SIEMENS

SIMATIC C7

Supplement to

C79000-Z7076-C631-01

Manual Package C7-623/624 (MLFB 6ES7 623-1AE00-8BA0) and Manual Package C7-626/626 DP (MLFB 6ES7 626-1AG00-8BA0)

Control Systems	C7-623/P C7-624/P C7-626/P	(MLFB 6ES7 623-1DE01-0AE3) (MLFB 6ES7 624-1DE01-0AE3) (MLFB 6ES7 626-1DG02-0AE3)
	C7-626/P DP	(MLFB 6ES7 626-2DG02-0AE3)

The control systems listed above have new functions and technical properties which are described in this supplement.

This supplement contains **additional information** about the products. If uncertainties arise, this information should be considered more up-to-date than the information in the manuals and catalogs.

Copyright © Siemens AG 1999 All Rights Reserved

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Disclaimer of Liability

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly and any necessary corrections included in subsequent editions. Suggestions for improvement are welcomed.

Siemens AG Bereich Automatisierungs- und Antriebstechnik Geschäftsgebiet Industrie-Automatisierungssysteme Postfach 4848, D-90327 Nuernberg

Siemens Aktiengesellschaft

Technical data subject to change. C79000-Z7076-C631-01 Printed in the Fed. Rep. of Germany

Contents

1	Properties of the I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems	4
2	Digital I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems	5
2.1	Addressing the gigital I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems	7
3	Analog I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems	8
3.1	Addressing the analog I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems	14
3.2	Timing of the Analog I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems	15
3.3	Assigning Parameters to the Analog I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems	17
4	Universal Inputs of C7-623/P, C7-624/P, C7-626/P and C7-626/P DP \ldots	24
4.1	Addressing Universal Inputs	28
4.2	Assigning Parameters to the Universal Inputs	30
4.3	External Gate Counter	32
4.4	Example for Programming the Counters	33
5	Structure of the Parameter Data Records	37
6	Diagnostic Data of the Analog I/Os C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems	39
6.1	Diagnostic Messages	39
6.2	Layout of Diagnostic Area of the Module	41

1 Properties of the I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems

Overview

The chapters of this addendum describe the differences between the two control systems C7-623/P, C7-624/P, C7-626/P and C7-626/P DP and the control systems C7-623, C7-624, C7-626 and C7-626 DP. With the exception of the properties of the I/Os, the properties of the control systems described in the manuals of the C7-623 and C7-626 are as described in the manuals.

The following table contains an overview of the I/Os of the control systems.

	C7-623, C7-624, C7-626, C7-626 DP	C7-623/P, C7-624/P C7-626/P, C7-626/P DP
Digital I/Os	16 digital inputs, 16 digital outputs	16 digital inputs, 16 digital outputs
Analog I/Os	4 analog inputs, 1 analog output	4 analog inputs, 4 analog outputs
Universal inputs	4 digital universal inputs	4 digital universal inputs

2 Digital I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems

Pinout of the Digital Inputs and Digital Outputs The pinout of the digital inputs and digital outputs is identical to the pinout of the C7-623, C7-623/A, C7-624, C7-626, C7-626/A and C7-626 DP.

Technical Data of the Digital Inputs

The following table lists the technical data of the digital inputs.

Specific Data of the Digital Input		Data for Selecting a Sensor	
Number of inputs	16	Input voltage	
Cable length		Nominal voltage	24 VDC
• Unshielded	600 m	• For "1" signal	from 11 to 30 V
Shielded	1000 m	• For "0" signal	from -3 to 5 V
Voltages, Currents, Potentials		Input current	
Nominal load voltage L +	24 VDC	• For "1" signal	from 6 to 11.5 mA
Number of simultaneously energizable inputs	16	Input delay timeProgrammable	No
Galvanic isolation	Yes (optocoupler)	• At "0" to "1"	from 1.2 to 4.8 ms
• In groups of	16	• At 11 to 10	from 1.2 to 4.8 ms
Permissible potential difference		Input characteristic	In accordance with EN 61131-2 (IEC 1131, Part 2)
• Between the M terminals of the groups	-	Type of input in accordance with IEC 1131	Type 2
Insulation resistance	$U_{\rm ISO} = 500 \ \rm VDC$		D 11
Status, Interrupts, Diagnostic	es	Connection of 2-wire BEROs	Possible
Interrupts	No	Permissible quiescent current	$\leq 2 \text{ mA}$
Diagnostic functions	No		

Technical Data of
the Digital OutputsThe following table lists the technical data of the digital outputs.

Specific Data of the Digital	Output Function	Data for Selecting an Actuato	r
Number of outputs	16	Output voltage	
		• At "1" signal	L + (-0.8 V)
Cable length		Output current	
• Unshielded	600 m	• At "1" signal	
Shielded	1000 m	nominal value	0.5 A
Voltages, Currents, Potentia	uls	Permissible range	5 mA to 0.5 mA
Nominal load voltage L +	24 VDC/0.5A	• At "0" signal (quiescent current)	max. 0.5 mA
Total current of the outputs (per group)		Lamp load	max. 5 W
• Un to 20 °C	4 A	Parallel switching of 2 outputs	
• Up to 45 °C	2 A	• For logic operations	Possible (outputs the same group or
Galvanic isolation	Yes (optocoupler)	• For enhancing	Not possible
• In groups of	8	performance	
Insulation resistance	$U_{\rm ISO} = 500 \ \rm VDC$	Activating a digital input	Yes
Status, Interrupts, Diagnost	ics	Max. switching frequency	
Interrupts	No	With resistive load/lamp load	100 Hz
Diagnostic functions	No	With inductive load	0.5 Hz
		Inductive cutoff voltage limited (internally) to	L + (- 48 V)
		Short-circuit protection of the outputs	Yes, electronicall timed
		• Operating point	1 A

2.1 Addressing the analog I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems

Addressing the C7 I/O

Figure 1 shows the diagram for addressing the individual channels of the digital I/O.

Figure 1 Digital I/O Addresses

Control Systems C7-623/P, C7-624/P, C7-626/P and C7-626/P DP C79000-Z7076-C631-01

3 Analog I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems

Pinout and Connection Diagram of the Analog Inputs The following diagram shows the pinouts and the connection diagram of the analog inputs.

Figure 2 Terminal Connection Diagram of the Analog Inputs

Connecting a Power/Voltage Sensor	You can connect either a power sensor or a voltage sensor to an analog input, but never both at the same time.
Unused Analog Inputs	To prevent interference from occurring, all unused analog inputs should be short-circuited.

Control Systems C7-623/P, C7-624/P, C7-626/P and C7-626/P DP C79000-Z7076-C631-01

Channels Three pins are combined to form a channel.

Pin No.	Value	Channel	
AI1-U	Voltage input	Channel 1	
AI1-I	Current input	(AI1)	
AI1-M	Reference potential		
AI2-U	Voltage input	Channel 2	
AI2-I	Current input	(AI2)	
AI2-M	Reference potential		
AI3-U	Voltage input	Channel 3	
AI3-I	Current input	(AI3)	
AI3-M	Reference potential		
AI4-U	Voltage input	Channel 4	
AI4-I	Current input	(AI4)	
AI4-M	Reference potential		

Table 1-1Channels of the Analog Input Module

Block Diagram

Figure 3 shows the block diagram of the analog input module.

Figure 3 Block Diagram of the Analog Input Module

Control Systems C7-623/P, C7-624/P, C7-626/P and C7-626/P DP C79000-Z7076-C631-01

Technical Specifications

Data Specific to Analog Inputs		Data for Selecting a Sensor		
Number of inputs	4	Input ranges (rated		
Cable length, shielded	200 m	values)/input resistance		
Voltages, Currents, Potentials	5	• Voltage	\pm 10 V;	/50 kΩ
Isolation (analog I/Os to electronics)	yes	Current	± 20 mA;	/105.5Ω
Isolation resistance	$U_{ISO} = 500 \text{ V DC}$		4 - 20 mA;	/105.5Ω
 Permitted potential difference Between reference potential of the inputs AIx-M and M_{ANA} for 	U _{CM} = 2.5 V DC	Permitted input voltage for voltage input (destruction limit) Permitted input current for	Max. 30 V per 38 V for max. (pulse duty rat 30 mA	rmanent, 1 s tio 1:20)
signal = 0V		current input (destruction		
Analog Value Formation		limit)		
Measurement principle	Instantaneous value	Connection of signal sensors		
• Cycle time (all channels)	2 ms	• For voltage measurement	Possible	
Processing time (per channel)	0.5 ms	• For current measurement as 4-wire transducer as 2-wire transducer	Possible Not directly p	ossible
sign (incl. overflow	12	Status, Interrupts, Diagnostics		0001010
Measurement ranges: Voltage Current	Measurement range selected by connection to different pins ± 10V ± 20mA, 4 to 20mA	 Interrupts Hardware interrupt as cyclic interrupt as cycle end interrupt Diagnostic interrupt 	yes, selectable yes, selectable yes, selectable	; ;
Noise Suppression, Error Lin	nits	Diagnostic functions	yes, selectable	;
Noise voltage suppressionCommon mode noise	> 40 dB	• Diagnostic information can be read out	yes	
$(U_{CM} < 1.0 V)$		Time intervals	yes, selectable	;
Crosstalk between the inputs Error limit (in entire temperature range, relative to input range)	> 60 dB	Wire break detection	In measureme 4 to 20mA, se	nt range lectable
• Voltage	± 0.8 %			
• Current	± 0.8 %			
Basic error limit (error limit at 25 °C, relative to the input range)				
• Voltage	± 0.6 %			
• Current	± 0.6 %			
Reproducibility in settled state at 25 °C related to range	0.05 %			

TerminalFigure 4 shows the terminal connection diagram of the analog output module.ConnectionDiagram

Figure 4 Terminal Connection Diagram of the Analog Output Module

Block Diagram

Figure 5 shows the block diagram of the analog output module.

Figure 5 Block Diagram of the Analog Output Module

Technical Specifications

Data Specific to Analog Outputs		Status, Interrupts, Diagnostics	
Number of outputs	4	Interrupts	
Cable length, shielded	200 m	Diagnostic interrupt	yes, selectable
Voltages, Currents, Potentials	5	Diagnostic functions	yes, selectable
Isolation	yes	• Diagnostic information can be read out	yes, group error
Dielectric strength	$U_{\rm ISO} = 500 \text{ V DC}$	Data for Selecting an Actuat	tor
Measurement ranges:	Voltage or current selectable	Output ranges (rated values)	± 10 V
Voltage	$\pm 10V$		$\pm 20 \text{ mA}$
Current	\pm 20mA, 4 to 20mA		From 4 to 20 mA
Analog Value Formation		Load resistance	
Resolution (incl. overflow		• For voltage outputs	min. 2 k Ω
range)		• For current outputs	max. 500 Ω
• $\pm 10 \text{ V}; \geq 20 \text{ mA};$	12 bits incl. sign	Capacitive load	max. 1 μF
4 to 20 mA		Inductive load	max. 1 mH
Conversion time (all active	max. 4 ms	Voltage output	
	typ. 2 ms	Short-circuit protection	Short-circuit proof yes
Settling time	0.1	Short-circuit current	approx. 25 mA
• For resistive load	0.1 ms	Current output	
• For capacitive load	3.3 ms	• Idle voltage	$max. \pm 16V$
• For inductive load	0.5 ms	Connecting actuators	
Substitute value Idle power and voltage Global value can be substitu-	yes, selectable yes, selectable	For voltage output 2-wire connection	possible
nels) Retain last value	yes, selectable	• For current output 2-wire connection	possible
Noise Suppression Limit Vel		Destruction limits for	
Noise Suppression, Linit van	10.10	externally	
outputs	>40 dB	Voltage at the outputs	max. 20 V DC
Error limit (in the entire temperature range, relative to the output range)		Gurrent	max. 40 mA DC
Voltage	\pm 0.8 %		
• Current	± 1 %		
Basic error limit (error limit at 25 °C relative to the output range)			
• Voltage	± 0.5 %		
• Current	± 0.6 %		
Output ripple (relative to the output range)	± 0.05 %		

Control Systems C7-623/P, C7-624/P, C7-626/P and C7-626/P DP C79000-Z7076-C631-01

 \pm 0.06 %

Reproducibility (in settled state at 25 $^{\circ}$ C relative to the

output range)

3.1 Addressing the I/Os of the C7-623/P, C7-624P, C7-626/P and C7-626/P DP Control Systems

Analog I/O Addresses The address of an analog channel is always a word address.

An analog input/output has the same start address for the analog input and output channels (see Figure 6).

Figure 6 Analog Input/Output Addresses

3.2 Timing of the Analog I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems

Analog Inputs

inputs.

The timing of the analog inputs depends on the current parameter assignment of the analog I/Os (see Section 1.4). The duration of the measuring cycle depends on the number of activated analog input channels. Deactivated channels reduce the length of the measuring cycle. The measuring cycle is the sum of the conversion times of the activated analog

Figure 7 Measuring Cycle when All Analog Input Channels are Activated

Figure 8 Measuring Cycle when Analog Input Channel 2 is Deactivated

Analog Outputs The duration of the output cycle does **not** depend on the number of activated analog output channels. This is always constant and deactivated channels do not reduce the output cycle.

Figure 9 Output Cycle when All Analog Output Channels are Activated

Figure 10 Output Cycle when Analog Output Channel 2 is Deactivated

3.3 Assigning Parameters to the Analog I/Os of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems

ConfigurationYou configure your setup with STEP 7 V4.02.
You can extend the hardware catalog by reinstalling with an expansion
diskette. Later versions of STEP 7 already contain these device types.

ParameterYou set the parameters for the analog I/O using the S7 application ConfiguringAssignmentHardware. A parameter block is generated that contains all the currently
selected I/O parameters. After loading this parameter block, the parameters are
not immediately transferred to the analog I/O. The C7 CPU then transfers the
parameters to the analog I/O after every operating mode change from
STOP \rightarrow RUN.

Alternatively, you can also change some parameters in the user program with SFCs 55 to 57 (see Reference Manual /235/).

We subdivide the parameters for the two configuration alternatives into:

- Static parameters and
- Dynamic parameters

The following table explains when the static and dynamic parameters are adopted.

Parameter	Set with	Time of Parameter Transfer
Static	Configuring Hardware	STOP -> RUN
Dynamic	Configuring Hardware	STOP -> RUN
	SFCs 55 to 57	for SFC call

Table 1-2 Time of Transfer of the Parameters from the C7 CPU to the Analog I/O

Assignment of Parameters for Characteristics

The following parameter blocks permit the assignment of parameters in *Configuring Hardware* to define the following characteristics of the analog I/O:

- For inputs
 - Basic settings
 - Diagnostics
 - Measurement
 - Interrupt cycle
- For outputs
 - Basic settings
 - Diagnostics
 - Substitute values
 - Output range

Analog Input Parameters

Table 1-3 provides an overview of the analog input parameters.

Table 1-3 Analog Input Parameters

Parameter	Analog Inputs	
	Value Range	Preset Value
Basic settings		
• Enable diagnostic interrupt	Yes/No	No
Diagnostics		
• Enable	Yes/No	No
 Configuration/parameter as- signment error 		
– Wire break (only 4 to 20 mA)		
 Range undershoot 		No
 Range overshoot 	Yes/No	INO
• Wire break test (only for measurement range 4 to 20 mA)		
Measurement		
• Type of measurement	Deactivated	Voltage
	Voltage	
	Current	
• Measurement range	±10 V	$\pm 10 \text{ V}$
	$\pm 20 \text{ mA}$	
	4 to 20 mA	
Interrupt cycle		
• Interrupt	Yes/No	No
• Interrupt time	Unsolicited, 3ms,	Unsolicited
	3.5 ms, 4 ms,	
	4.5 ms to 16 ms	

Hardware Interrupt

You can operate the inputs of the analog I/Os in three ways:

• Without hardware interrupt

A free measuring cycle of all activated channels without generating hardware interrupts.

A/D conversion of the channels
Measuring cycle of all activated channels

Figure 11 Sequence of the Measurement with Four Analog Input Channels without Generating Hardware Interrupts

• Hardware interrupt as a cyclic interrupt

Free measuring cycle of all activated channels with generation of a non measuring cycle-dependent hardware interrupt as a time interrupt with a selectable interrupt time.

Figure 12 Sequence of the Measurement with Four Analog Input Channels and Generation of Hardware Interrupts as Cyclic Interrupts

• Hardware interrupt as cycle end interrupt

A measuring cycle with a selectable cycle time and generation of a hardware interrupt as a cycle end interrupt.

Figure 13 Sequence of the Measurement with Four Analog Input Channels with Generation of Hardware Interrupts as Cycle End Interrupts

A hardware interrupt from the I/Os triggers the start of OB40 (hardware interrupt OB) on the C7 CPU. In this case, the process variable OB40_POINT_ADDR supplies the value DW#16#FFFFFFF.

Analog Output Parameters

Table 1-4 provides an overview of the analog output parameters.

Table 1-4Analog Output Parameters

Parameter	Analog Output		
	Value Range	Preset Value	
Basic setting			
• Enable diagnostic interrupt	Yes/No	No	
Diagnostics			
• Enable	Yes/No	No	
 Configuration/parameter assign- ment error 			
 Substitute value switched on 			
Substitute value			
• Idle power and voltage (value 0)	Yes/No	Yes	
Retain last value	Yes/No	No	
• Global substitute value	9400 _H 6C00 _H	0	
Output range			
• Type of output	Deactivated	Voltage	
	Voltage		
	Current		
• Output range	$\pm 10 \text{ V}$	$\pm 10 \text{ V}$	
	$\pm 20 \text{ mA}$		
	4 to 20 mA		

Parameter Characteristics of Analog Outputs

Table 1-5 shows which parameters

- Are static or dynamic
- Can be set.

 Table 1-5
 Parameter Characteristics of Analog Outputs

Parameter	Static/Dynamic	Effective Range
Enable diagnostic interrupt	Static	Analog inputs / Analog outputs/ Universal inputs
Enable diagnostics	Static	Outputs
Substitute value		
• Idle power and voltage (value 0)	Dynamic Dynamic	Outputs Outputs
• Retain last value	Dynamic	Outputs
• Global substitute value		
Type of output	Dynamic	Outputs
Output range	Dynamic	Outputs

4 Universal Inputs of C7-623/P, C7-624/P, C7-626/P and C7-626/P DP

Overview	 The C7 has 4 digital universal inputs that provide the following functionality: Digital input Interrupt input Counter input Frequency/period duration counter input External gate counter input These input functions can be set by assigning them parameters; this determines
	how the inputs are used.
Assigning Parameters to the Inputs	The universal inputs are set using software. This is done using the <i>Configuring Hardware</i> application. You use this application to determine which function the individual input is to execute (see Table 1-6).
Interrupt Input	If this function is set, the input responds like a normal interrupt input, that is, a hardware interrupt is triggered in the C7 CPU as a response to the assigned edge.
Digital Input	If this function is set, the input responds like a normal digital input. The only difference here is that the current process signal is not automatically given to the control program but must first be read in from the I/O.
Counter Input	These universal inputs enable you to capture counter pulses up to a frequency of 10 kHz. The counter can count either up or down. You can also assign parameters to the count edge.
Frequency Counter	This enables you to count pulses within a programmed length of time. From this you can calculate a frequency ≤ 10 kHz.
Period Duration Counter	This function enables you to count fixed timer ticks between two positive edges. From this you can calculate the duration of an interval period.
External Gate Counter	This function enables you to count pulses within a gate time that starts with a rising edge on the external gate pin and ends with a falling edge.

Terminal Connection Diagram Figure 1 shows the pin assignments of the universal inputs

Figure 14 Pin Assignments of the Universal Inputs

Pin Assignments of the Universal Inputs

The pin assignments of the universal inputs are as follows:

Table 1-6 Assignments of the Universal Inputs

Pin No.	Function
М	Ground for all DI–Xx
DI-X1	Universal input 1 (interrupt, digital and counter input, external gate counter 16 bit)
DI-X2	Universal input 2 (interrupt, digital and counter input, external gate counter 16 bit)
DI-X3	Universal input 3 (interrupt, digital, counter, frequency counter and period
	duration counter input, external gate counter 24 bit)
DI-X4	Universal input 4 (interrupt or digital input)
GATE 1	External gate pin for DI-X1
GATE 2	External gate pin for DI-X2
GATE 3	External gate pin for DI-X3

Technical Specifications of the Universal Inputs

Specific Data of the Universal Inputs		External Gate Counter	Max. 3	
Number of inputs	4 + 3 (gate pins)	Principle	Edge counting via	
Cable length, shielded	1000 m	• Counter range C1/C2	$0 \text{ to } 2^{16} - 1$	
Voltages, Currents, Potentials	3	• Counter range C3	0 to 2^{24} -1	
Nominal load voltage L +	24 VDC	Data for Selecting a Sensor		
Number of simultaneously	4 + 3 (gate pins)	Input voltage		
energizable inputs		Nominal voltage	24 VDC	
Galvanic isolation	No	• For "1" signal	from 11 to 30 V	
Function, Interrupts, Diagnos	stics	• For "0" signal	from -3 to 5 V	
Interrupts	Can be assigned	Input current		
Counter functions	parameters	• At "1" signal	from 2 to 8 mA	
Max. counter frequency	10 kHz	Input delay time		
Diagnostic function	Module standard	Configurable	No	
	conjunction with	• From "0" to "1"	approx. 0.01 ms	
	analog I/O.	• From "1" to "0"	approx. 0.01 ms	
Countors	No channel-specific diagnostics Max 3	Input characteristic	In accordance with IEC 1131, Part 2	
 Principle Counter range C1/C2 	Edge counting up 0 to 2^{16} -1	Type of input in accordance with IEC 1131	Type 2	
	down 2^{16} -1 to 0	Input current		
• Counter range C3	up 0 to 2^{24} -1	• At "1" signal	From 6 to 11.5 mA	
• Limit value (setpoint)	1 value per counter			
specification				
Counter interrupt of up counter	When limit value is reached			
• Counter interrupt of down counter	When "0" is reached			
• Enable	In the program			
Period Duration CounterPrinciple	Max. 1 Counting fixed time units between two positive edges			
Counter range	0 to 2^{24} -1			
• Max. period duration	0.393 S OF 0.119 HZ			
Frequency Counter	Max. 1			
Principle	Counting of pulses			
• Counton nor	within a time period 0 to 2^{24} -1			
 Counter range Gate width 	0, 1 s, 10 s (can be			
• Max. frequency	set)			
	10 kHz; limited by input filter			

Control Systems C7-623/P, C7-624/P, C7-626/P and C7-626/P DP C79000-Z7076-C631-01

4.1 Addressing Universal Inputs

Universal InputThe addresses for the universal inputs are default addresses which cannot be
changed. According to the application of the universal inputs, the results
occupy differing addresses.

For the address allocation, a distinction is made between:

- The input range PIW280 to PIB287 for count values or signal state of the digital inputs, and
- The output/control range PQW 280 to PQB287 for counters

Input Range The 4 universal inputs of the input range (see Figure 1) have the following addresses and weightings:

Address	3	Designation
PIB280 PIB281		CI1: Counter input
PIB282 PIB283		CI2: Counter input
PIB284		CI3: Counter input
PIB285		Frequency/period
PIB286		time counter
PIB287	Bit 7	_
	Bit 6	1 = Counter 3 enabled
		0 = Counter 3 disabled
	Bit 5	1 = Counter 2 enabled
		0 = Counter 2 disabled
	Bit 4	1 = Counter 1 enabled
		0 = Counter 1 disabled
	Bit 3	1 = universal input 4 set, 0= universal input 1 reset.
	Bit 2	1 = universal input 3 set, 0= universal input 1 reset.
	Bit 1	1 = universal input 2 set, 0= universal input 1 reset.
	Bit 0	1 = universal input 1 set, 0= universal input 1 reset.

 Table 1-7
 Input Address of the Universal Inputs

Output Range If the universal inputs are used as counters, then the behavior of the counters is controlled via the output range.

Address	Control of Counters 1 to 3
PQW280	Start/comparison value counter 1 Initial value for down counter, comparison value for up counter
PQB287: Bit 0	0 = Counter 1 disabled $1 = $ Counter 1 enabled
Bit 1	0 = Do not accenitial value for down counter, comparison value for up counterpt new start/comparison value
	1 = Set new start/comparison value
PQW282	Start/comparison value counter 2 Initial value for down counter, comparison value for up counter
PQB287: Bit 0	0 = Counter 2 disabled $1 = $ Counter 2 enabled
Bit 1	0 = Do not accept new start/comparison value
	1 = Set new start/comparison value
PQB284	Start/comparison value counter 3
PQB285	Initial value for down counter, comparison value for up counter
PQB285	
PQB287 Bit 4	0 = Counter 3 disabled $1 = $ Counter 3 enabled
Bit 5	0 = Do not accept new start/comparison value
	1 = Set new start/comparison value

 Table 1-8
 Addresses and Weighting of the Output Range of the Count Inputs

Hinweis

Please note that no direct read-in function is available for reading in the complete counter status of counter 3.

When counting in the 0 to 65535 value range (2 bytes), the counter values are stored in PQW285.

4.2 Parametrieren der Universaleingänge

Assigning Parameters	You set the parameters for the universal inputs using the STEP 7 application <i>Configuring Hardware</i> . A parameter block is generated which contains all currently selected parameters of the universal inputs. After loading this parameter block, the C7 CPU then transfers the parameters to the appropriate universal inputs at every operating mode change from STOP \rightarrow RUN.
Interrupt Inputs	If the universal inputs are used as interrupt inputs, a hardware interrupt will be triggered on the C7 CPU for the assigned rising or falling edge at the input. The default is the rising edge.
Counter Inputs	 The universal inputs 1 to 3 can be assigned as: Counter input, 16 bit (counters 1 and 2) Counter input, 24 bit (counter 3) Frequency counter (input 3 only) Period time counter (input 3 only) External gate counter, 16 bit (inputs 1 and 2 only)
	• External gate counter, 24 bit (input 3 only) The counter values are made available to the user program as 16-bit or 24-bit values and the frequency and period time counter values as 24-bit values. The counter values of the external gate counter are either 16-bit or 24-bit values, depending on the input.

Table 1-9 lists the parameters for the above-mentioned functions:

 Table 1-9
 Parameter Block of the Count Inputs

Parameter	Explanation	Value Range	Default Setting
Count input 1	Activate the count input and define the type of counting	Standard Interrupt Counter HW gate counter	Standard
	Define the count direction	Up Down	Up
	Set edge to be used for counting	Rising edge Falling edge	Rising edge
	Counter can trigger a hardware interrupt after reaching the comparison value (when counting up) or on zero transition (when counting down)	Yes No	No
	No further parameters for external gate counter (16 bit)	_	_

Parameter	Explanation	Value Range	Default Setting
Count input 2	Activate the count input and define the type of counting	Standard Interrupt Counter HW gate counter	Standard
	Define the count direction	Up Down	Up
	Set edge to be used for counting	Rising edge Falling edge	Rising edge
	Counter can trigger a hardware interrupt after reaching the comparison value (when counting up) or on zero transition (when counting down)	Yes No	No
	No further parameters for external gate counter (16 bit)	_	_
Count input 3	Activate the count input and define the type of counting	Standard Interrupt Counter Frequency counter Period duration counter HW gate counter	Standard
	If counter activated then define the count direction	Up Down	Up
	If counter activated then define the edge to be used for counting	Rising edge Falling edge	Rising edge
	If counter activated, then the counter can trigger a hardware interrupt after reaching the comparison value (when counting up) or on zero transition (when counting down)	Yes No	No
	If frequency counter selected, then select the gate time for the frequency counting	0.1 s 1 s 10 s	1 s
	No further parameters for period time counter	-	-
	No further parameters for external gate counter (24 bit)	_	-

Table 1-9 Parameter Block of the Count Input	Table 1-9	Parameter	Block	of the	Count	Inputs
--	-----------	-----------	-------	--------	-------	--------

Digital Inputs

If the universal inputs are deactivated in the parameter block (default setting), then the inputs react as digital inputs. However, no automatically updated process image will be made available to the user program for these inputs. The current state of the universal input can only be read by means of a direct I/O access. (See Table 1-7 for address).

4.3 External Gate Counter

Gate Time Measurement You can count pulses within a gate time with an external gate counter. The counting direction is forwards. The counting process starts at zero with a rising edge on the external gate pin and ends with a falling edge.

After the falling edge, a hardware interrupt can be generated and the new count value is written to the output area.

Figure 15 illustrates gate time measurement with an external gate counter.

Figure 15 Gate Time Measurement with an External Gate Counter

Start Bit	The gate time measurement is only activated if the start bit is set in the input area at the same time as the external gate pin.
16-Bit and 24-Bit Counters	Counters 1 and 2 operate as 16-bit counters, while counter 3 is a 24-bit counter.
Default Value	The default value is 0xFFFF for counters 1 and 2 and 0xFFFFFF for counter 3. If no valid value is available, for example, during the first measuring cycle, this default value is output.
Counter Overflow	If the count value exceeds the upper count limit and an overflow occurs, the corresponding bit is set in byte 15.7 and value $0FFFF_H$ (for counters 1 and co- unter 2) or $0FFFFF_H$ (for counter 3) is output.

4.4 Example for Programming the Counters

Overview	The following programming example for the universal inputs, parameterized as inputs, is intended to familiarize you with programming the I/O.
Function of Block	The program is intended to implement a simple function which shows the principle of addressing the counter inputs by the STEP 7 program.
	The counters are implemented to count up until the comparison value is reached. They are reset when the comparison value is reached and counting is restarted, beginning with zero. Due to the immediate reset, the specified comparison value never can be read out.
	In the following program example, the universal inputs are assigned parameters as follows:
	III1 counter C1
	UI2 counter C2
	UI3 counter C3
	UI4 standard digital input: not used in the example
	Sundard digital input, not used in the example
	The three counters are assigned parameters as follows:
	Interrupt: ves
	Counting direction: up
	Edge: rising
	Execution of block.
	Execution of block.
OB100	
	1. First, all three counters are stopped on startup.
	This is necessary so that the counter will start counting from zero after a complete restart. If this is not required, that is if the counter must continue after a restart with its "old" value, the counters must not be stopped.
	2. After a waiting time of about 10 ms, a comparison value is written for each counter
	This waiting time is required so that the STOP command for the counters can become effective on the C7 module. In the complete restart OB (OB100), the times are not critical since the cycles are not monitored.
	3. Immediately after the comparison value has been written, the comparison values are declared valid and the counters are started.
	 OB1 The counter values can be read cyclically in OB1. The counter status bits are evaluated to ensure that the counters are active. OB1 is ended if not all counters are activated.
	If all counters are active, the read counter values are reassigned. This is an optional feature which can be useful for specific applications. If the same value must always be used within an OB1 cycle, re-assignment is recommended (for example in the case of high counting frequency and relatively long cycles > accessing OB1 more than once might supply different va-

lues).

	 5. OB40 This block is ting the infortion of OB40 counter which gnize even set 6. OB35 OB35 is used to execute the 	s used for interrupt evaluation rmation of the interrupt vector (LB 8). A memory byte is i ch has triggered the interrupt, everal interrupts occurring al d to generate the count pulse we example:	 n. A jump is executed by evalua- or register from the start informa- ncremented as a function of the OB40 is programmed to reco- most simultaneously. s. The following wiring is required
	Connect Connect Connect	digital output 1.2 with digital output 1.3 with digital output 1.4 with	DI-X1 DI-X2 DI-X3
	In OB35, the enabled/disa correponding default cycli a logical "1"	e output bits of the C7 digital bled), and the effect is a peri g to a frequency of 5 Hz. Thi c interrupt time of OB35. Th for 100 ms and then, also fo	outputs are toggled (alternately od time of 200 ms at each output, s value results from the 100 ms is means that each output is set to r 100 ms, reset to a logical "0".
S7 Status	With the <i>Monito</i> following can be PIW280 MW20 PIW282 MW22 PIW285 MW25	pring and Modifying Variable e monitored: current counter value C1 counter image C1 current counter value C2 counter image C2 current counter value C3 counter image C3 (C3: direct monitoring only between 0 and 65535, othe possible in <i>Monitoring and</i>	es application in STEP 7, the y possible with a counter status rwise only indirect monitoring Modifying Variables)
	MB40 MB41 MB42 PIB287	number of interrupts trigge number of interrupts trigge number of interrupts trigge status of counters	red by C1 red by C2 red by C3
OB100 Statement Sequence	The OB100 com ORGANIZATIC var_temp end_var	nplete restart block contains t DN_BLOCK OB100 start_info : array(019) of	the following statements:
	BEGIN //***Resetting th T PQB287;	he counters*** // C1, C2, C3	

	CALL SFC 47 (WT:=10000)	// wait so that STOP becomes effective // 10000 ms = 10 ms
	//***Setting con	nparison values***
	L 10; T PQW280;	// set comparison value C1
	L 20; T PQW282;	// set comparison value C2
	L 40; T PQW285;	// set comparison value C3
	//***Declaring o L 3F; T PQB287;	comparison values valid and starting counter*** // declare comparison value valid and start // C1, C2, C3
	END_ORGANI	ZATION_BLOCK
OB1 Statement	OB1 contains th	e following statements:
Sequence	ORGANIZATIO var_temp	ON_BLOCK OB1
		start_info : array(019] of byte; status : BYTE;
	end_var BEGIN	
	//***Check whe L PIB287; T status;	ther all counters are active*** // scanning status bits
	A L20.4; A L20.5; A L20.6; JC run; BEU;	<pre>// C1 signalled active // C2 signalled active // C3 signalled active</pre>
	//***Waiting tin CALL SFC47 (WT:=1000);	ne of 1 ms*** // "Wait function" // 1000 ms = 1 ms
	//***Determinir run: NOP 0:	ng counter image (optional)***
	L PIW280; T MW20;	// C1
	L PIW282; T MW22;	// C2
	either //*** Determini L PIW285; T MW25;	ng counter image for 16-bit counter *** // C3
	or //*** Determini L PID284; S RD8; T MD24;	ng counter image for 24-bit counter *** // read in C3 (PIB284-286) and status byte (PIB287) // transfer PIB287 bits from ACCU // transfer ACCU or C3 to memory double word
	END_ORGANI	ZATION_BLOCK

Control Systems C7-623/P, C7-624/P, C7-626/P and C7-626/P DP C79000-Z7076-C631-01

OB35 Statement	OB35 contains the following statements:			
Sequence	ORGANIZAT var_temp	TION_BLOCK OB35		
	end var	<pre>start_info : array(019) of byte;</pre>		
	BEGIN			
	AN Q1.2; =Q1.2;	// assigned to C1		
	AN Q1.3; =Q1.3;	// assigned to C2		
	AN Q1.4; =Q1.4;	// assigned to C3		
	L QW0; T PQW0;	// transfer QW0 immediately		
	END_ORGA	NIZATION_BLOCK		
OB40 Statement	OB40 contain	is the following statements:		
Sequence	ORGANIZAT	TION_BLOCK OB40		
	var_temp	start_info : array[019] of byte;		
	end_var BEGIN			
	//***Determining which input has triggered interrupt***			
	AN L8.0; JC c2;	// interrupt from C1?		
	L MB40; INC 1; T MB40;	// counts number of interrupts from C1 (up to 255)		
	c2:NOP 0; AN L8.1; JC c3;	// interrupt from C2?		
	L MB41; INC 1; T MB41;	// counts number of interrupts from C2 (up to 255)		
	c3:NOP 0; AN L8.2; BEB;	// interrupt from C3?		
	L MB42; INC 1; T MB42;	// counts number of interrupts from C3 (up to 255)		

END_ORGANIZATION_BLOCK

5 Structure of the Parameter Data Records

If you want to reassign parameters during operation, you must check the validity and interdependency of the individual parameters in your program.

Incorrect value ranges for the parameters can lead to incorrect responses from the I/Os. The following table shows the structure of the parameter data records.

 Table 1-10
 Table with Data Set Descriptions Parameter Block

DS	Byte	Bit	Default- Value	Contents	Meaning of the Respective Bits
0	00	7	0	Enable diagnostics AO4	0=No 1=Yes
		6	0	Enable diagnostics AO3	0=No 1=Yes
		5	0	Enable diagnostics AO2	0=No 1=Yes
		4	0	Enable diagnostics AO1	0=No 1=Yes
		3	0	Enable diagnostics AI4	0=No 1=Yes
		2	0	Enable diagnostics AI3	0=No 1=Yes
		1	0	Enable diagnostics AI2	0=No 1=Yes
		0	0	Enable diagnostics AI1	0=No 1=Yes
	01	75	000	-	
		4	0	Enable diagn. interrupt module	
		3	0	Enable diagn. wire break AI4	0=No, 1=Yes (only if measurement range 4 to 20mA)
		2	0	Enable diagn. wire break AI3	0=No, 1=Yes (only if measurement range 4 to 20mA)
		1	0	Enable diagn. wire break AI2	0=No, 1=Yes (only if measurement range 4 to 20mA)
		0	0	Enable diagn. wire break AI1	0=No, 1=Yes (only if measurement range 4 to 20mA)
	02	07	00000000	Reserved	Must always be zero, otherwise parameter assignment error
	03		00000000	Reserved	Must always be zero, otherwise parameter
					assignment error
1	04	76	00	AI2 –	
		54	01	Measurement range	$00=Deactivated, 01=\pm10$ V, $10=\pm20$ mA,
					11=4 to 20 mA
		32	00	All –	
		10	01	Measurement range	$00=Deactivated, 01=\pm10$ V, $10=\pm20$ mA,
	05	76	01	A 14	11=4 to 20 mA
	05	70 5.4	00	Measurement range	00-Deactivated 01- \pm 10 V 10- \pm 20 mA
		5	00	Weasurement range	11-4 to 20 mA
		3 2	01	A13	11-4 to 20 mA
		1.0	00	Measurement range	$00=Deactivated 01=\pm10 \text{ V} 10=\pm20 \text{ mA}$
		10	00	incusurement runge	11=4 to 20 mA
	06	72	000000	-	
		10	00	Enable cyclic interrupt	00=No cyclic interrupt
					01=Time cyclic interrupt (only if byte $7 <> 1$)
					10=Cycle end interrupt (only if all AIx are not deactivated)
	07	74	0000	-	
		30	0001	Cycle time	0=16 ms, 1=Free-running, 6=3 ms, 7=3.5 ms,
					8=4 ms etc. (increment 0.5 ms up to 15.5 ms)

DS	Byte	Bit	Default-	Contents	Meaning of the Respective Bits
			value		
1	08	76	00	Univ. DI1 –	
		5	0	Direction	0=Up, 1=Down (only if mode=010)
		4	0	Edge	0=Rising edge, 1=Falling edge
		3	0	Hardware interrupt	0=No, 1=Yes
		20	000	Mode	000=General DI, 001=Interrupt DI, 010=Counter (CI), 101=External gate counter
	09	76	00	Univ. DI2 –	
		5	0	Direction	0=Up, 1=Down (only if mode=010)
		4	0	Edge	0=Rising edge, 1=Falling edge
		3	0	Hardware interrupt	0=No, 1=Yes
		20	000	Mode	000=General DI, 001=Interrupt DI, 010=Counter (CI), 101=External gate counter
	10	76	00	Univ. DI3 gate time	00=0.1 s, 01=1 s, 10=10 s (only if mode=010)
		5	0	Direction	0=Up, 1=Down (only if mode =010)
		4	0	Edge	0=Rising edge, 1=Falling edge
		3	0	Hardware interrupt	0=No, 1=Yes
		20	000	Mode	000=General DI, 001=Interrupt DI,
					010=Counter (CI), 011=Frequency counter (FC)
					100=Period duration counter (PC), 101=External
					gate counter
	11	75	00000	Univ. DI4 –	
		4	0	Edge	0=Rising edge, 1=Falling edge
		3	0	Hardware interrupt	0=No, 1=Yes
		20	0	Mode	000=General DI, 001=Interrupt DI
	12	76	00	AO2 Reaction to CPU	00=Voltage/power idle (substitute value = 0)
				STOP	01=Retain last value, 10=Global substitute value
					(byte 14 to 15)
		54	01	Output area	00=Deactivated, $01=\pm 10$ V, $10=\pm 20$ mA, 11=4 to 20 mA
		32	00	AO1 Reaction to CPU	00=Voltage/power idle (substitute value = 0)
				STOP	01=Retain last value, 10=Global substitute value
					(byte 14 to 15)
		1.0	01		00=Deactivated, $01=\pm 10$ V, $10=\pm 20$ mA,
		10	01	Output area	11=4 to 20 mA
	13	76	00	AO4 Reaction to CPU	00=Voltage/power idle (substitute value = 0)
				STOP	01=Retain last value. 10=Global substitute value
					(byte 14 to 15)
		54	01	Output area	00=Deactivated, $01=\pm 10$ V, $10=\pm 20$ mA,
				-	11=4 to 20 mA
		32	00	AO3 Reaction to CPU	00=Voltage/power idle (substitute value = 0)
				STOP	01=Retain last value, 10=Global substitute value
					(byte 14 to 15)
		10	01		00=Deactivated, 01= \pm 10 V, 10= \pm 20 mA,
				Output area	11=4 to 20 mA
	14		0000 _H	Global substitute value for	(only if "global substitute value" active on at least
				AO1 to AO4	one of the AO)
1	15			1	

Table 1-10 Table with Data Set Descriptions Parameter Block (Continued)

Control Systems C7-623/P, C7-624/P, C7-626/P and C7-626/P DP C79000-Z7076-C631-01

6 Diagnostic Data of the Analog I/Os and the Universal Inputs of the C7-623/P, C7-624/P, C7-626/P and C7-626/P DP Control Systems

6.1 Diagnostic Messages

Overview	The C7 CPU possesses a diagnostic buffer in which detailed information is provided for all diagnostic events in the order of their occurrence. The contents of the diagnostic buffer is preserved even after a memory reset on the C7 CPU. The diagnostic entries in the diagnostic buffer can be read and interpreted by the user program.
Advantages	Errors in the system can be evaluated after a long time delay using the diagnostic buffer in order be able to identify the cause of a STOP, for example, or to trace and assign the occurrence of individual diagnostic events.
Diagnostic Events	Diagnostic events can be:
	• Errors in an I/O (module)
	• System errors in the C7 CPU
	• Change in operating modes (for example, from RUN to STOP)
	• Program errors in the CPU program
C7 CPU I/O	The I/O diagnostics are divided into two groups:
Diagnostics	• Standard diagnostics (general malfunction of the C7 analog I/O and universal inputs)
	Module-specific diagnostics
	The standard diagnostics are always entered into the diagnostic buffers of the C7 CPU after the occurrence of a diagnostic interrupt. The requirement is that the module is able to diagnose.
	The module-specific diagnostics provide detailed information regarding the type and possible cause of the error. This information can be called up by the user program by means of special system calls. The requirement is that diagnostics have been enabled (default setting is always "no" in this case).

Assigning I/O Diagnostic	You can set whether the analog I/O diagnostic messages should be generated using STEP 7.
Parameters	Using the STEP 7 application <i>Configuring Hardware</i> , you can also assign parameters to the diagnostic behavior of the analog I/O, i.e. you set whether the analog I/O diagnostic messages should be sent to the C7 CPU on request. Furthermore, you can assign parameters to define whether the module should trigger a diagnostic interrupt in the C7 CPU after the occurrence of an error.
Diagnostic Information (I/O)	In the diagnostic information, we differentiate between permanent and temporary diagnostic errors.
	• Permanent diagnostic errors cannot be influenced by the user program and can only be removed by resetting the C7 CPU (memory reset and complete restart) or equipment exchange (after a fault).
	• Temporary diagnostic errors disappear automatically after a renewed measurement (ADC error, overrange or underrange error), can be removed by the user program (if necessary, by assigning parameters via SFC55 during operation) or by hand at the connections (correcting the wiring).
Read Diagnostic Messages	Diagnostic messages will be entered into the diagnostic buffer only if the diagnostic interrupt OB (OB82) occurs. The requirement is that the parameter "diagnostic interrupt enable = yes" was assigned. Then you can read out the detailed diagnostic messages in addition to the standard diagnostic information using the STEP 7 application <i>Module Information</i> (see <i>Manual</i> /231/). No entry is made in the diagnostic buffer of the C7 CPU in all other cases. Therefore the diagnostic message cannot be read out.

Analog InputTable 1-11 provides an overview of the channel-specific diagnostic messagesDiagnosticsof the analog input.

The diagnostic information is allocated to the individual channels.

Table 1-11	Diagnostic	Message of	of the	Analog Input
	0	0		0 1

Diagnostic message	are supported?
Parameter assignment error	Yes
Common mode error	No
P short circuit	No
M short circuit	No
Wire break (only for 4 to 20mA by software)	Yes
Reference error	No
Underrange (underflow)	Yes
Overrange (overflow)	Yes

Analog Output Diagnostics

Only one group error exists for the analog output. Possible causes of the group error could be:

- Parameter error
- Substitute value is connected

6.2 Layout of Diagnostic Area of the Module

The diagnostic area consists of:

- Data set 0: the standard diagnostic bytes (0 to 3)
- Data set 1: the channel-specific diagnostic bytes (for enabled diagnostics).
 - Bytes 4 to 7 and bytes 8 to 11 channel and individual information analog input (AI) diagnostics
 - Bytes 12 to 15 channel information- analog output (AO) diagnostics

Table 1-12 illustrates the structure of the diagnostic area and the meaning of the individual entries.

Byte	Bit	Meaning	Explanation	Value Range
00	0	Module fault	1 = error occurred $0 = everything OK$	01
00	1	Internal error	1 = watchdog, EPROM, ADC error	0 1
	2	External error	1 = error at AI or AO	0 1
	3	Channel error	1 = with byte 0/bit 2 and channel-specific diagnostic byte byte 4	0 1
	4	External auxiliary voltage missing	(Cannot be checked)	0
	5	Front plug missing	(Cannot be checked)	0
	6	Module not assigned parameters	Normal state (standard parameters set) byte 0/bit $0=0^{-3}$	0 1
	7	Incorrect parameters	1 with bit 0 of bytes 8/9/10/11 or bit 0 3 of byte 15 (Standard parameters set for channel	0 1
01	0	Module class	SM type class	
	1	Module class	SM type class	5
	2	Module class	SM type class	
	3	Module class	SM type class	
	4	System-oriented channel-specific diagnostic info.	Yes	1
	5	User-defined diagnostic info. (diag. info. not configured by sy- stem)	No	0
	6			0
	7			0
02	0	Coding connector incorrect/ missing	_	0
	1	Communications failure	Error during transfer of parameters/input data	0
	2	Operating mode RUN/STOP		0
	3	Watchdog activated	with bit 1 of byte 0 $^{(1)}$ $^{(2)}$	0 1
	4	Internal voltage failed	_	0
	5	Battery 1 empty	—	0
	6 7	Entire backup battery failed		0 0
03	0	Rack failure	—	0
	1	Processor failure		0
	2	EEPROM error	Serial calibration EEPROM for analog mea- sured value calibration, set with bit 1 of byte 0 1) 2)	0 1
	3	RAM error		0
	4	ADC error	with bit 1 of byte 0 $^{1)}$	0
	5	Fuse failure		0
	6	Hardware interrupt lost		0
	7		_	0

Table 1-12Structure of the Diagnostic Area

Byte	Bit	Meaning	Explanation	Value Range		
		Channel-Spe	cific Diagnostic Entries			
04	07	Channel type AI of the following ch	annel-specific diagnostic information	71 _H		
05	07	Number of analog input channels		4		
06	07	Number of diagnostic bits per		8		
		channel				
07		Channel Vector Channel Group AI				
	0	Error assigning parameters to DI1	0 = no, 1 = yes	0 1		
	1	Error assigning parameters to DI2	0 = no, 1 = yes	0 1		
	2	Error assigning parameters to DI3	0 = no, 1 = yes	0 1		
	3	Error assigning parameters to DI4	0 = no, 1 = yes	0 1		
	4	Error in channel AI1	0 = no, 1 = yes	0 1		
	5	Error in channel AI2	0 = no, 1 = yes	0 1		
	6	Error in channel AI3	0 = no, 1 = yes	0 1		
	7	Error in channel AI4	0 = no, 1 = yes	0 1		
08		Channel-Specific Diagnostic Byte A	I1			
	0	Parameter error in parameters for channel	$0 = no, 1 = yes^{-1}$	0 1		
	13	_		000		
	4	Wire break in software	0 = no, 1 = yes (only for 4 to 20mA)	0 1		
	5	_		0		
	6	Measurement underrange	0 = no, 1 = yes (underflow)	0 1		
	7	Measurement overrange	0 = no, 1 = yes (overflow)	0 1		
09		Channel-Specific Diagnostic Byte AI2				
	0	Parameter error in parameters for	$0 = no, 1 = yes^{-1}$	0 1		
		channel				
	13	_		000		
	4	Wire break in software	0 = no, 1 = yes (only for 4 to 20mA)	0 1		
	5	—		0		
	6	Measurement underrange	0 = no, 1 = yes (underflow)	0 1		
	7	Measurement overrange	0 = no, 1 = yes (overflow)	0 1		
10		Channel-Specific Diagnostic Byte A	13			
	0	Parameter error in parameters for channel	$0 = no, 1 = yes^{-1}$	0 1		
	13			000		
	4	Wire break in software	0 = no, 1 = yes (only for 4 to 20mA)	0 1		
	5			0		
	6	Measurement underrange	0 = no, 1 = yes (underflow)	0 1		
	7	Measurement overrange	0 = no, 1 = yes (overflow)	0 1		
11		Channel-Specific Diagnostic Byte A	I4			
	0	Parameter error in parameters for channel	$0 = no, 1 = yes^{-1}$	0 1		
	13			0		
	4	Wire break in software	0 = no, 1 = ves (only for 4 to 20mA)	0 1		
	5			0		
	6	Measurement underrange	0 = no, 1 = ves (underflow)	0 1		
	7	Measurement overrange	0 = no, 1 = yes (overflow)	0 1		

Control Systems C7-623/P, C7-624/P, C7-626/P and C7-626/P DP C79000-Z7076-C631-01

Byte	Bit	Meaning	Explanation	Value Range
12	07	Channel type AO of the following channel-specific diagnostic information		73 _H
13	07	Number of analog output channels on module		4
14	07	Number of diagnostic bits per channel		1
15		Channel Vector for Channel Group AO		
	0	Collective error in AO1	0 = no, 1 = yes	0 1
	1	Collective error in AO2	0 = no, 1 = yes	0 1
	2	Collective error in AO3	0 = no, 1 = yes	0 1
	3	Collective error in AO4	0 = no, 1 = yes	0 1
	47			0000

 Table 1-12
 Structure of the Diagnostic Area (Continued)

 Analog inputs will be reset until the channel functions again. (Exception: parameter assignment for wire-break check for setting <>4...20 mA) AI=7FFF_H

- ²⁾ Analog output will be reset until channel functions again AO=0V 0 mA
- ³⁾ No hardware interrupt, no diagnostic interrupt, no disturbance on the bit 0 of byte 0 =0