SIEMENS

SIMATIC TI1505

386/ATM Coprocessor

User Manual

Order Number: PPX:505-ATM-MANL-3
Manual Assembly Number: 2586546—-0056
Third Edition

SIMATIC is a registered trademark of Siemens AG.

386/ATM is a registered trademark of Siemens Industrial Automation, Inc.

Series 505, Series 500, CVU10000, CVU100, TISOFT, and TISOFT2 are trademarks of Siemens Industrial Automation, Inc.
Intel is a registered trademark of Intel Incorporated.

Centronics is a registered trademark of Centronics Data Computer Corporation.

IBM and AT are registered trademarks of International Business Machines Corporation.

Microsoft, MS-DOS, and GW-BASIC are registered trademarks of Microsoft Corporation.

QBasic (QuickBASIC) is a trademark of Microsoft Corporation.

Texas Instruments and Tl are registered trademarks of Texas Instruments Incorporated.

TI505, TI525, TI530C, TI535, TI545, TI555, TI560T, and TI565T, are trademarks of Texas Instruments Incorporated.
Turbo C is a registered trademark of Borland International, Inc.

UL is a registered trademark of Underwriters Laboratories.

Copyright 1993 by Siemens Industrial Automation, Inc.
All Rights Reserved — Printed in USA

Reproduction, transmission or use of this document or
contents is not permitted without express consent of
Siemens Industrial Automation, Inc. All rights, including rights
created by patent grant or registration of a utility model or
design, are reserved.

Since Siemens Industrial Automation, Inc. does not possess
full access to data concerning all of the uses and applications
of customer’s products, we do not assume responsibility either
for customer product design or for any infringements of patents
or rights of others which may result from our assistance.

01/21/92

Technical data is subject to change.

We check the contents of every manual for accuracy at the
time it is approved for printing; however, there may be
undetected errors. Any errors found will be corrected in
subsequent editions. Any suggestions for improvement are
welcomed.

MANUAL PUBLICATION HISTORY

SIMATIC TI505 386/ATM Coprocessor User Manual
Order Manual Number: PPX:505-ATM-MANL-3

Refer to this history in all correspondence and/or discussion about this manual.

Event Date Description
Original Issue 02/90 Original Issue (2592615-0001)
Second Edition 02/92 Second Edition (2592615-0002)

Third Edition 02/93 Third Edition (2592615-0003)

LIST OF EFFECTIVE PAGES

Pages Description Pages Description
Cover/Copyright Third Edition
History/Effective Pages Third Edition
i — ix Third Edition
1-1—1-8 Third Edition
2-1—2-6 Third Edition
3-1—3-9 Third Edition
4-1 —4-4 Third Edition
5-1 —5-11 Third Edition
6-1 —6-4 Third Edition
A-1 — A-3 Third Edition
B-1 — B-46 Third Edition
C-1 Third Edition
D-1 Third Edition
Registration Third Edition

Contents

Preface

Chapter 1 Module Features

11

1.2

1.3

1.4

OV EIVIBW . o et e e e e e

DS CHIPION ot
Using the 386/ATM COPIOCESSOT . ..ttt ittt et et
APPLICALIONS . . .o

FEaAUIES . . e e e

Standard Kit Part ListSot

PPX:B05-ATM=0220ttt
PPX:B05-ATM=0440
PPX:505-ATM—4120 . . .ot
P AN PaltS ..

Recommended Order of Taskso

Chapter 2 Installing the Module

2.1

2.2

2.3

2.4

Overview of Installation

Handling the Module
Visual INSPECTHION o
Technical AsSIStaANCE e
FlOW Of TasKS . .ot

Configuring the Module

Inserting the Module intothe Base i

Inserting the Module
POWETr REQUITEMENTS . .o e

Connecting Peripherals e

MO O .
Keyboard
COMMUNICALIONS ..o e e e e e
PN T . o

Chapter 3 Loading System Software

3.1

3.2

OVBIVIEW . o .ottt e e e e
Potential for Errors During Diskette ACCESSt

Setting System Parameters

Contents

3.3

3.4

3.5

Preparing the Hard Disk and Loading MS-DOS
Booting the Module from the Diskette i

Installing System Software

Copying Software tothe Hard Disk i e
Typical ATM Driver FIles o
Installing Sample Programs
Loading System DeviCe DIVEIS

WAt NeXt?
Running the 386/ATM with Third-party Device Drivers and Memory Managers

Chapter 4 Running TISOFT on the 386/ATM

4.1

Logging the 386/ATM into the PLC I/O ConfigurationTable

OV IVIBW .« o ottt e e
Loading TISORT 2 . .. e
Verifying 386ATM.EXE in your ROOt DIr€CtOry
Communicating withthe PLC e e e
RUNNING TISORT 2
Selecting the I/O Definition Chart e
Viewing the I/O Configuration Chart i

Chapter 5 PLC Communications

51

52

5.3

54

OV EIVIBW . o ottt e e e

Communicating with the PLC
Verifying the CONFIG.SYS File in your ROOt DireCtory,
USiNg PCCOMM ..
Application Program I/0 Bus Communication ...t

Communicating during PLC Scan: I/OCycle i,

ACCESSING I/O POINTS ...
Command Syntax: IOREAD
Response Syntax: IOREAD
Command Syntax: IOWRITE
Response Syntax: IOWRITE

Communicating with the PLC Scan: Special FunctionCycle

DS CIPION ot
Command Syntax: PCREAD
Response Syntax: PCREAD
Command Syntax: PCWRITE e e
Response Syntax: PCWRITE e e e e e
Executing Commands from aFile
Notes Concerning Writing to Memory Locations

Communicating with the PLC: COMM Port Cycle i,

Serial POrt to PLC ...
RS-232 Coml and COmM2t

Contents

Chapter 6 Troubleshooting

6.1 Diagnostics

Power-up and Run-time Diagnostics
User-Initiated Diagnostic Tests

6.2 Troubleshooting

Appendix A 387SX Math Coprocessor

Al Installing the 387SX Math Coprocessor
Procedure

Appendix B Programming Examples

B.1 Overview

PCCOMM Communication Examples
C Programs
QUuickBASIC Programs
GW-BASIC Programs

B.2 C Program: IOREAD
B.3 C Program: IOWRITE
B.4 C Program: PCREAD
B.5 C Program: PCWRITE
B.6 QuickBASIC Program: IOREAD
B.7 QuickBASIC Program: IOWRITE
B.8 QuickBASIC Program: PCREAD
B.9 QuickBASIC Program: PCWRITE
B.10 GW-BASIC Program: IOREAD
B.11 GW-BASIC Program: IOWRITE
B.12 GW-BASIC Program: PCREAD

B.13 GW-BASIC Program: PCWRITE

Appendix C Pinouts

Appendix D Specifications

Contents

6-2
6-2

B-18

B-21

B-24

B-28

B-33

B-35

\

List of Figures

Figure 1-1 Interaction—386/ATM Coprocessorand PLCo,
Figure 1-2 Typical Configuration
Figure 1-3 Lists of Tasks for Installing and Using the 386/ATM i,

Figure 2-1 Flowchart of Installation
Figure 2-2 Location of DIpSWItChes
Figure 2-3 DIPSWITCN ..
Figure 2-4 Inserting the Module intothe Base i
Figure 2-5 Peripheral ConnecCtion i e e e e

Figure 3-1 Software Installation Flowchart i i
Figure 3-2 System Configuration
Figure 3-3 Installing MS-DOS on the 386/ATM Hard Disk,
Figure 3-4 Software Copy ProCedure
Figure 3-5 Sample Program Installation
Figure 3-6 Module BOOt ProCEedUre i e e
FIQUIE 3-7 DECISION TrEE ..ottt et e e e e e e

Figure 4-1 1/0O Configuration DeCISION TrEEottt e
Figure 4-2 Running TISOFT2 VI /O BUSot e e e
Figure 4-3 Running TISOFT2 via Serial POrt e
Figure 4-4 Sample I/O Definition Chart e
Figure 4-5 /0 Configuration Chart

Figure 5-1 Communication SEQUENCE it
Figure 5-2 PLC Scan: l/O CyCle e e e e e
Figure 5-3 I1/O Word Configuration
Figure 5-4 PLC Scan: Special Function Cycle i i
Figure 5-5 PLC Scan: COMM POt CyCle e e

Figure 6-1 Loop-back Connector for Serial Port Test (Wire-side View)

Figure A-1 387SX SocKet Location
Figure A-2 387SX Socket Orientation (TOP VIEW)ot e e

Figure C-1 Parallel POrt PINOUL e e
Figure C-2 TILVGA POt PINOULo e e e
Figure C-3 Analog VGA POrt PINOUL e e
Figure C-4 Keyboard Connector PINOUL
Figure C-5 Serial Port 1 and 2 PINOUL
Figure C-6 9-pin Analog VGA to 15-Pin VGA Adapter Cable Pinout

Vi

Contents

2-6

List of Tables

Table 5-1 Maximum Words or Bits Transferred per PCCOMM Transaction 5-3

Contents Vil

Preface

Other Manuals

Agency Approvals

Telephoning for
Assistance

This manual describes installing and using the SIMATIC® TI15050
386/ATM® Coprocessor Module.

Refer to the manuals listed below for instructions on installing,
programming, and troubleshooting your controller and 1/0.

e SIMATIC TI505 Programming Reference Manual

e SIMATIC® TI15250/TI153500 Hardware/ Installation Manual
e SIMATIC® T15450 System Manual

e SIMATIC® TI5550 System Manual

e SIMATIC® TI560TO/TI565TO System Manual

e CVU100000] Manual Set, Rel. 2.0

e CVU1000 Programming Reference Manual

¢ CVU100 Hardware and Installation Manual

e« The TISOFTO User Manual for your release of TISOFT

The 386/ATM Coprocessor Module meets the standards of the following
agencies:

e Underwriters Laboratories: UL® Listed (Industrial Control Equipment)

e Canadian Standards Association: CSA Certified (Process Control
Equipment)

e Factory Mutual Approved; Class I, Div. 2 Hazardous Locations

e \Verband Deutscher Elektrotechniker (VDE) 0160 Clearance/Creepage
for Electrical Equipment (Self-Compliance)

Series 50500 products have been developed with consideration of the draft
standard of the International Electrotechnical Commission Committee
proposed standard (IEC-65A/WG6) for programmable controllers.

If you need information that is not included in this manual, or if you have
problems using the Series 505 386/ATM Coprocessor Module, contact your
Siemens Industrial Automation, Inc. distributor or sales office. If you need
assistance in contacting your distributor or sales office in the United States,
call 1-800-964-4114.

386/ATM Coprocessor User Manual Preface ix

Chapter 1
Module Features

1.1

1.2

1.3

1.4

OV IV B . .ottt 1-2
DESCHIPION . oot 1-2
Using the 386/ATIM COPIOCESSOI i ittt ettt e e e e e e 1-2
APPlICALIONS . . . 1-3
FEaAUIES . . . e e 1-5
Standard Kit Part LiStSttt e 1-7
PPX:E05—ATM=0220 . .. 1-7
PPX:505-ATM=0440 1-7
PPX:505-ATM=4120ttt 1-7
PN PaltS . .. i e e 1-7
Recommended Order of Taskso 1-8

386/ATM Coprocessor User Manual Module Features 1-1

11

Overview

Description

Using the 386/ATM
Coprocessor

1-2

Module Features

The 386/ATM Coprocessor is a general-purpose, high-speed IBM® PC/AT®
compatible computer with a real-time interface to the SIMATIC® TI® family
of programmable controllers. The 386/ATM integrates into a programmable
controller the real-time, high-performance computing of a personal
computer for space- and cost-sensitive applications. The 386/ATM runs
off-the-shelf PC/AT application and development software. This allows
high-speed PLC 1/O bus interface for data processing, operator interface,
and other high-level PC/AT functions.

The 386/ATM provides an industry-standard open architecture that allows
you to combine the features of a programmable controller and a personal
computer into one small package without being restricted to a proprietary
operating system or to single sources for critical software. This allows you to
integrate and use commercially available software packages that meet your
requirements for features, function, and speed.

The 386/ATM provides:

e True IBM PC/AT-compatible computer that will run any of a wide
variety of commercially available IBM PC/AT-compatible software
packages

e Industry-standard Microsoft® MS-DOS® operating system

e Direct PLC I/O bus communication path between a PC/AT application
and the control function being performed by the PLC

e Major increase in the survivability of personal-computing equipment in
harsh control environments

e Built-in diagnostics to help confirm reliable operation and data integrity

< A small package that fits into the Series 505 base and communicates
with any of the Series 505 and Series 5000 (e.g., SIMATIC® T1530C0O)
controllers and 1/0

e Battery-backed real-time clock

» Socket for optional 80C387SX math coprocessor to provide high-speed
arithmetic-processing capability

The 386/ATM Coprocessor is a standard IBM PC/AT computer with one
added feature: a hardware interface to the PLC 1/O bus which can be
utilized by an appropriate application program.

Any IBM PC/AT-compatible software runs on the 386/ATM. If you require
communication between the 386/ATM and the PLC, you can use the
standard RS-232 capabilities that most vendors supply with their software
products. These RS-232 device drivers are unique to each vendor’s software
product and generally serve to handle the communication between a
personal computer (in this case, the 386/ATM) and the PLC.

386/ATM Coprocessor User Manual

Applications

When a higher speed communication path is required, the 386ATM device
driver can be integrated with the application package. Some application
packages are configurable to allow the use of a device driver, while others
require changes to the application software by the software vendor. See
Figure 1-1. Since it operates over the parallel PLC bus, the 386ATM device
driver allows the maximum in versatility and speed between the PLC and
the 386/ATM. This eliminates the slow serial link which restricts PLC
access.

A wide variety of SIMATIC TI and third-party software packages is
available which will run on the 386/ATM. In fact, software product/vendor
selection is easy—if the software is IBM PC/AT-compatible, will operate
with MS-DOS 5.0 and is compatible with memory and speed characteristics,
it will run on the 386/ATM. Applications range from small to large.
Examples include the following.

e Operator interface

e TISOFT20 software

e Supervisor Control and Data Acquisition (SCADA)

e Statistical Quality Control (SQC)

e Statistical Process Control (SPC)

e Batch/Recipe management

e Report generation

e Math processing and data manipulation

e Production reporting and report generation

e Foreign device interface (intelligent sensor, etc., with RS-232 interfaces)

e Communication to third-party controllers

e Loop tuning

As a policy, Siemens Industrial Automation, Inc. does not recommend nor
give testimonials for third-party products. However, if none of our software
products meets your needs, you can use a third-party software package.
IBM compatibility confirms that such software should run on the 386/ATM
Coprocessor.

386/ATM Coprocessor User Manual Module Features 1-3

Overview (continued)

PLC Scan 386/ATM Communications
/\ ’f Application
program)
el 386ATM B Video
nternal Dri
diagnostics (rver ———— Keyboard
—_ MS-DOS
r 1 .
‘ ‘ device = Printer
| | driver)
/O update ‘ ; B
f I
| |
| | |
Relay Flo
ladder | | diglgy
logic } |
\
\ B
Special | \ Hard
function \ | - disk
module ‘ |
access
|
+ PLC Bus \\>
COMM ;
port = Serial port + *
access]
b Serial ports : : fe(:)rrlazl

PLC CPU 386/ATM Coprocessor

1001668

Figure 1-1 Interaction—386/ATM Coprocessor and PLC

1-4 Module Features 386/ATM Coprocessor User Manual

1.2 Features

Three versions of the 386/ATM module are available. See Figure 1-2 for the
standard configuration.

e Industrially hardened IBM PC/AT-compatible computer:

Intel® 80C386SX CPU
16 MHz, zero wait-state analog
Socket for optional 80C387SX math coprocessor

Microsoft MS-DOS 5.0 with QBasicl (QuickBASIC)

DRAM Memory: 2M byte (505-ATM-0220)
4M byte (505-ATM-0440)
4M byte (505-ATM-4120)

Diskette drive: 3-1/2" 720K byte/1.44M byte
Hard disk drive: 20M byte (505-ATM-0220)
40M byte (505-ATM—-0440)
120 M byte (505-ATM-4120)
e Triple-wide Series 505 module
e Direct PLC I/O bus interface to PLC
e 2 serial ports, 110 — 57600 baud; (non-standard driving voltage)
e Limited mouse support (see section 2.4)
¢ 1 Centronics®-style parallel port
e Keyboard port (for PC/AT-compatible keyboard)
e TISOFT2 PLC I/O bus communications for high-speed PLC interface

e 386ATM language-independent device driver (can be used by any PC/AT
language)

¢ No external power required

e Analog VGA monitor port (adapter cable from 9-pin to standard 15-pin
VGA included)

e Built-in diagnostics

386/ATM Coprocessor User Manual Module Features 1-5

Features (continued)

%,
386/A TMCOPROCESSOR

(® RESET
(O DbIsK
o
Monitor
Keyboard
Serial
Device
RS-232
Serial °.
Device o COM 2
RS-232 .
N
o
0
)
°.| PRN
© . D
Printer or . .
Parallel Device %

2,

1001669

Figure 1-2 Typical Configuration

1-6 Module Features 386/ATM Coprocessor User Manual

1.3 Standard Kit Part Lists

PPX:505-ATM-0220

PPX:505-ATM-0440

PPX:505-ATM-4120

Spare Parts

386/ATM Coprocessor User Manual

Includes:
] Intel 80C386SX CPU
[] Socket for optional 80C387SX math coprocessor

[] DRAM Memory: 2M byte
Diskette drive: 3-1/2" 720K byte/1.44M byte
Hard disk drive: 20M byte

2 serial ports (110 — 57600 baud)

1 Centronics-style parallel port

Keyboard port (for PC/AT-compatible keyboard)
Analog VGA monitor port

386ATM video cable adapter

Microsoft MS-DOS 5.0 with QBasic and manual

[N N B Y O O R

Floppy disk containing the following software:
e 386ATM.DVR

e INSTALL.BAT

e AUTOEXEC.BAT

e CONFIG.SYS

e« Example PCCOMM software (source code)

[] SIMATIC TI505 386/ATM Coprocessor User Manual
Same as PPX:505-ATM—-0220, except:

[] DRAM Memory: 4M byte
[] Harddisk drive: 40M byte

Same as PPX:505-ATM-0220, except:

[] DRAM Memory: 4M byte
[] Harddisk drive: 120M byte

The following components can be ordered as spare parts.

e 386ATM video cable adapter (PPX:2587716-8034)

e MS-DOS 5.0, 3.5" disks, and manual (PPX:2587716-8037)
e 386ATM Backplane Communications Driver (PPX:2587716—8038)
e 14" VGA color monitor, industrial black (6AP1-705-0BG00)

Module Features

1-7

e 101-key PC/AT keyboard, industrial black (6AC1-015-7FG)

1-8 Module Features 386/ATM Coprocessor User Manual

1.4 Recommended Order of Tasks

Install the module

y

Install MS-DOS 5.0

\ 4

Install the system software

A4

Log the module into the base (if applicable)

A

Program the module

1001671

Figure 1-3 Lists of Tasks for Installing and Using the 386/ATM

386/ATM Coprocessor User Manual Module Features 1-9

Chapter 2
Installing the Module

2.1

2.2

2.3

2.4

Overview of Installation

Handling the Module
Visual Inspection
Technical Assistance
FlowofTasks

Configuring the Module

Inserting the Module into the Base

Inserting the Module
Power Requirements

Connecting Peripherals

Monitor
Keyboard
Communications
Printer

386/ATM Coprocessor User Manual

Installing the Module

2-1

2.1 Overview of Installation

Handling the
Module

Visual Inspection

Technical
Assistance

Many integrated circuit (IC) devices are susceptible to damage by the
discharge of static electricity. Follow the suggestions listed below to reduce
the probability of damage to these devices when you are handling a
controller, a base controller, or any of the 1/0 modules.

Both the module and the person handling the module should be at the same
ground potential. To accomplish this, fulfill the following conditions.

e Transport the module in an anti-static container or antistatic material.

e Ensure that the work area has a conductive pad with a lead connecting
the work area to a common ground.

e Ground yourself by making contact with the conductive pad or by
wearing a grounded wrist strap.

If there is any visible damage to the module, contact your vendor for a
replacement.

If you need information that is not included in this manual, or if you have
problems using the module, call your Siemens Industrial Automation, Inc.
distributor or sales office. If you need assistance in contacting your U.S.
distributor or sales office, call 1-800-964-4114.

2-2 Installing the Module 386/ATM Coprocessor User Manual

Flow of Tasks Figure 2-1 shows the organization of the tasks described in this chapter.

Verify all dipswitch settings are correct.

Turn on the backup battery.

Ensure power to the base is off.

Insert the module into the base.

Connect the peripheral devices.

Apply power to the base.

Figure 2-1 Flowchart of Installation

386/ATM Coprocessor User Manual Installing the Module 2-3

2.2 Configuring the Module

Before you install the 386/ATM Coprocessor, turn on the backup battery,
and verify dipswitch settings.

To accomplish these tasks, locate the dipswitches shown in Figure 2-2 and
set them according to Figure 2-3.

Dipswitches

1001700

Figure 2-2 Location of Dipswitches

Switches 1 and 4 are for Siemens proprietary use; they must + =
be On. Switches 2, 3, 5, 6, and 7 are not used; set to Off.

Internal use only; Internal use only;
Must be On Must be On Battery

Depresson —> | 1 2 3 4 5 6 7 8 | (<— Depresson

-<—— Connector

1001674

Figure 2-3 Dipswitch

2-4 Installing the Module 386/ATM Coprocessor User Manual

2.3 Inserting the Module into the Base

/\WARNING To minimize potential shock, turn off power to the 1/O base and to
any modules installed in the base before you insert or remove a
module or install a terminal block. Failure to do so may result in
potential injury to personnel or damage to equipment.

Refer to the Safety Considerations sheet (part # 2588015-0002)
included with your module for a complete list of safety guidelines
and recommendations.

Inserting the This is a triple-wide module. Insert it into any available 1/O slot on any
Module Series 505 base. Insert the module as shown in Figure 2-4. Note the
minimum torque required to ground the module.

Minimum torque: 2.6 in-Ib (0.3N-m)
Maximum torque: 4.12 in-Ib (0.6N-m)

Backplane connectors

A000329

Figure 2-4 Inserting the Module into the Base

Power This module requires 11.0 W of +5 V and 0.2 W of -5 V power from the
Requirements Series 505 base. No additional power is required.

386/ATM Coprocessor User Manual Installing the Module 2-5

2.4 Connecting Peripherals

Monitor

Keyboard

Communications

Printer

The monitor connector is a 9-pin female connector (using the special adapter
cable included) that supports high-resolution graphics modes of analog
VGA-compatible monitors.

The module has a standard 5-pin DIN keyboard connector. Your keyboard
must be designed for use with IBM PC/AT or compatible computers.

The module contains two non-standard 9-pin RS-232 serial ports. These
ports are configured as COM1 and COMZ2. Use these ports to connect to
PLCs, sensors, printers, modems, or other RS-232-compatible devices. Note,
however, that these devices must be capable of running on 5 VDC rather
than the 12 VDC normally provided by an IBM PC-compatible serial port.
This precludes the use of most mechanical mouse devices except certain
models manufactured by Microsoft.

The printer port supports any Centronics-style parallel printer or similar
peripheral. Use a standard 25-pin IBM PC/AT-style connector.

See Appendix C for all cable pinouts.

Monitor O RESET
O DISK
[e]
A/ 5/ YoRe
' o]
Keyboard
°. DI KYBD
N
Serial .2
Device ;1| COM1
RS-232 =
o 1
i1l com2
Serial =
Device =N
RS-232 .
2] PRN
t :
W
]
Printer %)

Figure 2-5 Peripheral Connection

2-6 Installing the Module 386/ATM Coprocessor User Manual

Chapter 3
Loading System Software

3.1

3.2

3.3

3.4

3.5

OV IV W .« . ottt e e e 3-2
Potential for Errors During Diskette ACCESSt 3-3
Setting System Parameters 3-4
Preparing the Hard Disk and Loading MS-DOS 3-5
Booting the Module fromthe Diskette i, 3-5
Installing System Software i 3-6
Copying Softwaretothe Hard Disk 3-6
Typical ATM Driver Files 3-7
Installing Sample Programs 3-8
Loading System DeviCe DIiVEIS e e 3-8
What NeXt? . . 3-9
Running the 386/ATM with Third-party Device Drivers and Memory Managers 3-9

386/ATM Coprocessor User Manual Loading System Software 3-1

3.1

Overview

3-2

Figure 3-1 shows the organization of s

oftware installation tasks as they are

presented in this chapter. Perform these tasks in sequence.

Set up system parameters by running the SETUP Utility.

(follow screen prompts to partition an

Load MS-DOS

d format the hard disk automatically).

Run the INSTALL program.

Figure 3-1 Software

Loading System Software

1001677

Installation Flowchart

386/ATM Coprocessor User Manual

Potential for Errors
During Diskette
Access

/N WARNING

NOTE: To extend battery life, the 386/ATM Coprocessor is shipped from the
factory with the battery switch in the OFF position. Since the system
parameters are stored in battery-backed CMOS RAM, you must run the
SETUP Utility during initial module installation or after a battery failure.

During periods of high conducted or radiated electrical noise conditions,
diskette access may cause seek and/or read/write errors. These errors do not
affect the operation of other parts of either the 386/ATM or the
programmable controller system.

It is recommended that you start up with the diskette and then switch to
the hard drive for operation. If you experience a seek or read/write error
during a diskette access, please try the operation a second time. If the
problem continues, wait for quiescent periods before performing diskette
operations.

As in any electrical installation, the potential for live circuits may
be present at the PLC and/or adjacent devices when the ultimate
protective enclosure is opened for routine service, maintenance or
programming. Accidental contact with live circuits may result in
personal injury or damage to equipment. Installation, maintenance
and programming must only be performed by qualified and
authorized personnel familiar with recognized electrical practices
and procedures in working with high voltage.

386/ATM Coprocessor User Manual Loading System Software 3-3

3.2 Setting System Parameters

After initial installation, after a battery failure, or if the battery is disabled,
you must run the SETUP Utility to set the real-time clock date and time, to
identify the number and type of hard disks and to identify the number and
size of floppy diskettes. Setup parameters are saved in battery-backed
CMOS RAM. Follow the steps shown in Figure 3-2.

1. Press the Reset Button if this —
is a first-time installation?

OR
& & &)
if you are in DOS environment. \

2. Hold spacebar until you
receive “39 keyboard error”

s [

OOoO0O0oe

%

T

Extended BIOS
Menu

4. Select: Setup

Extended BIOS
Setup Menu

5. Use up/down arrows
to select parameters,
then press F5 or F6
to change values.

Selections are:

Diskette Drive 0: 1.44mb, 3-1/2”
Fixed Disk 0: 0220 (20M unit): 2
Fixed Disk 0: 0440 (40M unit): 17
Fixed Disk 0: 4120 (120M unit): 41

6. To save the configuration, press | F10

7. To acknowledge that the changes have been
saved in CMOS memory, press
Enter

Esc Esc .
8. Press to exit.

1001678

Figure 3-2 System Configuration

Lyou can speed up the boot process by pressing at the prompt to skip the RAM
diagnostics. Then, if you want to access the Setup utility, hold down the spacebar as described

in step 2 above and continue when prompted by pressing to access the Extended BIOS
Menu and the Setup Utility option.

3-4 Loading System Software 386/ATM Coprocessor User Manual

3.3 Preparing the Hard Disk and Loading MS-DOS

Booting the Before you boot the module from the diskette the first time, make a backup
Module from the copy of all the diskettes on another computer. Store the copy in a safe place.
Diskette

You must boot the module from the MS-DOS diskette in order to start the
automatic process that partitions and formats the hard disk and loads
MS-DOS on the hard disk. Follow the steps shown in Figure 3-3. This
creates a C: drive with total capacity in one partition. (For additional
information or customizing options, refer to the MS-DOS manual.)

' 386/ATM
[0 1]

O0OOoe

:I%

Options

Partitioning

Loading
MS-DOS

Checking
Disk Space

1.
2.

Settings instructions and prompts). Move

ZHEER S

Insert MS-DOS disk 1 in the floppy drive.
Press the reset button.

3. At the initial screen, press ENTER
to continue; (each screen has full

the highlight bar with the arrow key
to date/time and press ENTER to
reset date or time if necessary.

4. Press ENTER when settings are

10.

11.

correct.

For CVU applications, move the highlight bar to “Run
Shell on startup” and press ENTER. Select “Do not run
MS-DOS Shell on startup” and press ENTER.

For other applications, select appropriate option.

Press ENTER when options are correct.

Select “Allocate all free hard disk space for MS-DOS”
and press ENTER. The system reboots and begins
partitioning and formatting the hard disk with its full
capacity assigned to drive C. It then copies MS-DOS
files onto the hard disk, showing the percent complete
during execution.

Insert MS-DOS disk 2 when prompted and press
ENTER. Repeat with disk 3 when requested.

When the loading is complete, remove the disk from
the drive and press ENTER as prompted. The system
will reboot and show a C:\> prompt or MS-DOS shell,
depending on which option you selected previously.

At the DOS prompt, type chkdsk and press ENTER to
see if the total disk space matches the size of hard disk
of your particular model of the 386/ATM module.

Figure 3-3

386/ATM Coprocessor User Manual

Installing MS-DOS on the 386/ATM Hard Disk

Loading System Software 3-5

3.4 Installing System Software

Copying Software To install a working copy of the ATM backplane driver and other software
to the Hard Disk that is supplied with the 386/ATM, run the INSTALL program with the
diskette installed. Follow the steps shown in Figure 3-4.

NOTE: If you are setting up your system to run CVVU10000 software on the
386/ATM, you must perform this procedure after installing CVU software.
Refer to your CVU manual for details.

g 1. Insert driver disk.

. At the prompt, type:

A:> INSTALL

3. For standard DOS
installation type:

A:> INSTALL DOS

— Z OQOCoe

-P\

. Or, for CVU10000
installation, type:

A:> INSTALL CVU

5. Press any key to
continue, or Ctrl C to
abort installation.

Figure 3-4 Software Copy Procedure

After approximately 90 seconds, you receive the “Installations complete”
message.

3-6 Loading System Software 386/ATM Coprocessor User Manual

Typical ATM Driver After the automatic installation of the ATM driver is complete, your
Files AUTOEXEC.BAT and CONFIG.SYS files will look like the following.

AUTOEXEC.BAT file for standard DOS installation.

@ECHOFF
PROMPT PG
PATH=C:\;C:\DOS;C:\TI

CONFIG.SYS file for standard DOS installation.

FILES=30

BUFFERS=20

SHELL=C:\DOS\COMMAND.COKI:\DOS\ /P
DEVICE=C:\DOS\HIMEM.SYS

DOS=HIGH,umb

DEVICE=C:\DOS\EMM386.EXE X=C800-C900 NOEMS
DEVICEHIGH=C:\386ATM.EXE

AUTOEXEC.BAT file for CVU10000 installation.

@ECHOFF

PROMPT PG
PATH=C:\CVU10;C:\;C:\DOS;C:\TI
CVU10000.BAT

CONFIG.SYS file for CVU10000 installation.

FILES=30

BUFFERS=20
SHELL=C:\DOS\COMMAND.COKI:\DOS\ /P
DEVICE=C:\DOS\HIMEM.SYS

DOS=HIGH,umb

DEVICE=C:\DOS\EMM386.EXE X=C800—C900 NOEMS
DEVICEHIGH=C:\386ATM.EXE
DEVICEHIGH=C:\CVU10\PRINTER.DEV

386/ATM Coprocessor User Manual Loading System Software 3-7

Installing System Software (continued)

Installing Sample If you want to install sample programs to your hard disk, follow the steps
Programs shown in Figure 3-5.

DOS Prompt: Type:

C\> md samples
U
C\> cd samples
U

C:\SAMPLES> xcopy A**

Screen prompt informs you when all files have been copied.

Figure 3-5 Sample Program Installation

Loading System To load the system device drivers into memory, you must reboot the module.
Device Drivers Follow the steps shown in Figure 3-6.

1. Remove DOS diskette from the drive in the 386/ATM.

<«———— 2. Press the reset button.

OOOo e

1

1001682

Figure 3-6 Module Boot Procedure

3-8 Loading System Software 386/ATM Coprocessor User Manual

35 What Next?

Running the
386/ATM with
Third-party

Device Drivers and
Memory Managers

After booting the system, you can either load development tools and begin
application development or load and run your application software.

Installation Complete

Load development tools: Load application
editors, compilers, etc. package
Begin application Run application

development

i

Run application

Figure 3-7 Decision Tree

Before installing third-party system software, read the following guidelines.

When interface circuitry (for example, a communications card) is added to a
computer, it uses certain resources, such as memory ranges and interrupts,
to operate. In general, these resources may not be shared by multiple
devices.

System software, such as device drivers and memory managers, often need
to know exactly which resources are in use in the machine, or at least which
resources they may take for themselves.

The 386/ATM backplane interface uses the following resources:

e« Memory range C818:0000—C818:007F (128 bytes)

¢ IRQ 10 (which in turn uses INT 72 hex)

Make sure that any third-party system software that you install on the
386/ATM does not try to use these addresses. Most such software can be
configured to avoid conflicts by adding command line variables to exclude
the use of the memory address range and software interrupts listed above.
Refer to your third-party software manual for details.

See the example CONFIG.SYS file for DOS installation on page 3-7 for
loading the 386EMM.SYS memory manager furnished with MS-DOS 5.0.

386/ATM Coprocessor User Manual Loading System Software 3-9

Chapter 4
Running TISOFT on the 386/ATM

4.1 Logging the 386/ATM into the PLC I/0O ConfigurationTable 4-2
OV VI .« o ottt e e 4-2
Loading TISOFT 2 . . 4-2
Verifying 386 ATM.EXE in your Root DireCtory o e 4-2
Communicating withthe PLC e e 4-3
RUNNING TISOFT 2 . .o e e e e e e 4-3
Selecting the I/O Definition Chart i e 4-4
Viewing the I/O Configuration Chart i 4-4

386/ATM Coprocessor User Manual Running TISOFT on the 386/ATM 4-1

4.1 Logging the 386/ATM into the PLC I/O Configuration Table

Overview Log the 386/ATM into the PLC 1/O configuration memory for maximum
communication speed with the PLC over the 1/O bus. The procedure
required for logging modules varies with the type of PLC. (See Figure 4-1.)

e SIMATIC TI545/T1555 and TI1560/T1565 PLCs require you to configure
the 1/0 manually.

e All other Series 505/Series 500 PLCs automatically configure the 1/O.

Type of PLC?

TI545/T1555 All other
TI560/TI1565 Series 505/500 PLCs
Use TISOFT to 386/ATM I/O configuration

configure 1/O table performed automatically

Figure 4-1 1/0O Configuration Decision Tree

NOTE: The 386/ATM does not have to be logged into the 1/0 configuration
table to run TISOFT2. Logging the module into the configuration table
improves TISOFT2 communication performance.

Loading TISOFT2 Refer to the TISOFT2 manual for specific instructions on loading and
running TISOFT2 software.

Verifying The config.sys file must include an instruction to load 386 ATM.EXE during
386ATM.EXE in your the module’s boot procedure. The INSTALL batch file included as part of the
Root Directory installation procedure does this automatically for both the standard DOS

and CUV10000 options. (See page 3-7 for the listing of files created by the
INSTALL procedure.)

4-2 Running TISOFT on the 386/ATM 386/ATM Coprocessor User Manual

Communicating

You can communicate with the PLC via the 1/O bus (Figure 4-2) or via the
with the PLC

serial ports (Figure 4-3). Communicating via the serial port requires a cable
and does not realize the improved speed offered by the 1/O bus.

Running TISOFT2 To run TISOFT2, enter the command appropriate to the PLC and version of

TISOFT2 you are using.

PLC 386/ATM

000000000000 ood
000000000000 ood
000000000 ooo DEIEI
 ——]

PLC 1/O Bus
Run TISOFT with the CVU option.
Example: TI505 CVU

Yo Ve O o e

1/0 Bus

TISOFT

1001685

Figure 4-2 Running TISOFT2 via I/0O Bus

PLC 386/ATM

PLC Programming Port

Ooooooo0oood ood
oooooooooood oog
oooooooooooo oo
 ——]

Cable part # | 2601094-8001

COM1 or COM2 to PLC programming port:

Run TISOFT with no port option for port 1,
or with P2 for port 2.

Example: TI505 P2

e

0]

TISOFT

1001686

Figure 4-3 Running TISOFT2 via Serial Port

386/ATM Coprocessor User Manual Running TISOFT on the 386/ATM 4-3

Logging the 386/ATM into the PLC I/O Configuration Table (continued)

Selecting the 1/0 Figure 4-4 shows a sample 1/0O definition chart with the 386/ATM installed
Definition Chart in slot 1. Refer to your TISOFT2 manual for detailed instructions.

I/O MODULE DEFINITION FOR: CHANNEL 1 BASE 00
110 NUMBER OF BIT AND WORD 1/0 SPECIAL
SLOT ADDRESS X Y WX wyY FUNCTION
1 0001 00 00 04 04 YES
2 0000 00 00 00 00 NO
3 0000 00 00 00 00 NO
4 0000 00 00 00 00 NO
5 0000 00 00 00 00 NO
6 0000 00 00 00 00 NO
1001687
Figure 4-4 Sample 1/0 Definition Chart
Viewing the I/0 Use SHOW or a similar menu selection to display the 1/0 Configuration
Configuration Chart. The configurations in Figure 4-4 appear as shown in Figure 4-5.
Chart
1/0 CONFIGURATION CHART FOR CHANNEL ... 1 BASE..... 00
I/0 POINTS
1 2 3 4 5 6 7 8
SLOT1 WX0001 WX0002 WX0003 WX0004 WY0005 WY0006 WY0007 WYO0008
SLOT 2
SLOT 3
SLOT 4
SLOT 5
SLOT 6

1001688

Figure 4-5 1/0O Configuration Chart

4-4 Running TISOFT on the 386/ATM 386/ATM Coprocessor User Manual

Chapter 5
PLC Communications

51

5.2

53

54

OV IV B . .ottt

Communicating with the PLC
Verifying the CONFIG.SYS File in your Root Directoryt
USiNg PCCOMM ..
Application Program I/0 Bus Communicationc.ouiiiieininnennn

Communicating during PLC Scan: I/OCycle i,

AcCCesSINg I/O POINTS
Command Syntax: IOREAD
Response Syntax: IOREAD
Command Syntax: IOWRITE e
Response Syntax: IOWRITE e e e

Communicating with the PLC Scan: Special FunctionCycle

DESCHIPION . ot
Command Syntax: PCREAD
Response Syntax: PCREAD
Command Syntax: PCWRITE e e
Response Syntax: PCWRITE
Executing Commands from aFile
Notes Concerning Writing to Memory Locations ...,

Communicating with the PLC: COMM Port Cycle i it

Serial PO to PLC
RS-232 Coml and COm2t

386/ATM Coprocessor User Manual PLC Communications

5-1

51 Overview

Communicating An application program in the 386/ATM communicates with the PLC using
with the PLC the PCCOMM service of the MS-DOS character device driver 386ATM.EXE.
Figure 5-1 shows the sequence of communication used.

The application program writes (using any language which uses MS-DOS character I/O facilities)
a command string to PCCOMM.

A

PCCOMM interprets the command string, performs error checking, and passes valid commands
to the PLC.

The PLC performs the requested command and returns any data requested.

Y

The application program reads a string returning the status and data of the request.

Figure 5-1 Communication Sequence

Verifying the The CONFIG.SYS file must contain the correct instructions for loading the

CONFIG.SYS File in 386ATM driver during the module’s boot procedure in order to activate the

your Root Directory PCCOMM service. The INSTALL batch file included as part of the
installation procedure makes these modifications automatically. Make sure
that the following lines are included in a file called CONFIG.SYS in the root
directory.

FILES 30

BUFFERS 20
device=C:\HIMEM.SYS
device=C:\386ATM.EXE

See the example CONFIG.SYS file on page 3-7 if you want to load the ATM
driver in high memory.

5-2 PLC Communications 386/ATM Coprocessor User Manual

Using PCCOMM The PCCOMM service provides two types of functions:

IOREAD and IOWRITE access the 4 WX and 4 WY 1/O points during
the 1/0 cycle of the PLC scan

PCREAD and PCWRITE access PLC memory during the Special
Function Module cycle of the PLC scan

The following sequence of events is an outline for using the PCCOMM
service to communicate to the local 1/0 points in the 386/ATM.

1. Make sure that the 386 ATM device driver is loaded when the 386/ATM
boots up.
2. Write an application program that communicates with the PCCOMM
service.
Application Appendix B provides examples of application programs. The sequence of
Program 1/0 Bus events in the program are as follows.
Communication
1. Open an unbuffered file stream with the name of PCCOMM.
2. Build a command string to perform the function required.
3. Send the command string to the open file stream.
4. Read the response string from the file stream.
5. Get the information from the response string.

Table 5-1 Maximum Words or Bits Transferred per PCCOMM Transaction

PCCOMM Operation Maximum Transfer
IOREAD 4 words
IOWRITE 4 words
PCREAD/PCWRITE (V-mem, WX, etc.) 120 words
PCREAD/PCWRITE (CR, X, Y, etc.) 480 bits

386/ATM Coprocessor User Manual PLC Communications 5-3

5.2 Communicating during PLC Scan: I/0 Cycle

Accessing I/0
Points

5-4 PLC Communications

The naming conventions used for the 1/0O points in the module are from the
PLC perspective. For instance, 4 WX describes four analog words that will
be read into the PLC, while 4 WY are analog words that are an output from
the PLC. In other words, the points labeled as 4 WX are points that the
386/ATM writes to (remember, the PLC reads these points), and the 4 WY
points are read into the 386/ATM. See Figure 5-2.

/\ ' Application

Internal PC COMM
diagnostics

77$777*7w77’]

‘ 1/0 update

4 WX
L

A

Relay
ladder
logic

'

Special |
function
module
access

'

COMM)
port P Serial port % *
S

access
Serial >
lor2

erial
ports g >

PLC CPU 386/ATM 1003101

Figure 5-2 PLC Scan: I/0O Cycle

The IOREAD and IOWRITE commands allow you to gain access to the eight
local 1/0 points in the 386/ATM. The 1/O points are configured locally in the
386/ATM as shown in Figure 5-3. You can configure the local 1/O in your
PLC as a set of eight analog points.

WX1 | WX2 | WX3 | WX4 | WY5 | WY6 | WY7 | WY8

‘ ‘ ‘ ‘ ‘Write to‘ PLC ‘ ‘ Read from PLC

1003102

Figure 5-3 1/0 Word Configuration

386/ATM Coprocessor User Manual

Command Syntax:
IOREAD

Response Syntax:
IOREAD

The command syntax for performing an IOREAD operation is:

iirra:b::<cr>

where:

<Cr>

is a required delimiter for the command string.
is the command for IOREAD (lower or upper case).

is the local point number for the 4 local WY points in the 386/ATM.
The 386/ATM start point is from 5 through 8, inclusive.

is the number of 10 points to read. Valid numbers for b are 1, 2, 3,
and 4.

You cannot read beyond the boundary of the 4 WY points, and the
count b is limited by the start point (value of a). For example, if you
use address 5 for a, you can obtain up to 4 points of WY information.
If you use address 6 as the start point for a, then you can read only
up to a total of 3 points from the local WYs.

is the terminating delimiter for the command string; these characters
must be present for the command to operate.

represents the ASCII character 0D HEX; this character must be
present in order to tell PCCOMM that the command string is
complete.

After receiving an IOREAD, PCCOMM responds in the following format.

iire:f:g:hii:<cr>

where:

<Cr>

is the delimiter for the response.

indicates the response is from an IOREAD operation.

is the error code returned from the operation.

if positive, the number represents the number of data items read.

if zero, the number represents an error indicating a bad start point or
a bad count, and no words were read.

are the data values in ASCll/decimal that are returned as the result
of the operation.

is the end delimiter of the response string.

is the ASCII character 0D HEX denoting the end of the response
transaction.

386/ATM Coprocessor User Manual PLC Communications 5-5

Communicating during PLC Scan: I/0 Cycle (continued)

Command Syntax: The command syntax for performing an IOWRITE operation is:
IOWRITE

iw:a:b:f:g:h:i::<cr>

where:

is a required delimiter for the command string.
iw is the command for IOWRITE (lower or upper case).

a is the starting point number for the four WX points in the 386/ATM.
Possible entries in this field are WX1 through WX4.

b is the number of 1/O points to write. Valid numbers are 1, 2, 3, and 4.
f—i are the data to write into the points selected.

is the terminating delimiter for the command string; these characters
must be present for the command to operate.

<cr> represents the ASCII character OD HEX; this character must be
present in order to tell PCCOMM that the command string is

complete.
Response Syntax: After receiving an IOWRITE, PCCOMM responds in the following format.
IOWRITE
liw:en<cr>

where

is the delimiter for the response.
iw indicates the response is from an IOWRITE operation.
e is the response code where:
if the number is positive, it represents the count of items written.

if zero, the number represents a bad start address or a bad count, and
no words were written.

is the end delimiter of the response string.

<cr> is the ASCII character 0D HEX denoting the end of the response
transaction.

5-6 PLC Communications 386/ATM Coprocessor User Manual

5.3 Communicating with the PLC Scan: Special Function Cycle

Description

The PCREAD and PCWRITE commands allow you to gain access to various
types of memory in your PLC. The naming conventions used are from the
PLC perspective. (See Figure 5-4.) For instance, PCWRITE passes
information to the PLC, while PCREAD requests information from the PLC.

The memory types are categorized as:
e Word access: VMEM, WX, WY, TCC, TCP, DSC, DCP, STW, DCP, KMEM

* Discrete access: XREG, YREG, CREG

Consult your PLC programming manual for descriptions of each of the
above memory types.

m ’ Application

Internal PC COMM
diagnostics

v -

1/O update

Relay
ladder
logic

F7$7777777

Special -
function
‘ module
access

L7$7777777

COMM)
port P Serial port
access
Serial B~ Serial
ports g - lor2

PLC CPU 386/ATM

N

1003101

Figure 5-4 PLC Scan: Special Function Cycle

386/ATM Coprocessor User Manual PLC Communications 5-7

Communicating during PLC Scan: Special Function Cycle (continued)

Command Syntax:
PCREAD

Response Syntax:
PCREAD

PCREAD allows you to read PLC memory. The syntax of a PCREAD
command is as follows.

:pr:memory_type:start_point:count::<cr>

where:

pr
memory_type

start_point

count

<Cr>

is the separating delimiter for the command.
is the command syntax for PCREAD.

is the memory type: VMEM, WX, WY, TCC, TCP, DSC,
DCP, STW, DCP, KMEM, XREG, YREG, CREG

is the starting address for the memory type;
ASCIll/decimal.

is the number of data items that you want to read in this
transaction; ASCll/decimal.

is the ending delimiter for the command.

is the ASCII character OD HEX denoting the end of the
response transaction.

PCCOMM responds to the PCREAD command in the following format.

:pr:error_code:val_1:val_2:val_n:<cr>

where:

pr

error_code

val_ltoval n

<Cr>

5-8 PLC Communications

is the separating delimiter for the command.
is the command response for PCREAD.
if positive, the number of values read from the PLC

if zero, a bad memory_type, a bad start_point for the
memory_type or a bound count. No words were returned.

if negative, a communications failure with the PLC.
are the values returned from the device driver.
is the ending delimiter for the command.

is the ASCII character OD HEX denoting the end of the
response transaction.

386/ATM Coprocessor User Manual

Command Syntax:
PCWRITE

Response Syntax:
PCWRITE

Executing
Commands from a
File

PCWRITE allows you to write the PLC memory. The syntax of a PCWRITE
command is as follows.

‘pw:memory_type:start_point:count:val_l:val 2:val_n::<cr>

where:
is the separating delimiter for the command.
pw is the command syntax for PCWRITE.

memory_type is the memory type: VMEM, WX, WY, TCC, TCP, DSC,
DCP, STW, DCP, KMEM, XREG, YREG, CREG.

start_point is the starting address for the memory type.

count is the number of data items that you want to read in this
transaction.

val_ltoval_n are the data values you are writing to the PLC.
is the ending delimiter for the command.

<cr> is the ASCII character OD HEX denoting the end of the
response transaction.

PCCOMM responds to the PCWRITE command in the following format.

pw:error_code::<cr>

where:

is the separating delimiter for the command.
pw is the command response for PCWRITE
error_code if positive, the number of values written to the PLC

if zero, a bad memory_type, a bad start_point for the
memory_type or a bad count. No words were returned.

if negative, a comm failure with the PLC IOWRITE operation
is the end delimiter of the response string.
<cr> is the ASCII character OD HEX denoting the end of the

response transaction.

Any of these commands can be entered from the keyboard or executed from
a file. For instance, to send a message, use echo:[message]::>pccom or
c> COopy con: pccomm:

‘pr[message]:

<ctrl-z>

To read a message, use c> COpy pccomm: con:

386/ATM Coprocessor User Manual PLC Communications 5-9

Communicating during PLC Scan: Special Function Cycle (continued)

Notes Concerning Example programs are included in Appendix B. Source code for the
Writing to Memory examples is supplied on the 386/ATM device driver diskette.
Locations

Consider the following when reading or writing data.

e The PLC input scan, ladder execution, loop execution, or special
function logic may overwrite any value written by PCWRITE. Ensure
that all systems software and hardware are coordinated so that they
work together.

/N\ CAUTION Care should be taken when using PCWRITE to send data to word
memory areas. Unlike discrete memory points, word memory areas
can be overwritten even if they are forced.

« All data and address values used in communications with PCCOMM are
indecimal (i.e., 1,2, 3,4,5,6,7,8,9, 10, 11, 12).

* When reading or writing a discrete memory type, the data will be either
lorO.

Address for all memory types start with 1, with the exception of DCP,
which starts with address 0.

The format for DCP addressing is:
<drum_number> <step_number>

where drum_number is 1 based (1 through n) and step_number is 0
through 15.

Example:

Event drum 1, step 1 uses address 16 (base 10).
Event drum 1, step 2 uses address 17 (base 10).
Event drum 2, step 1 uses address 32 (base 10).

Event drum 2, step 2 uses address 33 (base 10).

5-10 PLC Communications 386/ATM Coprocessor User Manual

54 Communicating with the PLC: COMM Port Cycle

Serial Port to PLC

RS-232 Com1
and Com?2

386/ATM Coprocessor User Manual

Application

= :

Internal PC COMM
diagnostics

% -

I/O update

Relay
ladder
logic

v

Special |
function
module <
access

‘ COMM

P Serial port

v 4

I A - 1
|
|
|

Serial

Serial
lor2

port
Uccess

-

PLC CPU 386/ATM

ports - |
- _

1003101

Figure 5-5 PLC Scan: COMM Port Cycle

All third party software that communicates with Series 505 or Series 500
families of PLCs through the PLC serial port will operate on the 386/ATM.
Refer to the installation instructions accompanying the software package.

Com1 and Comz2 are PC/AT-compatible serial communications ports with
standard handshaking. All third party PC/AT-compatible software that is
programmed for serial communications will operate on the module.

NOTE: The driving voltage is 5 VDC rather than the 12 VDC standard of
IBM-compatible PCs and may not work with all hardware, especially a
mouse.

PLC Communications 5-11

Chapter 6
Troubleshooting

6.1 DIAGNOSHICS o .ottt 6-2
Power-up and Run-time DIiagnosStiCSt 6-2
User-Initiated DiagnosStiC TESESt e 6-2

6.2 TroubleshOoting 6-3

386/ATM Coprocessor User Manual Troubleshooting 6-1

6.1 Diagnostics

Power-up and The 386/ATM has an extensive set of ROM-resident hardware diagnostics.
Run-time Following power-up or a manual reset (using the reset button), the 386/ATM
Diagnostics automatically initiates a set of internal diagnostics to verify system memory,

CPU, and functionality.

During operation, the 386/ATM generates and tests parity for each access to
system DRAM to ensure integrity of the system DRAM memory.

User-Initiated You can initiate diagnostic testing at any time. Initiating diagnostic testing
Diagnostic Tests halts the current operation. To begin, press: [enti | [aT J[s |

Use the arrow keys to highlight DIAGNOSTICS and press [enter]. The system
prompts you with information on selecting the diagnostic tests available.

The 386/ATM reboots after exiting the diagnostic menu.

NOTE: The Floppy Disk diagnostic requires a “scratch” 3.5" high-density
diskette (1.44M byte). All data on this diskette will be lost during the
Floppy Drive test. The diskette will have to be reformatted before it can be
used for MS-DOS applications.

NOTE: The Fixed Disk test is non-destructive; no data on the fixed disk will
be lost as a result of the test.

To run the External Loop-back test on the serial ports, you must attach a
loop-back connector to the serial port. Figure 6-1 shows the wiring diagram
for the loop-back connector.

]
60 2
Oi
10| 747
E% Qj
90
%

1001694

Figure 6-1 Loop-back Connector for Serial Port Test (Wire-side View)

6-2 Troubleshooting 386/ATM Coprocessor User Manual

6.2 Troubleshooting

Condition

Possible Cause

Action

Does not run application
software

Software problem
(application software)

Contact software vendor to verify:
* that software is IBM PC/AT-compatible.
¢ that software does not require special “keys” to operate.

If required, install special hardware or software as specified by
vendor.

Hardware failure
(module)

Run module diagnostic program.

Does not communicate
with PLC over 1/O bus

Module not properly
seated in base

Check that module is properly installed in base.

Software problem (using
TISOFT)

Verify that 386 ATM.EXE is installed in the CONFIG.SYS.
Start TISOFT by entering:
TI505 CVU (if you are communicating via the 1/0O bus); or
TI505 (if you are communicating via serial port 1); or
TI505 P2 (if you are communicating via serial port 2).

Software problem (using
application program)

Refer to manual for application program. Check operating
instructions.

Verify that 386 ATM.EXE is installed in the CONFIG.SYS.

Verify that third-party 1/0 bus driver software (if used) will
work. Contact software vendor.

Verify that PCREAD, PCWRITE, IOREAD, and IOWRITE are
properly formatted and have proper syntax in the application
software. Refer to Chapter 5 and Appendix C.

Does not communicate
through serial ports

Cabling problem

Check connections and cabling.

Incompatible
communication interface

Check interface. 386/ATM is DTE; devices attached to serial
ports must be DCE, or must use appropriate crossover (e.g., null
modem cable).

Software problem
(application program)

Verify software by running serial application on another
machine/module.

Hardware problem

Run module diagnostic program, using loop-back connector to
check serial ports.

Does not communicate
through parallel port

Cabling problem

Check connections and cabling.

Printer problem

Check that printer is set for parallel communication. Verify
printer operation.

Hardware problem

Run module diagnostic program.

Video output not
operating properly

Module not set correctly
(switch 4)

Verify switch 4 is on. Refer to Chapter 2.

Monitor not set correctly

If monitor requires setting switches for EGA/VGA or TTL/analog
operation, verify that switches are set to VGA or analog.

Interconnecting cable
miswired or damaged

Verify wiring; see Appendix C.

386/ATM Coprocessor User Manual

Troubleshooting 6-3

Troubleshooting (continued)

Condition

Possible Cause

Action

Keyboard not operating
properly

Keyboard failure

Replace keyboard.

Floppy disk drive does not
work

Disk not set up properly

Run SETUP procedure and verify diskette drive is set
up properly.

Hardware problem

Run module diagnostics program.

Hard disk drive does not work

Disk not set up properly

Run SETUP procedure and verify hard drive is set up
properly.

Hardware problem

Run module diagnostics program.

Real time clock and disk setup
data are lost after PLC power
cycle

SETUP data not correctly
entered and saved.

Verify SETUP procedures.

Battery problem

Verify that module battery switch is on. Refer to
Chapter 2.

Replace module battery.

Seek and/or read/write errors
occur during diskette access

Disk access during periods of
high conducted or radiated
electrical noise conditions

Use the diskette for startup, then operate with the hard
drive.

6-4 Troubleshooting

386/ATM Coprocessor User Manual

Appendix A
387SX Math Coprocessor

Al Installing the 387SX Math COPrOCESSOrt A-2
PrOCEAUIE . . . oot

386/ATM Coprocessor User Manual 387SX Math Coprocessor A-1

Al Installing the 387SX Math Coprocessor

To enhance processing, the 386/ATM includes a socket for an optional
CMOS 80C387SX math coprocessor (16 MHz or faster). See Figure A-1.
Contact your local computer store to purchase a 387SX coprocessor.

Intel manufactures a 387SX coprocessor (Intel part number BOX387SX-16).
Equivalent math coprocessor chips are available from other vendors. You
can use one of these coprocessor chips, provided they are equivalent to the
Intel coprocessor.

/\ CAUTION You must install the 387 coprocessor correctly. To help avoid
damage to the 386/ATM or to the 387 coprocessor, refer to
installation instructions provided with the coprocessor.

Dipswitches

1001700

Figure A-1 387SX Socket Location

A-2 387SX Math Coprocessor 386/ATM Coprocessor User Manual

Procedure Use the following procedure to install a 387 coprocessor in your 386/ATM.
Refer to the installation instructions that accompany the 387SX coprocessor.

/\ CAUTION Both the 386/ATM and the 387 coprocessor can be damaged by
electrostatic discharge. To help avoid potential damage, ground
yourself and the 386/ATM before handling and installing the 387
COpProcessor.

1. Place the 386/ATM on a flat surface, oriented as in Figure A-1 (with the
printed circuit board down).

2. Orient the 387 coprocessor chip to correspond to the socket. See
Figure A-2.

3. Refer to the installation instructions that accompany the 387SX
coprocessor. Seat the 387 coprocessor into the socket by pressing firmly
and evenly. Be careful that the pins are not bent or damaged and that
the printed circuit board is not flexed.

Front of module —

1001701

Figure A-2 387SX Socket Orientation (Top View)

386/ATM Coprocessor User Manual 387SX Math Coprocessor A-3

Appendix B
Programming Examples

B.1

B.2

B.3

B.4

B.5

B.6

B.7

B.8

B.9

B.10

B.11

B.12

B.13

OVEIVIEW . o oottt e e e e B-2
PCCOMM Communication Examples ... B-2
O PIOgIAIMS . o B-2
QUICKBASIC Prograimsottt e e et e e e e e B-2
GW-BASIC PrOgIamMS oot B-2
C Program: IOREAD e e B-3
CPrOgram: IOWRITEt
C Program: PCREADoe ettt
C Program: PCWRITE B-13
QUICKBASIC Program: IOREAD B-18
QUICKBASIC Program: IOWRITE e e e B-21
QUICKBASIC Program: PCREADottt B-24
QUICKBASIC Program: PCWRITE e B-28
GW-BASIC Program: IOREAD B-33
GW-BASIC Program: IOWRITE e B-35
GW-BASIC Program: PCREAD B-38
GW-BASIC Program: PCWRITE e B-42

386/ATM Coprocessor User Manual Programming Examples B-1

B.1 Overview

PCCOMM
Communication
Examples

C Programs

QuickBASIC
Programs

GW-BASIC
Programs

The example programs are provided to demonstrate using the PCCOMM
communications service. There are three sets of example programs, one for
each of the following languages: Microsoft GW-BASIC®, Microsoft QBasic

(QuickBASIC),

and C.

The following C programs have been successfully compiled and linked with
Microsoft C 5.1 and Turbo C® 2.0.

e iord_c:

e iowr_c:
e pcrd_c:
* pcwr_c:

Read the coprocessor module’s WY values via IOREAD.
Write to the coprocessor module’s WX values via IOWRITE.

Read from V-memory, X registers and the WX points
via PCREAD.

Write to V-memory, Y registers and the 386/ATM WY points
via PCWRITE.

Example programs for QuickBASIC are the following.

e iord_msb:
e jowr_msbh:

e pcrd_msh:

e pcwr_msb:

Read the coprocessor module’s WY values via IOREAD.
Write to the coprocessor module’s WX values via IOWRITE.

Read from V-memory, X registers and the 386/ATM WX
points via PCREAD.

Write to V-memory, Y registers and the 386/ATM WY points
via PCWRITE.

Example programs for GW-BASIC are the following.

e iord_gw:
e iowr_gw:

e pcrd_gw:

s pcwr_gw:

Read the coprocessor module’s WY values via IOREAD.
Write to the coprocessor module’s WX values via IOWRITE.

Read from V-memory, X registers and the 386/ATM WX
points via PCREAD.

Write to V-memory, Y registers and the 386/ATM WY points
via PCWRITE.

NOTE: GW-BASIC is not furnished with the 386/ATM Coprocessor module.

B-2 Programming Examples

386/ATM Coprocessor User Manual

B.2 C Program: IOREAD

iord_c: Read the coprocessor module’s WY values. *
*

Language: Turbo C 2.0 or Microsoft C 5.1 *

Date: 11/8/90 *

*

Description: This routine demonstrates the usage of the PCCOMM service *
command IOREAD. The 4 local WY points will be read and displayed to *
the screen.

*

Suggestions: You may want to run PCWR_C prior to execution of this *
program to verify that real values are being read by this routine. *

The last part of PCWR_C allows the user to write to the WY values. *
*

Hardware Requirements: *
Series 500/505 PLC *
386/ATM COPROCESSOR *

Software Requirements: *
1. Turbo C 2.0 or Microsoft C 5.1 *

Warnings: *

L I N . R R S I R

#include <stdio.h>
1/
* Data Declarations *

/
* File pointer for the device driver. *
/

FILE *driver;

/
* Buffer for strings received from the *
* device driver.

/
char buffer[200];

/
* The number of values read by the *
* device driver. This value is parsed *
* from the return string. *

/
int input_count;

/
* Pointer to token parsed from the *
* response string.

char *token;

/

* Tell the compiler that strtok (a C *

* library function) returns character *
* pointers.

/
char *strtok();

/
* Loop counter used for all FOR loops. *
/

int loop_counter;
/
* Program *

int main(void)

386/ATM Coprocessor User Manual Programming Examples B-3

C Program: IOREAD (continued)

B-4

/
* Display a message describing the *
* program. *

/
printf("\n\n\n\n");

printf("IORD_C: Example usage of the PCCOMM command IOREAD to read”);

printf(" from the\n module’s WY points.\n”);

printf("\nSee the file IORD_C.c for a more complete description of the”);

printf("\noperation of this routine.\n");

/

* Open the device driver in update *

* mode (reading and writing). Ifit *

* does not open correctly then exit *

* the program with an error message. *
/

if ((driver = fopen("PCCOMM”, "r+")) == NULL)

printf("\nCould not open the device driver.\n");
exit(1);
}

/
* Write the request to the device *
* driver. *

fprintf(driver, ":IR:5:4::\r");
/

* Flush the file buffer to ensure that *
* the driver received the request. *
/

fflush(driver);

/
* The file pointer must be returned to *
* the beginning of the file after each *
* transaction with the device driver. *
/

fseek(driver,OL,SEEK_SET);
/

* Get a response from the device *
* driver. *

fgets(buffer, 199, driver);
fseek(driver,0L,SEEK_SET);
/

* Skip to the 2nd token in the response*
* string (it contains the number of *
* values read). *

strtok(buffer, ™:");

token = strtok(NULL, ":");

input_count = atoi(token);
/
* Print an error message if the number *
* of values read does not equal 4. *

/

if (input_count != 4)
printf("\nThe device driver was unable to read the 4 values!”);
else

{

Programming Examples

386/ATM Coprocessor User Manual

/
* Display the 4 values to the screen. *
/
for (loop_counter = 0; loop_counter < 4; ++loop_counter)

token = strtok(NULL, ™:");
printf("\nLocation %d: %05u”, loop_counter + 5, atoi(token));

}
printf(\n”);

386/ATM Coprocessor User Manual Programming Examples B-5

B.3 C Program: IOWRITE

iowr_c: Write to the coprocessor module’s WX values. *
*

Language: Turbo C 2.0 or Microsoft C 5.1 *

Date: 11/8/90 *

*

Description: This routine demonstrates the usage of the PCCOMM service *
command IOWRITE. The 4 local WX points will be written as specified *
by the user.

*

Suggestions: You may want to run PCRD_C after this program to verify ~ *
that the values were written correctly by this routine. The last *
part of PCRD_C allows the user to read the WX values. *

*

Hardware Requirements: *
Series 500/505 PLC *
386/ATM COPROCESSOR *

Software Requirements: *
1. Turbo C 2.0 or Microsoft C 5.1 *

Warnings: *

L I N . R R S I R

#include <stdio.h>
1/
* Data Declarations *

/
* File pointer for the device driver. *
/

FILE *driver;

/
* Buffer for strings received from the *
* device driver.

/
char buffer[200];

/
* The number of values written by the *
* device driver. This value is parsed *

* from the return string. *

/
int input_count;

/
* Pointer to token parsed from the *
* response string.

char *token;

/

* Tell the compiler that strtok (a C *

* library function) returns character *
* pointers.

/
char *strtok();

/
* Loop counter used for all FOR loops. *
/

int loop_counter;

/
* Storage for values that are to be *
* written to the 4 local WX points. *
/

int values([4];

B-6 Programming Examples 386/ATM Coprocessor User Manual

!

* Program *

int main(void)

/
* Display a message describing the *
* program. *

/
printf("\n\n\n\n");
printf"lOWR_C: Example usage of the PCCOMM command IOWRITE to write ”);
printf("to the module’s\n WX points.\n”);
printf("\nSee the file IOWR_C.c for a more complete description of the”);
printf("\noperation of this routine.\n\n");
/
* Open the device driver in update *
* mode (reading and writing). Ifit *
* does not open correctly then exit *
* the program with an error message. *
/

if ((driver = fopen("PCCOMM?”, "r+")) == NULL)

printf("\nCould not open the device driver.\n");
exit(1);
}

/
* Prompt the user and accept entry of *
* the 4 values that will be written to *

* the WX points. *

/
for (loop_counter = 0; loop_counter < 4; ++loop_counter)

printf("Enter the value to write at location %d: ", loop_counter + 1);
scanf("%d”, &(values[loop_counter]));

}

/
* Write the request to the device *
* driver. Note that the values sent *
* to the device driver are unsigned. *
* This is because the device driver *

* does not accept values with a *
* negative sign in front of them. *
/
fprintf(driver, ":IW:1:4:%u:%u:%u:%u::\r",
values[0],
values[1],
values[2],
values[3]);
/
* Flush the file buffer to ensure that *
* the driver received the request. *
/
fflush(driver);

/
* The file pointer must be returned to *
* the beginning of the file after each *
* transaction with the device driver. *
/

fseek(driver,0L,SEEK_SET);
/
* Get a response from the device *
* driver. *

fgets(buffer, 199, driver);
fseek(driver,0L,SEEK_SET);

386/ATM Coprocessor User Manual Programming Examples

B-7

C Program: IOWRITE (continued)

/
* Skip to the 2nd token in the response*
* string (it contains the number of *

* values written). *

strtok(buffer, ™:");

token = strtok(NULL, ™:");

input_count = atoi(token);
/
* Print an error message if the number *
* of values written does not equal 4. *

/

if (input_count != 4)
printf("\nThe device driver was unable to write the 4 values!”);

B-8 Programming Examples 386/ATM Coprocessor User Manual

B.4

C Program: PCREAD

I N S N R D T R I S T I I N I . T R I

pcrd_c: Read from V—-mem, X registers and the coprocessor module’s *
WX points via PCREAD.
*
Language: Turbo C 2.0 or Microsoft C 5.1 *
Date: 11/8/90 *
*

Description: This routine demonstrates the usage of the PCCOMM service *
command PCREAD. V-memory, X registers and the module s WX points *
will be read and displayed to the screen.

The first part of the program will let the user read from 8 *
consecutive V-memory locations. The user is prompted to enter *
an integer value which specifies the first V—-memory location to read *
from. Then the 8 values are displayed to the screen. An error *
message will be displayed if the device driver was unable to read *
the 8 values from the PLC. *

The second part of the program will let the user read 8 discrete *

X register values. The user is prompted to enter an integer value *
which specifies the first X register location of the 8 to read from. *
Then the 8 values are read and displayed on the screen. *

The final section of the program will allow the user to read from *
the module’s 4 WX locations. The user is prompted to enter an *
integer value which specifies the first WX register location of the *
module. Then the values are displayed to the screen. *

*

Suggestions: You may want to run the routines PCWR_C and IOWR_C *
prior to execution of this routine to verify that real values are ~ *
being read back from the PLC. PCWR_C can be used to write to *
v—-memory and discrete locations, and IOWR_C can be used to writeto *
the 4 WX values on the module.

Hardware Requirements: *
Series 500/505 PLC *
386/ATM COPROCESSOR *

Software Requirements: *
1. Turbo C 2.0 or Microsoft C 5.1 *

Warnings: *

#include <stdio.h>

/

* Data Declarations *

/
* File pointer for the device driver. *
/

FILE *driver;

/
* Buffer for strings received from the *
* device driver.

/

char buffer[200];

/
* The number of values read by the *
* device driver. This value is parsed *
* from the return string. *

/

int input_count;

/
* The beginning location that the

* series of data is to be read from. *
/

int start_point;

386/ATM Coprocessor User Manual Programming Examples

B-9

C Program: PCREAD (continued)

/
* Pointer to token parsed from the *
* response string.

/
char *token;

/

* Tell the compiler that strtok (a C *

* library function) returns character *
* pointers.

/
char *strtok();

/
* Loop counter used for all FOR loops. *
/

int loop_counter;
/
* Program *

int main(void)

/
* Display a message descrlblng the *
* program.

/
printf("\n\n\n\n");
printf"PCRD_C: Example usage of the PCCOMM command PCREAD.\n");
printf("\nSee the file PCRD_C.c for a more complete description of the”);
printf("\noperation of this routine.\n");

/

* Open the device driver in update *

* mode (reading and writing). Ifit *

* does not open correctly then exit *

* the program with an error message. *
/

if ((driver = fopen("PCCOMM?”, "r+")) == NULL)

printf("\nCould not open the device driver.\n");
exit(1);

!
* Prompt the user for input and read *
* the V—mem start point from the *
* keyboard.

/
printf("\nEnter the address of the first V—-memory point to read from: ");
scanf("%d”, &start_point);
/
* Write the request to the deV|ce *
* driver.

fprintf(driver,”:pr:VMEM:%d:8::\r", start_point);
/
* Flush the file buffer to ensure that *
* the driver received the request. *
/

fflush(driver);

/

* The file pointer must be returned to *
* the beginning of the file after each *
* transaction with the device driver. *
/

fseek(driver,0L,SEEK_SET);

B-10 Programming Examples 386/ATM Coprocessor User Manual

/
* Get a response from the device *
* driver. *

fgets(buffer, 199, driver);
fseek(driver,0L,SEEK_SET);
/

* Skip to the 2nd token in the response*
* string (it contains the number of *
* values read). *

strtok(buffer, ™:");

token = strtok(NULL, ™:");

input_count = atoi(token);
/
* Print an error message if the number *
* of values read does not equal 8. *

/

if (input_count != 8)
printf("\nThe device driver was unable to read the 8 values!”);
else

{

!
* Display the 8 values to the screen. *
/
for (loop_counter = 0; loop_counter < 8; ++loop_counter)

token = strtok(NULL, ™:");
printf("\nV—mem location %d: %05u”, start_point + loop_counter,
atoi(token));

/
* Prompt the user for input and read *
* from the keyboard the location of *
* the first X register to read from. *
/
printf("\n\nEnter the address of the first X register to read: ");
scanf("%d”, &start_point);

/

* Write the request to the device *

* driver. *

fprintf(driver, ":pr:XREG:%d:8::\r", start_point);

fflush(driver);

fseek(driver, OL,SEEK_SET);
/
* Get a response from the device *
* driver. *

fgets(buffer, 199, driver);
fseek(driver, OL, SEEK_SET);
strtok(buffer, ":");

token = strtok(NULL, ™:");
input_count = atoi(token);

386/ATM Coprocessor User Manual Programming Examples B-11

C Program: PCREAD (continued)

/

* Print an error message if the number *
* of values read does not equal 8. *

/

if (input_count != 8)
printf("\nThe device driver was unable to read the 8 values!”);
else

{

/

* Display the 8 values to the screen. *
/
for (loop_counter = 0; loop_counter < 8; ++loop_counter)

token = strtok(NULL, ™:");
printf("\nX%d: %u”, start_point + loop_counter, atoi(token));

/

* Prompt the user for input and read *
* from the keyboard the location of *
* the first WX to read from. *

/
printf("\n\nEnter the address of the first WX register on the module: ");
scanf("%d”, &start_point);

/

* Write the request to the device *

* driver. *

fprintf(driver, ":pr:WX:%d:4::\r", start_point);

fflush(driver);

fseek(driver, OL, SEEK_SET);
/
* Get a response from the device *
* driver. *

fgets(buffer, 199, driver);

fseek(driver, OL, SEEK_SET);

strtok(buffer, ™:");

token = strtok(NULL, ":");

input_count = atoi(token);
/
* Print an error message if the number *
* of values read does not equal 4. *

/

if (input_count != 4)
printf("\nThe device driver was unable to read the 4 values!”);
else

{

/
* Display the 4 values to the screen. *
/
for (loop_counter = 0; loop_counter < 4; ++loop_counter)

token = strtok(NULL, ™:");
printf("\nWX%d: %05u”, start_point + loop_counter, atoi(token));

}
printf("\n");

B-12 Programming Examples 386/ATM Coprocessor User Manual

B.5

C Program: PCWRITE

EE N N R R A N I I R S I I R A R R R I

pcwr_c: Write to V—mem, Y registers and the coprocessor module’s *

WY points via PCWRITE.

*

Language: Turbo C 2.0 or Microsoft C 5.1 *
Date: 11/8/90 *

*

Description: This routine demonstrates the usage of the PCCOMM service *

command PCWRITE. V—-memory, Y registers and the module s WY points *
will be written as specified by the user.

The first part of the program will let the user write to 8 *
consecutive V-memory locations. The user is prompted to enter *
an integer value which specifies the first V—=memory location to write *
to. Then the user is prompted to enter 8 values which will be *
written to consecutive V—-memory locations starting with the location *
previously specified. An error message will be displayed if the *
device driver was unable to write the 8 values to the PLC. *

The second part of the program will let the user write 8 discrete *

Y register values. The user is prompted to enter an integer value *
which specifies the first Y register location of the 8 to write to. *
Then the user is prompted to enter the 8 values which will be *
written to 8 consecutive Y registers starting with the location *
specified. Any non—zero value will be written as a 1. *

The final section of the program will allow the user to write to *
the module’s 4 WY locations. The user is prompted to enter an *
integer value which specifies the first WY register location of the *
module. Remember that the four WYs are located AFTER the 4 WXs. *
Then the user is prompted to enter the 4 values which will *
be written to the 4 consecutive WY registers on the module. *

*

Suggestions: Since this routine writes to various PLC memory locations *

you may want a means of reading back the locations to verify that the *
values were in fact written. One means of doing this would be to run *
the example programs PCRD_C and IORD_C. PCRD_C can be used *
to read the 8 v-memory and discrete locations, and IORD_C can be *
used to read the 4 WY values (assuming that the module is installed *
in the slot that you wrote the 4 WY values to). *

*

Hardware Requirements: *

Series 500/505 PLC *
386/ATM COPROCESSOR *

Software Requirements: *

1. Turbo C 2.0 or Microsoft C 5.1 *

Warnings: *

1. THIS ROUTINE WRITES TO V-MEMORY AND I/O POINTS. *
*

*

#include <stdio.h>

!

* Data Declarations *

/
* File pointer for the device driver. *
/

FILE *driver;

/
* Buffer for strings received from the *
* device driver.

/

char buffer[200];

386/ATM Coprocessor User Manual Programming Examples

B-13

C Program: PCWRITE (continued)

B-14

/

* The number of values written by the *
* device driver. This value is parsed *

* from the return string. *

/

int input_count;

/
* The beginning location that the *
* series of data is to be written to. *
/

int start_point;

/
* Storage for 8 discrete or word *
* values that are to be written.

int values|[8];

/
* Pointer to token parsed from the *
* response string. *

/

char *token;

/
* Tell the compiler that strtok (a C *
* library function) returns character *
* pointers. *

/

char *strtok();

/
* Loop counter used for all FOR loops. *
/

int loop_counter;

/

* Program *

int main(void)

Programming Examples

/
* Display a message describing the — *
* program. *

/
printf("\n\n\n\n");
printfCPCWR_C: Example usage of the PCCOMM command PCWRITE.\n");
printf("\nSee the file PCWR_C.c for a more complete description of the”);
printf("\noperation of this routine.\n");

/

* Print a warning message. *
/
printf("\nWARNING: This program writes to V-memory and Y-registers\n”);
printf("Hit <space> to continue and any other key to exit.\n\n");
if (getch() I="")

exit(1);

/

* Open the device driver in update *

* mode (reading and writing). Ifit *

* does not open correctly then exit *

* the program with an error message. *
/

if ((driver = fopen("PCCOMM?”, "r+")) == NULL)

printf("\nCould not open the device driver.\n\n");
exit(1);

386/ATM Coprocessor User Manual

/
* Prompt the user for input and read *
* the V—mem start point from the *
* keyboard. *

/
printf("\nEnter the address of the first V—-memory point to write to:);
scanf("%d”, &start_point);
/
* Allow the user to enter the 8 values *
* at the keyboard. *

/
for (loop_counter = 0; loop_counter < 8 ; ++loop_counter)

printf("Enter the value to write at location %d: ",
loop_counter + start_point);
scanf("%d”, &(values[loop_counter]));

/
* Write the request to the device

* driver. Note that the values sent *

* to the device driver are unsigned. *
* This is because the device driver *

* does not accept values with a *
* negative sign in front of them. *
/
fprintf(driver,”:pw:VMEM:%d:8:%u:%u:%u:%u:%u:%u:%u:%u::\r",
start_point,
values[0],
values[1],
values[2],
values[3],
values[4],
values[5],
values[6],
values[7]);
/
* Flush the file buffer to ensure that *
* the driver received the request. *
/
fflush(driver);

/
* The file pointer must be returned to *
* the beginning of the file after each *
* transaction with the device driver. *
/

fseek(driver,0L,SEEK_SET);
/
* Get a response from the device *
* driver. *

fgets(buffer, 199, driver);
fseek(driver,0L,SEEK_SET);
/
* Skip to the 2nd token in the response*
* string (it contains the number of *
* values written). *

strtok(buffer, ™:");

token = strtok(NULL, ":");

input_count = atoi(token);
/
* Print an error message if the number *
* of values written does not equal 8. *

/

if (input_count != 8)
printf("\NERROR: The device driver was unable to write the 8 values\n”);

386/ATM Coprocessor User Manual Programming Examples B-15

C Program: PCWRITE (continued)

/
* Prompt the user for input and read *
* from the keyboard the location of *
* the first Y register to write to. *

/
printf("\nEnter the address of the first Y register to write to:);
scanf("%d”, &start_point);

/

* Allow the user to enter the 8 values *

* at the keyboard. Any non-zero value *

*is written as a 1. *

/
for (loop_counter = 0; loop_counter < 8; ++loop_counter)

printf("Enter the value to write at Y%d: ",
start_point + loop_counter);
scanf("%d”, &(values[loop_counter]));

}

/
* Write the request to the device *
* driver. *

/
fprintf(driver, ":pw:YREG:%d:8:%u:%u:%u:%u:%u:%u:%u:%u::\r",
start_point,
values[0],
values[1],
values[2],
values[3],
values[4],
values[5],
values[6],
values[7]);
fflush(driver);
fseek(driver, OL,SEEK_SET);
/

* Get a response from the device *
* driver. *

fgets(buffer, 199, driver);

fseek(driver, OL, SEEK_SET);

strtok(buffer, ™:");

token = strtok(NULL, ":");

input_count = atoi(token);
/
* Print an error message if the number *
* of values written does not equal 8. *

/

if (input_count != 8)
printf("\NnERROR: The device driver was unable to write the 8 values\n”);
/
* Prompt the user for input and read *
* from the keyboard the location of *
* the first WY to write to. *

/
printf("\nEnter the address of the first WY register on the module: ”);
scanf("%d”, &start_point);

B-16 Programming Examples 386/ATM Coprocessor User Manual

/
* Allow the user to enter the 4 values *
* that will be written to the module’s *
* 4 WY points. *

/
for (loop_counter = 0; loop_counter < 4; ++loop_counter)

printf("Enter the value to write at WY%d: ”,
start_point + loop_counter);
scanf("%d”, &(values[loop_counter]));

/
* Write the request to the device *
* driver. *

fprintf(driver, ":pw:WY:%d:4:%u:%u:%u:%u::\r",
start_point,
values[0],
values[1],
values[2],
values[3));
fflush(driver);
fseek(driver, OL, SEEK_SET);
/

* Get a response from the device *
* driver. *

fgets(buffer, 199, driver);

fseek(driver, OL, SEEK_SET);

strtok(buffer, ™:");

token = strtok(NULL, ™:");

input_count = atoi(token);
/
* Print an error message if the number *
* of values written does not equal 4. *

/

if (input_count != 4)
printf("\nERROR: The device driver was unable to write the 4 values\n”);

386/ATM Coprocessor User Manual

Programming Examples

B-17

B.6 QuickBASIC Program: IOREAD

DECLARE FUNCTION GetToken$ (Stringl$, FirstTime%)

iord_msb: Read the coprocessor module’'s WY values. *
*

Language: Microsoft Quick Basic *

Date: 11/13/90 *

*

" Description: This routine demonstrates the usage of the PCCOMM service *
’ command IOREAD. The 4 local WY points will be read and displayed *
’ to the screen. *

’ *

’ Suggestions: You may want to run PCWR_MSB prior to execution of this *
’ program to verify that real values are being read by this routine. *

’ The last part of PCWR_MSB allows the user to write to the WY values. *
! *

Hardware Requirements: *
Series 500/505 PLC *
386/ATM COPROCESSOR *

Software Requirements: *
1. Microsoft Quick Basic *

Warnings: *

CONST FALSE =0

CONST TRUE = NOT FALSE
DEFINT A-Z

DIM Values(3)

' Clear the screen and display a *
' message describing the program. *

CLS

PRINT "IORD_MSB: Example usage of the PCCOMM command IOREAD to read”;
PRINT ” from the module’s”

PRINT " WY points.”

PRINT

PRINT "See the file IORD_MSB.bas for a more complete description of the”

PRINT "operation of this routine.”

PRINT

" Open the device driver for reading *
" and writing. *

OPEN "PCCOMM” FOR OUTPUT AS #1
OPEN "PCCOMM” FOR INPUT AS #2

" Write the request to the device *
" driver. *

PRINT #1, "IR:5:4::"

' Get the response from the device *
" driver. *

LINE INPUT #2, ResponseString$

" Skip to the 2nd token in the response*
' string (it contains the number of *
" values read). *

Token$ = GetToken$(ResponseString$, TRUE)
Token$ = GetToken$(ResponseString$, FALSE)
InputCount = VAL(Token$)

B-18 Programming Examples 386/ATM Coprocessor User Manual

" Print an error message if the number *
' of values read does not equal 4. *

IF InputCount <> 4 THEN

PRINT

PRINT "The device driver was unable to read the 4 values!”;
ELSE

' Display the 4 values to the screen. *

FOR LoopCounter=0TO 3
Token$ = GetToken$(ResponseString$, FALSE)

PRINT
PRINT "Location ”; LoopCounter + 5; ™:"; VAL(Token$);
NEXT
PRINT
END IF
END
' Function Name: GetToken$ *
" Usage: Token$ = GetToken$(Stringl$, FirstTime) *
" Parameters: *
Token$: The token parsed from String1$ (™ if the end of the string *
has been reached). *
String1$: The string that is being parsed *
FirstTime: TRUE causes the function to begin parsing at the *
beginning of the string. *
FALSE causes the function to parse the token following *
the token parsed on the previous call. *
*

Description: This function extracts a token from Stringl$. To parse the *
first token from a string, pass a value of TRUE for the FirstTime *
parameter. To parse subsequent tokens from the string pass a value of*
FALSE for the FirstTime parameter. For the purposes of this routine *
a token is defined as a sequence of characters that have a preceding *
"’ character and a following "’ character. The '’ characters are *

NOT returned with the token. *

*

1
1
1
1
1
1
1
1
i
1
3
1
3
1
’
1

FUNCTION GetToken$ (Stringl$, FirstTime) STATIC

" If this is the first call for this *

' particular string then set index to *
' point to beginning of string and *
' skip over the initial "’ character. *

IF FirstTime = TRUE THEN
=1
I = INSTR(, String1$, ™)
I=1+1

END IF

386/ATM Coprocessor User Manual

Programming Examples

B-19

QUuickBASIC Program: IOREAD (continued)

"If | is greater than the length of *

' the string then return ™ as the *

" token. Otherwise parse the token *
' from the string and update | to ~ *

' point to the beginning of the next *

" token. *

IF I > LEN(String1$) THEN
GetToken$ ="

ELSE
J = INSTR(l, String1$, ")
TokenLength =J -1
GetToken$ = MID$(String1$, I, TokenLength)
1=J+1

END IF

END FUNCTION

B-20 Programming Examples 386/ATM Coprocessor User Manual

B.7 QuickBASIC Program: IOWRITE

DECLARE FUNCTION GetToken$ (Stringl$, FirstTime%)

iowr_msb: Write to the coprocessor module’s WX values. *
*

Language: Microsoft Quick Basic *

Date: 11/13/90 *

*

" Description: This routine demonstrates the usage of the PCCOMM service *
’ command IOWRITE. The 4 local WX points will be written as specified *

’ by the user. *

’ *

’ Suggestions: You may want to run PCRD_MSB after this program to verify *
’ that the values were written correctly by this routine. The last *

’ part of PCRD_MSB allows the user to read the WX values. *
! *

Hardware Requirements: *
Series 500/505 PLC *
386/ATM COPROCESSOR *

Software Requirements: *
1. Microsoft Quick Basic *

Warnings: *

CONST FALSE =0

CONST TRUE = NOT FALSE
DEFINT A-Z

DIM Values(3)

' Clear the screen and display a *
' message describing the program. *

CLS

PRINT "IOWR_MSB: Example usage of the PCCOMM command IOWRITE to write”;
PRINT " to the module’s”

PRINT " WX points.”

PRINT

PRINT "See the file IOWR_MSB.bas for a more complete description of the”

PRINT "operation of this routine.”

PRINT

" Open the device driver for reading *
" and writing. *

OPEN "PCCOMM” FOR OUTPUT AS #1
OPEN "PCCOMM” FOR INPUT AS #2

" Prompt the user and accept entry of *
" the 4 values that will be written to *
" the WX points. *

FOR LoopCounter =0 TO 3
PRINT "Enter the value to write at location ”;
PRINT LoopCounter + 1; " ",
INPUT ™, Values(LoopCounter)

NEXT

386/ATM Coprocessor User Manual Programming Examples B-21

QuickBASIC Program: IOWRITE (continued)

B-22

' Write the request to the device

" driver. Note that leading blanks *
" are removed from Values() V|a *

"LTRIMS.

RequestString$ = ":iw:1:4"
FOR LoopCounter =0 TO 3
RequestString$ = RequestString$ + ™"
RequestString$ = RequestString$ + LTRIM$(STR$(Values(LoopCounter)))
NEXT
RequestString$ = RequestString$ + ™"
PRINT #1, RequestString$

' Get a response from the device *
" driver. *

LINE INPUT #2, ResponseString$

' Skip to the 2nd token in the response*
' string (it contains the number of *
" values written). *

Token$ = GetToken$(ResponseString$, TRUE)
Token$ = GetToken$(ResponseString$, FALSE)
InputCount = VAL(Token$)

' Print an error message if the number *
' of values written does not equal 4. *

IF InputCount <> 4 THEN
PRINT
PRINT "The device driver was unable to write the 4 values!”;
END IF
PRINT
END

' Function Name: GetToken$ *
" Usage: Token$ = GetToken$(String1$, FirstTime) *
" Parameters: *
Token$: The token parsed from String1$ (™ if the end of the string *
has been reached).

String1$: The string that is being parsed *
FirstTime: TRUE causes the function to begin parsmg at the *

beginning of the string.

FALSE causes the function to parse the token following *
the token parsed on the previous call. *
*

Description: This function extracts a token from Stringl$. To parse the *
first token from a string, pass a value of TRUE for the FirstTime *
parameter. To parse subsequent tokens from the string pass a value of*
FALSE for the FirstTime parameter. For the purposes of this routine *
a token is defined as a sequence of characters that have a preceding *
"’ character and a following "’ character. The '’ characters are *

NOT returned with the token. *

*

1
’
1
1
1
1
1
1
i
1
i
’
i
1
1
1

FUNCTION GetToken$ (Stringl$, FirstTime) STATIC

Programming Examples 386/ATM Coprocessor User Manual

" If this is the first call for this *

' particular string then set index to *
' point to beginning of string and *
' skip over the initial "’ character. *

IF FirstTime = TRUE THEN
=1
I = INSTR(, String1$, ™)
I=1+1

END IF

"If | is greater than the length of *

' the string then return ™ as the *

" token. Otherwise parse the token *
' from the string and update Ito *

' point to the beginning of the next *

" token. *

IF I > LEN(String1$) THEN
GetToken$ =™

ELSE
J = INSTR(l, String1$, ™:")
TokenLength =J -1
GetToken$ = MID$(String1$, |, TokenLength)
I1=J+1

END IF

END FUNCTION

386/ATM Coprocessor User Manual Programming Examples B-23

B.8 QuickBASIC Program: PCREAD

DECLARE FUNCTION GetToken$ (Stringl$, FirstTime%)

" perd_msb: Read from V—mem, X registers and the coprocessor module’s *
’ WX points via PCREAD.

’ *

* Language: Microsoft Quick Basic *

' Date: 11/12/90 *

’ *

* Description: This routine demonstrates the usage of the PCCOMM service *
’ command PCREAD. V-memory, X registers and the module s WX points *
’ will be read and displayed to the screen.

’ The first part of the program will let the user read from 8 *

’ consecutive V—-memory locations. The user is prompted to enter an *

’ integer value which specifies the first V—-memory location to read *

’ from. Then the 8 values are displayed to the screen. An error *

’ message will be displayed if the device driver was unable to read the *

’ 8 values from the PLC. *

’ The second part of the program will let the user read 8 discrete *

’ X register values. The user is prompted to enter an integer value *

’ which specifies the first X register location of the 8 to read from. *

’ Then the 8 values are read and displayed on the screen. *

’ The final section of the program will allow the user to read from *

’ the module’s 4 WX locations. The user is prompted to enter an *

’ integer value which specifies the first WX register location of the *

’ module. Then the values are displayed to the screen. *

’ *

Suggestions: You may want to run the routines PCWR_MSB and IOWR_MSB ~ *
prior to execution of this routine to verify that real values are *
being read back from the PLC. PCWR_MSB can be used to write to *
v—memory and discrete locations, and IOWR_MSB can be used to write to *
the 4 WX values on the module.

Hardware Requirements: *
Series 500/505 PLC *
386/ATM COPROCESSOR *

Software Requirements: *
1. Microsoft Quick Basic *

Warnings: *

CONST FALSE =0
CONST TRUE = NOT FALSE

DEFINT A-Z
' Clear the screen and display a *
' message describing the program. ~ *
CLS
PRINT "PCRD_MSB: Example usage of the PCCOMM command PCREAD.”
PRINT

PRINT "See the file PCRD_MSB.bas for a more complete description of the”
PRINT "operation of this routine.”

' Open the device driver for readlng *
" and writing.

OPEN "PCCOMM” FOR OUTPUT AS #1
OPEN "PCCOMM” FOR INPUT AS #2

" Prompt the user and read the V-mem *
' start point from the keyboard. *

PRINT
PRINT "Enter the address of the first V—-memory point to read from: ”;
INPUT ™, StartPoint

B-24 Programming Examples 386/ATM Coprocessor User Manual

' Write the request to the device

" driver. Note that leading blanks *

" are removed from the StartPoint *
" value via LTRIMS. *

PRINT #1, ":pr:vmem:”; LTRIM$(STRS$(StartPoint)); ":8::"

' Get a response from the device *
" driver. *

LINE INPUT #2, ResponseString$

* Skip to the 2nd token in the *

' response string (it contains the *

" number of values read). *

' See GetToken$() at the bottom of *
' this listing for more information. *

Token$ = GetToken$(ResponseString$, TRUE)
Token$ = GetToken$(ResponseString$, FALSE)
InputCount = VAL(Token$)

' Print an error message if the number *
" of values read does not equal 8. *

IF InputCount <> 8 THEN

PRINT

PRINT "The device driver was unable to read the 8 values!”;
ELSE

' Display the 8 values to the screen. *

FOR LoopCounter=0TO 7
Token$ = GetToken$(ResponseString$, FALSE)

PRINT
PRINT "V—mem location”; StartPoint + LoopCounter; ":"; VAL(Token$);
NEXT
END IF
" Prompt the user for input and read *
’ from the keyboard the location of *
" the first X register to read from. *
PRINT
PRINT

PRINT "Enter the address of the first X register to read: ”;
INPUT ™, StartPoint

" Write the request to the device *
" driver. *

PRINT #1, ":pr:XREG:”"; LTRIM$(STR$(StartPoint)); ":8::"

' Get the response from the device *

' driver and parse the count value *

' from the response via GetToken. See *
' GetToken$() at the bottom of this *

" listing. *

LINE INPUT #2, ResponseString$

Token$ = GetToken$(ResponseString$, TRUE)
Token$ = GetToken$(ResponseString$, FALSE)
InputCount = VAL(Token$)

386/ATM Coprocessor User Manual Programming Examples B-25

QuickBASIC Program: PCREAD (continued)

" Print an error message if the number *
' of values read does not equal 8. *

IF InputCount <> 8 THEN

PRINT

PRINT "The device driver was unable to read the 8 values!”;
ELSE

' Display the 8 values to the screen. *

FOR LoopCounter=0TO 7
Token$ = GetToken$(ResponseString$, FALSE)

PRINT
PRINT "X"; StartPoint + LoopCounter; ": "; VAL(Token$);
NEXT
END IF
" Prompt the user for input and read *
’ from the keyboard the location of *
" the first WX to read from. *
PRINT
PRINT

PRINT "Enter the address of the first WX register on the module: ;

INPUT ™, StartPoint

' Write the request to the device *
" driver. *

PRINT #1, ":pr:WX:"; LTRIM$(STR$(StartPoint)); ":4::"

' Get the response from the device *

' driver and parse the count value *

' from the response via GetToken. See *
' GetToken$() at the bottom of this *

" listing. *

LINE INPUT #2, ResponseString$

Token$ = GetToken$(ResponseString$, TRUE)
Token$ = GetToken$(ResponseString$, FALSE)
InputCount = VAL(Token$)

' Print an error message if the number *
' of values read does not equal 4. *

IF InputCount <> 4 THEN

PRINT

PRINT "The device driver was unable to read the 4 values!”;
ELSE

' Display the 4 values to the screen. *

FOR LoopCounter=0TO 3
Token$ = GetToken$(ResponseString$, FALSE)
PRINT
PRINT "WX?”; StartPoint + LoopCounter; ": ”; VAL(Token$);
NEXT
END IF
PRINT
END

B-26 Programming Examples

386/ATM Coprocessor User Manual

' Function Name: GetToken$ *
" Usage: Token$ = GetToken$(Stringl$, FirstTime) *
' Parameters: *
Token$: The token parsed from String1$ (™ if the end of the string *
has been reached).

String1$: The string that is being parsed *
FirstTime: TRUE causes the function to begin parsmg at the *

beginning of the string.

FALSE causes the function to parse the token following *
the token parsed on the previous call. *
*

Description: This function extracts a token from String1$. To parse the *
first token from a string, pass a value of TRUE for the FirstTime *
parameter. To parse subsequent tokens from the string pass a value of*
FALSE for the FirstTime parameter. For the purposes of this routine *
a token is defined as a sequence of characters that have a preceding *
"’ character and a following "’ character. The '’ characters are *

NOT returned with the token.

1
1
1
1
1
1
1
1
1
1
i
i
3
1
3
1

*

FUNCTION GetToken$(String1$, FirstTime) STATIC

" If this is the first call for this *

' particular string then set index to *
' point to beginning of string and *
' skip over the initial "’ character. *

IF FirstTime = TRUE THEN
=1
I = INSTR(, String1$, ")
I=1+1

END IF

"If | is greater than the length of *
' the string then return ™ as the *
' token. Otherwise parse the token *
' from the string and update Ito *
' point to the beginning of the next *
" token.

IF 1 > LEN(String1$) THEN
GetToken$ =™

ELSE
J = INSTR(l, String1$, ™)
TokenLength =J — |
GetToken$ = MID$(String1$, |, TokenLength)
I1=J+1

END IF

END FUNCTION

386/ATM Coprocessor User Manual Programming Examples B-27

B.9 QuickBASIC Program: PCWRITE

DECLARE FUNCTION GetToken$ (Stringl$, FirstTime%)

pcwr_msb: Write to V—-mem, Y registers and the coprocessor module’s *
WY points via PCWRITE.
*
Language: Microsoft Quick Basic *
Date: 11/12/90 *
*

Description: This routine demonstrates the usage of the PCCOMM service *
command PCWRITE. V—memory, Y registers and the module s WY points *
will be written as specified by the user.

The first part of the program will let the user write to 8 *
consecutive V—memory locations. The user is prompted to enter *
an integer value which specifies the first V—-memory location to write *
to. Then the user is prompted to enter 8 values which will be *
written to consecutive V—-memory locations starting with the location *
previously specified. An error message will be displayed if the — *
device driver was unable to write the 8 values to the PLC. *

The second part of the program will let the user write 8 discrete *

Y register values. The user is prompted to enter an integer value *
which specifies the first Y register location of the 8 to write to. *
Then the user is prompted to enter the 8 values which will be written *
to 8 consecutive Y registers starting with the location specn‘led *
Any non-zero value will be written as a 1.

The final section of the program will allow the user to write to *
the module’s 4 WY locations. The user is prompted to enter an *
integer value which specifies the first WY register location of the *
module. Remember that the four WYs are located AFTER the 4 WXs. *
Then the user is prompted to enter the 4 values which will be ertten *
to the 4 consecutive WY registers on the module

Suggestions: Since this routine writes to various PLC memory locations *
you may want a means of reading back the locations to verify that the *
values were in fact written. One means of doing this would be to run *
the example programs PCRD_MSB and IORD_MSB. PCRD_MSB can be used to *
read the 8 v—memory and discrete locations, and IORD_MSB can be used *
to read the 4 WY values (assuming that the module is installed in the *
slot that you wrote the 4 WY values to). *

Hardware Requirements: *
Series 500/505 PLC *
386/ATM COPROCESSOR *

Software Requirements: *
1. Microsoft Quick Basic *

Warnings: *
1. THIS ROUTINE WRITES TO V-MEMORY AND I/O POINTS. *
*

1
i
1
1
1
1
1
1
1
1
1
1
i
i
3
1
3
1
3
1
’
1
1
1
1
1
1
1
1
i
1
3
1
3
1
’
1
’
1
’
1
1
1
1
1
1
i
1

*

CONST FALSE =0

CONST TRUE = NOT FALSE
DEFINT A-Z

DIM Values(7)

' Clear the screen and display a *
' message describing the program. *

CLS

PRINT "PCWR_MSB: Example usage of the PCCOMM command PCWRITE.”
PRINT

PRINT "See the file PCWR_MSB.bas for a more complete description of the”
PRINT "operation of this routine.”

B-28 Programming Examples 386/ATM Coprocessor User Manual

' Print a warning message. *

PRINT
PRINT "WARNING: This program writes to V—memory and Y-registers!”
PRINT "Hit <space> to continue and any other key to exit.”
PRINT
KeyHit$ = INKEY$
WHILE KeyHit$ ="
KeyHit$ = INKEY$
WEND
IF KeyHit$ <>"" THEN
END
END IF

" Open the device driver for readlng *
" and writing.

OPEN "PCCOMM” FOR OUTPUT AS #1
OPEN "PCCOMM” FOR INPUT AS #2

" Prompt the user and read the V-mem *
' start point from the keyboard. *

PRINT
PRINT "Enter the address of the first V—-memory point to write to: ”;
INPUT ™, StartPoint

" Allow the user to enter the 8 values *
" at the keyboard.

FOR LoopCounter=0TO 7
PRINT "Enter the value to write at location ”;
PRINT LoopCounter + StartPoint; ": ”;
INPUT ™, Values(LoopCounter)

NEXT

" Write the request to the device

" driver. Note that leading blanks *

" are removed from the StartPoint ~ *
"and Values() via LTRIMS. *

RequestString$ = ":pw:vmem:” + LTRIM$(STR$(StartPoint)) + ":8"
FOR LoopCounter=0TO 7
RequestString$ = RequestString$ + ™"
RequestString$ = RequestString$ + LTRIM$(STR$(Values(LoopCounter)))
NEXT
RequestString$ = RequestString$ + ™"
PRINT #1, RequestString$

' Get a response from the deV|ce *
" driver.

LINE INPUT #2, ResponseString$

’ Skip to the 2nd token in the *

' response string (it contains the *
" number of values written). *
' See GetToken$() at the bottom of *
" this listing for more information.

Token$ = GetToken$(ResponseString$, TRUE)
Token$ = GetToken$(ResponseString$, FALSE)
InputCount = VAL(Token$)

386/ATM Coprocessor User Manual Programming Examples B-29

QuickBASIC Program: PCWRITE (continued)

" Print an error message if the number *
' of values written does not equal 8. *

IF InputCount <> 8 THEN

PRINT
PRINT "The device driver was unable to write the 8 values!”;
PRINT
END IF
" Prompt the user for input and read *
' from the keyboard the location of *
" the first Y register to write to. *
PRINT

PRINT "Enter the address of the first Y register to write to: ”;
INPUT ™, StartPoint

" Allow the user to enter the 8 values *
' at the keyboard. Any non-zero value *
" is written as a 1. *

FOR LoopCounter=0TO 7
PRINT "Enter the value to write at Y”;
PRINT LoopCounter + StartPoint; ": ”;
INPUT ™, Values(LoopCounter)
NEXT

" Write the request to the device

" driver. Note that leading blanks *

" are removed from the StartPoint ~ *
"and Values() via LTRIMS. *

RequestString$ = ":pw:YREG:” + LTRIM$(STR$(StartPoint)) + ":8"
FOR LoopCounter =0 TO 7
RequestString$ = RequestString$ + ™"
RequestString$ = RequestString$ + LTRIM$(STR$(Values(LoopCounter)))
NEXT
RequestString$ = RequestString$ + ;"
PRINT #1, RequestString$

' Get the response from the device *

' driver and parse the count value *

' from the response via GetToken. See *
' GetToken$() at the bottom of this *

" listing. *

LINE INPUT #2, ResponseString$

Token$ = GetToken$(ResponseString$, TRUE)
Token$ = GetToken$(ResponseString$, FALSE)
InputCount = VAL(Token$)

" Print an error message if the number *
' of values written does not equal 8. *

IF InputCount <> 8 THEN

PRINT
PRINT "The device driver was unable to write the 8 values!”;
PRINT
END IF
" Prompt the user for input and read *
' from the keyboard the location of *
" the first WY to write to. *
PRINT

PRINT "Enter the address of the first WY register on the module: ”;
INPUT ™, StartPoint

B-30 Programming Examples 386/ATM Coprocessor User Manual

" Allow the user to enter the 4 values *
" at the keyboard. *

FOR LoopCounter =0 TO 3
PRINT "Enter the value to write at WY”;
PRINT LoopCounter + StartPoint; ": ”;
INPUT ™, Values(LoopCounter)

NEXT

" Write the request to the device

" driver. Note that leading blanks *

" are removed from the StartPoint ~ *
"and Values() via LTRIMS. *

RequestString$ = ":pw:WY:" + LTRIM$(STRS$(StartPoint)) + ":4"
FOR LoopCounter =0 TO 3
RequestString$ = RequestString$ + ™"
RequestString$ = RequestString$ + LTRIM$(STR$(Values(LoopCounter)))
NEXT
RequestString$ = RequestString$ + "
PRINT #1, RequestString$

' Get the response from the device *

' driver and parse the count value *

' from the response via GetToken. See *
' GetToken$() at the bottom of this *

" listing. *

LINE INPUT #2, ResponseString$

Token$ = GetToken$(ResponseString$, TRUE)
Token$ = GetToken$(ResponseString$, FALSE)
InputCount = VAL(Token$)

' Print an error message if the number *
' of values written does not equal 4. *

IF InputCount <> 4 THEN
PRINT
PRINT "The device driver was unable to write the 4 values!”;
PRINT
END IF
PRINT
END

386/ATM Coprocessor User Manual Programming Examples B-31

QuickBASIC Program: PCWRITE (continued)

’ Function Name: GetToken$ *
" Usage: Token$ = GetToken$(Stringl$, FirstTime) *
' Parameters: *

Token$: The token parsed from String1$ (™ if the end of the string *
has been reached).

String1$: The string that is being parsed *
FirstTime: TRUE causes the function to begin parsmg at the *

beginning of the string.

FALSE causes the function to parse the token following *
the token parsed on the previous call. *
*

Description: This function extracts a token from String1$. To parse the *
first token from a string, pass a value of TRUE for the FirstTime *
parameter. To parse subsequent tokens from the string pass a value of*
FALSE for the FirstTime parameter. For the purposes of this routine *
a token is defined as a sequence of characters that have a preceding *
"’ character and a following "’ character. The '’ characters are *

NOT returned with the token.

1
1
1
1
1
1
1
1
1
1
i
i
3
1
3
1

*

FUNCTION GetToken$ (Stringl$, FirstTime) STATIC

" If this is the first call for this *

' particular string then set index to *
' point to beginning of string and *
' skip over the initial "’ character. *

IF FirstTime = TRUE THEN
=1
I = INSTR(, String1$, ")
I=1+1

END IF

"If | is greater than the length of *
' the string then return ™ as the *
' token. Otherwise parse the token *
' from the string and update Ito *
' point to the beginning of the next *
" token.

IF 1 > LEN(String1$) THEN
GetToken$ =™

ELSE
J = INSTR(l, String1$, ™)
TokenLength =J — |
GetToken$ = MID$(String1$, |, TokenLength)
I1=J+1

END IF

END FUNCTION

B-32 Programming Examples 386/ATM Coprocessor User Manual

B.10 GW-BASIC Program: IOREAD

1

2 ’iord_gw: Read the coprocessor module’s WY values. *

3’ *

5 'Language: Microsoft GW—Basic *

6 ' Date: 11/13/90 *

7 ! *

8 ' Description: This routine demonstrates the usage of the PCCOMM service *
9 ' command IOREAD. The 4 local WY points will be read and displayed *
10’ to the screen. *

11° *

12’ Suggestions: You may want to run PCWR_GW prior to execution of this ~ *

13’ program to verify that real values are being read by this routine. *
14 The last part of PCWR_GW allows the user to write to the WY values. *
15"’ *

16 ' Hardware Requirements: *

17’ Series 500/505 PLC *

18’ 386/ATM COPROCESSOR *

19° *

20’ Software Requirements: *

21’ 1. Microsoft GW-BASIC *

22" *

23’ Warnings: *

24> *

25’ *

26

40 DEFINT A-Z
50 FALSE =0

60 TRUE = NOT FALSE
70 DIM VALUES(3)

90

110
130
140
150
160
170
180
190
200
210
220
230
240
250

' Clear the screen and display a *
' message describing the program. *
CLS
PRINT "IORD_GW: Example usage of the PCCOMM command IOREAD to read”;

PRINT ” from the module’s”

PRINT” WY points.”
PRINT
PRINT "See the file IORD_GW.bas for a more complete description of the”

PRINT "operation of this routine.”

PRINT
' Open the device driver for reading *
" and writing. *

OPEN "PCCOMM” FOR OUTPUT AS #1

OPEN "PCCOMM” FOR INPUT AS #2

' Write the request to the device *
" driver. *

PRINT #1, "IR:5:4::"

' Get the response from the device *
" driver. *

LINE INPUT #2, RESPONSESTRING$

' Skip to the 2nd token in the response*
' string (it contains the number of *

' values read). See GetToken *

" subroutine (line 700). *

STRING1$ = RESPONSESTRINGS
FIRSTTIME = TRUE

GOSUB 700

FIRSTTIME = FALSE

GOSUB 700

386/ATM Coprocessor User Manual Programming Examples

B-33

GW-BASIC Program: IOREAD (continued)

B-34

490
500
510
520
530
540
550
560
570
580

INPUTCOUNT = VAL(TOKEN$)

' Print an error message if the number *
' of values read does not equal 4. *

IF INPUTCOUNT =4 THEN GOTO 610

PRINT

PRINT "The device driver was unable to read the 4 values!”;
GOTO 690

' Display the 4 values to the screen. *

FOR LOOPCOUNTER =0 TO 3
STRING1$ = RESPONSESTRING$
FIRSTTIME = FALSE
GOSUB 700
PRINT
PRINT "Location ”; LOOPCOUNTER + 5; ":"; VAL(TOKENS);

’ Subroutine Name: GetToken
" Global Parameters:
String1$: The string that is being parsed

’ FirstTime: TRUE causes the subroutine to begin parsing at the

' beginning of the string.

' FALSE causes the subroutine to parse the token

' following the token parsed on the previous call.

' Token$: The token parsed from String1$ (™ if the end of the string

' has been reached).

Descnptlon This routine extracts a token from String1$ and places
it in Token$. To parse the first token from a string, pass a
value of TRUE for the FirstTime parameter. To parse subsequent
tokens from the string pass a value of FALSE. For the purposes
of this routine a token is defined as a sequence of characters
that have a preceding "’ character and a following "’ character.
The "’ characters are NOT returned with the token.

’ Assumptions:
" 1. No program lines use the variable 'I' except this routine.

" If this is the first call for this *

' particular string then set index to *
' point to beginning of string and *
' skip over the initial "’ character. *

1
NSTR(l, STRING1S, ™")

F FIRSTTIME = TRUE THEN GOTO 770 ELSE GOTO 800
=|+1

"If | is greater than the length of *
' the string then return ™ as the *
" token. Otherwise parse the token *
' from the string and update Ito ~ *
' point to the beginning of the next *
" token.

IF I > LEN(STRING1$) THEN TOKEN$ = ":GOTO 930
J = INSTR(l, STRING1$, ™")

TOKENLENGTH =J -1

TOKENS = MID$(STRING1$, |, TOKENLENGTH)
I1=J+1

RETURN

Programming Examples

386/ATM Coprocessor User Manual

B.11

GW-BASIC Program: IOWRITE

1

2 'iowr_gw: Write to the coprocessor module’s WX values. *

3’ *

5 'Language: Microsoft GW—Basic *

6 ' Date: 11/13/90 *

7 ! *

8 ' Description: This routine demonstrates the usage of the PCCOMM service *

9 ' command IOWRITE. The 4 local WX points will be written as specified *
10" by the user. *

11° *

12’ Suggestions: You may want to run PCRD_GW after this program to verify *
13’ that the values were written correctly by this routine. The last *

14’ part of PCRD_GW allows the user to read the WX values. *
157 *

16 ' Hardware Requirements: *

17’ Series 500/505 PLC *

18’ 386/ATM COPROCESSOR *
19° *

20’ Software Requirements: *

21’ 1. Microsoft GW-BASIC *
22" *

23’ Warnings: *

24> *

25’ *

26

100 DEFINT A-Z

110 FALSE =0

120 TRUE = NOT FALSE
130 DIM Values(3)

140

150 ' Clear the screen and display a *
160 " message describing the program. *
170

180 CLS

190 PRINT "IOWR_GW: Example usage of the PCCOMM command IOWRITE to write”;
200 PRINT " to the module’s”

210 PRINT " WX points.”

220 PRINT

230 PRINT "See the file IOWR_GW.bas for a more complete description of the”

240 PRINT "operation of this routine.”

250 PRINT

260

270 " Open the device driver for reading *
280 " and writing. *

290

300 OPEN "PCCOMM” FOR OUTPUT AS #1
310 OPEN "PCCOMM” FOR INPUT AS #2

320

330 " Prompt the user and accept entry of *
340 " the 4 values that will be written to *
350 ' the WX points. *

380

390 FOR LoopCounter =0 TO 3

400 PRINT "Enter the value to write at location ”;
410 PRINT LoopCounter + 1; ™ 7;

420 INPUT ™, Values(LoopCounter)

430 NEXT

440

450 " Write the request to the device

460 "driver. Note that leading blanks *
470 " are removed from Values() via *
480 ' RemoveBlanks subroutine (line 2000). *
490

500 RequestString$ = "iw:1:4”

510 FOR LoopCounter =0 TO 3

520 RequestString$ = RequestString$ + ™"
525 String2$ = STR$(Values(LoopCounter))
527 GOSUB 2000

386/ATM Coprocessor User Manual Programming Examples

B-35

GW-BASIC Program: IOWRITE (continued)

B-36

530 RequestString$ = RequestString$ + String2$
540 NEXT

550 RequestString$ = RequestString$ + "::”

560 PRINT #1, RequestString$

570

580 ' Get a response from the deV|ce *
590 " driver.

600

610 LINE INPUT #2, ResponseString$

620

630 ' Skip to the 2nd token in the response*
640 ' string (it contains the number of *
650 " values written). See GetToken *
655 " subroutine (line 800). *

660

670 String1$ = ResponseString$: FirstTime = TRUE: GOSUB 800
680 FirstTime = FALSE: GOSUB 800

690 InputCount = VAL(Token$)

700
710 ' Print an error message if the number *
720 * of values written does not equal 4. *
730
740 IF InputCount = 4 THEN GOTO 770

750 PRINT

760 PRINT "The device driver was unable to write the 4 values!”;
770 PRINT

780 END

800
801 ' Subroutine Name: GetToken

802 ’ Global Parameters:

803 ' Stringl$: The string that is being parsed

804 ' FirstTime: TRUE causes the subroutine to begin parsing at the

805 ' beginning of the string.
806 ' FALSE causes the subroutine to parse the token
807 ’ following the token parsed on the previous call.

808 ' Token$: The token parsed from String1$ (" if the end of the string
809 has been reached).
810’ Descrlptlon This routine extracts a token from String1$ and places

811’ it in Token$. To parse the first token from a string, pass a

812 ' value of TRUE for the FirstTime parameter. To parse subsequent
813 ' tokens from the string pass a value of FALSE. For the purposes
814 ' of this routine a token is defined as a sequence of characters

815 ' that have a preceding "’ character and a following ’:’ character.

816 ' The '’ characters are NOT returned with the token.

818 ' Assumptions:

819 ' 1. No program lines use the variable 'I' except this routine.
820

821

829

830 " If this is the first call for this *

835 " particular string then set index to *

840 ' point to beginning of string and *

845 " skip over the initial .’ character. *

850

860 IF FIRSTTIME = TRUE THEN GOTO 870 ELSE GOTO 900
870 1=1

880 | =INSTR(l, STRING1$, ":")

890 I=1+1

900

910 "If 1 is greater than the length of *
920 ' the string then return ™ as the *
930 "token. Otherwise parse the token *
940 ' from the string and update [to *
950 ' point to the beginning of the next *
960 " token.

970

980 IF | > LEN(STRING1$) THEN TOKENS$ = ":GOTO 1030

Programming Examples

386/ATM Coprocessor User Manual

990 J = INSTR(l, STRING1$, ")
1000 TOKENLENGTH =J -1
1010 TOKENS$ = MID$(STRING1$, |, TOKENLENGTH)

10201=J+1
1030 RETURN
2000

2001’ Subroutine Name: RemoveBlanks

2002 Global Parameters:

2003 String2$: The string that leading blanks are removed from
2004’ Description: This routine removes leading blanks from String2$.
2005

2006’ Assumptions:

2007 1. No program lines use the variable '12" except this routine.
2008’
2009
2030 12 = LEN(String2$)

2040 FirstChar$ = MID$(String2$, 1, 1)
2050 WHILE FirstChar$ =""

2060 12=12-1

2070 String2$ = RIGHT$(String2$, 12)
2085 FirstChar$ = MID$(String2$, 1, 1)
2090 WEND

2100 RETURN

386/ATM Coprocessor User Manual Programming Examples B-37

B.12 GW-BASIC Program: PCREAD

*

" Description: This routine demonstrates the usage of the PCCOMM service *
command PCREAD. V-memory, X registers and the module s WX points *

10’ will be read and displayed to the screen.

11° The first part of the program will let the user read from 8 *

12’ consecutive V-memory locations. The user is prompted to enter an ~ *

13’ integer value which specifies the first V—-memory location to read *

14’ from. Then the 8 values are displayed to the screen. An error *

15’ message will be displayed if the device driver was unable to read the *

16’ 8 values from the PLC. *

17 The second part of the program will let the user read 8 discrete *

18" Xregister values. The user is prompted to enter an integer value *

19 which specifies the first X register location of the 8 to read from. *

20’ Then the 8 values are read and displayed on the screen. *

21’ The final section of the program will allow the user to read from *

22’ the module’s 4 WX locations. The user is prompted to enter an *

23’ integer value which specifies the first WX register location of the *

24’ module. Then the values are displayed to the screen. *

25° *

26 ' Suggestions: You may want to run the routines PCWR_GW and IOWR_GW *

27’ prior to execution of this routine to verify that real values are *

28’ being read back from the PLC. PCWR_GW can be used to write to *

29’ v-memory and discrete locations, and IOWR_GW can be used to write to *

30" the 4 WX values on the module.

1

2 'perd_gw: Read from V—mem, X registers and the coprocessor module’'s *
3’ WX points via PCREAD.

4 *

5 'Language: Microsoft GW-BASIC *

6 ' Date: 11/12/90 *

7

8

9"

31 *

32’ Hardware Requirements: *
33’ Series 500/505 PLC *

34’ 386/ATM COPROCESSOR *
35’ *

36 ' Software Requirements: *
37’ 1. Microsoft GW-BASIC *
38" *

39 ' Warnings: *

40’ *

41" *

42

48 DEFINT A-Z

49 FALSE =0

50 TRUE = NOT FALSE

55

60 ' Clear the screen and display a *
65 " message describing the program. *
70

80 CLS

90 PRINT "PCRD_GW: Example usage of the PCCOMM command PCREAD.”
100 PRINT

110 PRINT "See the file PCRD_GW.bas for a more complete description of the”
120 PRINT "operation of this routine.”

130

140 ' Open the device driver for readlng *
150 " and writing.

160

170 OPEN "PCCOMM” FOR OUTPUT AS #1
180 OPEN "PCCOMM” FOR INPUT AS #2

190

200 " Prompt the user and read the V—-mem *
210 ' start point from the keyboard. *

220

230 PRINT

240 PRINT "Enter the address of the first V-memory point to read from: ”;
250 INPUT ™, StartPoint

B-38 Programming Examples 386/ATM Coprocessor User Manual

260

270 ' Write the request to the device

280 " driver. Note that leading blanks *
290 " are removed from the StartPoint *
300 " value via RemoveBlanks subroutine *
305 " (line number 1950). *

310

320 String2$ = STR$(StartPoint)
330 GOSUB 1950
340 PRINT #1, ":pr:vmem:”; String2$; ":8:"

350

360 ' Get a response from the device *
370 " driver. *

380

390 LINE INPUT #2, ResponseString$

400

410 * Skip to the 2nd token in the *
420 ' response string (it contains the *
430 " number of values read). *
440 ' See GetToken subroutine (line 1700). *
460

470 String1l$ = ResponseString$: FirstTime = TRUE
480 GOSUB 1700

490 FirstTime = FALSE

500 GOSUB 1700

510 InputCount = VAL(Token$)

520

530 ' Print an error message if the number *
540 " of values read does not equal 8. *
550

560 IF InputCount = 8 THEN GOTO 630

570 PRINT

580 PRINT "The device driver was unable to read the 8 values!”;
590 GOTO 740
600

610 ' Display the 8 values to the screen. *
620
630 FOR LoopCounter =0 TO 7

640 Stringl$ = ResponseString$: FirstTime = FALSE: GOSUB 1700

650 PRINT

660 PRINT "V—mem location”; StartPoint + LoopCounter; ":"; VAL(Token$);
670 NEXT

690

700 " Prompt the user for input and read *

710 ' from the keyboard the location of *

720 ' the first X register to read from. *

730

740 PRINT

750 PRINT

760 PRINT "Enter the address of the first X register to read: ”;
770 INPUT ™, StartPoint

860

870 ' Write the request to the device *
880 "driver. Then get the response and *
885 ' parse the count value from it. *
890

900 String2$ = STR$(StartPoint): GOSUB 1950
910 PRINT #1, ":pr:XREG:"; String2$; ":8::"

930 LINE INPUT #2, ResponseString$

950 Stringl$ = ResponseString$: FirstTime = TRUE
960 GOSUB 1700

970 FirstTime = FALSE

980 GOSUB 1700

990 InputCount = VAL(Token$)

386/ATM Coprocessor User Manual Programming Examples B-39

GW-BASIC Program: PCREAD (continued)

1000

1010 " Print an error message if the number *
1020 ' of values read does not equal 8. *
1030

1040 IF InputCount = 8 THEN GOTO 1110

1050 PRINT

1060 PRINT "The device driver was unable to read the 8 values!”;
1070 GOTO 1160
1080

1090 ' Display the 8 values to the screen. *
1100
1110 FOR LoopCounter=0TO 7

1120 Stringl$ = ResponseString$: FirstTime = FALSE: GOSUB 1700

1130 PRINT

1140 PRINT "X"; StartPoint + LoopCounter; ": *; VAL(Token$);
1150 NEXT

1160

1170 " Prompt the user for input and read *
1180 ' from the keyboard the location of *
1190 " the first WX to read from. *
1200

1210 PRINT

1220 PRINT

1230 PRINT "Enter the address of the first WX register on the module: ”;
1240 INPUT ™, StartPoint

1330

1340 " Write the request to the device *
1350 " driver. Then get response and parse *
1355 ' the count value from it. *

1360

1370 String2$ = STR$(StartPoint)

1380 GOSUB 1950

1390 PRINT #1, ":pr:WX:"; String2$; ":4::"

1410 LINE INPUT #2, ResponseString$

1430 String1$ = ResponseString$: FirstTime = TRUE
1440 GOSUB 1700

1450 FirstTime = FALSE

1460 GOSUB 1700

1470 InputCount = VAL(Token$)

1480

1490 ' Print an error message if the number *
1500 " of values read does not equal 4. *
1510

1520 IF InputCount = 4 THEN GOTO 1590

1530 PRINT

1540 PRINT "The device driver was unable to read the 4 values!”;
1550 GOTO 1650
1560

1570 ' Display the 4 values to the screen. *
1580
1590 FOR LoopCounter=0TO 3

1600 Stringl$ = ResponseString$: FirstTime = FALSE: GOSUB 1700
1610 PRINT

1620 PRINT "WX?"; StartPoint + LoopCounter; ": ”; VAL(Token$);
1630 NEXT

1650 PRINT

1670 END

B-40 Programming Examples 386/ATM Coprocessor User Manual

1700
1701’ Subroutine Name: GetToken

1702’ Global Parameters:

1703’ String1l$: The string that is being parsed

1704 FirstTime: TRUE causes the subroutine to begin parsing at the

1705° beginning of the string.

1706 FALSE causes the subroutine to parse the token

1707 following the token parsed on the previous call.

1708 Token$: The token parsed from String1$ (" if the end of the string
1709 has been reached).

1710’ Description: This routine extracts a token from String1l$ and places
1711’ itin Token$. To parse the first token from a string, pass a

1712 value of TRUE for the FirstTime parameter. To parse subsequent
1713 tokens from the string pass a value of FALSE. For the purposes

1714 of this routine a token is defined as a sequence of characters
1715" that have a preceding "’ character and a following "’ character.
1716 The '’ characters are NOT returned with the token.

1717’

1718 Assumptions:
1719° 1. No program lines use the variable 'I' except this routine.

1720°

1721

1730

1731 " If this is the first call for this *

1732 ' particular string then set index to *
1740 ' point to beginning of string and *
1750 ’ skip over the initial "’ character. *
1760

1770 IF FIRSTTIME = TRUE THEN GOTO 1780 ELSE GOTO 1890
1780 I=1

1790 | =INSTR(l, STRING1$, ™")

1800 I=1+1

1810

1820 "If | is greater than the length of *
1830 ' the string then return ™ as the *
1840 " token. Otherwise parse the token *
1850 ' from the string and update I to *
1860 ' point to the beginning of the next *
1870 " token. *

1880

1890 IF | > LEN(STRING1$) THEN TOKEN$ = ":GOTO 1940
1900 J = INSTR(l, STRING1$, ™")

1910 TOKENLENGTH =J -1

1920 TOKENS = MID$(STRING1$, |, TOKENLENGTH)

19301=J+1
1940 RETURN
1950

1951 " Subroutine Name: RemoveBlanks

1952’ Global Parameters:

1953°" String2$: The string that leading blanks are removed from
1954 Description: This routine removes leading blanks from String2$.
1955

1956 ' Assumptions:

1957 1. No program lines use the variable 'I2" except this routine.
1958
1959
1970 12 = LEN(String2$)

1980 FirstChar$ = MID$(String2$, 1, 1)
1990 WHILE FirstChar$ =""

2000 12=12-1

2010 String2$ = RIGHT$(String2$, 12)
2020 FirstChar$ = MID$(String2$, 1, 1)
2030 WEND

2040 RETURN

386/ATM Coprocessor User Manual Programming Examples B-41

B.13 GW-BASIC Program: PCWRITE

1

2 ' pewr_gw: Write to V-mem, Y registers and the coprocessor module’s *
3’ WY points via PCWRITE.

4 *

5 'Language: Microsoft GW-BASIC *

6 ' Date: 11/12/90 *

7 *

8 ' Description: This routine demonstrates the usage of the PCCOMM service *
9 ' command PCWRITE. V-memory, Y registers and the module s WY points *
10’ will be written as specified by the user.

11° The first part of the program will let the user write to 8 *

12’ consecutive V-memory locations. The user is prompted to enter *
13’ an integer value which specifies the first V-memory location to write *

14"’ to. Then the user is prompted to enter 8 values which will be *

15" written to consecutive V—-memory locations starting with the location *
16’ previously specified. An error message will be displayed if the — *
17’ device driver was unable to write the 8 values to the PLC. *
18" The second part of the program will let the user write 8 discrete *
19 Y register values. The user is prompted to enter an integer value *
20’ which specifies the first Y register location of the 8 to write to. *

21’ Then the user is prompted to enter the 8 values which will be written *
22’ to 8 consecutive Y registers starting with the location specmed *
23’ Any non-zero value will be written as a 1.

24° The final section of the program will allow the user to write to *

25’ the module’s 4 WY locations. The user is prompted to enter an *
26’ integer value which specifies the first WY register location of the *
27’ module. Remember that the four WYs are located AFTER the 4 WXs. *
28’ Then the user is prompted to enter the 4 values which will be wntten *
29’ tothe 4 consecutive WY registers on the module

31’ Suggestions: Since this routine writes to various PLC memory locations*

32’ you may want a means of reading back the locations to verify that the*

33’ values were in fact written. One means of doing this would be to run*

34’ the example programs PCRD_GW and IORD_GW. PCRD_GW can be usedto *
35’ read the 8 v—memory and discrete locations, and IORD_GW can be used *

36’ toread the 4 WY values (assuming that the module is |nsta||ed in the*

37’ slot that you wrote the 4 WY values to).

38" *

39 ' Hardware Requirements: *
40’ Series 500/505 PLC *

41’ 386/ATM COPROCESSOR *
42’ *

43’ Software Requirements: *

44’ 1. Microsoft GW-BASIC *
45’ *

46 ' Warnings: *

47’ 1. THIS ROUTINE WRITES TO V-MEMORY AND I/O POINTS. *
48~ *

49’ *

50

54 DEFINT A-Z

55 FALSE =0

60 TRUE = NOT FALSE
65 DIM Values(7)

75 ' Clear the screen and display a *
80 " message describing the program. *

90 CLS

100 PRINT "PCWR_GW: Example usage of the PCCOMM command PCWRITE.”
110 PRINT

120 PRINT "See the file PCWR_GW.bas for a more complete description of the”
130 PRINT "operation of this routine.”

131
132 ' Print a warning message. *
133

134 PRINT
135 PRINT "WARNING: This program writes to V—-memory and Y-registers!”

B-42 Programming Examples 386/ATM Coprocessor User Manual

136 PRINT "Hit <space> to continue and any other key to exit.”
137 PRINT

138 KeyHit$ = INKEY$

139 WHILE KeyHit$ ="

140 KeyHit$ = INKEY$

141 WEND

142 IF KeyHit$ <> " " THEN END

177

178 ' Open the device driver for reading *
179 " and writing. *

180

190 OPEN "PCCOMM” FOR OUTPUT AS #1
200 OPEN "PCCOMM” FOR INPUT AS #2

220

230 ' Prompt the user and read the V-mem *
240 ' start point from the keyboard. *

250

260 PRINT

270 PRINT "Enter the address of the first V—-memory point to write to: ”;
280 INPUT ™, StartPoint

300

310 " Allow the user to enter the 8 values *
320 " at the keyboard. *

350

360 FOR LoopCounter =0 TO 7

370 PRINT "Enter the value to write at location ”;
380 PRINT LoopCounter + StartPoint; ™: ”;

390 INPUT ™, Values(LoopCounter)

400 NEXT

420

430 " Write the request to the device

440 " driver. Note that leading blanks *
450 " are removed from the StartPoint ~ *
460 " and Values() via RemoveBlanks *
465 " subroutine (line number 2950). *
470

475 String2$ = STR$(StartPoint): GOSUB 2950

480 RequestString$ = ":pw:vmem:” + String2$ + ":8”

490 FOR LoopCounter =0 TO 7

500 RequestString$ = RequestString$ + ™"

505 String2$ = STR$(Values(LoopCounter)): GOSUB 2950
510 RequestString$ = RequestString$ + String2$

520 NEXT

530 RequestString$ = RequestString$ + ™"

540 PRINT #1, RequestString$

560

570 ' Get a response from the device *
580 " driver. *

590

600 LINE INPUT #2, ResponseString$

620

630 ' Skip to the 2nd token in the *
640 ' response string (it contains the *
650 "number of values written). See *
660 ' GetToken subroutine (line 2700) *
680

690 String1$ = ResponseString$: FirstTime = TRUE: GOSUB 2700
700 FirstTime = FALSE: GOSUB 2700
710 InputCount = VAL(Token$)

730

740 " Print an error message if the number *
750 ' of values written does not equal 8. *
760

770 IF InputCount = 8 THEN GOTO 880

780 PRINT

790 PRINT "The device driver was unable to write the 8 values!”;
800 PRINT

386/ATM Coprocessor User Manual Programming Examples B-43

GW-BASIC Program: PCWRITE (continued)

B-44

830

840 " Prompt the user for input and read *
850 ' from the keyboard the location of *
860 " the first Y register to write to. *

870

880 PRINT

890 PRINT "Enter the address of the first Y register to write to: ”;
900 INPUT ™, StartPoint

1010

1020 " Allow the user to enter the 8 values *
1030 " at the keyboard. Any non-zero value *
1040 "is written as a 1. *

1070

1080 FOR LoopCounter=0TO 7

1090 PRINT "Enter the value to write at Y”;
1100 PRINT LoopCounter + StartPoint; " ”;
1110 INPUT ™, Values(LoopCounter)

1120 NEXT

1140

1150 " Write the request to the device *
1160 " driver. Note that leading blanks *
1170 " are removed from the StartPoint ~ *
1180 " and Values() via RemoveBlanks *
1185 " subroutine (line number 2950). *
1190

1195 String2$ = STR$(StartPoint): GOSUB 2950

1200 RequestString$ = ":pw:YREG:” + String2$ + ":.8”

1210 FOR LoopCounter=0TO 7

1220 RequestString$ = RequestString$ + "

1225 String2$ = STR$(Values(LoopCounter)): GOSUB 2950
1230 RequestString$ = RequestString$ + String2$

1240 NEXT

1250 RequestString$ = RequestString$ + "::”

1260 PRINT #1, RequestString$

1262
1265 ' Get response from device driver and *
1267 ' parse the count value from reponse *
1270 " via GetToken subroutine (line 2700). *
1275

1280 LINE INPUT #2, ResponseString$

1300 String1$ = ResponseString$: FirstTime = TRUE: GOSUB 2700
1310 FirstTime = FALSE: GOSUB 2700

1320 InputCount = VAL(Token$)

1340

1350 " Print an error message if the number *
1360 ' of values written does not equal 8. *
1370

1380 IF InputCount = 8 THEN GOTO 1490

1390 PRINT

1400 PRINT "The device driver was unable to write the 8 values!”;
1410 PRINT

1440

1450 " Prompt the user for input and read *
1460 ' from the keyboard the location of *
1470 " the first WY to write to. *

1480

1490 PRINT

1500 PRINT "Enter the address of the first WY register on the module: ”;
1510 INPUT ™, StartPoint

1620

1630 " Allow the user to enter the 4 values *
1640 " at the keyboard. *

1670

1680 FOR LoopCounter=0TO 3

1690 PRINT "Enter the value to write at WY”;
1700 PRINT LoopCounter + StartPoint; " *;
1710 INPUT ™, Values(LoopCounter)

1720 NEXT

Programming Examples

386/ATM Coprocessor User Manual

1740

1750 ' Write the request to the device

1760 "driver. Note that leading blanks *
1770 " are removed from the StartPoint ~ *
1780 "and Values() via RemoveBlanks *
1785 " subroutine (line number 2950). *
1790

1795 String2$ = STR$(StartPoint): GOSUB 2950

1800 RequestString$ = ":pw:WY:" + String2$ + ":4"

1810 FOR LoopCounter =0 TO 3

1820 RequestString$ = RequestString$ + ™"

1825 String2$ = STR$(Values(LoopCounter)): GOSUB 2950
1830 RequestString$ = RequestString$ + String2$

1840 NEXT

1850 RequestString$ = RequestString$ + ™::”

1860 PRINT #1, RequestString$

1862
1865 ' Get response from device driver and *
1867 ' parse the count value from reponse *
1870 " via GetToken subroutine (line 2700). *
1875

1880 LINE INPUT #2, ResponseString$

1900 String1$ = ResponseString$: FirstTime = TRUE: GOSUB 2700
1910 FirstTime = FALSE: GOSUB 2700

1920 InputCount = VAL(Token$)

1940

1950 " Print an error message if the number *
1960 ' of values written does not equal 4. *
1970

1980 IF InputCount = 4 THEN GOTO 2040

1990 PRINT

2000 PRINT "The device driver was unable to write the 4 values!”;
2010 PRINT

2040 PRINT

2060 END

2699

2700’ Subroutine Name: GetToken

2701’ Global Parameters:

2702’ Stringl$: The string that is being parsed

2703" FirstTime: TRUE causes the subroutine to begin parsing at the

2704° beginning of the string.

2705° FALSE causes the subroutine to parse the token

2706’ following the token parsed on the previous call.

2707 Token$: The token parsed from String1$ (" if the end of the string
2708 has been reached).

2709 ' Description: This routine extracts a token from String1$ and places
2710 itin Token$. To parse the first token from a string, pass a

2711 value of TRUE for the FirstTime parameter. To parse subsequent
2712 tokens from the string pass a value of FALSE. For the purposes
2713° of this routine a token is defined as a sequence of characters
2714 that have a preceding "’ character and a following "’ character.
2715' The '’ characters are NOT returned with the token.

2716°

2717’ Assumptions:

2718’ 1. No program lines use the variable 'I' except this routine.
2719’

2720

2725

2727 " If this is the first call for this *

2730 ' particular string then set index to *

2740 ' point to beginning of string and *

2750 ' skip over the initial :’ character. *

2760

2770 IF FIRSTTIME = TRUE THEN GOTO 2780 ELSE GOTO 2890

2780 1=1

2790 |1 =INSTR(l, STRING1$, ™")

2800 I=1+1

386/ATM Coprocessor User Manual Programming Examples B-45

GW-BASIC Program: PCWRITE (continued)

2810

2820 "If | is greater than the length of *
2830 ' the string then return ™ as the *
2840 " token. Otherwise parse the token *
2850 ' from the string and update | to ~ *
2860 ' point to the beginning of the next *
2870 " token. *

2880

2890 IF | > LEN(STRING1$) THEN TOKEN$ = ":GOTO 2940
2900 J = INSTR(I, STRING1S, ")

2910 TOKENLENGTH = J — |

2920 TOKENS = MID$(STRING1$, |, TOKENLENGTH)

29301=J+1
2940 RETURN
2950

2951" Subroutine Name: RemoveBlanks

2952’ Global Parameters:

2953° String2$: The string that leading blanks are removed from
2954 ' Description: This routine removes leading blanks from String2$.
2955

2956 ' Assumptions:

2957’ 1. No program lines use the variable '12’ except this routine.
2958°
2959
2975 12 = LEN(String2$)

2980 FirstChar$ = MID$(String2$, 1, 1)
2990 WHILE FirstChar$ =""

3000 12=12-1

3010 String2$ = RIGHT$(String2$, 12)
3020 FirstChar$ = MID$(String2$, 1, 1)
3030 WEND

3040 RETURN

B-46 Programming Examples 386/ATM Coprocessor User Manual

Appendix C
Pinouts

A

14

[ONCHONONONCHONCONONONONGC

[ONCHONCHONCHONONONONONG)

25

/

Parallel
1 1. Strobe 14. Autofeed
2. Data0 15. Error
3. Datal 16. Initialize
4. Data2 17. Selectinput
5. Data3 18. Ground
6. Data4 19. Ground
7. Datab5 20. Ground
8. Data6 21. Ground
9. Data7 22. Ground
10. Ack 23. Ground
11. Busy 24. Ground
12. Paper out 25. Ground
13. Select
13

Keyboard

arwdE

Clock
Data

Not Used
Ground
+5VDC

1001697

Figure C-4 Keyboard Connector Pinout

1001695

Figure C-1 Parallel Port Pinout

This pinout is for modules with serial numbers prior to
86AT9107xxxxxX, unless the module has been upgraded to
analog (indicated by a U at the end of the serial number).

OO00O0

O000O0

Video

Ground

Secondary red

Primary red

Primary green

Primary blue

Secondary green/intensity
Secondary blue
Horizontal sync

OO0O0OO0
OO000O0

Serial (Com 1 and Com 2)

©CNoAwWNE

1001698

Figure C-5 Serial Port 1 and 2 Pinout

CoNOOMWNE

Vertical sync

1001696

Figure C-2 TTL VGA Port Pinout

OO0O0O0

OO0OO00O0

Video (analog)

Red video
Green video
Blue video

H sync

V sync

Red return
Green return
Blue return
Chassis Ground

CNoapONE

Figure C-3 Analog VGA Port Pinout

386/ATM Coprocessor User Manual

9-pin male 15-pin female
1 1. Red
2 2. Green
3 3. Blue
4 13. Hsync
5 14. Vsync
6 6. Red return
7 7. Green return
8 8. Blue return
9 4. Ground
(May or may not be 4 5. Ground
needed, depending
on the monitor used.) 10. Ground
11. Ground

Figure C-6 9-pin Analog VGA to 15-Pin VGA
Adapter Cable Pinout

Pinouts C-1

Appendix D
Specifications

CPU 80C386SX
(socket for 80C387SX math coprocessor)
Memory Model -0220 Model -0440 Model -4120
DRAM w/parity 2M byte 4M byte 4M byte
Hard Disk 20M byte type 2 40M byte type 17 120M byte type 41

Diskette Drive

3.5" 720K byte/1.44M byte

Operating System

Microsoft MS-DOS 5.0

Communication Ports

2 Serial ports (RS-232/423); rates: 110 to 57600 baud
(non-standard 5-volt operation)
1 Parallel printer port

Other Ports

1 analog VGA port
1 IBM PC/AT-compatible keyboard port

1/0 Bus Communication

Integrated interface to the PLC 1/0O Bus

Channels per Module

8 Analog 1/0 (4 WX, 4 WY)

Data Communication Rate over PLC 1/O Bus
(maximum per PLC scan)

2048 bits + 8 analog 1/0

or

480 16-bit words + 8 analog 1/0
or

combinations of both

Power Consumption (Typical)

11 watts @ 5 vVDC
0.2 watts @ -5 VDC

Diagnostic

Internal diagnostic on power-up;
Continuous DRAM parity check

Operating Temperature

5° t0 45°C (41° to 113°F)

Storage Temperature

—40° to 60°C (=10° to 140°F)

Relative Humidity

20% to 80%, non-condensing

EMI Meets MIL STD 461b RS01 and RS02-2
Size Triple-wide Series 505 1/0 module
Weight 1.6 Kg (3.3 1b.)

Agency Certification Approvals

UL; CSA; FM Class I, Div. 2

NOTE: During periods of high conducted or radiated electrical noise conditions, diskette access may

cause seek and/or read/write errors. These errors do not affect the operation of other parts of either
the 386/ATM or the programmable controller system. It is recommended that you start up with the
diskette and then switch to the hard drive for operation. If you experience a seek or read/write error
during a diskette access, please try the operation a second time. If the problem continues, wait for
quiescent periods before performing diskette operations.

386/ATM Coprocessor User Manual Specifications D-1

Customer Registration

We would like to know what you think about our user manuals so that we can serve you better.

How would you rate the quality of our manuals?

Excellent Good Fair

Accuracy
Organization
Clarity
Completeness
Overall design
Size

Index

Poor

Would you be interested in giving us more detailed comments about our manuals?

[] Yes! Please send me a questionnaire.

[J No. Thanks anyway.

Your Name:

Title:

Telephone Number: ()

Company Name:

Company Address:

Manual Name: SIMATIC TI1505 386/ATM Coprocessor User Manual
Manual Assembly Number: 2586546-0056
Order Number: PPX:505-ATM-MANL-3

Edition:
Date:

Third
02/93

FOLD

NECESSARY
IF MAILED
IN THE

UNITED STATES
I
BUSINESS REPLY MAIL —
FIRST CLASS PERMIT NO.3 JOHNSON CITY, TN I
I
POSTAGE WILL BE PAID BY ADDRESSEE EEEEE—
I
SIEMENS INDUSTRIAL AUTOMATION, INC. E—
3000 BILL GARLAND RD. E—
P.O. BOX 1255 I

JOHNSON CITY TN 37605-1255

ATTN: Technical Communications M/S 3519

FOLD

	Title
	Contents
	Preface
	Other Manuals
	Agency Approvals
	Telephoning for Assistance

	1 Module Features
	1.1 Overview
	Description
	Using the 386/ATM Coprocessor
	Applications

	1.2 Features
	1.3 Standard Kit Part Lists
	PPX:505-ATM-0220
	PPX:505-ATM-0440
	PPX:505-ATM-4120
	Spare Parts

	1.4 Recommended Order of Tasks

	2 Installing the Module
	2.1 Overview of Installation
	Handling the Module
	Visual Inspection
	Technical Assistance
	Flow of Tasks

	2.2 Configuring the Module
	2.3 Inserting the Module into the Base
	Inserting the Module
	Power Requirements

	2.4 Connecting Peripherals
	Monitor
	Keyboard
	Communications
	Printer

	3 Loading System Software
	3.1 Overview
	Potential for Errors During Diskette Access

	3.2 Setting System Parameters
	3.3 Preparing the Hard Disk and Loading MS-DOS
	Booting the Module from the Diskette

	3.4 Installing System Software
	Copying Software to the Hard Disk
	Typical ATM Driver Files
	Installing Sample Programs
	Loading System Device Drivers

	3.5 What Next?
	Running the 386/ ATM with Third-party Device Drivers and Memory Managers

	4 Running TISOFT on the 386/ATM
	4.1 Logging the 386/ATM into the PLC I/O Configuration Table
	Overview
	Loading TISOFT2
	Verifying config.sys 386ATM. EXE in your Root Directory
	Communicating with the PLC
	Running TISOFT2
	Selecting the I/O Definition Chart
	Viewing the I/O Configuration Chart

	5 PLC Communications
	5.1 Overview
	Communicating with the PLC
	Verifying the CONFIG. SYS File in your Root Directory
	Using PCCOMM
	Application Program I/O Bus Communication

	5.2 Communicating during PLC Scan: I/O Cycle
	Accessing I/O Points
	Command Syntax: IOREAD
	Response Syntax: IOREAD
	Command Syntax: IOWRITE
	Response Syntax: IOWRITE

	5.3 Communicating with the PLC Scan: Special Function Cycle
	Description
	Command Syntax: PCREAD
	Response Syntax: PCREAD
	Command Syntax: PCWRITE
	Response Syntax: PCWRITE
	Executing Commands from a File
	Notes Concerning Writing to Memory Locations

	5.4 Communicating with the PLC: COMM Port Cycle
	Serial Port to PLC
	RS-232 Com1 and Com2

	6 Troubleshooting
	6.1 Diagnostics
	Power-up and Run-time Diagnostics
	User-Initiated Diagnostic Tests

	6.2 Troubleshooting

	A 387SX Math Coprocessor
	A.1 Installing the 387SX Math Coprocessor
	Procedure

	B Programming Examples
	B.1 Overview
	PCCOMM Communication Examples
	C Programs
	QuickBASIC Programs
	GW-BASIC Programs

	B.2 C Program: IOREAD
	B.3 C Program: IOWRITE
	B.4 C Program: PCREAD
	B.5 C Program: PCWRITE
	B.6 QuickBASIC Program: IOREAD
	B.7 QuickBASIC Program: IOWRITE
	B.8 QuickBASIC Program: PCREAD
	B.9 QuickBASIC Program: PCWRITE
	B.10 GW-BASIC Program: IOREAD
	B.11 GW-BASIC Program: IOWRITE
	B.12 GW-BASIC Program: PCREAD
	B.13 GW-BASIC Program: PCWRITE

	C Pinouts
	D Specifications

