operation. If the Current Limit Value is set too low, the motor may not start.

210	Value:	This value sets the lower warning frequency
Warning Frequency	$0-\mathrm{f}_{\text {Range }}$	$\mathrm{f}_{\text {CR,Low }}$ of the VLT operation range.
Low	* 0.0	
211	Value:	This value sets the high warning frequency
Warning Frequency	$0-\mathrm{f}_{\mathrm{RANGE}}+10 \%$	$\mathrm{f}_{\mathrm{CR}, \mathrm{HIGH}}$ of the VLT operation range.
High	32Hz	
HI FREQ A	A logic signal output may be programmed to	display shows FREQ VAR HIGH.

212	Value: $0-I_{\text {VLT, max }}$
Warning Current Low	
	$* 0.0$

LO CURR A

213

Warning Current
High
HI CURR A

A logic signal output may be programmed to provide an alarm signal using parameters 407410.

This value sets the lower warning current $\mathrm{I}_{\mathrm{CR}, \text { Low }}$, of the VLT operation range.

If the output current drops below $I_{\text {CR,Low }}$, the display shows RUN OUT RANGE.

This value sets the high warning current $I_{\text {CR,HIGH }}$ of the VLT's operation range.

If the output current is higher than $I_{C R, H I G H}$, the display shows CURR VAR HIGH.
(* Indicates factory default settings)

214	Value:
Ramp Type	* LINEAR
RAMP TYPE	S CURVE 2
	S CURVE 3

* LINEAR

S CURVE 1
S CURVE 3

Select the shape of the ramp up and the ramp [0] down. The sine shapes provides a softer start [1] and stop during the acceleration and [2] deceleration.

A minimum of 3 seconds ramp time is recommended when using a S-curve ramp.

Ramp Type

215	Value:
Ramp-up Time	0.00-3600 SEC
RAMP UP TI	epending on unit

The ramp-up time t_{a} is the acceleration time from 0 Hz to the rated motor frequency. This assumes that the output current is not higher than the current limit in parameter 209.

216	Value:
Ramp-down Time	$0.00-3600$ SEC
	* Depending on unit

The ramp down time t_{d} is the deceleration time from the rated motor frequency to 0 Hz . The time may be affected by excessive load inertia.

High braking energy may require installation of a dynamic brake option.

217
 Alternative Ramp-up
 Time

ALT UP RA

Value:

0.00-3600 SEC

* Depending on unit

The alternative ramp-up provides an acceleration time independent of the ramp found in parameter 215.

The alternative ramp-up is only activated with a JOG command (terminal 29, parameter 405).

The alternative ramp-down provides a deceleration time independent of the ramp found in parameter 216.

The alternative ramp down is activated during a remote Quick Stop command or release of the JOG command (terminal 27, parameter 404).

219
 Frequency Bypass 1

FREQ 1 BYP

220

Frequency Bypass 2
FREQ 2 BYP

221
 Frequency Bypass 3

FREQ 3 BYP

222

Frequency Bypass 4

FREQ 4 BYP

223

Frequency Bypass
Bandwidth
BYPASS B W

Value:
$0-f_{\text {Range }}$
+120

Value:
$0-f_{\text {RANGE }}$
$* 120$

Value:
$0-f_{\text {RANGE }}$
$*$
120

Value:
$0-f_{\text {Range }}$
$*$
120

Value:
0-100\%

* 0

Some systems require that certain output frequencies are avoided because of resonance problems.

Enter up to four (4) of the frequencies to be avoided and record the band-width in percentage of the frequency.

The bypass bandwidth is entered as a percentage (\%) of the set bypass frequencies. Example:
Bypass set at: 20 Hz
Bandwidth set at: 10\%
Size of Skip Frequency $=2 \mathrm{~Hz}$
VLT will not allow maintained operation in 1921 Hz range.

224

Carrier Frequency
CARRIER FR

Value:
2-14kHz

* 4.5 kHz

De-Rated 30% at 14 kHz
Linearly back down to 5 kHz

CAUTION: Do not exceed 4.5 KHz with the VLT 3060-3250.
(* Indicates factory default settings)

The value recorded sets the internal carrier frequency of the VLT. The carrier frequency is modulating the switching of the inverter output transistors.

NOTE: On models VLT 3060-3250 DO NOT exceed 5 kHz switching frequency.

Parameter 224 allows for the adjustment of the VLT carrier frequency from 2 KHz to 14 KHz . The factory default setting of 4.5 KHz is acceptable in the majority of industrial installations, but in areas where motor acoustic noise is a concern, it will be reduced by increasing the carrier frequency. The application will need to be derated in situations that use a carrier frequency greater than 4.5 KHz as follows:
a) To prevent an overload on the internal VLT motor coils, the maximum motor cable lead length cannot exceed 130 feet (40 meters) when the carrier frequency is greater than 4.5 KHz .
b) The maximum current (torque) is linearly derated from 100% at 4.5 KHz to 60% when operating at 14 KHz .

225

Output frequency Dependent carrier frequency

Data Value:
DISABLE
HIGH CARR @LOW
LOW CARR @LOW

NOTE: For models VLT 3032-3052/230V and VLT 3060-3250/380-500V, the factory default is Data Value [2]. For all other models, the factory default is Data Value [0].

High
Carrier Frequency at Low Speed (Figure 1)

Low
Carrier Frequency at Low Speed (Figure 2)

The parameter allows the option for the VLT series 3000 carrier frequency to be selftuning dependent upon the operating output frequency. Parameter 225 interacts with the carrier frequency set in Parameter 224; CARRIER FREQUENCY in the following manner:

DISABLE [0]:
The VLT will operate with the fixed carrier frequency set in Parameter 224; CARRIER FREQUENCY.

HIGH CARR @LOW [1] (Figure 1):
When the VLT unit is running from 0 to 50% of it's nominal output frequency (speed), the carrier frequency is operating at the value set in Parameter 224. When the output frequency exceeds 50\%, the carrier decreases proportionally and linearly to 4.5 kHz . If Parameter 224 is set for $\leq 4.5 \mathrm{kHz}$, the carrier frequency will remain consistent over the entire output frequency range. NOTE: Figure 1 is an example of parameter 224 set to 3.5 kHz .

LOW CARR @LOW [2] (Figure 2):
This Data Value is only active for the VLT Series 3032-3052 / 230V and VLT 30603250 / 380-500V. This Data Value is specifically useful to obtain smooth low speed performance. During low speed $(0-12 \mathrm{~Hz})$ operation the carrier frequency will modulate automatically based on motor speed and current. When the output frequency is $>12 \mathrm{~Hz}$ the carrier frequency will be maintained at the value set in Parameter 224.

230
Brake Cut-out
Frequency
BRAKE OFF

BRAKE OFF

Value:
$0.5 \mathrm{~Hz}-\mathrm{f}_{\text {range }}$

* 003.0 Hz

Parameter 230 through 233 are provided for installations that involve the use of electromechanical brake to control the load.

Relay 01 or 04 can be used to provide a control signal to the brake's controller to activate and de-activate the brake appropriately.

Select the frequency at which the external brake is to be released via Relay 01/04.

The electromechanical brake must hold the motor until the selected frequency is reached, after which the brake is released (voltage impressed via a relay).

If the frequency with connected start signal drops below the selected value, the voltage to the brake is removed and it again becomes active.

Select the frequency at which the external brake is to be activated by stop via Relay 01/ 04.

The electromechanical brake on the motor must first be activated (voltage removed) when the frequency during ramp-down reaches the set value.

Select the minimum current value to release the brake.

The brake is released (voltage impressed via a relay) when the minimum current value is reached.

This function is not active until expiration of the time set in parameter 233.

Select the delay time for the current monitoring (parameter 232).
it is necessary to allow the motor current to rise to a selected value (parameter 232) before release of the brake (voltage impressed via a relay).

If 0.0 sec . is selected, the brake is not released until the preselected minimum current is reached.

305

Flying Start
FLYING STA

Value:

* NO FLYING START SAME DIRECTION BOTH DIRECTIONS DC BRAKE-BEFORE-START

Select FLYING START if the motor shaft is likely to be rotating before start is initiated. FLYING START can also restart the drive after long line interruptions without stopping.

Flying Start provides the opportunity to "catch" a spinning motor and assume control of its speed. For details on some typical scenarios for Flying Start, see the figure below.

To properly produce a flying start function, refer to the following examples 1, 2 and 3 . Example 4 will not produce a flying start.

Example 1:

(1) AC line,(2) Start,(3)Enable. Before closing (1), both (2) and (3) must be closed and maintained.

Example 2:

Both Start and Enable are permanently jumpered so that upon closure of the AC line, a Flying Start will be active.

Example 3:

A contactor on the VLT output with an interlock logic contact for the Enable will provide a Flying Start. The VLT has AC power supplied constantly.

Example 4:

This Example demonstrates a typical start command that does not produce a Flying Start.
$306 \quad$ Value:
DC Braking Time
DC BRAKE T

* 0.0

0-60 SEC

307
DC Brake Cut-in Frequency

DC-BRK ON

${ }^{308}$ DC Brake Voltage

DC-BRK VOL

309	Value:		
Reset Mode	* MANUAL	[0]	If it is desired that the VLT try to automatically
	AUTOMATIC $\times 1$	[1]	restart after a trip, record AUTO RESET.
RESET MODE	AUTOMATIC $\times 2$	[2]	
	AUTOMATIC $\times 3$	[3]	WARNING:
	AUTOMATIC $\times 4$	[4]	The motor may start without warning.
	AUTOMATIC $\times 5$	[5]	
	AUTOMATIC $\times 6$	[6]	Record how many times the VLT should
	AUTOMATIC $\times 7$	[7]	attempt to start automatically within a 10 min .
	AUTOMATIC $\times 8$	[8]	period.
	AUTOMATIC $\times 9$	[9]	
	AUTOMATIC $\times 10$	[10]	Manual reset may be allowed either from a
	START INHIBIT	[11]	remote or local command, see parameter 006.
			Start Inhibit requires cycling of the AC power.

310	Value: $0-60 \text { SEC }$ * OFF	When the VLT registers that the output current has exceeded the current limit ILIM, (parameter 209), it will await a trip command. Enter the time duration the VLT should wait before tipping out.
Trip Delay at Current		
Limit		
TRIP DLY @ C		
311	Value: 0-35 SEC * Depending on unit	When the VLT registers an inverter fault, it will await a trip command. Record the time duration desired before tripping out.
Trip Delay at		
Inverter Fault		
TRIP DLY @ F		
312	Value:$\begin{aligned} & 0-10 \text { SEC } \\ & * 5 \mathrm{SEC} \end{aligned}$	Enter the amount of time for an automatic reset (parameter 309) before tripping out.
Max Auto Restart		
Time		
AUTO RESTA		
	(* Indicates factor	

313	Value:
Motor Check	* OFF
	ON

MOTOR CHEC

Value:

ON

If programmed "ON", the presence of a motor [0] is checked when motor coast is enabled [1] (terminal $27=\mathrm{ON}$).

Note:

Parameter 313 is NOT operational on models VLT 3060-3250 and VLT 3032-3052/230V.

If no motor is connected, NO MOTOR is displayed. Motor Check is activated every 30 secs. for a 3 sec . duration.

314
 Motor Preheat
 MOTOR PRE

Value:
 * OFF

 ONNote:
Parameter 314 is NOT operational on models VLT 3060-3250 and VLT 3032-3052/230V.

If "ON" is selected, the motor will be preheated [0] by a DC current when motor coast is enabled [1] (terminal $27=$ ON). Motor Preheat is active for a 30 second duration and off for 3 seconds. Motor Preheat injects a current equal to 70% of the drives default value.

315	Value:		The VLT calculates if the motor temperature
Motor Thermal	* OFF	[0]	exceeds the permissible limits.
Protection	WARNING 1	[1]	Enter OFF if no warning or trip is desired.
	TRIP 1	[2]	Enter WARNING if an ALARM, OVER TEMP
MOTOR THER	WARNING 2	[3]	readout in the display is desired. A logic signal
MOTOR THER	TRIP 2	[4]	output may be programmed for remote
	WARNING 3	[5]	indication of WARNING, see parameters 407-
	TRIP 3	[6]	410. Selecting TRIP causes the VLT to trip out
	WARNING 4	[7]	if the temperature is exceeded, following
	TRIP 4	[8]	parameters 309-312.

316
Relay ON-Delay

TIMER 1

317

Relay OFF-Delay
TIMER 2

Value:

0-10 SEC

* 0

Value:

0-10 SEC

* 0

The VLT can be programmed to provide an alarm signal via the relay signal outputs on terminals 01, 02, 03 (Relay 01).

Parameters 316 and 317 provide delay timers to control the response time for the switch ON/ OFF delay of the relay associated with terminals 01, 02, 03 (Relay 01).

400
Binary Input 16
INPUT 16

Value:

* RESET

STOP
FREEZE REFERENCE SETUP SELECTOR THERMISTOR

Setup	Terminal 17	Terminal 16
1	0	0
2	0	1
3	1	0
4	1	1

This parameter is used for programming the function of Terminal 16 on the logic terminal block. Unless stated otherwise in a data values description, Terminal 12 is reference for Terminal 16.

RESET: Provides a reset following a fault condition upon a closure.

STOP: A normally closed (NC) contact which stops the VLT when opened.

FREEZE REFERENCE: In a closed condition, the VLT will lock its output frequency to the speed reference value last present. If freeze reference is active when $A C$ power is removed, the unit will power up and resume operating at that value.

SETUP SELECT: Used in conjunction with Terminal 17 and parameter 001 providing an external input for selection of one of the four menu sets in which to operate (see Parameter 001 for details).

NOTE: If multiple setup selections have been made in parameter 001, then the option is available with Terminal 16 between setup 1 ("0") and setup 2 ("1"). If there is a need for more than 2 setups, both Terminals 16 and 17 (parameter 401) are used to select setup.

THERMISTOR: Selected if a motor's possible built-in thermistor is to be able to stop the VLT if the motor overheats. The cut-out value is \geq $3 \mathrm{k} \Omega$. The thermistor is connected between Terminal $50(+10 \mathrm{~V})$ and Terminal 16. When the thermistor's resistance exceeds $3 \mathrm{k} \Omega$, the VLT will show the display to the left.

The thermistors can be connected in a series in the operation of parallel-coupled motors. The number of thermistors permitted in a series depends upon the thermistor's ohmic value in heated operating status.

NOTE: If a thermistor is selected in parameter 400 without being connected, the VLT engages the ALARM mode. To come out of this status, the stop/reset button must be held while the data value is changed using the "+/-" keys.

401
Binary Input 17
INPUT 17

Value:

RESET
STOP

* FREEZE REFERENCE

SETUP SELECTOR
PULSE INPUT 100 Hz
PULSE INPUT 1kHz
PULSE INPUT 10kHz
[0]

Used to select between various function options available for Terminal 17. Terminal 12 is reference for Terminal 17.

The RESET, STOP, FREEZE REFERENCE and SELECT SETUP options are the same as those defined for Terminal 16.

PULSE INPUT: Terminal 17 can be used for pulse train signals in the ranges $0-100 \mathrm{~Hz}$, $0-1 \mathrm{kHz}$ and $0-10 \mathrm{kHz}$.

The pulsing signal can be used as a speed reference for ordinary operationeither as setpoint or as feedbacksignal on operation in "closed loop" (PID regulator), also see parameter 101. Pulse generators with PNP signal outputs can be used between Terminals 12 and 17. Note; Frequencies higher than 1 kHz require pulse generators with a pushpull output.

402

Binary Input 18
INPUT 18

Value:

* START

LATCH START
NO OPERATION

This parameter is used for selecting function options for Terminal 18, Terminal 12 is reference

START: Select if a start/stop function is required (see the Typical Logic Wiring section).

LATCH START: Allows a momentary closure in order to lock the VLT into a running condition, typical in 3 -wire Start/Stop configurations. A direction change or stop command is necessary to unlock the run condition.

NO OPERATION: Deactivates the terminal completely.

403

Binary Input 19
INPUT 19

Value:

* REVERSING START REVERSE NO OPERATION

Parameter 403 determines the operation of [0] Terminal 19, Terminal 12 is the reference.

REVERSING: This option only dictates a directional change (open = forward; close = reverse). This input does not produce a start command. For operation of the VLT, a start command must be present on another terminal.

START REVERSE: A maintained closure produces a reverse and a start command simultaneously; a separate start command is not necessary.

NO OPERATION: Deactivates the terminal completely.

2 - WIRE START/STOP

Parameter 402 = Star
Parameter 404 = Quick Stop

3 - WIRE START/STOP

Parameter $400=$ Stop
Parameter 401 = Reset
Parameter $402=$ Latched Start
Parameter $403=$ No operation
Parameter 404 = Quick Stop
Parameter $405=$ Jog

Note: For a 3-wire START/STOP operation, program Parameter 400 for STOP and Parameter 402 for LATCHED START. Use a normally closed contact on Terminal 16 and a normally open contact on Terminal 18, with both referenced to Terminal 12.

404

Binary Input 27
INPUT 27

Value:

* MOTOR COASTING

QUICK-STOP
DC BRAKE
RESET \& MOTOR COASTING STOP

Parameter 404 is used for selecting function options for Terminal 27, Terminal 12 is reference.

Note: The motor can only operate if there is a closure between Terminal 12 and Terminal 27. An open condition will mean a command via the RS-485 serial port can overide a open ("O") command.

MOTOR COASTING: A normally closed input which, when opened, will cause the motor to be released and coast to a stop.

QUICK-STOP: This selection governs the stopping of a motor according to an alternative ramp time in Parameter 218. This option is a normally closed input which, when opened, will ramp down to zero following the shortest deceleration rate of 0.5 seconds (it will also use the DC injection braking if the unit has been programmed to activate it).

DC BRAKE: This option is used in conjunction with optional dynamic brake accessories; to provide full braking down to zero speed. It is activated on an open ("O") logic condition.

RESET \& MOTOR COASTING: An open condition will cause the motor to coast to zero while simultaneously resetting the fault condition.

STOP: A momentary opening will cause the unit to lock into a stopped condition until a start command is received.

405
Binary Input 29
INPUT 29
Value:
* JOG
JOGGING FREEZE FREEZE REFERENCE DIGITAL REFERENCE RAMP SELECTION

Parameter 405 is used for selecting differenct [0] function options for Terminal 29, Terminal 12 [1] is reference.

JOG: Upon closure, the AFD will operate at the speed determined by the speed referenced in Parameter 203. A separate start command to activate this option is not required.

JOGGING FREEZE: While using the jogging speed as the basis, this option is selected if Terminals 32/33 (Parameter 406) are to be used for digital speed control UP/DOWN.
A closed contact on Terminal 29 will freeze the jogging reference, and then the speed can be changed with the help of Terminal 32/33.

FREEZE REFERENCE: This option can be selected in order to use Terminals 32/33 (Parameter 406) for digital speed control UP/ Down (motor potentiometer). Logic "1" on Terminal 29 will freeze the present reference, and the speed can be changed using Terminal 32/33 (Parameter 406 = speed UP/DOWN).

DIGITAL REFERENCE: Upon a closure, this option is used to select one of the digital references in Parameters 205-208 or one of the following; analoge input voltage (Parameter 412), analoge input current (Parameter 413) or bus reference (Parameter 516).

The digital reference can function only if the "external On/Off" option has been selected in Parameter 204. When the digital reference is activated the speed direction is determined exclusively by the reference sign (\pm).

RAMP SELECTION: Different ramp times can be selected by using Terminal 29:
Terminal $29=" 0$ " - Ramp (Par. 215/216)
Terminal $29=" 1 "$ - Alt. Ramp (Par. 217/218)
The selected ramp UP/DOWN times apply on START/STOP via Terminal 18 or Terminal 19 and during reference changes.

The selection of Quick Stop via Terminal 27 will automatically activate the alternative rampdown time (Parameter 218).

406

Binary Input 32/33
INPUT 32/33

Value:
SPEED SELECT

SPEED SELECT

Digital Reference	Terminal 32	Terminal 33
1 (parameter 205)	0	0
2 (parameter 206)	1	0
3 (parameter 207)	0	1
4 (parameter 208)	1	1

SPEED UP/DOWN

	Terminal 32	Terminal 33
No reference Change	0	0
Increase reference	1	0
Reduce reference	0	1
Reduce reference	1	1

SETUP SELECT

Setup	Terminal 32	Terminal 33
1	0	0
2	1	0
3	0	1
4	1	1

SPEED UP/DOWN
SETUP SELECT

Parameter 406 selects between different function options for Terminals 32/33.

SPEED SELECT: With the aid of the following binary code table, select between 4 different preprogrammed speed references.

SPEED UP/DOWN: Selected for digital speed control up/down. This function is only active if the Freeze reference/Freeze jogging has been selected in Parameters 400, 401 or 405, and the equivalent Terminals 16, 17 or 29 are closed ("1"). If Terminal 32 is closed ("1"), then the output frequency will increase towards $f_{\text {max }}$ (Parameter 202). If Terminal 33 is closed ("1"), the output frequency will decrease towards $f_{\text {MIN }}$ (Parameter 201). Terminal 33 is most significant and takes priority in the advent of closures on both.

A pulse (closure with a duration between 20 ms and 500 ms) will cause a speed change of 0.1 Hz to the output. Logic "1" for more than 500 ms will cause the output frequency to change according to the set ramps (Parameters 215 and 216).

Speed reference can be set even though the unit has stopped; but this does not apply during a motor coasting, quick stop or DC brake command on Terminal 27. If the speed reference has been constant for at least 15 seconds, then it will be stored even if the AC line has been interrupted (see Parameter 014).

SETUP SELECT: If "multi setup" has been selected in Parameter 001, then it is possible to choose remotely between setup 1, setup 2, setup 3 or setup 4 as described in the table to the left.

406

Binary Input 32/33

INPUT 32/33

(Continued)

4 SETUP EXTENDED: This option provides the same function on Terminals $32 / 33$ as the first generation of VLT^{\circledR} Series 3000 with the extended control card and 4 setup functions. If the Freeze Reference was not selected in parameters 400,401 or 405 , then follow the setups as illustrated below.

Setup	Terminal 32	Terminal 33
1	0	0
2	0	1
3	1	0
4	1	1

If the Freeze Reference was selected in parameters 400, 401 or 405, then selection can be made between two functions using Terminal 16,17 or 29.

Terminal 16, 17 or 29 = "0"

Setup	Terminal 32	Terminal 33
1	0	0
2	0	1
3	1	0
4	1	1

Terminal 16, 17 or $29=" 1$

	Terminal 32	Terminal 33
Freeze Reference (sum)	0	0
Increase reference	0	1
Reduce reference	1	0
Reduce reference	1	1

Digital/Analog Output Signals

Parameters 407 and 408 determine the type and definition of th solid-state output signal on Terminals 42 and 45 of the control card's ten-position terminal block. On signal output 42 and signal output 45 , it is possible to choose between three types of signals; digital (24 V), analog $(0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA})$. The digital signal $(24 \mathrm{~V})$ is used to indicate selected status and warnings; and the analog (0-20 mA and 4-20 mA) can be used for analog readouts.

DATA 0/12: Control card and software systems are normal; the motor is out of the current ratings.

DATA 15/16: $0-\mathrm{f}_{\text {MAX }}$ sets the output signal range from 0 to frequency $f_{\text {MAX }}$ set in Parameter 202.

DATA 19/20: $\mathrm{FB}_{\text {MIN }}-\mathrm{FB}_{\text {MAX }}$ sets the output signal range to match the range of the feedback signal chosen in either Parameter 412 or 414.

DATA 13/14: $0-100 \mathrm{~Hz}$ is for the verification of the actual output frequency regardless of what the frequency $f_{\text {max }}$ was set at in Parameter 202.

DATA 17/18: REF $_{\text {MIN }}-$ REF $_{\text {MAX }}$ sets the output signal range to match the sum of the analog input ranges set in Parameters 413 and 414.

DATA 21/22: $0-I_{\text {MAX }}$ sets the output signal range from 0 to the rated output current $I_{\text {max }}$ of the VLT.

DATA 23/24: $0-I_{\text {LIM }}$ sets the output signal range from 0 to the rated output current $I_{\text {LIM }}$ recorded in Parameter 209.

DATA 25/26: $0-\mathrm{T}_{\text {max }}$ sets the output signal range from 0 to the rated torque $T_{\text {max }}$ of the VLT.

407
Signal Output 42

OUTPUT 42

Parameters 407 and 408 determine the type and definition of the solid-state output signal on Terminals 42 and 45 of the control card's ten-position terminal block. On signal output 42 and signal output 45 , it is possible to choose between three types of signals; digital (24 V), analog ($0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$). The digital signal (24 V) is used to indicate selected status and warnings; ($0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$) can be used for analog readouts.

Value:

CONTROL READY		[0]
UNIT READY	[1]	
UNIT READY	EMOTE CONTROL	[2]
ENABLED NO	VARNING	[3]
RUNNING	[4]	
RUNNING NO	JARNING	[5]
RUNNING IN	NGE NO WARNING	[6]
RUN ON REF	O WARNING	[7]
ALARM	[8]	
ALARM OR W	RNING	[9]
CURRENT LIM	[10]	
OUT OF FREQ	ENCY RANGE	[11]
OUT OF CUR	NT RANGE	[12]
$0-100 \mathrm{HzO}-20$		[13]
$0-100 \mathrm{~Hz}$	4-0 mA	[14]
$0-\mathrm{f}_{\text {max }}$	0-20 mA	[15]
$0-\mathrm{f}_{\text {max }}$	4-20 mA	[16]
REF Min $^{-R E F}$	0-20 mA	[17]
REF ${ }_{\text {MIN }}-\mathrm{REF}$	4-20 mA	[18]
$\mathrm{FB}_{\text {MIN }}-\mathrm{FB}$	0-20 mA	[19]
$F B_{\text {Min }}-\mathrm{FB}$	4-20 mA	[20]
* 0-I (current) max	0-20 mA	[21]
$0-I_{\text {(current) max }}$	4-20 mA	[22]
$0-I_{\text {(current LIM }}$	0-20 mA	[23]
$0-1_{\text {(current) LIM }}$	4-20 mA	[24]
$0-\mathrm{T}_{\text {(torque) MAX }}$	0-20 mA	[25]
$0-T_{\text {(torque) Max }}$	4-20 mA	[26]

[1] VLT inverter section ready for operation.
[2] VLT in remote mode; ready for operation.
3] [3] VLT in run condition, no faults registered.
[4] VLT is in operation and producing output.
[5] VLT is in operation, no faults registered.
VLT is operating within specified speed parameters and no faults are registered.
[7] VLT's out operating at specified reference and no faults are registered.
[8] VLT has registered a fault condition.
[9] Under present circumstances a fault condition is inevitable.
[10] Current limit in Param. 209 exceeded.
[11] The motor is out of the specified freq. range set in Parameters 210-211.
[12] The motor is out of the current settings.
[13] $0-100 \mathrm{~Hz}$ is used for the verification of
[14] actual output freq. regardless of what the freq. $\mathrm{f}_{\text {MAX }}$ was set at in Param. 202.
[15] $0-f_{\text {MAX }}$ has set the output signal range
[16] from 0 to freq. $f_{\text {MAX }}$ set in Param. 202.
[17] REF $_{\text {MIN }}-$ REF ${ }_{\text {MAX }}$ sets the output signal
[18] range to match the sum of the analog ${ }^{[18]}$ input ranges set in Param. 413 and 414.
${ }_{[19]} \mathrm{FB}_{\text {MIN }}-\mathrm{FB}_{\text {MAX }}$ sets the output signal range [20] chosen in either Param. 412 or 414.
[21] $0-I_{\text {MAX }}$ sets the output signal range from 0 [22] to the rated output current $I_{\text {max }}$ of the VLT.
[23] ${ }^{0-I_{\text {LIM }}}$ sets the output signal range from 0
[24] to the rated output current $\mathrm{I}_{\text {LIM }}$ recorded
[25] 0-T $\mathrm{T}_{\text {MAX }}$ sets the output signal range from
[26] 0 to the rated torque $\mathrm{T}_{\text {MAX }}$ of the VLT.

408

Signal Output 45

OUTPUT 45

409

Relay Output 01
RELAY 01

Value:

CONTROL READY
UNIT READY
UNIT READY REMOTE CONTROL
ENABLED NO WARNING
RUNNING
RUNNING NO WARNING]

RUNNING IN RANGE NO WARNING [RUN ON REF NO WARNING [7]
ALARM [8]
ALARM OR WARNING [9]
CURRENT LIMIT
[10]
OUT OF FREQUENCY RANGE [11]
OUT OF CURRENT RANGE
[12]
$0-100 \mathrm{~Hz} \quad 0-20 \mathrm{~mA}$ [13]
$0-100 \mathrm{~Hz} \quad 4-20 \mathrm{~mA}$ [14]

* 0-f $\quad 0-20 \mathrm{~mA}$ [15]
$0-\mathrm{f}_{\text {max }} \quad 4-20 \mathrm{~mA}$ [16]
$\mathrm{REF}_{\text {MIN }}-$ REF $\quad 0-20 \mathrm{~mA}$ [17]
REF $_{\text {MIN }}-$ REF $\quad 4-20 \mathrm{~mA}$ [18]
$F B_{\text {MIN }}-F B \quad 0-20 \mathrm{~mA} \quad$ [19]
FB ${ }_{\text {MIN }}$ - FB $4-20 \mathrm{~mA}$ [20]
$0-I_{\text {(current) MAX }} \quad 0-20 \mathrm{~mA}$ [21]
0-1
4-20 mA
[22]

0 - (current) LIм $\quad 4-20 \mathrm{~mA}$ [24]
$0-\mathrm{T}_{\text {(torque) }} \quad \mathrm{mAX} \quad 0-20 \mathrm{~mA} \quad$ [25]
$0-\mathrm{T}_{\text {(torque) max }} \quad 4-20 \mathrm{~mA} \quad$ [26]

Value:

CONTROL READY
UNIT READY
UNIT READY REMOTE CONTROL
ENABLED NO WARNING

* RUNNING

RUNNING NO WARNING
RUNNING IN RANGE NO WARNING

ALARM
ALARM OR WARNING
CURRENT LIMIT
OUT-OF-FREQUENCY RANGE
OUT-OF-CURRENT RANGE
MOTOR THERMANL OVERLOAD
READY AND NO MOTOR
THERMAL OVERLOAD READY;
NO MOTOR THERMAL
OVERLOAD; REMOTE READY
NO OVER/UNDER VOLTS
MOTOR MAGNETIZED
(* Indicates factory default settings)

Please see function descriptions in Parameter 407, as well as, Output Signal illustrations on page 10-8.

This parameter determines the use of Relay Output 01 to indicate various status and warnings. Relay 01 is a single-pole, doublethrow, Form C type providing normally open and normally closed contacts. The relay is activated when the conditions of the data values are fulfilled. To provide delay ON and OFF times for the relay, program required times in Parameters 317 and 318.

When Relay Output 01 is not active, there will be no connection between Terminal 01 and Terminal 02. The Relay Output 01 is potentially free with a maximum load rating of 240 VAC, MAX 2A.
[0] - [12]: See explanation in Parameter 407. [17]: "MOTOR MAGNETIZED" must be selected in order to utilize the relay for brake control with the external brake. See parameters 230 through 233 for details.
410
Relay Output 04

RELAY 04

Value:
CONTROL READY UNIT READY

* UNIT READY REMOTE CONTROL ENABLED NO WARNING RUNNING
RUNNING NO WARNING
RUNNING IN RANGE NO WARNING [6] SPEED=REFERENCE
NO WARNING ALARM
ALARM OR WARNING
CURRENT LIMIT
OUT-OF-FREQUENCY RANGE
OUT-OF-CURRENT RANGE
MOTOR THERMANL OVERLOAD
READY AND NO MOTOR
THERMAL OVERLOADREADY; NO MOTOR THERMAL
OVERLOAD; REMOTE READY
NO OVER/UNDER VOLTS
MOTOR MAGNETIZED

This parameter determines the use of Relay Output 04 to indicate various status and warnings. Relay 04 is a single-pole, singlethrow, Form A type providing normally open contact.The relay is activated when the conditions of the selected data values are fulfilled. When Relay Output 04 is not active, there will be no connection between Terminals 04 and 05.

Relay Output 04 is potentially free with a maximum load rating of 240 VAC, MAX 2 A .
[0] - [12]: See explanation in Parameter 407. [17]: See explanation in Parameter 409.

Terminal 01-03;* max. 240V, max. 2 Amp, min . $24 \mathrm{VDC}, 100 \mathrm{~mA}$ or $24 \mathrm{VAC}, 100 \mathrm{~mA}$.

Terminal 04-05;* max. 240V, max. 2Amp, min . $24 \mathrm{VDC}, 100 \mathrm{~mA}$ or $24 \mathrm{VAC}, 100 \mathrm{~mA}$.

* In VDE applications; max. 250V, 2 Amp

These selections determine how the AFD follows an analog speed reference signal.

412

Analog Input 53

413
Analog Input 60

414

Time Out

TIME OUT

415
Time Out Function
TIME OUT A

Value:

NO OPERATION *)
-0-1- $\pm 10 \mathrm{VDC}$
10-0VDC
2-10VDC
10-2VDC
1-5VDC
5-1VDC
Specifications for the voltage input: Rated Voltage: $\pm 10 \mathrm{~V}$ (programmable) Max. Voltage: $\pm 37 \mathrm{~V}$ (continuous) Input Resistance: $10 \mathrm{k} \Omega$ Resolution: 10 bit

```
Value:
    NO OPERATION *)
-0-20 mA
    4-20 mA
    20-0 mA
    20-4 mA
```

*) If Terminal 53 and/or Terminal 60 are not used, then "NO OPERATION" should be selected in Parameters 412 and 413 in order to avoid the risk of a reference fault.

Record the type of analog signals to input on Terminals 53 and 60 on the control card's tenposition terminal block. Two choices exist between voltage or current and normal or inverse signals.

If both inputs (53 and 60) are used for reference signals, the total reference signal will be the sum of the two. The sum is registered with a sign (\pm).

A flashing "REF FAULT" indicates an inappropriate selection.

If the PID Controller is being used, one of the inputs must be used for setting the feedback signal. If Remote Current Control (Par. 102) is being used, one of the inputs must be used for setting the current limit.

Specifications for the voltage input:
Rated Current: $\pm 0 / 4-20 \mathrm{~mA}$ (programmable)
Max. Current: $\pm 29 \mathrm{~mA}$
Input Resistance: $200 \mathrm{k} \Omega$
Resolution: 10 bit

Value:

0-99 OFF * 100 OFF

Value:

- FREEZE

STOP
JOG
MAX

If one of the "live zero" ($4-20 \mathrm{~mA}$) signals has been selected for reference (Par. 412/413) and is less than half of the offset (i.e. 2 mA), a fault message and a required operating status will then be activated after the termination of the programmed interval. If a "live zero" signal has not been selected, then Parameters 414 and 415 have no effect on the operating status.

Upon recognition of a lost signal, the VLT's reference can be frozen in the Current Value, Stop, Joggging Frequency (in Parameter 203) or the Maximum Frequency (in Parameter 202).

This function is not active for Local Speed reference (see Parameter 004) when open loop or slip compensation is selected in Parameter 101.

Group 5 -- Serial Data Interface

The RS 485 serial bus (terminals 68 and 69) allows the reading and setting of the drive's parameters, as well as transmitting reference and control commands to it.

The serial bus can be used by up to 31 drives per master without using a repeater. If 3 repeaters are used, up to 99 drives can be connected to one master.

Danfoss can provide a serial communication program "VLS Dialog", which allows an IBM compatible personal computer (PC) to communicate with VLT drives over an RS 485 serial interface. This program allows controlling the drive(s) remotely through the computer without the need for any additional programming. Contact Danfoss literature department for information.

It is important to connect and terminate the serial bus with the correct impedance to avoid any reflections which may disturb the data transmission in the cable. Set the switches 03.1 and 03.2 in the "on" position in the last drive connected to the serial bus.

The following information provides detailed specifications of the serial communications format for those who wish to customize their own serial communication software. Communication takes place by means of s special protocol.

The data format consists of 10 bits; one start bit (logical 0), eight data bits and one stop bit (logical 1). There is no parity check. Set the speed of transmission in parameter 501 and the address of each unit in parameter 500.

Data format

Message (telegram) format (protocol)
The communication protocol consists of 22 ASCII characters. These characters make it possible to operate, set and read parameters and to receive status feedback from the drive.

Communication takes place as follows:
The master sends a message to the drive. Then the master awaits a reply from the drive before sending a new message. The reply to the master is a copy of the message sent by the master, now containing any updated data values and the status of the drive.

Telegram format

Function	byte \#	ASCII
Start byte	1	
Address	2	
	3	
Control character	4	
Control/Status word	5	
	6	
	7	
	8	
Parameter \#	9	
	10	
	11	
	12	
Sign	13	
Data	14	
	15	
	16	
	17	
	18	
Comma	19	
Check sum	20	
	21	
Stop byte	22	

Byte 1:
Start byte, which in this case must be the character "<" (ASCII: 60).

Byte 2 and 3:

The two-digit address of the frequency converter. This address is also programmed in parameter 500 . Sending to address 00 means transmission to all units connected to the bus. None of the units will reply, but they will carry out the command.

Byte 4:

Control parameter telling the drive what to do with the following data values.
U (update)
Means that the data value, bytes 13 through 19, must be read into the drive parameter specified by bytes 9 through 12 .

R (read)

Means that the master wishes to read the data value of the parameter in bytes 9 through 12. C (control)
Means that the frequency converter reads only the four command bytes, 5 through 8, and returns with status. Parameter number and data value are ignored.
1 (read index)
Means that the frequency converter reads the index and parameter and returns with status. The parameter is stated in bytes 9 through 12 and index is stated in bytes 13 through 18.
Parameters with indices are read-only parameters. Action will be taken on the control word. Two-dimensional indices (x, y) (parameters 601 and 602) are separated by a comma, see byte 19 .

Example:

Index	$=x, y$
Data value	$=013.05$
Byte 14 through 18	$\stackrel{\Downarrow}{=} 01305$
Byte 19	$=2$

Control and status words, used to send commands to the frequency converter and to send status from the frequency converter to the master.

Byte 9 through 12:
The parameter number is inserted in these bytes.

Byte 13:
Used for the sign before data value in bytes 14 through 18. All characters other than "-" are taken as " + ".

Byte 14 through 18:
Here is placed the data value of the parameter stated in bytes 9 through 12. The value must be a whole number. If a decimal point is needed, it is stated in byte 19.

NOTE: Some data values have brackets with a number, for example "[0]". Use this number instead of the "Text" data value.

Byte 19:

The position of the decimal point in the data value stated in bytes $14-18$. The number states the number of characters after the decimal point. Consequently, byte 19 can be $0,1,2,3,4$ or 5. For example, the number 23.75 is stated:
$\begin{array}{llllllll}\text { Byte no. } & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$ in ASClI character + $\begin{array}{llllll}2 & 3 & 7 & 5 & 0 & 3\end{array}$ If byte $19=9$, this indicates an unknown parameter.

Byte 20 and 21:
Used for check sum control from bytes 2 up to and including 19. The decimal values of the ASCII characters are added and reduced to the two low characters, for example: $\Sigma 235$ - reduced $=35$. If there is to be no control, the function can be cancelled by means of the "?" character (ASCII: 63) in the two bytes.

Byte 22:
Stop byte, stating the end of the telegram. The character ">" is used (ASCII: 62).

Control Word, bytes 5 through 8 in the message. The control word is used to send control commands from the controller to the drive. According to the data format, 1 byte consists of 8 databits, but in the control word only the 4 least significant bits of each byte are used, which means that ASCI characters from A to O can be used. The table below gives the meaning of the individual bits in the control word.

$X=$ Indifferent; if P is used in a group of 4 bits, the current status is maintained. Only the groups with characters $\neq \mathrm{P}$ are activated. Bit $10=0$ means that there is no change from the current status.

Bit 00, OFF1/ON1:
Ordinary ramp stop using the ramp time in parameter 216. Bit $00=$ " 0 " causes a stop; bit $00=$ "1" means that the drive is able to start if the other conditions for doing so have been fulfilled.
Bit 01, OFF2/ON2:
Coast stop. Bit $01=$ " 0 " causes a coast t stop; bit $01=$ " 1 " means that the frequency converter is able to start if the other conditions for doing so have been fulfilled.
Bit 02, OFF3/ON3:
Quick-stop using the ramp time in parameter 218. Bit $02=$ " 0 " causes a quick-stop; bit $02=$ " 1 " means that the drive is able to start if the other conditions for doing so have been fulfilled.

Bit 03, COAST/ENABLED:

Coast stop. Bit $03=$ " 0 " causes a stop; bit $03=$ " 1 "drive is able to start if the other conditions for doing so have been fulfilled. Note: In parameter 503 a choice is made as to how bit 03 is to be combined with the corresponding function on the digital inputs.
Bit 04, QUICK-STOP/RAMP:
Quick-stop using the ramp time in parameter 218. Bit $04=$ " 0 " causes a quick-stop; bit $04=$ " 1 " means that the drive is able to start if the other conditions for doing so have been fulfilled.

The function of bit 04 can be redefined to DC braking in parameter 514; otherwise the function is as described. Note: In parameter 504 and 505 a choice is made as to how bit 04 is combined with the corresponding function on the digital inputs.

Bit 05, HOLD/RAMP ENABLED:

Ordinary ramp stop using the ramp time in parameter 216. Bit $05=$ "0" leads to a stop; bit $05=$ " 1 " means that the drive is able to start if the other conditions for doing so have been fulfilled.

Bit 06, RAMP STOP/START:
Ordinary ramp stop using the ramp time in parameter 216. Bit $06=$ " 0 " causes a stop; bit $06=$ " 1 " means that the drive is able to start if the other conditions for doing so have been fulfilled. Note: In parameter 506 a choice is made as to how bit 06 is combined with the corresponding function on the digital inputs.
Bit 07, NO FUNCTION/RESET:
Reset of trip. Bit $07=$ " 0 " causes no reset; bit $07=$ " 1 " means that a trip is reset. Note: In parameter 508 a choice is made as to how bit 07 is combined with the corresponding function on the digital inputs.
Bit 08, JOG 1 OFF/ON:
Activation of the pre-programmed speed in parameter 511 (Bus JOG 1). JOG 1 is only possible when bit $04=$ " 0 " and bit $00-03=" 1$ ". Bit 09, JOG 2 OFF/ON:
Activation of the pre-programmed speed in parameter 512 (Bus JOG 2). JOG 2 is only possible when bit $04=$ " 0 " and bit $00-03=$ " 1 ". If both JOG 1 and JOG 2 are activated (bits 08 and $09=" 1 ")$, JOG 1 has the higher priority, i.e. the speed programmed in parameter 511 is used.
Bit 10, DATA NOT VALID/VALID:
Used for telling the drive whether the control word is to be used or ignored. Bit $10=$ " 0 " means that the control word is ignored. Bit $10=$ " 1 " means that the control word is used. This function is relevant because the control word is always contained in the message, no matter what type of message is being used (see byte 4), i.e. it is possible to disregard the control word if it is not to be used in connection with updating or reading of parameters.

Bit 11, NO FUNCTION/SLOW DOWN:
Used for reducing the speed reference by the value of parameter 513.
Bit $11=$ " 0 " means that the reference is not changed.
Bit $11=$ " 1 " means that the reference is reduced. The function of bits 11 and 12 can be redefined to be the choice of digital reference in parameter 515, in accordance with the following table:

Digital reference/

parameter	Bit 14	Bit 13
$1 / 205$	0	0
$2 / 206$	0	1
$3 / 207$	1	0
$4 / 208$	1	1

NOTE: In parameter 510 a choice is made of how bit $1 / 12$ is combined with the corresponding function on the digital inputs.

Bit 12, NO FUNCTION/CATCH-UP:

Used to increase the speed reference by the value of parameter 513. Bit $12=$ " 0 " means that the reference is not changed; bit $12=$ " 1 " means that the reference is increased. If both slow-down and catch-up are activated (bits 11 and $12=" 1 "$), slow-down has the higher priority, i.e. that the speed reference is reduced. The function of bits 11 and 12 can be redefined to become the choice of digital reference; see the description of bit 11 in the above.
Bit 13/14, CHOICE OF SETUP:
Bits 13 and 14 are used for choosing between the four menu setups, in accordance with the following table:

Setup	Bit 14	Bit 13
1	0	0
2	0	1
3	1	0
4	1	1

This function is only enabled if Multi setups have been selected in parameter 001.

NOTE: In parameter 509 a choice is made of how bit $13 / 14$ is combined with the corresponding function on the digital inputs.

Bit 15, NO FUNCTION/REVERSING:
Reversing of the direction of rotation of the motor. Bit $15=$ " 0 " leads to no reversing; bit 15 = "1" leads to reversing. Please note that the original setting for reversing in parameter 507 is digital; bit 15 only leads to reversing if bus,
logical or or logical and has been selected (logical and only in connection with terminal 19).

Example:

The following control word can be used if the drive is to be given a start command:

Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0/1	0	0	0	0	0	1	0	0	0	1	1	1	1	1	1	1
ASCII	@				D				G				0			

Status Word, bytes 5 through 8 in the message:
The status word is used to inform the controller about the status of the drive.

The status word has been placed in bytes 5 through 8 in the response message from the drive to the controller. The below table gives the meaning of the individual bits of the status word:

ASCII	0	Status word															
		Byte 8				Byte 7				Byte 6				Byte 5			
		T	C	V	V	D	\bigcirc	L	S	N	S	O	0	N	C	V	C
		1	U	0	L	0	U	0	P	0	T	N	N	0	0	L	0
		M	R	L	T	E	T	C	E		A				A	T	N
		E	R	T		S		A	E	W	R	3	2	F	S		T
		R	E	A	0		0	L	D	A	T			A	T	N	R
		S	N	G	K	N	F	0		R		1	1	U		0	0
			T	E		0		P	\#	N	E			L	1	T	L
		O			1	T	0	E		1	N	0	0	T			S
		K	O	0			P	R	R	N	A	F	F		E	R	
			K	K	S	R	E	A	E	G	B	F	F	1	N	E	N
		1			T	U	R	T	F		L				A	A	0
			1	1	A	N	A	E		1	E	3	2	T	B	D	T
		0			L		T		1		D			R	L	Y	
		V	O	0	L	1	1	1		W				1	E		R
		E	V	V	S		N		S	A	1			P	D	1	E
		R	E	E		R	G	B	P	R							A
		S	R	R	A	U		U	E	N	S					R	D
	1	H	S	S	U	N	R	S	E	1	T					E	Y
		0	H	H	T		A	C	D	N	A					A	
		0	0	0	0		N	0		G	R					D	1
			0	0	-		G	N	=		T					Y	
				T	S		E	T									
					T		1	R	R		N						E
					A		F	0	E		0						A
					R		R				T						D
							$\begin{aligned} & \mathrm{E} \\ & \mathrm{Q} \end{aligned}$				E						
											N						
							L				A						
							I				${ }_{\text {B }}$						
							1				E						
							T										
							O										
		15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A		0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
B		0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
C		0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
D		0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
E		0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
F		0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
G		0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1
H		1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
1		1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1
J		1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
K		1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1
L		1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
M		1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1
N		1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0
O		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit 00, CONTROLS NOT READY / READY:
Bit $00=$ " 0 " means that bit 00,01 or 02 of the control word is " 0 " (OFF1, OFF2 or OFF3), or that the drive has tripped. Bit $00=$ " 1 " means that the drive is ready to run when it receives the necessary start signals.

Bit 01, DRIVE NOT READY / READY:

 Same meaning as bit 00 .
Bit 02, COAST/ENABLED:

Bit $02=$ " 0 " means that bit 00,02 or 03 of the control word is "0" (OFF1, OFF2, OFF3 or Coasting), or that drive has tripped. Bit $02=$ " 1 " means that bits $00,01,02$ and 03 of the control word is " 1 ", and that the drive has not tripped.

Bit 03, NO FAULT/TRIP:

Bit $03=$ " 0 " means that the drive is not in a state of fault; bit $03=$ " 1 " means that the drive has tripped and that it requires a reset signal before being able to run.

Bit 04, ON2/OFF2:
Bit 04 = "0"
means that bit 01 of the control word $=$ " 1 ".
Bit 04 = " 1 "
means that bit 01 of the control word $=$ " 0 ".

Bit 05, ON3/OFF3:

Bit 05 = "0"
means that bit 02 of the control word $=$ " 1 ".
Bit $05=$ " 1 "
means that bit 02 of the control word $=" 0$ ".

Bit 06, START ENABLED/NOT ENABLED:

Bit 06 is always " 0 " if "Start not Enabled" [11] has not been selected in parameter 309. If "Start not Enabled" [11] has been selected in parameter 309, bit 06 will be " 1 " after reset of a trip, after activation of OFF2 or OFF3 and after connection to AC line voltage. "Start not Enabled" is reset, setting bit 00 of the control word at " 0 " and bits 01,02 and 10 at " 1 ".

Bit 07, NO WARNING/WARNING:

Bit $07=$ " 0 " means that there is no unusual situation; bit $07=$ " 1 " means that an unusual situation has arisen for the drive. All warnings will make bit 07 go to " 1 ".

Bit 08, SPEED REF/SPEED = REF::
Bit $08=$ " 0 " means that the current speed of the motor is different from the speed reference. This could be the case, for example, while the speed is being ramped up/down at start/stop. Bit $08=$ "1" means that the current speed of the motor is equal to the preset speed reference.

Bit 09, LOCAL CONTROL/BUS CONTROL:
Bit $09=$ " 0 " means that the drive has stopped by means of the stop key on the operating panel, or that "local" or "local with external coasting stop" has been selected in parameter 003. Bit $09=$ "1" means that it is possible to control the frequency converter via the serial port.

Bit 10, OUT OF RANGE/FREQUENCY OK:
Bit $10=$ " 0 " means that the output frequency is outside the limited set in parameter 210 (Warning: Low frequency) and parameter 211 (Warning: High frequency). Bit $10=$ " 1 " means that the output frequency lies within the mentioned limits.

Bit 11, DOES NOT RUN/RUNS:

Bit $11=$ " 0 " means that the drive does not run. Bit 11 = " 1 " means that the drive has received a start signal, or that the output frequency is higher than 0.5 Hz .

Bit 12, VLT OK/STALLS, AUTOSTART:

Bit $12=$ " 0 " means that there is no temporary overloading of the inverter; bit $12=$ " 1 " means that the inverter has stopped because of an overload, but that the drive has not tripped. The unit will continue to work when the overload has disappeared.

Bit 13, OK/OVER- OR UNDERVOLTAGE: Bit 13 = "0" means that the drive's voltage limits have not been exceeded. Bit $13=$ " 1 " means that the DC bus voltage is too low or too high.

Bit 14, CURRENT OK/OVERSHOOT:

Bit $14=$ " 0 " means that the motor current is smaller than the current limit selected in parameter 209. Bit $14=$ " 1 " means that the current limit of parameter 209 has been exceeded.

Bit 15, TIMERS OK/OVERSHOOT:
Bit $15=$ " 0 " means that the timers for thermal motor protection and thermal drive protection have not exceeded 100%. Bit $15=$ " 1 " means that one of the timers has exceeded 100%.

Example:
The status word below says that the motor is running on the desired speed reference, but outside the defined frequency area. Consequently, bit $10=$ " 0 " (out of frequency range) and bit $07=" 1 "$ (warning). Voltage, current and timers are OK.

Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0/1	0	0	0	0	1	0	1	1	1	0	0	0	0	1	1	1
ASCII	@				K				H				G			

Message Example:

A drive, with address 1, is to be given a start signal and a speed reference that corresponds to 40 Hz .

A start signal is given by means of the control word and the speed reference is given to parameter 516, bus reference, 80\% corresponding to 40 Hz , since the maximum frequency is 50 Hz . This results in the following message:

Message from the master (PC or PLC) to the frequency converter

Function	Byte Number	ASCII Character	Decimal Value
Start-byte	1	<	60
Address	2	0	48
	3	1	49
Control character	4	U	85
Control/statusword	5	0	79
	6	G	71
	7	D	68
	8	@	64
Parameter no.	9	0	48
	10	5	53
	11	1	49
	12	6	54
Sign	13	+	43
Datavalue	14	0	48
	15	0	48
	16	0	48
	17	8	56
	18	0	48
Decimal point	19	0	48
Check-sum	20	0	48
	21	7	55
Stop-byte	22	>	62

Check-sum: bytes 2-19 = 1007, reduced to 07 .

Response Message from the Drive to the Controller:

Function	Byte no.	ASCII-character	Decimal value
Start-byte	1	<	60
Address	2	0	48
	3	1	49
Control character	4	U	85
Control/status word	5	G	71
	6	H	72
	7	K	75
	8	@	64
Parameter no.	9	0	48
	10	5	53
	11	1	49
	12	6	54
Sign	13	+	43
Data value	14	0	48
	15	0	48
	16	0	48
	17	8	56
	18	0	48
Decimal point	19	0	48
Check-sum	20	0	48
	21	7	55
Stop-byte	22	$>$	62

Check-sum: bytes 2 through $19=1007$, reduced to 07 .

Fault Messages for Read/Write Parameters: Byte 19 in the response message from the drive takes the value 9 if it is not possible to carry out the selected write or read command. At the same time, a cause code is given is bytes 17 and 18. The following cause codes exist::
Code Cause
00 The parameter number does not exist
01 There is no read/write access to the selected parameter
02 A nonexisting index no. has been selected

03 Index reading is used for a parameter that has no indices
04 The parameter is write-protected (read only). This may be because the factory set-up has been selected
05 The parameter cannot be changed while the motor is running
06 The data value lies outside the parameter range
07 Illegal command value (Byte 19)
08 The data value read is > 99999
99 Other fault

Switch 04:
04 closed: Terminal 61 is connected to chassis ground.
04 open: Terminal 61 is connected to chassis ground via an RC link.

When switch 04 is closed, there is no voltage isolation between the signal lines (terminals 68 and 69) and the ground. This may lead to noise problems if a controller which is not isolated from earth ground is used. In this case, the RS 485 connection should be made as follows:
Switch 04 must be open, the shield of the signal cable must be connected to the cable clamp below the control card, but not to terminal 61 . The shield should be left on the wire and should extend as close to the terminal strip as possible. The shield should be insulated, to avoid contact with other circuitry.

502
Data Readout

DATA READO

(continued)

Index 12:
A decimal value to be converted to an 8 -bit binary code.

Example:

Decimal	16							
Binary	0	0	0	1	0	0	0	0
Terminal	33	32	29	27	19	18	17	16

Index 13/14:
Decimal value between 0 and 1023, where 0 corresponds to 0% and 1023 to 100% of the selected output signal, e.g. 0-10V.

Index 15:
Decimal value to be converted to a 16-bit binary code. Each bit repersents a warning accoeding to the table below. When a warning is given, the equivalent bit has the value "1".

Bit Warning
$0 \quad$ Current limit
1 No motor
2 Reference fault
3 Motooverloaded
4 Inverter overloaded
$5 \quad$ Frequency warning low
$6 \quad$ Frequency warning high
7 Current warning low
8 Current warning high
9 EEPROM fault
10 24V fault
11 Excess current
12 Voltage warning high
13 Voltage warning low
14 Overoltage
15 Undervoltage
Index16:
Decimal value to be converted to a 16-bit binary code. Each bit represents a control command. When a control command is activated, the equivalent bit has the value "1".

Index 17:
Decimal value to be converted to a 16-bit binary code. Each bit represents a status report. When a status report is activated, the equivalent bit has the value "1".

502

Data Readout

DATA READO

(continued)

Index 18:
Decimal value to be converted to a 16-bit binary code. Each bit represents an alarm according to the table below. When an alarm is given, the equivalent bit has the value "1".

Bit	Alarm
0	Trip locked
1	Control/option card fault
2	Current limit
3	Not used
4	Not used
5	Auto optimization
6	Motor overload
7	Inverter overloaded
8	Inverter fault
9	Undervoltage
10	Overvoltage
11	Overcurrent
12	Ground fault
13	Not used
14	Excess temperature
15	Thermistor input activated

503
Coasting
COAST

504
Q-Stop
Q-STOP

505
 DC- Brake

506
Start

START

507

Direction

DIRECTION

508
Reset

RESET

509

Setup Select
SETUP SELE

510
Speed Select
SPEED SELE

Value:
DIGITAL BUS
LOGIC AND

* LOGIC OR

Value:
DIGITAL
BUS
LOGIC AND

* LOGIC OR

Value:
DIGITAL
BUS
LOGIC AND

* LOGIC OR

Value:

DIGITAL
BUS
LOGIC AND

* LOGIC OR

Value:

* DIGITAL

BUS
LOGIC AND
LOGIC OR
Value:
DIGITAL
BUS
LOGIC AND

* LOGIC OR

Value:
DIGITAL BUS
LOGIC AND

* LOGIC OR

Value:
DIGITAL BUS
LOGIC AND

* LOGIC OR
[0]
[1]
[2]
[3]
[0]
[1]
[2]
[3]

NOTE: Parameters 503-505 concern stop functions, see example parameter 503 (freewheeling). Active stop signal " 0 ".

Parameter $503=$ Logic AND
In parameters 503 to 510 , you can choose to control the VLT adjustable frequency drive via the control terminals (digital) and/or via the bus.

DIGITAL: VLT responds to local/remote operation only.
BUS: VLT responds responds to signal via the RS-485 bus only.
LOGIC AND: Select if the control command is only to be activated when the signal is active from both the control word and digital input. Active signal "1".

Digital input	Control word	Control command
0	0	0
0	1	0
1	0	0
1	1	1

LOGIC OR: Select if the control command is to be activated when the signal is active from either the control word or digital input. Active signal "1".

Digital input	Control word	Control command
0	0	0
0	1	1
1	0	1
1	1	1

Digital input	Control word	Control command
0	0	Free-wheeling
0	1	Motor running
1	0	Motor running
1	1	Motor running

Parameter $503=$ Logic OR

Digital input	Control word	Control command
0	0	Free-wheeling
0	1	Free-wheeling
1	0	Free-wheeling
1	1	Motor running

511	$\begin{aligned} & \text { Value; } \\ & 0-\mathrm{f}_{\mathrm{ANGGE}} \\ & * 010.0 \end{aligned}$
Bus Jog 1	
BUS JOG 1	
512	Value:
Bus Jog 2	$0-f_{\text {gange }}$
BUS JOG 2	

Two fixed speeds set in Hz equivalent to JOGGING frequency in parameter 203. Bus jogging 1 and 2 can only be activated via the control word when serial bus communication is used (also see description of the control word's bit 08 and 09).

The drive's output frequency can be reduced or increased via the control word's bit 11 and 12 by the value set as a percentage of the present output frequency.

514 Value: Bus Bit 4 * Q STOP DC BRAKE	
BUS BIT 4	

Bit 4 of the control word can be used for either quick stop via alternative ramp-down or DC brake.

515	Value:
Bus Bit $11 / 12$	* CATCH-UP SLOW DOWN
	DIGITAL SPEED SELECT

Bit $11 / 12$ of the control word can either be used for "catch-up/slow-down' or for selection of digital reference.
BUS BIT 11

516	Value:
Bus Bit 11/12	$-100 \%-+100 \%$
	* 00.00

Is used to receive the desired reference as a percentage of $f_{\text {MAX }}$ via serial communication.

BUS REFERE

517	Value:
Store Data	* OFF
	ON

STORE DATA

Data values change via serial bus communication are not saved automatically when the AC line voltage is switched off, and therefore parameter 517 must be used to save changed data values

Description of choices:
When "on" is selected, it takes approximately 10 seconds to save all parameters' data values, and parameter 517 then automatically takes the value "off". Only the data values in the active menu setup are saved, i.e. the save function must be performed in each of the setups used.

NOTE: The save function can only be activated when the VLT has stopped.

600
Operation Data

OPERATION

Value:

* 0 TOTAL OPERATION HOURS

1 RUNNING HOURS
2 kWh
3 NUMBER OF POWER UPS
4 NUMBER OF OVER-TEMPERATURE
5 NUMBER OF OVER-VOLTAGE
(Index 000.00-005.00)
Display of most important operation data.
Display range: Total number of operation hours/running hours/kWh is 0.0-99999 (under 10000 with 1 decimal).
Number of power ups/number of overtemps/ number of overvoltages is 0-99999.
Serial communication: Total number of operation hours/running hours/kWh returned as floating comma values.
Number of power ups/number of overtemps/ number of overvoltages returned as whole figures.
Total number of operation hours/running hours/kWh reset automatically after manual initialization.
NOTE: The stated data is saved every 8 hours. kWh can be reset via parameter 011.
Operation hours can be reset via parameter 012.

Number of power ups/number of overtemps/ number of overvoltages saved as they occur.

601
Data Log
DATA LOG

		0	1	2	3	4	-	-	19
Digital input [0]									
Control word [1]									
Status word [2]									
Reference \% [3]									
Frequency out [4]									
Phase current [5]									
D.C. voltage [6]									

(Index 000.00-019.16)
Logging of data for the last few seconds of operation.
Digital inputs: stated in hex code (0-FFFF).
Control word: stated in hex code (0-FFFF) for bus operation RS 485.
Status word: stated in hex code (0-FFFF) for bus operation RS 485.
Reference states the control signal as a percentage ($0-100 \%$).
Frequency out states the unit's output frequency in Hz (0.0-999.9).
Phase current is the unit's output current in A (0.0-999.0).

DC voltage states the intermediate circuit voltage in VDC (0-999).

601
Data Log (continued)

DATA LOG

		0	1	2	3	4	-	-	19
Digital input	[0]								
Control word	[1]								
Status word	[2]								
Reference \% [3]									
Frequency out [4]									
Phase current [5]									
D.C. voltage [6]									

Twenty log values (0-19) are given. The lowest number (0) contains the newest last stored data value, and the highest log number (19) contains the oldest data value. The data values are logged every 160 ms for as long as the start signal is active. The data log contains the last 20 log values (approx. 3.2 sec .) before a stop signal is given (start not active), or a trip. However, it is possible to scroll through the log values.
The data log is reset during start-up on AC line connection.

602
Fault Memory
FAULT MEMO

(Index 000.00-007.02)
Storage of data on trip.
Fault code indicates the reason for a trip by a figure code between 1 and 15:
Fault code Alarm
1 Inverter fault
2 Overvoltage
3 Undervoltage
4 Over-current
5 Ground fault
6 Excess temperature
7 Inverter overload
8 Motor overload
9 Current limit
10 Trip locked
11 Control card or option card fault
13 Auto-optimization fault
15 Thermistor input activated, see parameter 400/terminal 16
Time states the value of the total number of operating hours on trip. Display range $0.0-$ 999.9.

Value states e.g. at what voltage or current a trip has taken place. Display range 0.0-999.9. On serial communication, the fault code is returned as a whole number. Time and value are returned as floating decimal values.
Eight log values are given (0-7). The lowest log number (0) contains the newest/last stored data value, and the highest log number (7) contains the oldest data value.
An alarm can only be represented once.
The fault log is reset after manual initialization. Irrespective of which log set is being read, the display will automatically shift to log number 0 if a new trip occurs.

603
Type Plate

NAMEPLATE

Value:

* 0 TYPE

1 UNIT VOLTAGE
2 SOFTWARE TYPE PROCESS HVAC
PROFIBUS PROC
PROFIBUS HVAC
SYNCRON OPT
MODBUS + PROC
MODBUS - HVAC
3 SOFTWARE VERSION

The unit's key data can be read off via the display or bus (RS 485).
Type indicates unit size and basic function (e.g. VLT type 3006 or VLT type 3008).
[1] Unit voltage indicates the voltage for which the [2] unit has been built or has been set to [3] parameter 650.
[4] Software type indicates whether the software [5] is standard or special.
[6] Software version indicates the version number.

604
 Value:

Operation Mode

OPERATION

* RUN NORMAL RUN WITH INVERTER DISABLE CONTROL CARD TEST INITIALIZE

In addition to the normal function, the parameter can be used for 2 different tests. Three is also a possibility of manual initialization of all parameters (except parameters 501, 600 and 602).

Normal function is used in normal operation with a motor in the selected application.
Function with inverter disabled is selected for control of the control signal's influence on the control card and its functions without the inverter driving the motor.
Control card test is selected for control of the control card's analog, digital inputs; analog, digital and relay outputs; and the control voltage of +10 V . This test requires connection of a test connector with internal connections. The following procedure is used:

1) Press Stop.
2) Insert test connector in the pins.
3) Select control card test in parameter 604.
4) Disconnect AC line voltage and wait for light in the LCD display to go out.
5) Connect AC line voltage
6) Press Start.

The test will now run through three stages with an OK or fault report depending on the result. If there is a fault report, the control card must be replaced.
Initialization is selected for factory setting of the unit without resetting of parameters 500 , 501, 600 and 602.
Procedure:

1) Select initialization.
2) Press Menu.
3) Disconnect AC line voltage and wait for light in the LCD display to go out.
4) Connect AC line voltage.

605

Personal Display Select

DISPLAY SE

Value:

* STANDARD DISPLAY [0]

REFERENCE \% [1]
FREQUENCY Hz
FEEDBACK UNIT
CURRENT A
TORQUE \%
POWER kW
HP
ENERGY kWh
OUTPUT VOLTAGE VLT
DC VOLTAGE VLT
VLT THERM \%
MOTOR THERM \%
RUNNING HOURS
INPUT STATUS "BINARY CODE"

You can have two different display read-outs in the display at the same time. The extra readout selected in this parameter will be shown in line B of the display.

Standard display is selected for normal reading of e.g. the frequency in Hz in line 1, indication of "frequency" in line 2 and indication of status of operation in line 3. The other data values are selected to read another operation value in line 2, so that it is possible to display the frequency in line 1 and current in line 2 simultaneously. There are 14 different data values to select between.

NOTE: to be able to see both lines simultaneously, the display must be in Display Mode.

Display Mode

650
VLT Type
VLT TYPE

Used to indicate in which unit the control card is placed, in cases where the control card cannot decide for itself, or to select voltage range in multi-voltage units if the factory setting deviates from what is required.

The parameter is used to select the correct VLT type/size/voltage for VLT types 3060-3250 and VLT types 3575-3800, which are multivoltage units. If the factory-set voltage does not correspond to the voltage in the application for which the unit is used, the following procedure is used:

1) Select the required VLT type/size/voltage.
2) Select parameter 604, data value initialization.
3) Disconnect AC line voltage and wait for the light in the LCD display to go out.
4) Connect the AC line voltage.

NOTE: During start-up the display shows the selected new data.

Status Messages

- EEPROM FAULT

Software cannot store any data changes.

- OFF 2
(Serial data interface only) Motor coast followed by relay off.
- OFF 3
(Serial data interface only) Quick stop followed by relay off.
- START INHIBIT
(Serial data interface only) Start is inhibited until control word bit 0 is toggled.
- UNIT READY (LOCAL)

Control card power section is powered up and okay.

- ENABLED STOP (LOCAL)

Unit ready and motor coast inverse signal is on. No warning, is present; no start signal applied.

- START (LOCAL)

Enable and start signal applied; no or too low reference signal or motor current.

- HOLD

Start signal is applied, but ramping is blocked (serial data interface only).

- RUN OK (LOCAL)

Unit is running on reference and in range.

- JOGGING (LOCAL)
- RAMPING (LOCAL)
- FREEZE

Reference is "frozen"; change possible by speed UP/DOWN.

- RUN OUT RANGE

Unit is running on reference, but out of the range set up by menus (either current or frequency), such as High Frequency, Low Frequency, Current, etc.

- CURRENT LIMIT
- NO MOTOR

Enabled, but DC test shows that no motor is connected.

- REF FAULT

4-20 mA signal not okay.
NO 24 VOLT
Internal power supply is not operational.

- INVERT TIME (ETR)

Electronic inverter protection close to limit.

- MOTOR TIME (ETR)

Electronic motor protection close to limit. At 97% the warning is given, at 100% a trip will occur.

- voltage low - voltage high The control card registers that the DC bus voltage is out of limits. Power section is running.

NOTE:
During READY, ENABLE, START and RUNNING conditions the message "LOCAL" indicates that the local operation or stop prevents remote control. Local stop is furthermore indicated by a flashing DATA display.

Reset Messages

Alarm
Messages

- STALLING

Short-term interruption of operation; ride through is attempted.

- AUTOSTART Operation is stopped; unit will attempt restart.
- TRIP (LOCKED)

Operation is stopped; external manual reset required. When the trip is locked, reset can only be accomplished by cycling AC power on and off.

- INVERTER FAULT Power section NOT OKAY.
- MAINS PHASE FAULT (loss of line phase)
- OVER VOLTAGE-UNDER VOLTAGE Power section has stopped the inverter due to voltage limits exceeded.
- OVER CURRENT

Power section has stopped the inverter due to short circuit,

- GROUND FAULT

Power section has stopped the inverter due to ground leakage.

- OVER TEMP

Power section has stopped the inverter due to high heatsink temperature.

- OVER LOAD (ETR)

Unit has been running too long at intermittent current.

- MOTOR TRIP (ETR or THERMISTOR)
- Motor has been running too long at intermittent current.
- KEY DISABLED

The inverter is in Factory set Mode, parameter 001.

Derating for ambient temperature:
The ambient temperature is the maximum temperature allowed. The average over 24 hours must have at least $5^{\circ} \mathrm{C}$ lower in accordance with VDE 160 5.2.1.1.

If the VLT^{\circledR} Adjustable Frequency Drive is operated at temperatures above $40^{\circ} \mathrm{C}\left(45^{\circ} \mathrm{C}\right.$ in CT), then a derating of the continuous output current is necessary,

Derating for Ambient Temperature

1. VLT 3002-3008; Chassis/NEMA 12
2. VLT 3002-3008: NEMA 1 mounted with top fan. VLT 3004 (200V), 3006 (400, VT) and $3008(400 / 500 \mathrm{~V})$ has a fan in NEMA 1 version, following curve 1.

Derating for ambient temperature:
The ambient temperature is the maximum temperature allowed. The average over 24 hours must be at least $5^{\circ} \mathrm{C}$ lower in accordance with VDE 160 5.2.1.1.

If the VLT^{\circledR} Adjustable Frequency Drive is operated at temperatures above $40^{\circ} \mathrm{C}\left(45^{\circ} \mathrm{C}\right.$ in CT), then a derating of the continuous output current is necessary,

Derating for Ambient
Temperature (continued)

1. VLT 3011-3052: Chassis
2. VLT 3011-3052; NEMA 12

Derating for air pressure:
Above 3300 ft the ambient temperature ($\mathrm{t}_{\text {AMB }}$) or max. output current (IVLT<MAX) must be derated according to the graph below:

1. Derating of output current versus altitude at $\mathrm{t}_{\mathrm{AMB}}=\max .40^{\circ} \mathrm{C}$.
2. Derating of max. $\mathrm{t}_{\text {AMB }}$ versus altitude at 100% output current.

Derating for Air Pressure

Derating for Higher Switching Frequencies

Derating for higher switching frequencies: A higher switching frequency results in greater loss and stronger heat formation in the adjustable frequency drives transistors and motor coils.

The Adjustable frequency drive therefore automatically derates the maximum permitted constant output current $I_{\text {vLT, }}$, when the switching frequency exceeds 4.5 kHz , Linear reduction down to 60% at 14 kHz (see graph).

WARNING:

VLT 3060-3250 CAN NOT exceed 4.5 kHz .

Derating for running at low speed:
When a centrifugal pump or fan is controlled by the VLT Series 3000 it is not necessary to reduce the output current at low speed
because of their load characteristics (VT) for cetrifugal pumps/fans. Motors running constant load torque (CT) applications at low speed must be derated or force-cooled (see graph).

Derating for Running at Low Speed

Output current is derated 3% per $1^{\circ} \mathrm{C}$ above maximum ambient temperature of the VLT.
($40^{\circ} \mathrm{C}$ - VT Mode, $45^{\circ} \mathrm{C}$ - CT Mode)
Absolute maximum ambient $=60^{\circ} \mathrm{C}$.

Derating for Abient
 Temperature

Below an altitude of 3300 feet (1000 meters), no derating is necessary. Above 3300 feet, derating is necessary as follows:

VLT 3060-3250 - CT Mode

At maximum ambient ($45{ }^{\circ} \mathrm{C}$), derate output current 5\% per 3300 feet above 3300 feet.
At maximum rated current, derate ambient temperatures $3^{\circ} \mathrm{C}$ per 3300 feet above 3300 feet.

Derating for

 AltitudeCT Mode
VLT 3060-3250

Below an altitude of 3300 feet (1000 meters), no derating is necessary. Above 3300 feet, derating is necessary as follows:

VLT 3060-3250 - VT Mode

At maximum ambient ($40{ }^{\circ} \mathrm{C}$), derate output current 5% per 3300 feet above 3300 feet.
At maximum rated current, derate ambient temperatures $4^{\circ} \mathrm{C}$ per 3300 feet above 3300 feet.

Derating for
Altitude
VT Mode
VLT 3060-3250

The following instructions will enable quick and easy set-up of the PI regulation and associated parameter settings in the VLT ${ }^{\circledR}$ Series 2000, 3000 and 3500 Adjustable Frequency Drives. Detailed information about each parameter can be found in the respective instruction manuals.

Parameter 100:

Set the load type. There are several choices in each group but variable torque medium or variable torque medium with AEO will suit most pumps or fans.

Parameter 101:

Select closed loop operation.

Parameter 114:

Choose the type of feedback signal the transmitter is using. The default value is current as it is the most widely used signal type.

Parameter 115 \& 116:

Are used to scale a display read-out which is proportional to the feedback transmitter signal. The value is displayed only if feedback has been selected in display mode. To get to display mode from any other mode press MENU \& DATA keys simultaneously.
If a transmitter has a range of $0-5$ bar, 0 can be set in parameter 115 and 5 in parameter 116. In parameter 117 the unit bar can be programmed.
The default values are $0 \& 100$, to display 0 100%.

Parameter 117:

Choose the unit of measurement for scaling the feedback signal of the transmitter set in parameter 115 \& 116. The default value is \%.

Parameter 119:

The feed forward factor allows a part of the set-point signal to by-pass the PID regulator. This gives faster response when starting up a system where the integration time (parameter 122) is very long, and the system error is small. Set at 0\%. Only add 5% at a time, and only if the system takes a long time to start up. Figure 1 shows the influence of the feed forward.

Parameter 120:

Controls the bandwidth of the output from PID controller. Set at 100\%.

Parameter 121:

Controls the gain of the system. For most fan and pump systems it should not be higher than 0.9 . If set to higher values the system may become unstable.

- Centrifugal fans - between 0.1-0.6
- Centrifugal pumps - between 0.3-0.8

Parameter 122:

Improves the final accuracy by integrating out the error.

- Centrifugal fans - from 10-12 seconds
- Centrifugal pumps - from 3-8 seconds

Parameter 123:

Differential time is not used in pump and fan systems.

Set to Off.

Parameter 124:

If the feedback signal is fluctuating it can be dampened with a time constant. This can occur on pump systems where the pipe can be shut off quickly and cause a standing wave of water. Set initially to 0 seconds.
Parameter 125: (refer to example on page x.) Leave at the default value of 100% unless the following conditions occur.

- If the feedback signal does not match the standard analog signal choices in parameter 412 \& 413 a value must be programmed which scales the feedback signal to a standard analog value.
- When using min. speed, parameter 201, it must be ensured that the min. speed \% value is not greater than the set-point \% value, otherwise the min. speed will over-ride the set-point.

Figure 1.

Example:

The set-point is 40%, and the min. speed is 50\%.

1. Selecting a new set-point. Choose a value that will raise the set-point about 10\% higher than the min . speed.
New set-point $=\%$ min. speed $\times 1.1=55 \%$
2. Setting parameter 125. Apply the same increase to this parameter. $100 \times 1.1=$ 110\%

Parameter 201:

Set min. frequency if required.
If you enter a min. speed you must observe the following:

- When min. speed is used parameter 411 must be set to "proportional with min. limit".
- If the min. frequency $\%$ is higher than the set-point \% you must re-scale parameter 125 and the set-point.

Parameter 202:

Max. frequency is normally set to 50 Hz . Running centrifugal pumps and fans above this speed will cause overload of the pump or fan, as the power increases to the third power of the speed change.

Example:

If the speed increased to 60 Hz the power will increase by a massive 173\%.

Set at 50 Hz .

Parameter 205:

The internal set-point for the regulator.
Enter the set-point \% value.
Externally it can be one of the choices of the analog values. Use of one of the analog choices will prevent its use as the feedback signal.
The use of the internal set-point reduces installation costs. Up to 4 internal set-points (by using parameters 205-208) can be selected by a combination of 2 switches. Refer to the instruction manual for further information.
The set-point can be found by calculating the percentage of required signal from the transmitter range.

Example:

A pressure transmitter has range of 0-10 bar. A set-point of 4 bar is required.
Set-point $=4 / 10 \times 100=40 \%$
Enter 40 in parameter 205.

Parameter 214:

Use only linear ramps.

Parameter 215 \& 216:

The ramps only function on starting and stopping the system.
Enter the ramp up and down times in seconds.

Parameter 315:

Set the motor thermal protection to trip 1 if thermal protection of the motor is required.

Parameter 411:

This parameter must be changed from its default value when PID regulation is used.
Set to "proportional with min. limit".

Parameter 412-413:

Set the type of analog input signal for the set-point and feedback signals. Parameter 114 has previously set up the selection of the feedback signal type.
If parameter 205 (internal set-point) is used either current or voltage can be used as the feedback signal.
If one of the inputs is not used it must be set to no operation.

Normal or Inverse Control

Introduction:

The control is called normal, if the motor speed is increased when the feedback signal goes down, and the motor speed is reduced if the feedback signal goes up. Typical for pump pressure systems and air handling units in variable air volume systems.
The control is called inverse if the motor speed is increased when the feedback signal is increased. Typical for pit pumping where: the faster the water flows into the pit, the faster the pump must pump out the water.

For inverse control; modification of the setpoint and feedback signal is required.

Example:

A transmitter has a 0-15 foot span equal to 020 mA . The PID set-point must be set at 12 feet for inverse control.

- Enter 20-0 mA in parameter 413. The normal signal in figure A is converted to an inverse signal as shown in figure B.

Normal signal from transmitter 12 ft . represents 16 mA (80%)

Inverted signal from par: 413
12 ft . represents $100 \%-80 \%=20 \%$

Electrical Connections

External Setpoint

NOTE: All control wiring needs to be shielded and the shield grounded to the clamps as shown in the respective instruction manuals.

NOTE: All control wiring needs to be shielded and the shield grounded to the clamps as shown in the respective instruction manuals.

- Connections and set-up are identical to normal control.

External Manual Control Over-ride

It is often necessary to run the machine manually for maintenance reasons.
Manual control can be carried out manually from the keypad of all the units.
If remote control of the manual over-ride is required additional circuitry is necessary.
For the VLT Series 3500 special parameters are available for external manual over-ride. Refer to the VLT Series 3500 instruction manual.

The following circuit and instructions for external manual over-ride relates to the VLT Series 3000. The proposed control scheme is based on using 2 of the 4 menu set-ups. Menu set-up 1 has the parameters set for PI operation and Menu set-up 2 has the parameters set for manual control.

1. Set parameter 001 to multi set-up.
2. Set parameter 400 to select set-up.
3. Install an "Auto-Manual" switch across terminals 12 \& 16. This will allow selection between the 2 menu set-ups. The bottom right hand corner of the display will show the menu set-up you are in.
4. Program menu set-up 1 for Pl operation.
5. Select menu set-up 2 and alter the following parameters:

- Parameter 100; Set to the same load type as in menu 1. You can check the parameter data in menu 2 against the parameter data in menu 1 by switching between menu setups while you are in that parameter.
- Parameter 107-113; Set to the same load types as in menu 1.
- Parameter 201-201; Max. and Min. Frequency can be set to suit manual control.
- Parameter 209; Set to the same load type as in menu 1.
- Parameter 215-216; Set the ramp times to suit the application.
- Parameter 315 ; Set the motor thermal overload protection to trip 2.
- Parameter 412; Set to 0-10 V.
- Parameter 413; Set to no operation.

External Manual Control Over-ride

NOTE: All control wiring needs to be shielded and the shield grounded to the clamps as shown in the respective instruction manuals.
SERVICE and
DIAGNOSTICS:
600 OPERATION DATA s)
TOTAL OPERATING HRS.
*601 DATA LOG s)
DIG. IN
602 FAULT MEMORY s)
CODE
603 TYPE PLATE s)

604 OPERATION MODE s)

RUN NORMAL
605 PERSONAL DISPLAY s)
SELECT
STANDARD DISPLAY
650 VLT TYPE
(SELF TUNING, DO NOT
CHANGE)

[^3]

[^0]: * Additional dimensions for Fan Option:

 Chassis (all voltages) 2.36 (60) to $\mathbf{H} ; 2.36$ (60) to c
 NEMA 1 (all voltages) 1.18 (30) to $\mathbf{H} ; 1.18$ (30) to c

[^1]: * Additional dimensions for Fan Option: Chassis (380/460 VAC only) 2.36 (60) to H; 2.36 (60) to c;

 NEMA 1 (380/460 VAC only) 1.18 (30) to $\mathbf{H} ; 1.18$ (30) to \mathbf{c}. \quad ** 230 VAC dimensions do not change with options.

[^2]: * 230 VAC dimensions do not change with options.

[^3]: DISPLAY MODE
 READOUTS:
 REFERENCE \%
 FREQUENCY Hz
 DISPLAY FEEDBACK "UNIT"
 CURRENT A
 TORQUE \%
 POWER kW
 POWER HP
 ENERGY KWh
 OUTPUT VOLYAGE V
 DC VOLTAGE V
 MOTOR ETR value \%
 INVERTER ETR value \%

