

Rexroth IndraDrive Cs Drive Systems with HCS01

R911322210 Edition 02

Project Planning Manual

Title Rexroth IndraDrive Cs

Drive Systems with HCS01

Type of Documentation Project Planning Manual

Document Typecode DOK-INDRV*-HCS01******-PR02-EN-P

Internal File Reference RS-898e3e765ff4d61d0a6846a000329fdd-3-en-US-2

Purpose of Documentation

- Overview information of the Rexroth IndraDrive Cs drive system
- Description of the allowed combinations of Rexroth IndraDrive Cs system components
- Selection of the system components of the Rexroth IndraDrive Cs drive system
- Specification applying to all components (ambient and operating conditions)
- Application description of system characteristics

Record of Revision

Edition	Release Date	Notes
DOK-INDRV*-HCS01*****-PR01-EN-P	2009/08	-
DOK-INDRV*-HCS01*****-PR02-EN-P		See index entry "Documentation → Editions"

Copyright © Bosch Rexroth AG 2012

This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

Liability

The specified data is intended for product description purposes only and shall not be deemed to be a guaranteed characteristic unless expressly stipulated in the contract. All rights are reserved with respect to the content of this documentation and the availability of the product.

Published by Bosch Rexroth AG

Bgm.-Dr.-Nebel-Str. 2 ■ 97816 Lohr a. Main, Germany Phone +49 9352 18 0 ■ Fax +49 9352 18 8400

http://www.boschrexroth.com/

Dept. DC-IA/EDY (MW), DC-IA/EDY1 (RB/US/BB), DC-IA/EDY2 (CG, MR), DC-IA/EDY4 (CR)

		Page
1	System Presentation	7
1.1	Drive Range Rexroth IndraDrive Cs	
1.1.1	Overview – Rexroth IndraDrive Cs	
1.1.2	Target Applications	
1.1.3	Features	
	Functional Features	
	Performance Features	
	Combination of HCS01 and MSM/MSK	
	Interfaces	
	Supported Encoder Systems	
1.2	System Configuration	
1.2.1	System Structure	
1.2.2	Components of the System	
	Drive Controllers HCS01	
	Control Panel HAP01	
	Firmware	
1.2.3	About This Documentation	
	Purpose	
	Editions	
	Documentations	20
	Your Feedback	
2	Important Directions for Lles	22
2 .1	Important Directions for Use	
2.1.1	Appropriate Use	
2.1.1		
	Areas of Use and Application	
2.2	Inappropriate Use	24
3	Safety Instructions for Electric Drives and Controls	25
3.1	Definitions of Terms	25
3.2	General Information	26
3.2.1	Using the Safety Instructions and Passing Them on to Others	26
3.2.2	Requirements for Safe Use	26
3.2.3	Hazards by Improper Use	27
3.3	Instructions with Regard to Specific Dangers	28
3.3.1	Protection Against Contact With Electrical Parts and Housings	28
3.3.2	Protective Extra-Low Voltage as Protection Against Electric Shock	29
3.3.3	Protection Against Dangerous Movements	
3.3.4	Protection Against Magnetic and Electromagnetic Fields During Operation and Mounting	31
3.3.5	Protection Against Contact With Hot Parts	32
3.3.6	Protection During Handling and Mounting	
3.3.7	Battery Safety	32
3.3.8	Protection Against Pressurized Systems	33

		Page
3.4	Explanation of Signal Words and the Safety Alert Symbol	33
4	Combining the Individual Components	35
4.1	Documentations	35
4.2	Brief Description of the Individual Components	35
4.2.1	HCS01 - Brief Description and Design	35
4.3	Configuring the Drive System	35
4.3.1	Converter	35
4.3.2	Functional Equipment	37
4.3.3	Firmware	38
	Firmware and Device Types	38
	Firmware-Types	38
	Firmware Variants	
4.3.4	Motors	39
	IndraDyn	39
	Third-Party Motors	40
4.3.5	Cables	
	Motor Power Cables	45
	Encoder Cables	
4.4	Installation Conditions	
4.4.1	Ambient and Operating Conditions	
4.4.2	Control Cabinet Design and Cooling	
4.4.3	UL Ratings	
4.4.4	Compatibility With Foreign Matters	
4.5	Mechanical Project Planning	
4.5.1	Drive Controller	
	Dimensional Drawings	
	Dimensions, Mass, Insulation, Sound Pressure Level	
	Temperatures, Cooling, Power Dissipation, Distances	
4.0	Mounting Positions of Components	
4.6	Electrical Project Planning	
4.6.1	Overall Connection Diagram	
4.6.2	Project Planning of Control Voltage	
	Control Voltage for Drive Systems	
4.6.3	Mains Connection	
4.0.3	Residual-Current-Operated Circuit Breakers (RCD, RCCB) as Additional Fusing	
	Mains Types	
	Type of Mains Connection	
	Mains Connected Load and Mains Current	
	Dimensioning the Line Cross Sections and Fuses	
	Dimensioning and Selecting the Mains Transformer	
	Dimensioning the Mains Filter	
	Selecting the Mains Filter	
	Determining the Mains Choke	
	Dimensioning the Mains Contactor	

		Page
	Combining Transformer, Mains Filter and Mains Choke	91
	Control Circuit for the Mains Connection	92
4.6.4	DC Bus Coupling	93
	Requirements for DC Bus Coupling	93
	Central Supply and DC Bus Coupling	93
	Group Supply and DC Bus Coupling	94
	Implementation of DC Bus Coupling	96
	DC Bus Capacitor Unit	99
	Module Bus and Parameterization	100
	Bb Relay Contact	100
4.7	Acceptance Tests and Approvals	101
5	Condition as Supplied, Identification, Transport and Storage	105
5.1	Condition as Supplied	105
5.1.1	Factory-Side Test	105
	Voltage Test and Insulation Resistance Test	105
5.1.2	Customer-Side Test	105
5.2	Identification	106
5.2.1	Type Plates	106
	Arrangement	106
	Structure	106
5.2.2	Scope of Supply	107
5.3	Transport of the Components	108
5.4	Storage of the Components	108
6	Mounting and Installation	109
6.1	Mounting HCS01 Devices in the Control Cabinet	109
6.2	Electrical Connection	110
6.2.1	Overall Connection Diagram	110
6.2.2	Connection Points	111
	Arrangement of the Connection Points HCS01	111
6.2.3	On-Board Connection Points	
	Connection of Equipment Grounding Conductor	
	X3, Mains Connection	115
	X4, Connection Motor Encoder	117
	X5, Motor Connection	
	X6, Motor Temperature Monitoring and Motor Holding Brake	
	X9, Integrated/External Braking Resistor	
	X13, 24V Supply (Control Voltage)	
	X24, X25, Multi-Ethernet	
	X24, X25, sercos III Master (CCD)	
	X26, Engineering Interface	
	X31, Digital Inputs, Digital Output	
	X32, Analog Input	
	X47, Bb Relay Contact, Module Bus	129

Bosch Rexroth AG

		Page
	X77, L+ L-, DC Bus Connection	131
	Shield Connection	134
	Ground Connection	135
6.2.4	Optional Connection Points	135
	X8, Optional Encoder (Option EC)	135
	X8, Encoder Emulation (Option EM)	136
	X22/X23, Multi-Ethernet / sercos III (Option ET)	137
	X30, PROFIBUS PB	137
	X49, Optional Safety Technology L3 or L4	141
	X61, CANopen (Option CN)	142
6.2.5	EMC Measures for Design and Installation	142
	Rules for Design of Installations With Drive Controllers in Compliance With EMC	142
	EMC-Optimal Installation in Facility and Control Cabinet	144
	Ground Connections	149
	Installing Signal Lines and Signal Cables	150
	General Measures of Radio Interference Suppression for Relays, Contactors, Switches, and Inductive Loads	
7	Technical Data of the Components	153
7.1	Control Section	153
7.1.1	EC - Standard Encoder Evaluation	153
	Supported Encoder Systems	153
	Encoder Type	153
	Power Supply	
	Encoder Cable Length	169
	Technical Data of Encoder Evaluation EC	
	Signal Assignment to the Actual Position Value	
7.1.2	EM - Encoder Emulation	173
	Cable	
	Incremental Encoder Emulation	
	Incremental Encoder Emulation with Signal Level Conversion	175
	Absolute Encoder Emulation (SSI Format)	175
7.1.3	ET - Multi-Ethernet	
	Display Elements	
	Ethernet/IP	
	EtherCAT	179
7.1.4	PB - PROFIBUS	
7.1.5	CN - CANopen	
7.1.6	Digital Inputs/Outputs	
	General Information	
	Digital Inputs	
	Digital Outputs	
	Digital Outputs (Safety Technology "L Options")	
7.1.7	Analog Input	
7.1.8	Relay Contacts	
	Relay Contact Type 2	185

		Page
7.2	Control Panel	186
7.2.1	Design	186
	Standard Control Panel	186
	ADVANCED Control Panel	186
7.3	Power Section	187
7.3.1	Control Voltage	187
7.3.2	Mains Voltage	189
7.3.3	DC Bus	195
7.3.4	Integrated Braking Resistor	197
7.3.5	Inverter	199
8	Cables, Accessories, Additional Components	203
8.1	Overview	
8.1.1	Cables	
8.1.2	Accessories	
8.1.3	Additional Components	204
8.2	Accessories	
8.2.1	Mounting and Connection Accessories (HAS09)	205
8.2.2	DC Bus Connector (RLS0778/K06)	
8.2.3	Battery Box for MSM Motors (SUP-E01-MSM-BATTERYBOX)	
8.2.4	Battery and Refresh Resistor (SUP-E03-DKC*CS-BATTRY)	
8.2.5	Encoder Cable for MSM Motors with Absolute Value Encoder (RKG0041)	
	Use	217
	Properties	218
	Project Planning	219
	Installation	220
	Replacing the Device	222
8.2.6	D-Sub Connector for Encoder Cable and Battery Connection (RGS0001/K01)	223
8.2.7	Hall Sensor Adapter Box (SHL03.1-NNN-S-NNN)	227
8.3	Additional Components	232
8.3.1	Transformers	232
	General Information	232
	Autotransformers for Drive Controllers	233
8.3.2	Mains Filters NFD / NFE	237
	Type Code NFE / NFD	237
	Mechanical Data NFE / NFD	238
	Electrical Data NFE / NFD	240
8.3.3	Mains Chokes	242
	Type Code	242
	Type Plate	243
	HNL01.1E - Mains Chokes, Infeeding	244
8.3.4	External Braking Resistors HLR	246
	Types	246
	Dimensions	247
	Installation	248
8.3.5	DC Bus Capacitor Units HLC	249

		Page
	Type Code	249
	Technical Data	249
	Connection	250
	Operation	251
9	Environmental Protection and Disposal	253
9.1	Environmental Protection	253
9.2	Disposal	253
10	Service and Support	255
11	Appendix	257
11.1	Determining the Leakage Capacitance	257
11.2	Leakage Capacitances	257
11.2.1	Leakage Capacitance of Motors	257
11.2.2	Leakage Capacitance of Power Cables	259
	Index	261

1 System Presentation

1.1 Drive Range Rexroth IndraDrive Cs

1.1.1 Overview – Rexroth IndraDrive Cs

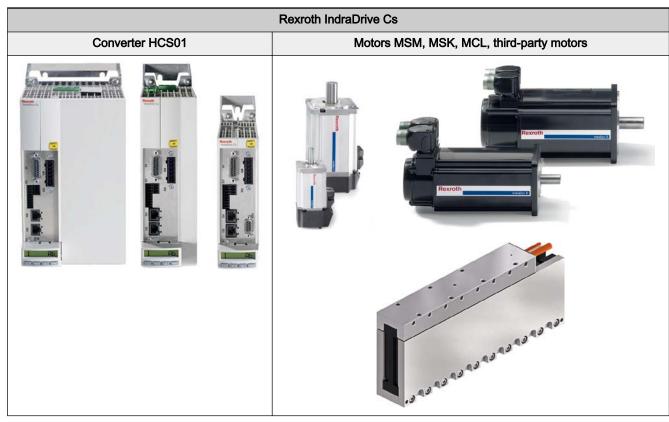


Fig. 1-1: Components of the Rexroth IndraDrive Cs Range

Target Applications 1.1.2

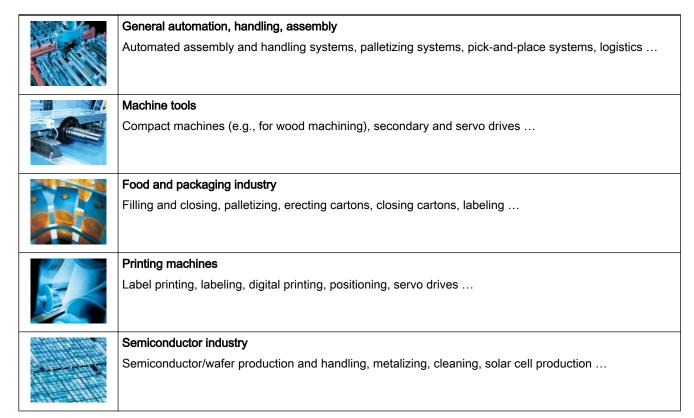


Fig.1-2: Target Applications

1.1.3 Features

Functional Features

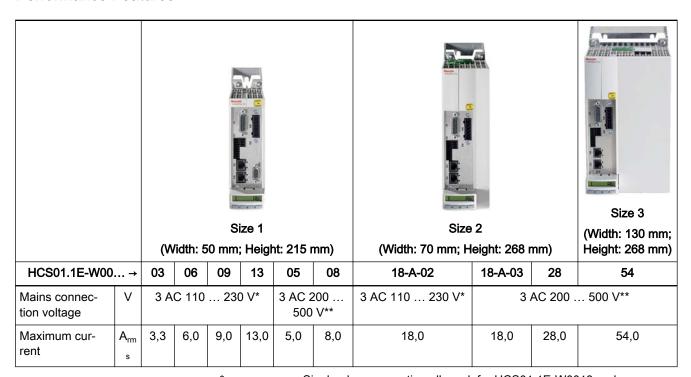
- Compact type of construction
- Degree of protection IP20
- Control panel with programming module function
- Scaleable signal processing and firmware
- Multi-encoder interface for all standard encoders (HIPERFACE®, En-Dat2.1, SSI, TTL, sin/cos, resolver, MSM encoder)
- DC bus connection (at HCS01.1E-W00xx-x-03 devices)
- Analog input (14 bit, ±10 V)
- 8 digital inputs
 - 2 probe inputs
 - 1 combined I/O which can be configured as digital input or as digital output
- Performance-dependent fan control
- Integrated brake current measurement and monitoring
- Winding short circuit at motor output for shutdown as reaction to fatal errors
- Compact MSM motors
- 2 options for buffering the data of MSM encoders
 - Battery box (SUP-E01-MSM-BATTERYBOX; mounting near the motor is possible; one battery box is required for each drive controller)
 - D-Sub connector (RGS0001/K01) for encoder cable (RKG0041) and connection of a battery or an uninterruptible power supply
- Hall sensor adapter box SHL03.1 to operate MCL linear motors with digital Hall sensors

HCS01 - ECONOMY vs. BASIC vs. ADVANCED

	HCS01.1E-W00**-A-0*						
	E-S3	B-ET	A-CC				
Functional equipment	(ECONOMY)	(BASIC)	(ADVANCED)				
Communication	sercos III	Multi-Ethernet	sercos III master (cross com-				
		(incl. sercos III)	munication)				
		Alternative interface ¹⁾	Alternative interface ¹⁾				
		(PROFIBUS DP, CANopen) ²⁾	(Multi-Ethernet, PROFIBUS DP, CANopen)				
Encoder evaluation	Multi-encoder interface	Multi-encoder interface	Multi-encoder interface				
		Optional multi-encoder inter- face ¹⁾	Optional multi-encoder inter- face ¹⁾				
Encoder emulation	_	✓	✓				

	HCS01.1E-W00**-A-0*							
Functional equipment	E-S3 (ECONOMY)	B-ET (BASIC)	A-CC (ADVANCED)					
Integrated Safety Technology	L3 (Safe Torque Off) L4 (Safe Torque Off, Safe Brake Control)	L3 (Safe Torque Off) L4 (Safe Torque Off, Safe Brake Control)	L3 (Safe Torque Off) L4 (Safe Torque Off, Safe Brake Control)					
		Safe Motion ³⁾	Safe Motion ³⁾					
ndraMotion –		MLD-S ⁴⁾	MLD-S ⁴⁾ MLD-M ⁴⁾					
Freely configurable digital inputs/outputs (incl. probe)		✓	✓					
Analog input ✓		✓	✓					
Operator terminal ■ With programming module function		✓	✓					
With slot for microSD memory card	-	_	✓					

1)	One additional interface per converter for communication or encoder
•	evaluation


²⁾ If you use "PROFIBUS DP" or "CANopen" communication, the Multi-Ethernet function is no longer available. However, you can still use the connection points X24 and X25 as engineering interfaces.

³⁾ In preparation

⁴⁾ Firmware version MPx-17 or higher

Fig. 1-3: ECONOMY vs. BASIC vs. ADVANCED

Performance Features

Single-phase operation allowed; for HCS01.1E-W0013 and HCS01.1E-W0018-A-02 with derating

** Single-phase operation not allowed
Fig.1-4: Converter HCS01 - Performance Features

Combination of HCS01 and MSM/MSK

		HCS01								
		3 AC	2 110 2	30 V		3 AC 200 500 V				
	W0003	W0006	W0009	W0013	W0018	W0005	W0008	W0018	W0028	W0054
MSM			•					•		
MSM019 MSM041			•				ı		_	_
MSK										
MSK030							ı	•		
MSK070C-0150										
MSK										
MSK070C-0300					•					
MSK103										

Optimum combination

Some allowed combinations are possible

Τ Allowed combination (transformer required, as operation of MSM only

allowed with a maximum of 3 AC 230 V) Combination not allowed

Converter HCS01 and Motors MSM/MSK Fig. 1-5:

Drive sizing with Rexroth IndraSize

Rexroth IndraSize is a software for optimum sizing of a drive system consisting of the components Rexroth IndraDrive and Indra-Dyn.

Rexroth IndraSize is available as a download.

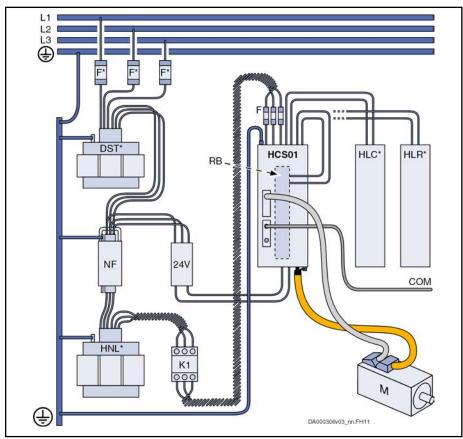
Interfaces

Overview

- Compatible with IndraDrive platform
- Ethernet-based communication with the following supported protocols:
 - sercos III
 - **PROFINET IO**
 - EtherNet/IP
 - **EtherCAT**
- Alternative communication:
 - PROFIBUS DP
 - CANopen
- Optional safety technology
- Optional multi-encoder interface
- Optional encoder emulation
- Analog input
- Freely configurable digital inputs/outputs

Supported Encoder Systems

Supported Encoder Systems


Encoder systems with a supply voltage of 5 and 12 volt

- MSM motor encoder
- MSK motor encoder
- Sin-cos encoder 1V_{pp}; HIPERFACE®
- Sin-cos encoder 1V_{pp}; EnDat 2.1; (EnDat 2.2 in preparation)
- Sin-cos encoder 1V_{pp}; with reference track
- 5V-TTL square-wave encoder; with reference track
- SSI
- \bullet Combined encoder for SSI (combination of SSI and sin-cos encoder $1V_{pp})$
- Resolver
- Hall sensor box SHL02.1
- Digital Hall sensor in conjunction with Hall sensor adapter box SHL03.1

1.2 System Configuration

Bosch Rexroth AG

1.2.1 System Structure

* Optional

24V Control voltage supply COM Communication DST Autotransformer

F Fuses HCS01 Converter

HLC DC bus capacitor unit (for devices with DC bus connection)

HLR External braking resistor

HNL Mains choke NF Mains filter

K1 External mains contactor

M Motor

RB Integrated braking resistor (at the back of the drive controller)

Fig.1-6: Drive System Rexroth IndraDrive Cs

1.2.2 Components of the System

Drive Controllers HCS01

Type Code

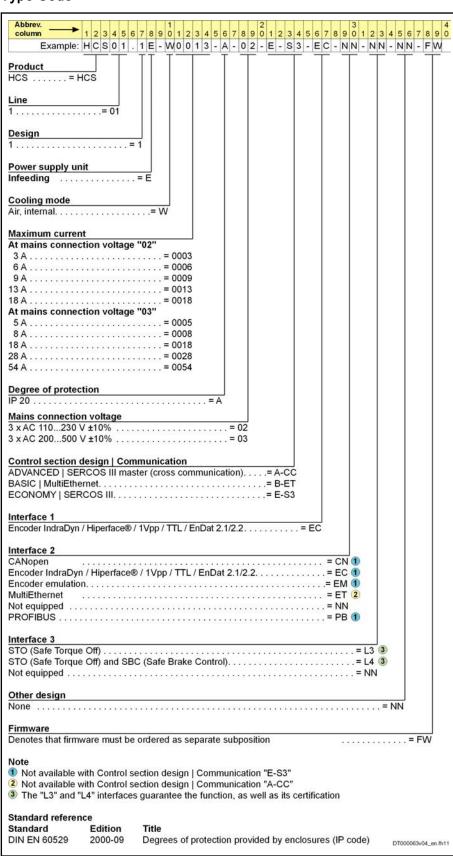


Fig. 1-7: Type Code HCS01

<u>.</u>

Bosch Rexroth AG

The figure illustrates the basic structure of the type code. Our sales representative will help you with the current state of available versions.

Control Panel HAP01

View

Fig. 1-8: Control Panel HAP01

Type Code

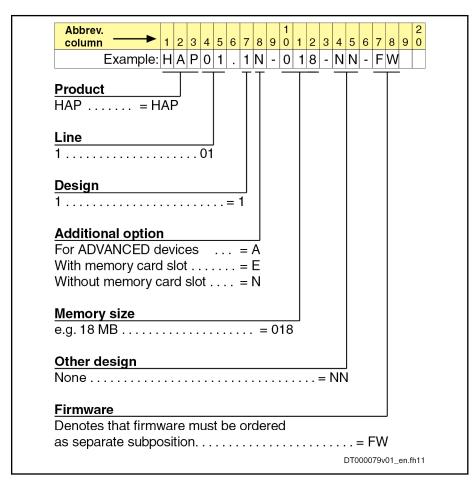


Fig.1-9: Type Code of Control Panel

The figure illustrates the basic structure of the type code. Our sales representative will help you with the current state of available versions.

Assignment HAP01 ↔ HCS01

Control panel	Drive controller
HAP01.1A	HCS01.1E-W****-*-**-A-CC (ADVANCED)
HAP01.1N	HCS01.1E-W***-*-**-B-ET (BASIC)
	HCS01.1E-W****-*-**-E-S3 (ECONOMY)
HAP01.1E	-

Fig.1-10: Assignment HAP01 ↔ HCS01

See also index entry

- "Standard control panel"
- "ADVANCED control panel"

Firmware

Firmware Types

ECONOMY

- FWA-INDRV*-MPE-16VRS-D5-x-NNN-NN
- FWA-INDRV*-MPE-17VRS-D5-x-NNN-NN

BASIC

- FWA-INDRV*-MPB-16VRS-D5-x-xxx-xx
- FWA-INDRV*-MPB-17VRS-D5-x-xxx-xx

ADVANCED

• FWA-INDRV*-MPC-17VRS-D5-x-xxx-xx

See also index entry "Firmware → Types".

For detailed information, see the Functional Description of the firmware used (index entry "Overview of functions/functional packages").

1.2.3 About This Documentation

Bosch Rexroth AG

Purpose

WARNING

Personal injury and property damage caused by incorrect project planning for applications, machines and installations!

Observe the contents of the documentations relevant to your drive system (see "Documentations").

This documentation contains

- Overview information of the Rexroth IndraDrive Cs drive system
- Description of the allowed combinations of Rexroth IndraDrive Cs system components
- Selection of the system components of the Rexroth IndraDrive Cs drive system
- Specification applying to all components (ambient and operating conditions)
- Application description of system characteristics

Editions

Edition	Release date	Notes	
01	2009/08	First edition	
02	2012/07	Changes in comparison to previous edition:	
		New Contents	
		• HCS01.1E-W005403	
		• HCS01.1E-W001802	
		Safety technology (L3, L4)	
		Encoder emulation (EM)	
		Communication CANopen (CN)	
		Hall sensor adapter box SHL03.1-NNN-S-NNN	
		Encoder cable RKG0041	
		D-Sub connector RGS0001/K01 for encoder cable and battery connection	
		Braking resistors HLR01.2	
		DC bus capacitor units HLC01.2	
		Transformers	
		ADVANCED control panel	
		Third-party motors	
		Tightening torques of the connection points	
		EtherCAT display elements	
		Revised contents	
		Type code	
		Technical data	
		Project planning for control voltage supply	
		DC bus coupling	
		Mains filter: Dimensioning and selection	
		Standard encoder evaluation	
		Connection diagram for HIPERFACE encoder	
		Mounting and connection accessories HAS09	
		Accessory SUP-E03-DKC*CS-BATTRY	
		Control cabinet cooling	
		Overview of documentations	

Fig.1-11: Editions

Bosch Rexroth AG

Documentations

Drive Systems, System Components

Title Rexroth IndraDrive	Kind of documentation	Document typecode ¹⁾ DOK-INDRV*	Part number R911
Cs Drive Systems	Project Planning Manual	HCS01*****-PRxx-EN-P	322210

In the document typecodes, "xx" is a wild card for the current edition of the documentation (example: PR01 is the first edition of a Project 1)

Planning Manual)

Fig. 1-12: Documentations - Drive Systems, System Components

Motors

Title	Kind of documentation	Document typecode ¹⁾	Part number
Rexroth IndraDyn		DOK-MOTOR*	R911
A Asynchronous Motors MAD / MAF	Project Planning Manual	MAD/MAF***-PRxx-EN-P	295781
H Synchronous Kit Spindle Motors	Project Planning Manual	MBS-H*****-PRxx-EN-P	297895
L Synchronous Linear Motors	Project Planning Manual	MLF******-PRxx-EN-P	293635
L Coreless Linear Motors MCL	Project Planning Manual	MCL******-PRxx-EN-P	330592
S Synchronous Motors MKE	Project Planning Manual	MKE*GEN2***-PRxx-EN-P	297663
S Synchronous Motors MSK	Project Planning Manual	MSK******-PRxx-EN-P	296289
S Synchronous Motors MSM	Data Sheet	MSM******-DAxx-EN-P	329338
S Synchronous Motors QSK	Project Planning Manual	QSK******-PRxx-EN-P	330321
T Synchronous Torque Motors	Project Planning Manual	MBT******-PRxx-EN-P	298798

In the document typecodes, "xx" is a wild card for the current edition of the documentation (example: PR01 is the first edition of a Project 1)

Planning Manual)

Fig. 1-13: Documentations - Motors

Cables

Title	Kind of documentation	Document typecode ¹⁾ DOK-CONNEC	Part number R911
Rexroth Connection Cables IndraDrive and IndraDyn	Selection Data	CABLE*INDRV-CAxx-EN-P	322949

In the document typecodes, "xx" is a wild card for the current edition of the documentation (example: CA03 is the third edition of the documentation "Catalog") 1)

Fig. 1-14: Documentations - Cables

Firmware

Title Rexroth IndraDrive	Kind of documentation	Document typecode ¹⁾ DOK-INDRV*	Part number R911
MPx-17	Application Manual	MP*-17VRS**-APxx-EN-P	331236
Functions			
MPx-17	Release Notes	MP*-17VRS**-RNxx-EN-P	331588
Version Notes			

Title	Kind of documentation	Document typecode ¹⁾	Part number
Rexroth IndraDrive		DOK-INDRV*	R911
MPx-16	Application Manual	MP*-16VRS**-APxx-EN-P	326767
Functions			
MPx-16	Release Notes	MP*-16VRS**-RNxx-EN-P	329272
Version Notes			
MPx-16 and MPx-17	Reference Book	GEN1-PARA**-RExx-EN-P	328651
Parameters			
MPx-16 and MPx-17	Reference Book	GEN1-DIAG**-RExx-EN-P	326738
Diagnostic Messages			
Integrated Safety Technology	Application Manual	SI3-OP-MAN*-APxx-EN-P	332634
as of MPx-1x			
Rexroth IndraMotion MLD	Reference Book	MLD-SYSLIB2-RExx-EN-P	332627
Libraries as of MPx17			
Rexroth IndraMotion MLD	Application Manual	MLD2-**VRS*-APxx-EN-P	334351
as of MPx-17			

In the document typecodes, "xx" is a wild card for the current edition of the documentation (example: RE02 is the second edition of a Refer-1)

ence Book)

Fig. 1-15: Documentations - Firmware

Your Feedback

礟

Your experience is important for our improvement processes of products and documentations.

Inform us about mistakes you discovered in this documentation and changes you suggest; we would be grateful for your feedback.

Please send your remarks to:

Address for Your Feedback

Bosch Rexroth AG

Dept. DC-IA/EDY1

Buergermeister-Dr.-Nebel-Str. 2

97816 Lohr, Germany

E-mail: dokusupport@boschrexroth.de

Important Directions for Use

2 Important Directions for Use

2.1 Appropriate Use

2.1.1 Introduction

Rexroth products reflect the state-of-the-art in their development and their manufacture. They are tested prior to delivery to ensure operating safety and reliability.

▲ WARNING

Personal injury and property damage caused by incorrect use of the products!

The products have been designed for use in industrial environments and may only be used in the appropriate way. If they are not used in the appropriate way, situations resulting in property damage and personal injury can occur.

Rexroth as manufacturer is not liable for any damages resulting from inappropriate use. In such cases, the guarantee and the right to payment of damages resulting from inappropriate use are forfeited. The user alone carries all responsibility of the risks.

Before using Rexroth products, the following pre-requisites must be met to ensure appropriate use of the products:

- Personnel that in any way, shape or form uses our products must first read and understand the relevant safety instructions and be familiar with their appropriate use.
- If the products take the form of hardware, then they must remain in their original state, in other words, no structural changes are permitted. It is not permitted to decompile software products or alter source codes.
- Damaged or faulty products may not be installed or put into operation.
- Make sure that the products have been installed in the manner described in the relevant documentation.

2.1.2 Areas of Use and Application

Drive controllers made by Rexroth are designed to control electrical motors and monitor their operation.

Control and monitoring of the Drive controllers may require additional sensors and actors.

The drive controllers may only be used with the accessories and parts specified in this documentation. If a component has not been specifically named, then it may neither be mounted nor connected. The same applies to cables and lines.

Operation is only permitted in the specified configurations and combinations of components using the software and firmware as specified in the relevant Functional Descriptions.

Drive controllers have to be programmed before commissioning to ensure that the motor executes the specific functions of an application.

Drive controllers of the Rexroth IndraDrive Cs line have been developed for use in single- and multi-axis drive and control tasks.

Bosch Rexroth AG

To ensure application-specific use of Drive controllers, device types of different drive power and different interfaces are available.

Typical applications include, for example:

- Handling and mounting systems,
- Packaging and food machines,
- Printing and paper processing machines and
- Machine tools.

Drive controllers may only be operated under the assembly and installation conditions described in this documentation, in the specified position of normal use and under the ambient conditions as described (temperature, degree of protection, humidity, EMC, etc.).

2.2 Inappropriate Use

Using the Drive controllers outside of the operating conditions described in this documentation and outside of the technical data and specifications given is defined as "inappropriate use".

Drive controllers may not be used, if ...

- they are subject to operating conditions that do not meet the specified ambient conditions. This includes, for example, operation under water, under extreme temperature fluctuations or extremely high maximum temperatures.
- Furthermore, Drive controllers may not be used in applications which have not been expressly authorized by Rexroth. Please carefully follow the specifications outlined in the general Safety Instructions!

Components of the Rexroth IndraDrive Cs system are products of category C3 (with limited availability) according to IEC 61800-3. To ensure that this category (limit values) is maintained, suitable line filters must be used in the drive system.

These components are not provided for use in a public low-voltage network supplying residential areas with power. If these components are used in such a public network, high-frequency interference is to be expected. This can require additional measures of radio interference suppression.

3 Safety Instructions for Electric Drives and Controls

3.1 Definitions of Terms

Application Documentation

Application documentation comprises the entire documentation used to inform the user of the product about the use and safety-relevant features for configuring, integrating, installing, mounting, commissioning, operating, maintaining, repairing and decommissioning the product. The following terms are also used for this kind of documentation: User Guide, Operation Manual, Commissioning Manual, Instruction Manual, Project Planning Manual, Application Manual, etc.

Component

A component is a combination of elements with a specified function, which are part of a piece of equipment, device or system. Components of the electric drive and control system are, for example, supply units, drive controllers, mains choke, mains filter, motors, cables, etc.

Control System

A control system comprises several interconnected control components placed on the market as a single functional unit.

Device

A device is a finished product with a defined function, intended for users and placed on the market as an individual piece of merchandise.

Electrical Equipment

Electrical equipment encompasses all devices used to generate, convert, transmit, distribute or apply electrical energy, such as electric motors, transformers, switching devices, cables, lines, power-consuming devices, circuit board assemblies, plug-in units, control cabinets, etc.

Electric Drive System

An electric drive system comprises all components from mains supply to motor shaft; this includes, for example, electric motor(s), motor encoder(s), supply units and drive controllers, as well as auxiliary and additional components, such as mains filter, mains choke and the corresponding lines and cables.

Installation

An installation consists of several devices or systems interconnected for a defined purpose and on a defined site which, however, are not intended to be placed on the market as a single functional unit.

Machine

A machine is the entirety of interconnected parts or units at least one of which is movable. Thus, a machine consists of the appropriate machine drive elements, as well as control and power circuits, which have been assembled for a specific application. A machine is, for example, intended for processing, treatment, movement or packaging of a material. The term "machine" also covers a combination of machines which are arranged and controlled in such a way that they function as a unified whole.

Manufacturer

The manufacturer is an individual or legal entity bearing responsibility for the design and manufacture of a product which is placed on the market in the individual's or legal entity's name. The manufacturer can use finished products, finished parts or finished elements, or contract out work to subcontractors. However, the manufacturer must always have overall control and possess the required authority to take responsibility for the product.

Product

Examples of a product: Device, component, part, system, software, firmware, among other things.

Project Planning Manual

A project planning manual is part of the application documentation used to support the sizing and planning of systems, machines or installations.

Qualified Persons

In terms of this application documentation, qualified persons are those persons who are familiar with the installation, mounting, commissioning and operation of the components of the electric drive and control system, as well as with the hazards this implies, and who possess the qualifications their work

Bosch Rexroth AG

requires. To comply with these qualifications, it is necessary, among other things,

- 1) to be trained, instructed or authorized to switch electric circuits and devices safely on and off, to ground them and to mark them
- 2) to be trained or instructed to maintain and use adequate safety equipment
- 3) to attend a course of instruction in first aid

User A ı

A user is a person installing, commissioning or using a product which has been placed on the market.

3.2 General Information

3.2.1 Using the Safety Instructions and Passing Them on to Others

Do not attempt to install and operate the components of the electric drive and control system without first reading all documentation provided with the product. Read and understand these safety instructions and all user documentation prior to working with these components. If you do not have the user documentation for the components, contact your responsible Rexroth sales partner. Ask for these documents to be sent immediately to the person or persons responsible for the safe operation of the components.

If the component is resold, rented and/or passed on to others in any other form, these safety instructions must be delivered with the component in the official language of the user's country.

Improper use of these components, failure to follow the safety instructions in this document or tampering with the product, including disabling of safety devices, could result in property damage, injury, electric shock or even death.

3.2.2 Requirements for Safe Use

Read the following instructions before initial commissioning of the components of the electric drive and control system in order to eliminate the risk of injury and/or property damage. You must follow these safety instructions.

- Rexroth is not liable for damages resulting from failure to observe the safety instructions.
- Read the operating, maintenance and safety instructions in your language before commissioning. If you find that you cannot completely understand the application documentation in the available language, please ask your supplier to clarify.
- Proper and correct transport, storage, mounting and installation, as well as care in operation and maintenance, are prerequisites for optimal and safe operation of the component.
- Only qualified persons may work with components of the electric drive and control system or within its proximity.
- Only use accessories and spare parts approved by Rexroth.
- Follow the safety regulations and requirements of the country in which the components of the electric drive and control system are operated.
- Only use the components of the electric drive and control system in the manner that is defined as appropriate. See chapter "Appropriate Use".
- The ambient and operating conditions given in the available application documentation must be observed.
- Applications for functional safety are only allowed if clearly and explicitly specified in the application documentation "Integrated Safety Technolo-

gy". If this is not the case, they are excluded. Functional safety is a safety concept in which measures of risk reduction for personal safety depend on electrical, electronic or programmable control systems.

 The information given in the application documentation with regard to the use of the delivered components contains only examples of applications and suggestions.

The machine and installation manufacturers must

- make sure that the delivered components are suited for their individual application and check the information given in this application documentation with regard to the use of the components,
- make sure that their individual application complies with the applicable safety regulations and standards and carry out the required measures, modifications and complements.
- Commissioning of the delivered components is only allowed once it is sure that the machine or installation in which the components are installed complies with the national regulations, safety specifications and standards of the application.
- Operation is only allowed if the national EMC regulations for the application are met.
- The instructions for installation in accordance with EMC requirements can be found in the section on EMC in the respective application documentation.

The machine or installation manufacturer is responsible for compliance with the limit values as prescribed in the national regulations.

The technical data, connection and installation conditions of the components are specified in the respective application documentations and must be followed at all times.

National regulations which the user must take into account

- European countries: In accordance with European EN standards
- United States of America (USA):
 - National Electrical Code (NEC)
 - National Electrical Manufacturers Association (NEMA), as well as local engineering regulations
 - Regulations of the National Fire Protection Association (NFPA)
- Canada: Canadian Standards Association (CSA)
- Other countries:
 - International Organization for Standardization (ISO)
 - International Electrotechnical Commission (IEC)

3.2.3 Hazards by Improper Use

- High electrical voltage and high working current! Danger to life or serious injury by electric shock!
- High electrical voltage by incorrect connection! Danger to life or injury by electric shock!
- Dangerous movements! Danger to life, serious injury or property damage by unintended motor movements!
- Health hazard for persons with heart pacemakers, metal implants and hearing aids in proximity to electric drive systems!

Bosch Rexroth AG

- Risk of burns by hot housing surfaces!
- Risk of injury by improper handling! Injury by crushing, shearing, cutting, hitting!
- Risk of injury by improper handling of batteries!
- Risk of injury by improper handling of pressurized lines!

Instructions with Regard to Specific Dangers 3.3

3.3.1 Protection Against Contact With Electrical Parts and Housings

This section concerns components of the electric drive and control system with voltages of more than 50 volts.

Contact with parts conducting voltages above 50 volts can cause personal danger and electric shock. When operating components of the electric drive and control system, it is unavoidable that some parts of these components conduct dangerous voltage.

High electrical voltage! Danger to life, risk of injury by electric shock or serious injury!

- Only qualified persons are allowed to operate, maintain and/or repair the components of the electric drive and control system.
- Follow the general installation and safety regulations when working on power installations.
- Before switching on, the equipment grounding conductor must have been permanently connected to all electric components in accordance with the connection diagram.
- Even for brief measurements or tests, operation is only allowed if the equipment grounding conductor has been permanently connected to the points of the components provided for this purpose.
- Before accessing electrical parts with voltage potentials higher than 50 V, you must disconnect electric components from the mains or from the power supply unit. Secure the electric component from reconnection
- With electric components, observe the following aspects:
 - Always wait **30 minutes** after switching off power to allow live capacitors to discharge before accessing an electric component. Measure the electrical voltage of live parts before beginning to work to make sure that the equipment is safe to touch.
- Install the covers and guards provided for this purpose before switching
- Never touch electrical connection points of the components while power is turned on.
- Do not remove or plug in connectors when the component has been powered.
- Under specific conditions, electric drive systems can be operated at mains protected by residual-current-operated circuit-breakers sensitive to universal current (RCDs/RCMs).

 Secure built-in devices from penetrating foreign objects and water, as well as from direct contact, by providing an external housing, for example a control cabinet.

High housing voltage and high leakage current! Danger to life, risk of injury by electric shock!

- Before switching on and before commissioning, ground or connect the components of the electric drive and control system to the equipment grounding conductor at the grounding points.
- Connect the equipment grounding conductor of the components of the electric drive and control system permanently to the main power supply at all times. The leakage current is greater than 3.5 mA.
- Establish an equipment grounding connection with a minimum cross section according to the table below. With an outer conductor cross section smaller than 10 mm² (8 AWG), the alternative connection of two equipment grounding conductors is allowed, each having the same cross section as the outer conductors.

Cross section outer con- ductor	Minimum cross section equipment grounding conductor Leakage current ≥ 3.5 mA		
	1 equipment grounding conductor	2 equipment grounding conductors	
1,5 mm ² (AWG 16)		2 × 1,5 mm ² (AWG 16)	
2,5 mm ² (AWG 14)		2 × 2,5 mm ² (AWG 14)	
4 mm² (AWG 12)	10 mm ² (AWG 8)	2 × 4 mm ² (AWG 12)	
6 mm ² (AWG 10)		2 × 6 mm ² (AWG 10)	
10 mm ² (AWG 8)		-	
16 mm ² (AWG 6)		-	
25 mm ² (AWG 4)	16 mm ² (AWG 6)	-	
35 mm ² (AWG 2)		-	
50 mm ² (AWG 1/0)	25 mm ² (AWG 4)	-	
70 mm ² (AWG 2/0)	35 mm ² (AWG 2)	-	

Fig.3-1: Minimum Cross Section of the Equipment Grounding Connection

3.3.2 Protective Extra-Low Voltage as Protection Against Electric Shock

Protective extra-low voltage is used to allow connecting devices with basic insulation to extra-low voltage circuits.

On components of an electric drive and control system provided by Rexroth, all connections and terminals with voltages between 5 and 50 volts are PELV ("Protective Extra-Low Voltage") systems. It is allowed to connect devices equipped with basic insulation (such as programming devices, PCs, notebooks, display units) to these connections.

Bosch Rexroth AG

Danger to life, risk of injury by electric shock! High electrical voltage by incorrect connection!

If extra-low voltage circuits of devices containing voltages and circuits of more than 50 volts (e.g., the mains connection) are connected to Rexroth products, the connected extra-low voltage circuits must comply with the requirements for PELV ("Protective Extra-Low Voltage").

3.3.3 Protection Against Dangerous Movements

Dangerous movements can be caused by faulty control of connected motors. Some common examples are:

- Improper or wrong wiring or cable connection
- Operator errors
- Wrong input of parameters before commissioning
- Malfunction of sensors and encoders
- Defective components
- Software or firmware errors

These errors can occur immediately after equipment is switched on or even after an unspecified time of trouble-free operation.

The monitoring functions in the components of the electric drive and control system will normally be sufficient to avoid malfunction in the connected drives. Regarding personal safety, especially the danger of injury and/or property damage, this alone cannot be relied upon to ensure complete safety. Until the integrated monitoring functions become effective, it must be assumed in any case that faulty drive movements will occur. The extent of faulty drive movements depends upon the type of control and the state of operation.

Dangerous movements! Danger to life, risk of injury, serious injury or property damage!

A **risk assessment** must be prepared for the installation or machine, with its specific conditions, in which the components of the electric drive and control system are installed.

As a result of the risk assessment, the user must provide for monitoring functions and higher-level measures on the installation side for personal safety. The safety regulations applicable to the installation or machine must be taken into consideration. Unintended machine movements or other malfunctions are possible if safety devices are disabled, bypassed or not activated.

To avoid accidents, injury and/or property damage:

- Keep free and clear of the machine's range of motion and moving machine parts. Prevent personnel from accidentally entering the machine's range of motion by using, for example:
 - Safety fences
 - Safety guards
 - Protective coverings
 - Light barriers
- Make sure the safety fences and protective coverings are strong enough to resist maximum possible kinetic energy.
- Mount emergency stopping switches in the immediate reach of the operator. Before commissioning, verify that the emergency stopping equip-

ment works. Do not operate the machine if the emergency stopping switch is not working.

- Prevent unintended start-up. Isolate the drive power connection by means of OFF switches/OFF buttons or use a safe starting lockout.
- Make sure that the drives are brought to safe standstill before accessing or entering the danger zone.
- Additionally secure vertical axes against falling or dropping after switching off the motor power by, for example,
 - mechanically securing the vertical axes,
 - adding an external braking/arrester/clamping mechanism or
 - ensuring sufficient counterbalancing of the vertical axes.
- The standard equipment motor holding brake or an external holding brake controlled by the drive controller is not sufficient to guarantee personal safety!
- Disconnect electrical power to the components of the electric drive and control system using the master switch and secure them from reconnection ("lock out") for:
 - Maintenance and repair work
 - Cleaning of equipment
 - Long periods of discontinued equipment use
- Prevent the operation of high-frequency, remote control and radio equipment near components of the electric drive and control system and their supply leads. If the use of these devices cannot be avoided, check the machine or installation, at initial commissioning of the electric drive and control system, for possible malfunctions when operating such high-frequency, remote control and radio equipment in its possible positions of normal use. It might possibly be necessary to perform a special electromagnetic compatibility (EMC) test.

3.3.4 Protection Against Magnetic and Electromagnetic Fields During Operation and Mounting

Magnetic and electromagnetic fields generated by current-carrying conductors or permanent magnets of electric motors represent a serious danger to persons with heart pacemakers, metal implants and hearing aids.

Health hazard for persons with heart pacemakers, metal implants and hearing aids in proximity to electric components!

- Persons with heart pacemakers and metal implants are not allowed to enter the following areas:
 - Areas in which components of the electric drive and control systems are mounted, commissioned and operated.
 - Areas in which parts of motors with permanent magnets are stored, repaired or mounted.
- If it is necessary for somebody with a heart pacemaker to enter such an area, a doctor must be consulted prior to doing so. The noise immunity of implanted heart pacemakers differs so greatly that no general rules can be given.
- Those with metal implants or metal pieces, as well as with hearing aids, must consult a doctor before they enter the areas described above.

Bosch Rexroth AG

3.3.5 Protection Against Contact With Hot Parts

Hot surfaces of components of the electric drive and control system. Risk of burns!

- Do not touch hot surfaces of, for example, braking resistors, heat sinks, supply units and drive controllers, motors, windings and laminated cores!
- According to the operating conditions, temperatures of the surfaces can be **higher than 60 °C** (140 °F) during or after operation.
- Before touching motors after having switched them off, let them cool down for a sufficient period of time. Cooling down can require up to 140 minutes! The time required for cooling down is approximately five times the thermal time constant specified in the technical data.
- After switching chokes, supply units and drive controllers off, wait 15 minutes to allow them to cool down before touching them.
- Wear safety gloves or do not work at hot surfaces.
- For certain applications, and in accordance with the respective safety regulations, the manufacturer of the machine or installation must take measures to avoid injuries caused by burns in the final application. These measures can be, for example: Warnings at the machine or installation, guards (shieldings or barriers) or safety instructions in the application documentation.

3.3.6 Protection During Handling and Mounting

Risk of injury by improper handling! Injury by crushing, shearing, cutting, hit-ting!

- Observe the relevant statutory regulations of accident prevention.
- Use suitable equipment for mounting and transport.
- Avoid jamming and crushing by appropriate measures.
- Always use suitable tools. Use special tools if specified.
- Use lifting equipment and tools in the correct manner.
- Use suitable protective equipment (hard hat, safety goggles, safety shoes, safety gloves, for example).
- Do not stand under hanging loads.
- Immediately clean up any spilled liquids from the floor due to the risk of falling!

3.3.7 Battery Safety

Batteries consist of active chemicals in a solid housing. Therefore, improper handling can cause injury or property damage.

Risk of injury by improper handling!

- Do not attempt to reactivate low batteries by heating or other methods (risk of explosion and cauterization).
- Do not attempt to recharge the batteries as this may cause leakage or explosion.
- Do not throw batteries into open flames.
- Do not dismantle batteries.

- When replacing the battery/batteries, do not damage the electrical parts installed in the devices.
- Only use the battery types specified for the product.

Environmental protection and disposal! The batteries contained in the product are considered dangerous goods during land, air, and sea transport (risk of explosion) in the sense of the legal regulations. Dispose of used batteries separately from other waste. Observe the national regulations of your country.

3.3.8 Protection Against Pressurized Systems

According to the information given in the Project Planning Manuals, motors and components cooled with liquids and compressed air can be partially supplied with externally fed, pressurized media, such as compressed air, hydraulics oil, cooling liquids and cooling lubricants. Improper handling of the connected supply systems, supply lines or connections can cause injuries or property damage.

Risk of injury by improper handling of pressurized lines!

- Do not attempt to disconnect, open or cut pressurized lines (risk of explosion).
- Observe the respective manufacturer's operating instructions.
- Before dismounting lines, relieve pressure and empty medium.
- Use suitable protective equipment (safety goggles, safety shoes, safety gloves, for example).
- Immediately clean up any spilled liquids from the floor due to the risk of falling!

Environmental protection and disposal! The agents (e.g., fluids) used to operate the product might not be environmentally friendly. Dispose of agents harmful to the environment separately from other waste. Observe the national regulations of your country.

3.4 Explanation of Signal Words and the Safety Alert Symbol

The Safety Instructions in the available application documentation contain specific signal words (DANGER, WARNING, CAUTION or NOTICE) and, where required, a safety alert symbol (in accordance with ANSI Z535.6-2011).

The signal word is meant to draw the reader's attention to the safety instruction and identifies the hazard severity.

The safety alert symbol (a triangle with an exclamation point), which precedes the signal words DANGER, WARNING and CAUTION, is used to alert the reader to personal injury hazards.

A DANGER

In case of non-compliance with this safety instruction, death or serious injury will occur.

Bosch Rexroth AG

▲ WARNING

In case of non-compliance with this safety instruction, death or serious injury **could** occur.

▲ CAUTION

In case of non-compliance with this safety instruction, minor or moderate injury could occur.

NOTICE

In case of non-compliance with this safety instruction, property damage could occur.

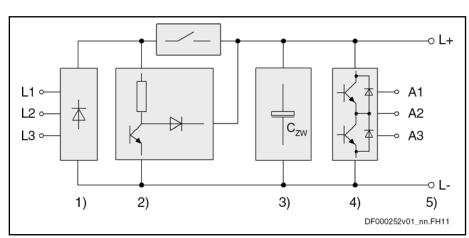
4 Combining the Individual Components

4.1 Documentations

See index entry "Documentation".

4.2 Brief Description of the Individual Components

4.2.1 HCS01 - Brief Description and Design


Brief Description

The compact converters HCS01 are part of the Rexroth IndraDrive Cs product range and are used to operate Rexroth IndraDyn motors or third-party motors.

HCS01 types:

- 02: Mains connection voltage 3 AC 110 ... 230 V
- 03: Mains connection voltage 3 AC 200 ... 500 V

Design, Block Diagram

- 1) Mains input with rectifier
- 2) Braking resistor circuit; charging current limitation
- 3) DC bus capacitors
- 4) Inverter stage with output to motor
- 5) DC bus connection Fig.4-1: Block Diagram HCS01

4.3 Configuring the Drive System

4.3.1 Converter

The selection of the appropriate converter depends on

- Mains type
- Mains voltage
- Mains supply (1-phase or 3-phase)

Mains Type and Mains Voltage

IT r	nains	TN-S mains
Mains grounded	via outer conductor	TN-C mains
Mains voltage ≤ 3 AC 230V	Mains voltage 3 AC 230 500 V	To be noticed with 1 phase mains valt
No transformer required	Isolating transformer with grounded neutral point required	To be noticed with 1-phase mains volt- age: See table "Mains Supply"
HCS01.1E-W0003-A- 02	HCS01.1E-W0005-A- 03	HCS01.1E-W0003-A- 02
HCS01.1E-W0006-A- 02	HCS01.1E-W0008-A- 03	HCS01.1E-W0006-A- 02
HCS01.1E-W0009-A- 02	HCS01.1E-W0018-A- 03	HCS01.1E-W0009-A- 02
HCS01.1E-W0013-A- 02	HCS01.1E-W0028-A- 03	HCS01.1E-W0013-A- 02
HCS01.1E-W0018-A- 02	HCS01.1E-W0054-A- 03	HCS01.1E-W0018-A- 02
HCS01.1E-W0005-A- 03		HCS01.1E-W0005-A- 03
HCS01.1E-W0008-A- 03		HCS01.1E-W0008-A- 03
HCS01.1E-W0018-A- 03		HCS01.1E-W0018-A- 03
HCS01.1E-W0028-A- 03		HCS01.1E-W0028-A- 03
HCS01.1E-W0054-A- 03		HCS01.1E-W0054-A- 03

Fig.4-2: Mains Type and Mains Voltage

Mains Supply

1-phase ¹⁾	3-pl	hase		
1 AC 110 230 V	3 AC 200) 500 V		
	Autotransformer	-		
	3 AC 110 230 V	-		
HCS01.1E-\	HCS01.1E-W0003-A- 02			
HCS01.1E-\	HCS01.1E-W0006-A- 02			
HCS01.1E-\	HCS01.1E-W0009-A- 02			
HCS01.1E-\	N0013-A- 02	HCS01.1E-W0028-A- 03		
HCS01.1E-\	W0018-A- 02	HCS01.1E-W0054-A- 03		
	Mains supply			
Individua	Individual supply			
	Group supply			
		Central supply		

With 1-phase mains supply, you can connect the mains supply line to connector X3 at L1, L2 or L3

Fig.4-3: Mains Supply

DC Bus Coupling

If energy compensation is to be available between the individual devices, the DC buses of these devices must be coupled. DC bus coupling restricts the selection of HCS01 converters. For detailed information on DC bus coupling, see this documentation under the index entry "DC bus \rightarrow Coupling".

4.3.2 Functional Equipment

HCS01 - ECONOMY vs. BASIC vs. ADVANCED

	HCS01.1E-W00**-A-0*								
Functional equipment	E-S3 (ECONOMY)	B-ET (BASIC)	A-CC (ADVANCED)						
Communication	sercos III	Multi-Ethernet (incl. sercos III)	sercos III master (cross com- munication)						
		Alternative interface ¹⁾ (PROFIBUS DP, CANopen) ²⁾	Alternative interface ¹⁾ (Multi-Ethernet, PROFIBUS DP, CANopen)						
Encoder evaluation	Multi-encoder interface	Multi-encoder interface	Multi-encoder interface						
		Optional multi-encoder inter- face ¹⁾	Optional multi-encoder inter- face ¹⁾						
Encoder emulation	-	✓	✓						
Integrated Safety Technology	L3 (Safe Torque Off)	L3 (Safe Torque Off)	L3 (Safe Torque Off)						
	L4 (Safe Torque Off, Safe Brake Control)	L4 (Safe Torque Off, Safe Brake Control)	L4 (Safe Torque Off, Safe Brake Control)						
		Safe Motion ³⁾	Safe Motion ³⁾						
IndraMotion	-	MLD-S ⁴⁾	MLD-S ⁴⁾						
			MLD-M ⁴⁾						
Freely configurable digital inputs/outputs (incl. probe)	✓	1	✓						
Analog input	✓	✓	✓						
Operator terminal With programming module function	✓	1	✓						
With slot for microSD memory card	-	-	✓						

 One additional interface per converter for communication or encoder evaluation

2) If you use "PROFIBUS DP" or "CANopen" communication, the Multi-Ethernet function is no longer available. However, you can still use the connection points X24 and X25 as engineering interfaces.

3) In preparation

4) Firmware version MPx-17 or higher

Fig.4-4: ECONOMY vs. BASIC vs. ADVANCED

4.3.3 Firmware

Firmware and Device Types

Firmware	Assigned device type
FWA-INDRV*-MP E-16 VRS-D5-x-NNN-NN	HCS01.1E-W00**-A-0*- E-S3 (ECONOMY)
FWA-INDRV*-MP E-17 VRS-D5-x-NNN-NN	
FWA-INDRV*-MP B-16 VRS-D5-x-xxx-xx	HCS01.1E-W00**-A-0*- B-ET (BASIC)
FWA-INDRV*-MP B-17 VRS-D5-x-xxx-xx	
FWA-INDRV*-MP C-17 VRS-D5-x-xxx-xx	HCS01.1E-W00**-A-0*- A-CC (ADVANCED)

Fig.4-5: Device Types and Firmware

Firmware-Types

Structure of the Firmware Type Designation

The type designation of the firmware consists of the following type code elements:

Firmware	Base package of variant	Version	Release	Lan- guage	Characteris- tic Open-loop / Closed-loop	Alternative expansion packages	Additive ex- pansion packages
FWA-INDRV*-	MP E -	16	VRS-	D5-	X-	NNN-	NN
		17					
FWA-INDRV*-	MP B -	16	VRS-	D5-	X-	xxx-	xx
		17	1				
FWA-INDRV*-	MP C -	17	VRS-	D5-	X-	xxx-	xx

Fig.4-6: Basic Structure of the Firmware Type Designation

Function-Specific Abbreviations in Type Designation of Firmware

Base package (application and performance)

- MPE → Firmware with ECONOMY performance and ECONOMY functionality
- MPB → Firmware with BASIC performance and BASIC functionality
- MPC → Firmware with ADVANCED performance and ADVANCED functionality

Characteristic (open-loop/closed-loop)

- 0 → Open-loop
- 1 → Closed-loop

Alternative expansion packages

- NNN → Without alternative expansion package
- SRV → Functional package "Servo function"
- SNC → Functional package "Synchronization"
- MSP → Functional package "Main spindle"
- ALL → All alternative expansion packages

Additive expansion packages

- NN → Without additive expansion package
- MA → IndraMotion MLD Advanced (for MPB-, MPC firmware)
- ML → IndraMotion MLD for free programming; incl. use of technology functions (for MPB-, MPC firmware)

The Rexroth sales representative in charge will help you with the current state of available firmware types.

For detailed information, see the Functional Description of the firmware used (index entry "Overview of functions/functional packages").

Firmware Variants

MPx-17VRS

MPE

Fig.4-7:

Firmware variant →		MPE ¹⁾		MPB		MPC	
Firmware characteristic →		OL	CL	OL	CL	OL	CL
Base package	Basic functions	•	-	-	-	-	•
	Base package "open-loop"	•	-	-	-	-	•
	Base package "closed-loop"	-	-	-	-	-	•
Alternative functional pack-	Servo function	-	_	_		_	•
ages	Synchronization	-	_	•			•
	Main spindle	-	2)	•	•	•	•
Additive functional package	IndraMotion MLD	_	-	•	•	-	

MPB	Single-axis firmware with Basic performance
MPC	Single-axis firmware with Advanced performance
OL	Open-loop characteristic
CL	Closed-loop characteristic
1)	For Economy firmware MPE, there is only one expanded base package available
2)	The function "parameter set switching" is contained in the expanded base package

Single-axis firmware with Economy performance

4.3.4 Motors

IndraDyn

The table below contains an overview of the combinations of MSM motors with HCS01 converters.

Functional Packages Depending on Hardware and Firmware Variant

Bosch Rexroth AG

		HCS01								
		Size 1								Size 3
		3 AC 110 230 V						AC 200	500 V	
Motor	W0003	W0006	W0009	W0013	W0018	W0005	W0008	W0018	W0028	W0054
MSM019A	-				-	Т	Т	-	-	-
MSM019B	•				-	Т	Т	-	-	-
MSM031B	×	•			-	Т	Т	-	-	-
MSM031C	-	×	•		-	Т	Т	-	-	-
MSM041B	-	-	×	•		-	Т	Т	-	-

Optimum combination

Allowed combination (converter overdimensioned) Allowed combination (motor overdimensioned)

Τ Allowed combination (transformer required, as operation of MSM mo-

tors only allowed with a maximum of 3 AC 230 V) Combination not allowed

Fig.4-8: Combination of HCS01 Converters and MSM Motors

Third-Party Motors

General Information on Third-Party Motors

Why Use Third-Party Motors at Rexroth IndraDrive Cs Controllers?

Today, machine axes are mainly moved with electric drives. Motors of standard design are used in most cases, as this is the most cost-efficient solution.

Special Requirements

Due to special requirements at machine axes, constructional or safety-related aspects, it may be necessary for the machine manufacturer to use a motor construction diverging from the standard.

Motor Design not Included in **Product Range**

For these cases, there is the demand on drive suppliers to realize drives with motors that are not included in their own product ranges due to the special

Check Before Using Third-Party **Motors**

At drive controllers of the Rexroth IndraDrive Cs range, it is possible to use third-party motors. For this purpose, check whether the third-party motor complies with the requirements of use.

The Functional Description of the firmware contains forms for motor data. Procure the completed forms for the performance test of a third-party motor.

Which are the Important Directives?

In accordance with the legal regulations (EU Directive EMC 89/336/EEC and the German EMC laws), installations and machines must be designed and built in accordance with the present state-of-the-art of standardization.

In order to comply with the machine directives regarding "electromagnetic compatibility (EMC)", a conformity test of the drive system (motor with controller and connection design) must be carried out. The machine manufacturer must guarantee the test of the drive system and compliance with the directives.

Third-Party Motors to be Controlled

Motor Types

The following motor types can be controlled:

- Asynchronous motors, rotary
- Asynchronous motors, linear
- Synchronous motors, rotary

Synchronous motors, linear

These motors can be operated within the scope of the technical data of the selected Rexroth IndraDrive Cs controller. If motors have been provided with a holding brake, it should be controlled via the drive controller. Make sure that the relevant technical data of the motor holding brake are complying with those of the holding brake output!

For third-party motors Rexroth, as a matter of principle, does not assume the guarantee for the power data at the motor shaft!

Synchronous Motors

For synchronous motors with motor encoder, the commutation offset must be set during commissioning. The drive firmware provides several methods for determining this offset so that it is possible to determine the value for different motor characteristics.

Observe the restrictions in conjunction with the commutation offset determination when using synchronous motors! See firmware documentation, chapter "Drive Control", "Commutation Setting".

Possibly available reluctance property cannot be used for synchronous third-party motors! For third-party motors, it is impossible to determine fail-safe motor parameter values for using the reluctance property. The respective bit of "P-0-4014, Type of construction of motor" therefore mustn't be set!

Requirements on Third-Party Motors

General Information

For successful and fail-safe use of a third-party motor, check

- whether the third-party motor to be controlled satisfies the voltage loads
- which drive controller is suitable due to the motor torques to be delivered
- whether the third-party motor has the required minimum inductance
- whether the motor can be protected against inadmissible temperature rise in the case of overload (temperature evaluation)
- whether the mounted position measuring system can be evaluated by the drive controller or which position measuring system can be selected for kit motors

Voltage Load of the Third-Party Motor

The voltage load of the insulation system of a motor occurring in practical application is mainly influenced by the following characteristics:

- The output variables of the drive controller which is used (feed the transmission distance)
- Cable parameters depending on cable design and length (determine the properties of the transmission distance, such as the attenuation)
- The motor design regarding capacitive and inductive properties (form the end of the transmission distance)

As a result of the variables, the insulation system of the third-party motor, as regards voltage, is loaded by the following values:

- Periodic peak voltage U_{DD} and
- Voltage change dv/dt

Bosch Rexroth AG

The occurring periodic peak voltages at the motor terminals are caused by reflections at the motor cable end. The insulation of the motor is thereby loaded with a higher peak voltage than the one occurring at the output of the power section.

Determine the occurring voltage load at the terminals of the thirdparty motor in the application with all involved components.

Using the HMF Motor Filter

Use voltage-reducing components (e.g. motor filter HMF), if one of the following criteria applies:

- Allowed voltage change (dv/dt) of third-party motor: < 5 kV/µs
- With mains voltage 3 AC 230 V ... 500 V:

Allowed periodic peak voltage (crest value) of third-party motor between phase-phase and phase-housing: < 1,500 V

With mains voltage up to 3 AC 230 V:

Allowed periodic peak voltage (crest value) of third-party motor between phase-phase and phase-housing: < 850 V

(To operate motors which do not require any voltage-reducing components at this mains voltage, the switch-on threshold of the braking resistor must be reduced to DC 430 V for devices with the mains connection voltage identifier "03"!)

- The voltage change (dv/dt) and periodic peak voltage (Upp) at the motor terminals are influenced by the length and the electrical properties of the motor cable:
 - The longer the motor cable, the higher the degree of voltage overshoot (periodic peak voltage) at the motor-side cable end. With a cable length of approx. 25 m and more, the maximum periodic peak voltage occurs. Further voltage increase is not to be expected even with longer cables.
 - With cable lengths of less than 15 m, the periodic peak voltage is reduced, depending on the length and as compared to the specified maximum value, down to the DC bus voltage value.

Apart from the nominal current I_N, especially take the maximum allowed switching frequency of the power output stage (f_s) into account with which the motor filter HMF may be operated.

Verify the success of the voltage-reducing measures by measuring the voltage at the motor terminals. Use an isolated measuring device!

Minimum Inductance of Third-Party Motor

Depending on the drive controller used, the motor has to have a minimum value for inductance. The actually available inductance of a motor can be measured directly between two motor terminals by means of an inductance measuring bridge. The measurement has to be made for a complete motor wired for normal operation but not yet connected. During the measurement, one motor terminal remains open! For asynchronous motors, the measured value can only be used if the rotor doesn't have closed slots!

Drive controller	Minimum required motor inductance
HCS01 with 3 × AC 230 V	$L_{U-V} = 60 \times 4 / (\sqrt{2} \times I_{Typ} \times f_s) \text{ (in mH)}$
HCS01 with 3 × AC 400 V	$L_{U-V} = 80 \times 4 / (\sqrt{2} \times I_{Typ} \times f_s) \text{ (in mH)}$
HCS01 with 3 × AC 480 V	$L_{U-V} = 116 \times 4 / (\sqrt{2} \times I_{Typ} \times f_s)$ (in mH)

I_{Typ} Maximum current of drive controller according to type code (rms val-

f_s Desired switching frequency in kHz

Fig.4-9: Minimum Inductances Depending on Drive Controller Data, Supply Units and Supply Voltage

Install a three-phase choke in the motor feed wire, if the inductance of the third-party motor is smaller than indicated in the table above. This choke has to increase the inductance that can be measured between two motor terminals to the minimum value.

When the inductance is measured, different inductance values can be determined at different rotor positions within one pole pair distance of the motor. The average value is relevant for the check of the minimum value.

Correct values can only be determined when the motor is in standstill!

Available third-party motor

Lu-Vmin V Motor W DA000111v01_nn.fh11

L_{Dr} =

 $0.5 \times (L_{U-Vmin} - L_{U-V})$ (inductance measurement

Fig.4-10: Mounting of $3 \times L_{Dr}$ (Three-Phase Choke)

Planned third-party motor

Calculate the leakage inductance (asynchronous motor) or inductance (synchronous motor) of the third-party motor by means of the single-phase equivalent circuit diagram (manufacturer's specification!).

Determine choke by means of calculation, if necessary.

It is recommended that you contact Rexroth!

Requirements on the choke:

• $I_{n Dr} \ge I_{n Mot}$

The rated current of the choke has to be greater than or equal to the rated motor current.

- Depending on the maximum speed, the choke is loaded with the respective output frequency and the PWM frequency of the drive controller.
- The insulation class has to correspond at least to that of the motor or has to be sized for higher temperatures.
- The voltage load of the choke depends on the drive controller used.

Fig.4-11: Data for Possibly Required Choke

Temperature Evaluation of Third-Party Motor

Only operate such motors with incorporated temperature sensor at Rexroth IndraDrive Cs controllers so that the motor can be thermally monitored by the

Bosch Rexroth AG

drive controller and protected against destruction by too high temperature rise (see "P-0-0512, Temperature sensor").

When, in exceptional cases, you would like to operate third-party motors without temperature sensor at Rexroth IndraDrive Cs controllers, you must determine the thermal time constants of motor housing (P-0-4035) and motor winding (P-0-4034, P-0-4037). By means of its temperature model, the firmware can correctly reflect the cooling situation of the motor.

In case the motor housing or fan is dirty, this worsens the cooling situation of the motor and protection against thermal overload is therefore insufficient!

Requirements on the Encoder of the Third-Party Motor Motor Encoder of Asynchronous Third-Party Motor

Asynchronous motors can also be controlled by Rexroth IndraDrive Cs controllers in "open-loop" operation (without motor encoder). In "closed-loop" operation (with motor encoder), a relative measuring system is sufficient for asynchronous motors.

Motor Encoder of Synchronous Third-Party Motor

For fail-safe drives with synchronous third-party motors at Rexroth IndraDrive Cs controllers, the following possible combinations or restrictions have to be taken into account when selecting the measuring system:

Drive range	Motor measuring system	Synchronous third-party motor
Rexroth IndraDrive Cs	Absolute	
Nexion indiablive 03	Relative	

Advantageous combination

Combination is possible (restrictions specific to application), commis-

sioning may be more complicated!

Possible Combinations of Synchronous Third-Party Motor and Motor Fig.4-12:

Measuring System

The drive controller can evaluate measuring systems as motor encoder when they are contained in "P-0-0074, Encoder type 1 (motor encoder)".

For information on absolute and relative measuring systems, see section "Measuring Systems" of firmware documentation!

Motor Encoder Resolver - Notes on Selection

Resolvers must first be checked as to whether they are suited as motor encoders. To check whether they can be evaluated by the drive controllers, the following resolver data are required:

- Data of resolver system to be compared must be available at 8 kHz
- Current consumption
- DC resistance of stator
- Number of poles
- Phase shift

By means of the resolver data, check whether the supply voltage of the encoder interface and the signal levels of the encoder tracks are sufficient.

Notes on Selection and Commissioning

Selecting the Controller as Regards Continuous Current

The drive controller required for the respective motor is determined by comparing the motor data to the device data.

The continuous current of the drive controller should be greater than the continuous current of the motor.

The continuous power of the drive controller must be greater than the required average power!

Selecting the Connection Technique

For the available power cables and encoder cables, see documentation "Rexroth Connection Cables IndraDrive and IndraDyn".

Notes on Commissioning

For further information, notes on commissioning and supporting documents (e.g., forms for entering the required data) see firmware documentation.

4.3.5 Cables Motor Power Cables

Selection

How to select a suitable motor power cable:

See documentation "Rexroth Connection Cables IndraDrive and IndraDyn" (R911322949).

Bosch Rexroth AG

Allowed Cable Lengths

Allowed Cable Lengths at Ambient Temperature $T_{a_work} \le 40$ °C according to EN 60 204:

		PWM frequ	uency [kHz]	
HCS01.1EA-02	4	8	12	16
W0003				
W0006				
W0009				
W0013		20 m	15 m	10 m
W0018	40 m			
HCS01.1EA-03	40111	20111	13111	10111
W0005				
W0008				
W0018				
W0028				
W0054	75 m	38 m	25 m	-

Fig.4-13: Allowed Motor Cable Lengths

Encoder Cables

MSM Motors

		HCS01								
		Size 1					Size 2		Size 3	
	3 AC 110 230 V						3 AC	200 5	00 V	
Motor	W0003	W0006	W0009	W0013	W0018	W0005	W0008	W0018	W0028	W0054
MSM019A									-	-
MSM019B		RKG0033; RKG0041; RKG0034 (extension, optional)						-	-	-
MSM031B		NG0033, I	XXG0041,	, KNG003	+ (exterisit	on, option	ai <i>)</i>	-	-	-
MSM031C									-	
MSM041B		RKG00	033; RKG(0041; RKC	30034 (ext	tension, o	otional)	•	-	-

Combination not allowed

Fig.4-14: Encoder Cables for HCS01 Converters and MSM Motors

Encoder Cable Length

See index entry "Encoder → Cable length"

MSK Motors

See documentation "Rexroth Connection Cables IndraDrive and IndraDyn" \rightarrow "Selection for Encoder Cables".

4.4 Installation Conditions

4.4.1 Ambient and Operating Conditions

A WARNING

Lethal electric shock by live parts with more than 50 V!

Exclusively operate the device

- with plugged on connectors (even if there haven't been any lines connected to the connectors) and
- with connected equipment grounding conductor!

Control Cabinet

The devices of the Rexroth IndraDrive Cs product range, as well as their additional components (except for some braking resistors), must be mounted **in control cabinets**.

Check that the ambient and operating conditions, in particular the control cabinet temperature, are complied with by calculating the heat levels in the control cabinet. Afterwards, make the corresponding measurements to find out that the ambient and operating conditions have actually been complied with. In the technical data of the individual components, the power dissipation is indicated as an important input value for calculating the heat levels.

Ambient and Operating Conditions

Description	Symbol	Unit	Value
Conductive dirt contamination			Not allowed
			(You can protect the devices against conductive dirt contamination, for example by mounting them in control cabinets of the degree of protection IP54 in accordance with IEC529.)
Degree of protection (IEC529)			IP20
Use in the scope of CSA / UL			For use in NFPA 79 Applications only.
Temperature during storage			See chapter "Storage of the Components"
Temperature during transport			See chapter "Transport of the Components"
Allowed mounting position			G1
Definition of mounting positions: See index entry "Mounting positions"			
Installation altitude	h _{nenn}	m	1000
Ambient temperature range	T _{a_work}	°C	0 40

Description	Symbol	Unit	Value
Derating vs. ambient temperature:		1	
In the ambient temperature range $T_{a_work_red}$, the performance data are reduced by the factor F_{Ta} :		^π _{ea}	
$F_{TA} = 1 - [(T_a - 40) \times f_{Ta}]$		щ	1 thirt
Example: With an ambient temperature $T_a = 50$ °C and a capacity utilization factor $f_{Ta} = 2\%$, the rated power is reduced to			Document and the second and the seco
$P_{DC_cont_red} = P_{DC_cont} \times F_{Ta} =$			T _{a_work} T _{a_work_red} T _a →
$P_{DC_cont} \times (1 - [(50 - 40) \times 0.02]) =$	T _{a_work_red}	°C	40 55
$P_{DC_cont} \times 0.8$ Operation at ambient temperatures outside of T_{a_work} and $T_{a_work_red}$ is not allowed!	f _{Ta}	%/K	Capacity utilization factor: See technical data of the respective component (Data for Cooling and Power Dissipation \rightarrow Derating of P_{DC_cont} , P_{BD} , I_{out_cont} at $T_{a_work} < T_a < T_{a_work_red}$)
Derating vs. installation altitude:		1	
With installation altitudes $h > h_{nenn}$, the available performance data are reduced by the factor $f^{3)}$ ⁴⁾ .		0,9 0,8 0,7	Жооо 130 vo2_rn.fh1
With installation altitudes in the range of h _{max_ohne} to h _{max} , an overvoltage limiter against transient overvoltage must be installed in the installation.		0,6	h _{nenn} h _{max_ohne} h _{max}
Use above h _{max} is not allowed!	h _{max ohne}	m	2000
IIIGA	h _{max}	m	4000
Simultaneous derating for ambient temperature and installation altitude	IIIdx		Allowed; reduce with factors f and f_{Ta}
Relative humidity		%	5 95
Absolute humidity		g/m ³	1 29
Moisture condensation			Not allowed
Climatic category (IEC721)			3K3
Allowed pollution degree (IEC 60664-1)			2
Allowed dust, steam			EN 50178 tab. A.2
Vibration sine: Amplitude (peak-peak) at 5 32 Hz ²⁾		mm	0,6 ±15 %
Vibration sine: Acceleration at 32 200 Hz ²⁾		g	1,3 ±15 %
Vibration noise (random) frequency ¹⁾		Hz	20 500
Vibration noise (random) spectral acceleration density, amplitude ¹⁾		g²/Hz	0,05
Vibration noise (random) rms value of total acceleration 1)		g	1,5

Description	Symbol	Unit	Value
Vibration sine: Axial		g	-
Acceleration at 10 2,000 Hz ²⁾			
Vibration sine: Radial		g	-
Acceleration at 10 2,000 Hz ²⁾			
Overvoltage category			III (according to IEC60664-1)

- 1) According to EN 60068-2-64
- 2) According to EN 60068-2-6
- Reduced performance data for drive controllers: Allowed DC bus continuous power, allowed mains voltage, braking resistor continuous power, continuous current
- 4) Reduced performance data for motors: Performance, torque S1 and S3

Fig.4-15: Ambient and Operating Conditions

4.4.2 Control Cabinet Design and Cooling

The only mounting position allowed for supply units and drive controllers to be installed in control cabinets is G1.

Possibilities of Heat Dissipation

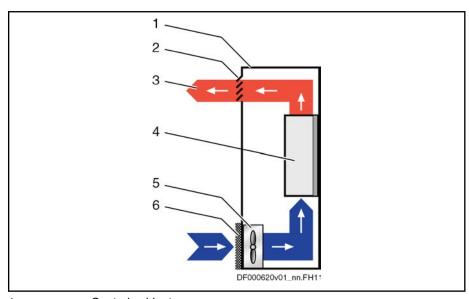
Closed control cabinet with air circulation	Closed control cabinet with heat exchanger	Control cabinet with fan	Closed control cabinet with air conditioning unit
DF000644v01_nn.tif	DF000645v01_nn.tif	DF000646v01_nn.tif	DF000647v01_mt.sf
P _Q ~ 400 W	P _Q ~ 1700 W	P _Q ~ 2700 W	P _Q ~ 4000 W

P_Q Dissipated heat output

Fig.4-16: Possibilities of Heat Dissipation

The section below describes the "control cabinet with fan".

Requirements for Control Cabinets with Fan


Risk of damage by unclean air in the control cabinet!

Operating a control cabinet with a fan, but without the corresponding filters, can damage the devices or cause malfunction.

Bosch Rexroth AG

- Install filters at the air intake opening of the control cabinet so that impure air cannot get into the control cabinet.
 - Service the filters at regular intervals according to the dust loading in the environment.
 - Only replace the filters when the fan has been switched off, because otherwise the fan sucks in the dirt coming off the filter and the dirt gets into the control cabinet.

Control Cabinet Ventilation (Schematic Diagram)

1 Control cabinet
2 Air outlet opening
3 Heat discharge
4 Device in control cabinet

5 Control cabinet fan
6 Filter at air intake opening

Fig.4-17: Control Cabinet Ventilation (Schematic Diagram)

Only clean air gets into the control cabinet through the filter at the air intake opening. The control cabinet fan behind the air intake opening delivers the air into the control cabinet and generates overpressure in the control cabinet. This overpressure prevents unclean air from entering into the control cabinet through potentially leaky points (leaky cable passages, damaged seals, etc.).

4.4.3 UL Ratings

This chapter contains:

- Limit values for use in the scope of CSA / UL
- Applied standards (CE conformity, UL listing)

Ambient and Operating Conditions - UL Ratings

Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02
Short circuit current rating (UL)	SCCR	A rms	42000				
Rated input voltage, power (UL) 1)	U _{LN_nenn}	V	1 or 3 x AC 110230				
Rated input current (UL)	I _{LN}	Α	1.8 or 0.6	2.8 or 1.2	5.0 or 2.3	8.3 or 4.5	12.8 or 9.6
Output voltage (UL)	U _{out}	V	3 x AC 0230				•
Output current (UL)	I _{out}	Α	1,1	2,0	3,0	4,5	7,6
Last modification: 2012-01-23							

1) DC bus L+, L-; mains input L1, L2, L3

Fig.4-18: HCS - Ambient and Operating Conditions - UL Ratings

Ambient and Operating Conditions - UL Ratings

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03
Short circuit current rating (UL)	SCCR	A rms	42000				
Rated input voltage, power (UL) 1)	U _{LN_nenn}	V	3 x AC 200500				
Rated input current (UL)	I _{LN}	Α	1,5	2,5	5,0	10,0	28,0
Output voltage (UL)	U _{out}	V	3 x AC 0500				
Output current (UL)	l _{out}	Α	1,7	2,7	6,0	11,5	21,0
Last modification: 2012-05-16							

1) DC bus L+, L-; mains input L1, L2, L3

Fig.4-19: HCS - Ambient and Operating Conditions - UL Ratings

4.4.4 Compatibility With Foreign Matters

All Rexroth controls and drives are developed and tested according to the state-of-the-art technology.

As it is impossible to follow the continuing development of all materials (e.g. lubricants in machine tools) which may interact with the controls and drives, it cannot be completely ruled out that any reactions with the materials we use might occur.

For this reason, before using the respective material a compatibility test has to be carried out for new lubricants, cleaning agents etc. and our housings/materials.

4.5 Mechanical Project Planning

4.5.1 Drive Controller

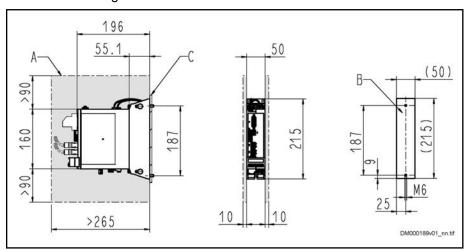
Dimensional Drawings

Options for Mounting

Standard mounting:

The back of the device is directly mounted to the mounting surface in the control cabinet

Bosch Rexroth AG

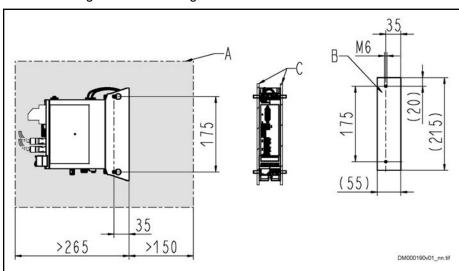

Left-hand or right-hand mounting:

The left or right side of the device is directly mounted to the mounting surface in the control cabinet

See also chapter 6.1 "Mounting HCS01 Devices in the Control Cabinet" on page 109.

HCS01.1E-W0003/5/6/8/9/13

Standard mounting:

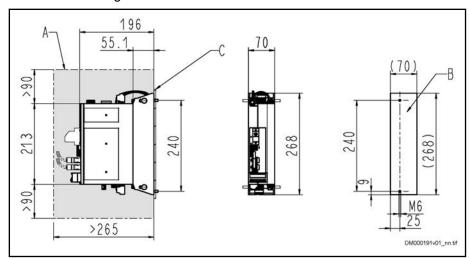


Minimum mounting clearance

В Boring dimensions С Mounting surface

Fig.4-20: Dimensional Drawing HCS01.1E-W0003/5/6/8/9/13 (Standard Mount-

Left-hand or right-hand mounting:

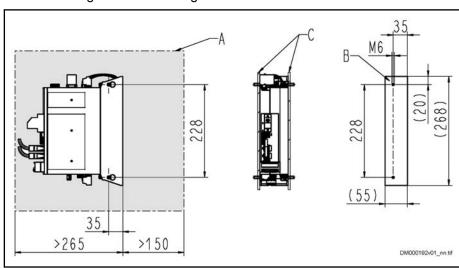


Minimum mounting clearance

В Boring dimensions Mounting surface

Dimensional Drawing HCS01.1E-W0003/5/6/8/9/13 (Left-Hand or Right-Hand Mounting) Fig.4-21:

HCS01.1E-W0018/28 Standard mounting:



A Minimum mounting clearance

B Boring dimensions C Mounting surface

Fig.4-22: Dimensional Drawing HCS01.1E-W0018/28 (Standard Mounting)

Left-hand or right-hand mounting:

A Minimum mounting clearance

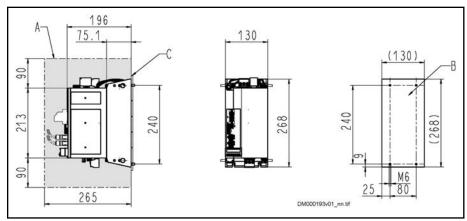
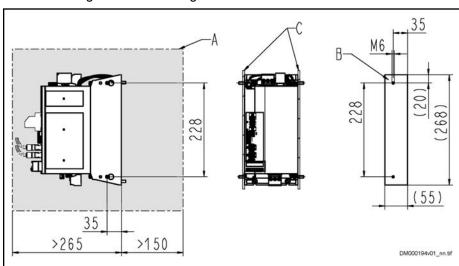

B Boring dimensions
C Mounting surface

Fig.4-23: Dimensional Drawing HCS01.1E-W0018/28 (Left-Hand or Right-Hand

Mounting)

Bosch Rexroth AG

HCS01.1E-W0054 Standard mounting:


Α * Minimum mounting clearance

With left-hand or right-hand mounting of the device

B C Boring dimensions Mounting surface

Fig.4-24: Dimensional Drawing HCS01.1E-W0054 (Standard Mounting)

Left-hand or right-hand mounting:

Minimum mounting clearance

With left-hand or right-hand mounting of the device

B C Boring dimensions Mounting surface

Fig.4-25: Dimensional Drawing HCS01.1E-W0054 (Left-Hand or Right-Hand

Mounting)

Dimensions, Mass, Insulation, Sound Pressure Level

Data for Mass, Dimensions, Sound Pressure Level, Insulation

Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02
Mass	m	kg		0,72			
Device height (UL) ¹⁾	Н	mm		215			
Device depth (UL) ²⁾	Т	mm	196				
Device width (UL) ³⁾	В	mm		50			70
Insulation resistance at DC 500 V	R _{is}	Mohm	10,00				
Capacitance against housing	C _Y	nF		2 x 68			
Average sound pressure level (accuracy class 2) at P _{DC_cont} ⁴⁾	L _P	dB (A)	tbd				
Last modification: 2012-01-23							

1) 2) 3) Housing dimension; see also related dimensional drawing 4)

According to DIN EN ISO 11205; comparative value at distance 1 m, out of cabinet; HCS types with order code -L***: load-dependent

Fig.4-26: HCS - Data for Mass, Dimensions, Sound Pressure Level, Insulation

Data for Mass, Dimensions, Sound Pressure Level, Insulation

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03
Mass	m	kg	0,	0,72 1,70		70	4,22
Device height (UL) ¹⁾	Н	mm	215 268				
Device depth (UL) ²⁾	Т	mm	196				
Device width (UL) ³⁾	В	mm	5	50		0	130
Insulation resistance at DC 500 V	R _{is}	Mohm	10,00				
Capacitance against housing	C _Y	nF	2 x 68 2 x 100				
Average sound pressure level (accuracy class 2) at P _{DC_cont} ⁴⁾	L _P	dB (A)	tbd				
			!		Last r	modification:	2012-01-23

1) 2) 3) Housing dimension; see also related dimensional drawing

According to DIN EN ISO 11205; comparative value at distance 1 m, out of cabinet; HCS types with order code -L***: load-dependent 4)

Fig.4-27: HCS - Data for Mass, Dimensions, Sound Pressure Level, Insulation

Temperatures, Cooling, Power Dissipation, Distances

Data for Cooling and Power Dissipation

Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02
Ambient temperature range for operation with nominal data	T _{a_work}	°C	040				
Ambient temperature range for operation with reduced nominal data	T _{a_work_red}	°C	055				
Derating of P _{DC_cont} ; P _{BD} ; I _{out_cont} at T _{a_work} < T _a < T _{a_work_red}	f _{Ta}	%/K			2,0		
Allowed mounting position					G1		
Cooling type			1	Not ventilate	d	Forced v	entilation
Volumetric capacity of forced cooling	V	m³/h	-			11,00	56,00
Allowed switching frequencies 1)	f _s	kHz	4, 8, 12, 16				
Power dissipation at $I_{out_cont} = 0$ A; $f_s = f_s$ (min.) ²⁾	P _{Diss_0A_fs}	W	2	4	(6	8
Power dissipation at $I_{out_cont} = 0 \text{ A}$; $f_s = f_s \text{ (max.)}^{3)}$	P _{Diss_0A_fs}	W	1	5	1	7	21
Power dissipation at continuous current and continuous DC bus power respectively (UL) ⁴⁾	P _{Diss_cont}	W	8,00	10,00	12,00	20,00	70,00
Minimum distance on the top of the device ⁵⁾	d _{top}	mm	90				
Minimum distance on the bottom of the device ⁶⁾	d _{bot}	mm	90				
Horizontal spacing on the device ⁷⁾	d _{hor}	mm	10 0				
Temperature rise with minimum distances d _{bot} ; d _{top} ; P _{BD}	ΔΤ	К	tbd				
					Last r	modification:	2012-05-16

Also depending on firmware and control section; see parameter description "P-0-0001, Switching frequency of the power output stage"; see "P-0-4058, Amplifier type data" 1)

Plus dissipation of braking resistor and control section; find interim values by interpolation to P_Diss_cont 2) 3)

Plus dissipation of braking resistor and control section 5) 6) 7) See fig. "Air Intake and Air Outlet at Device"

HCS - Data for Cooling and Power Dissipation Fig.4-28:

Data for Cooling and Power Dissipation

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03
Ambient temperature range for operation with nominal data	T _{a_work}	°C	040				
Ambient temperature range for operation with reduced nominal data	T _{a_work_red}	°C	055				
Derating of P _{DC_cont} ; P _{BD} ; I _{out_cont} at T _{a_work} < T _a < T _{a_work_red}	f _{Ta}	%/K			2,0		
Allowed mounting position					G1		
Cooling type				Fo	rced ventilat	ion	
Volumetric capacity of forced cooling	V	m³/h	11	11,00 56,00			
Allowed switching frequencies 1)	f _s	kHz		4, 8,	12, 16		4, 8, 12
Power dissipation at $I_{out_cont} = 0$ A; $f_s = f_s \text{ (min.)}^2$	P _{Diss_0A_fs}	W	2	3	30	36	55
Power dissipation at $I_{out_cont} = 0$ A; $f_s = f_s \text{ (max.)}^{3)}$	P _{Diss_0A_fs}	W	6	55	85	91	135
Power dissipation at continuous current and continuous DC bus power respectively (UL) ⁴⁾	P _{Diss_cont}	W	37,00	46,00	80,00	120,00	400,00
Minimum distance on the top of the device ⁵⁾	d _{top}	mm	90				
Minimum distance on the bottom of the device ⁶⁾	d _{bot}	mm	90				
Horizontal spacing on the device ⁷⁾	d _{hor}	mm	10 0				
Temperature rise with minimum distances d _{bot} ; d _{top} ; P _{BD}	ΔΤ	K	tbd tbd				
			•	:	Last r	modification:	2012-05-16

Also depending on firmware and control section; see parameter description "P-0-0001, Switching frequency of the power output stage"; see "P-0-4058, Amplifier type data"

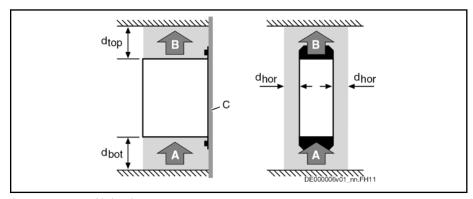
Plus dissipation of braking resistor and control section; find interim values by interpolation to P_Diss_cont 1)

2) 3)

Plus dissipation of braking resistor and control section

5) 6) 7) See fig. "Air Intake and Air Outlet at Device" HCS - Data for Cooling and Power Dissipation Fig.4-29:

Bosch Rexroth AG


NOTICE

Property damage due to temperatures higher than 105 °C!

Observe the indicated minimum distances!

Above the devices there may only be such materials which

- are not combustible
- are insensitive to the occurring high temperatures

A Air intake B Air outlet

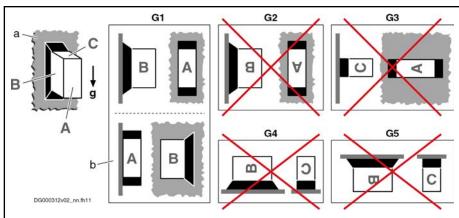
C Mounting surface in control cabinet

d_{top} Distance top
d_{bot} Distance bottom
d_{hor} Distance horizontal

Fig.4-30: Air Intake and Air Outlet at Device

Mounting Positions of Components

NOTICE

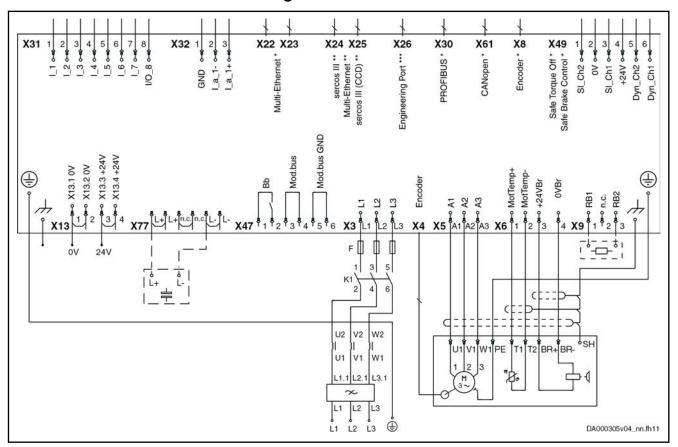

Risk of damage to the components!

Only operate the components in their allowed mounting positions.

Allowed Mounting Position of the Components Only the mounting position **G1** is allowed for HCS01 components.

Fig.4-31:

Combining the Individual Components



A, B, C	Sides of a component: A = front side, B = left or right side, C = top side
а	Mounting surface in control cabinet
b	Mounting position G1, when side B of component directly mounted to mounting surface
g	Direction of gravitational force
G1	Normal mounting position: The natural convection supports the forced cooling air current. This avoids the generation of pockets of heat in the component.
G2	180° to normal mounting position
G3	90° to normal mounting position
G4	Bottom mounting; mounting surface on bottom of control cabinet
G5	Top mounting; mounting surface at top of control cabinet

Allowed Mounting Position of the Components

4.6 Electrical Project Planning

4.6.1 Overall Connection Diagram

Optional

* ECONOMY = sercos III; BASIC = Multi-Ethernet; ADVANCED =

sercos III cross communication (CCD)

*** Only available at HCS01.1E-W00**-A-0*-**A-CC** (ADVANCED) devices

X6.1, X6.2 T1 and T2 are not available at MSM motors

X31 No standard assignment preset; make the assignment by means of

firmware documentation (see Functional Description, index entry "Dig-

ital inputs/outputs")

X47.1, X47.2 For the "ready for operation" message of the device, the Bb relay con-

tact (X47.1, X47.2) must be wired

X47.3...6 Module bus only available at HCS01.1E-W00xx-x-03 devices

DC bus connection (L+, L-) only available at HCS01.1E-W00xx-x-03

devices

Fig.4-32: Connection Diagram

4.6.2 Project Planning of Control Voltage

X77

Control Voltage for Drive Systems

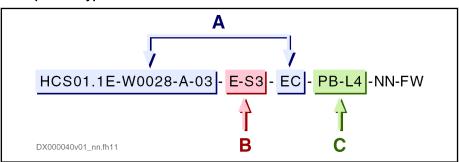
Some components of a drive system must be supplied with control voltage. When doing the project planning for control voltage supply, take the requirements of the drive system components into account:

- Allowed tolerances of the supply voltage depending on the length of the motor cable and the use of motor holding brakes
- Power consumption of the drive controllers
- Power consumption of other loads (e.g. motor holding brake, digital outputs)

Current carrying capacity of the connection point for control voltage supply at the component for the purpose of looping through the control voltage to other components

Sizing the Control Voltage Supply

Determining the Power Requirement


Power Requirement of the Drive Controller

The **total power requirement** of the control voltage supply of a drive controller results from the sum of the following power values:

- Basic device (drive controller without connected encoders)
- Optional connection interfaces (e.g. communication, additional encoder evaluation)
- Connected encoder systems
- External loads

For the configuration of your drive controller, see the type plate and the type code.

Example of a type code:

A Basic device (maximum current [W0028 = 28 A], line [03], on-board connection point [EC])

B Control section design (E = Economy; S3 = sercos III)

C Optional connection points (PB = ProfiBus; L4 = safety technology

[STO, SBC])

Fig.4-33: Type Code HCS01

The tables below contain the individual power values required by the drive controller. The power requirement of the supplying 24V power supply unit results from the sum of these individual power values.

Power Requirement of the Basic Device

The power requirement of the basic device results from

- Maximum current of drive controller
- Design of control section

Table 1: Power Requirement of the Basic Device

Maximum current, line 1)	Control section design						
	E-S3	B-ET	A-CC				
HCS01.1E	(ECONOMY)	(BASIC)	(ADVANCED)				
W0003-A-02-x-xx-EC	8.1 W	12.7 W	13.4 W				
W0006-A-02-x-xx-EC							
W0009-A-02-x-xx-EC							
W0013-A-02-x-xx-EC	9.4 W	14.3 W	15 W				
W0018-A-02-x-xx-EC	12.7 W	17.3 W	18 W				
W0005-A-03-x-xx-EC	9.4 W	14.3 W	15 W				
W0008-A-03-x-xx-EC							
W0018-A-03-x-xx-EC	12.7 W	17.3 W	18 W				
W0028-A-03-x-xx-EC							
W0054-A-03-x-xx-EC	25.7 W	30.3 W	31 W				

The wild card x-xx in this column represents the control section design. Example: The basic device HCS01.1E-W0028-A-03-E-S3-EC has a power requirement of 12.7 W.

Fig.4-34: Power Requirement of the Basic Device

Power Requirement of the Optional Connection Points

If the drive controller has optional connection points, the power requirement of the basic device is increased.

Table 2: Power Requirement of the Optional Connection Point

Optional connection point (Identifier in type code)	Power re- quirement	Explanation	
EC 1)	1.1 W	Encoder Systems	
		MSM motor encoder	
		MSK motor encoder	
		Sin-cos encoder 1 V _{pp} ; HIPERFACE®	
		Sin-cos encoder 1 V _{pp} ; EnDat 2.1	
		Sin-cos encoder 1 V _{pp} ; with reference track	
		5V-TTL square-wave encoder; with reference track	
L3	1.0 W	STO (Safe Torque Off)	
L4	1.0 W	STO (Safe Torque Off)	
		SBC (Safe Brake Control)	
РВ	1.1 W	ProfiBus (communication)	
ET ²⁾	2.7 W	Multi-Ethernet interface (communication)	

Optional connection point (Identifier in type code)	Power re- quirement	Explanation
CN	1.5 W	CANopen
EM	1.2 W	Encoder emulation

The power requirement of the on-board connection point EC (HCS01-1E-W00xx-A-0x-x-xx-EC) is already taken into account with the power requirement of the basic device (see table 1, column "Maximum current, line")

The power requirement of the on-board connection point ET (HCS01-1E-W00xx-A-0x-x-ET) is already taken into account with the power requirement of the basic device (see table 1, column "Maximum current, line")

Fig.4-35: Power Requirement of the Optional Connection Points

Power Requirement of the External Loads

External loads are, for example,

- Encoder system of the motor
- Motor holding brake

2)

Load at a digital output

The drive controller must supply the external loads with power.

Table 3: Power Requirement of the External Loads

External load	Power requirement
5 V encoder system	$P = I_{Encoder} \times 5 \text{ V} \times 1.75^{1), 5}$
12 V encoder system	P = I _{Encoder} × 12 V × 1.25 ^{1), 5)}
Load at digital output	$P = I_{Load} \times U_{N3}^{2), 4}$
Motor holding brake	$P = I_{Brake} \times U_{N3}^{3), 4}$

I_{Encoder}: Current consumption of encoder system
 I_{Load}: Current consumption of external load
 I_{Brake}: Current consumption of motor holding brake
 U_{N3}: Control voltage supply of drive controller
 The sum of the power consumptions of all connected encoder systems incl. encoder emulation mustn't exceed 6 W.

Fig.4-36: Power Requirement of the External Loads

Calculation Formula

The total power consumption (P_{N3}) from the 24V control voltage of a drive controller is calculated with:

$$P_{N3} = P_{Basic device} + \sum P_{Optional connection points} + \sum P_{External loads}$$

Example of Calculation

Component HCS01.1E-W0028-A-03-B-ET-EC-PB-L4-NN-FW		Power requirement
Basic device	HCS01.1E- W0028 -A-03- B-ET -EC	17.3 W
Optional connection point	PROFIBUS " PB "	1.1 W

Bosch Rexroth AG

Comp	onent	Power requirement
HCS01.1E-W0028-A-03-	B-ET-EC-PB-L4-NN-FW	
Optional connection point	STO/SBC "L4"	1.0 W
12 V encoder system of motor	12 V / 200 mA	P = I _{Encoder} × 12 V × 1.25 = 0.2 A × 15 V = 3.0 W
Motor holding brake	300 mA	$P = I_{Brake} \times U_{N3} = 0.3 \text{ A} \times 24 \text{ V} = 7.2 \text{ W}$
Load at digital output	250 mA	$P = I_{Load} \times U_{N3} = 0.25 \text{ A} \times 24 \text{ V} = 6.0 \text{ W}$

Total power consumption P_{N3}= P_{Basic device} + ΣP_{Optional connection points} + ΣP_{External loads} P_{N3} = 17.3 W + 1.1 W + 1.0 W + 3.0 W + 7.2 W + 6.0 W = 35.6 W

Fig.4-37: Example of Calculation

Requirements to the 24V Power Supply Unit

The following parameters contain the essential electrical requirements on the 24V power supply unit:

- Output voltage or range of output voltage
- Continuous power which the 24V power supply unit must supply during operation
- **Peak current** which the 24V power supply unit must supply when switching on

Required Continuous Power

The continuous power of the 24V power supply unit must be greater than the sum of power consumptions P_{N3} of the components to be supplied.

To select the 24V power supply unit, determine the continuous current I_{N3} of all components:

 $I_{N3} = P_{N3} / U_{N3}$

(P_{N3}: Power consumption of all components)

The calculated current I_{N3} corresponds to the continuous current of the 24V power supply unit.

The power consumption is indicated as maximum value of the respective component and can occur at individual components.

In drive systems with **several components**, the occurring power consumption under statistical assumptions will be lower than the calculated one.

Required Peak Current

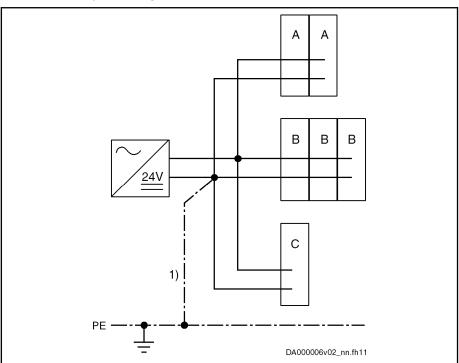
When the 24V control voltage unit is switched on, the 24V power supply unit is loaded with the charging current of the capacitors of the connected components. This charging current is electronically limited in the components.

The required peak current of the power supply unit is calculated with:

 $I_{PeakCurrent_PowerSupplyUnit} = 1.2 \times P_{N3} / U_{N3}$

(P_{N3}: Power consumption of all components)

The power supply unit must make available the calculated peak current IPeak-Current_PowerSupplyUnit for at least 1 second.


Installing the 24V Supply

Notes on Installation

As a matter of principle, the 24V supply of the components of the drive system Rexroth IndraDrive Cs should be installed in star-shaped form. For each group of drive controllers or third-party components it is there-

fore necessary that you run separate supply lines. This, too, applies to multiple-line arrangement in the case of supply from a supply unit, for example.

- Route lines with sufficiently dimensioned line cross sections to reduce load-dependent voltage drops.
- For looping through the control voltage, observe the maximum current carrying capacity of the connection points. The maximum current carrying capacity limits the number of devices to which the control voltage can be looped through.

A Number of devices is limited to 2 components with a current consumption of ≤ 5 A / component

B Number of devices is limited to 3 components with a current consumption of $\leq 3.3 \text{ A}$ / component

C Third-party component (e.g. PLC, valve etc.)

1) Connection to central ground point (e.g. earth-circuit connector PE) Fig.4-38: Installing the 24V Supply

If you use several 24V power supply units:

- Output voltages of the 24V power supply units must be within the allowed voltage range
- Interconnect reference conductors 0 V of the individual 24V power supply units with low impedance
- Always switch 24V power supply units on and off synchronously

Chronological Order of 24V Supply and Mains Voltage

Before mains voltage or DC bus voltage is applied to the components, they have to be supplied by the 24V supply.

Bosch Rexroth AG

Looping Through the Control Volt-

NOTICE

Property damage in case of error caused by too small line cross section!

Observe the current carrying capacity of the connection points for control voltage supply at the components used.

You may only loop through the control voltage between the components, when the **sum** of current consumptions ΣI_{N3} of the individual components is smaller than 10 A (current carrying capacity of the connection point X13).

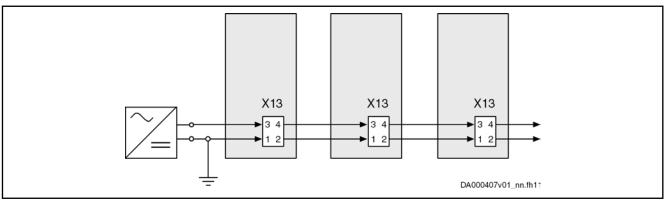


Fig.4-39: Looping Through the Control Voltage

Exemplary calculation for 3 drive controllers:

$$I_D = 3 \times \frac{P_{N3}}{U_{N3}}$$

Fig.4-40: Continuous Current

The result I_D must be smaller than the specified current carrying capacity of the connection point.

4.6.3 Mains Connection

Residual-Current-Operated Circuit Breakers (RCD, RCCB) as Additional Fusing

General Information

The following designations are used for residual-current-operated circuit breakers:

- RCCB (Residual-Current-Operated Circuit Breaker)
- RCD (Residual-Current-Operated Device)
- RCM (Residual-Current Monitoring Device)
- Earth-leakage circuit breaker (voltage-independent)
- Residual-current circuit breaker (voltage-dependent)

REP.

It is only to a limited extent that residual-current-operated circuit breakers can be used with Rexroth IndraDrive Cs systems.

If these circuit breakers are to be used, the company erecting the installation has to check the mutual compatibility of the residual-current-operated circuit breakers and installation or machine with the drive system, in order to avoid accidental triggering of the residual-current-operated circuit breaker. This has to be taken into account

- for switch-on processes, due to high asymmetric inrush currents and
- during operation of the installation, due to leakage currents produced in normal operation.

Cause of Leakage Currents

For the purpose of stepless speed variation with a high degree of positioning accuracy and dynamic response, certain modulation procedures are necessary for drive systems. For physical reasons, these modulation procedures give rise to inevitable leakage current produced during normal operation. Especially with unbalanced loads of the mains phases or a large number of drives it can easily reach some amperes (rms value).

The leakage current is not sinusoidal but pulse-shaped. For this reason, measuring instruments normally sized for alternating currents in the range of 50 Hz are not suited. Use measuring instruments with rms value measuring ranges up to at least 150 kHz.

The degree of leakage current depends on the following features of the installation:

- Kind of inrush current limitation
- Number, kind and size drives used
- Length and cross section of connected motor power cables
- Grounding conditions of the mains at the site of installation
- Unbalance of the three-phase system
- Kind of filters and chokes connected in the incoming circuit
- EMC measures that are taken

If measures are taken to improve the electromagnetic compatibility (EMC) of the installation (mains filters, shielded lines), the leakage current in the ground wire is inevitably increased, especially when switching on or in the case of mains unbalance. Given these operating conditions, residual-current-operated circuit breakers can trigger without an error having occurred.

The EMC measures are mainly based on capacitive short-circuiting of the interference currents within the drive system. Inductive filter measures can reduce the leakage currents, but affect the dynamic response of the drive and bring about

- higher construction volume
- higher weight
- expensive core material

Possibilities of Use

Motor Cable Length

Keep the motor cables as short as possible. Only short motor cables do allow low leakage currents and thereby enable residual-current-operated circuit breakers to work.

Kinds of Residual-Current-Operated Circuit Breakers

There are two kinds of residual-current-operated circuit breakers:

1. Residual-current-operated circuit breakers sensitive to power pulse current (type A acc. to IEC 60755)

These are normally used. However, it is only pulsating direct fault currents of a maximum of 5 mA and sinusoidal alternating fault currents that they switch off safely. This is why they are not allowed for devices that can generate smoothed direct fault currents. In the case of smoothed direct fault currents that can be produced in power supply units, mains rectifiers and drive controllers with power converters in B6 circuit,

Bosch Rexroth AG

the residual-current-operated circuit breaker is not triggered. This blocks the triggering of a residual-current-operated circuit breaker sensitive to power pulse current in the case of ground contact, i.e. in the case of

Residual-current-operated circuit breakers sensitive to power pulse current do not provide any protection against inadmissible contact voltage.

Residual-current-operated circuit breakers sensitive to universal current (type B acc. to IEC 60755)

These circuit breakers are suited for smoothed direct fault currents, too, and safely switch off devices with B6 input rectifiers.

When a current with 30 mA triggers the residual-current-operated circuit breaker, it is possible to use a residual-current-operated circuit breaker with higher tripping current for machine protection.

If this residual-current-operated circuit breaker triggers accidentally, too, check in how far the above conditions and dependencies can be improved (for example, by connecting current-compensated mains chokes in the incoming circuit, increasing the inrush current limitation).

Using Isolating Transformer to Reduce Leakage Current in Mains If there is no improvement achieved and the residual-current-operated circuit breaker, due to specific mains conditions on site, has to be used nevertheless on the mains input side, connect an isolating transformer between mains connection and power connection of the drive system. This reduces the leakage current in the ground wire of the mains that is produced during normal operation which allows using the residual-current-operated circuit breaker. Connect the neutral point of the secondary winding of the isolating transformer to the equipment grounding conductor of the drive system.

Adjust the ground-fault loop impedance to the overcurrent protective device so that the unit can be switched off in the case of failure.

Before operating enable, check the correct function of the overcurrent protection device including activation in the case of failure.

Exclusive fusing by residual-current-operated circuit breaker

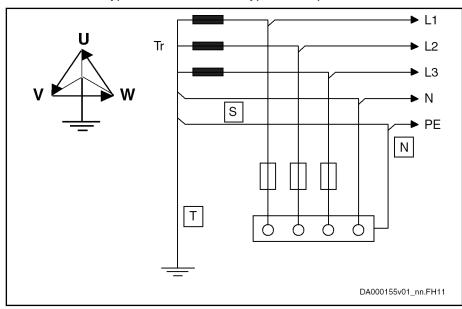
For drive systems with electronic drive controllers, exclusive protection by means of a residual-current-operated circuit breaker normally is not possible and not allowed.

Electronic equipment that has a nominal power higher than 4 kVA or is destined for permanent connection does not need residual-current-operated circuit breakers.

According to IEC 364 and EN 50178, the supply-side protection against contact for indirect contact, i.e. in the case of insulation failure, has to be provided in a different way, for example by means of overcurrent protective device, protective grounding, protective-conductor system, protective separation or total insulation.

Using Residual-Current-Operated Circuit Breakers at HCS Drive Controllers

HCS Drive Controllers at Residual-Current-Operated Circuit BreakResidual-current-operated circuit breakers can be used under the following conditions:


- Residual-current-operated circuit breaker is of type B (IEC60755)
- Trip limit of the residual-current circuit breaker is ≥ 300 mA
- Supplying TN-S mains
- Maximum length of motor cable 20 m in shielded design
- Use of an NFD03 mains filter

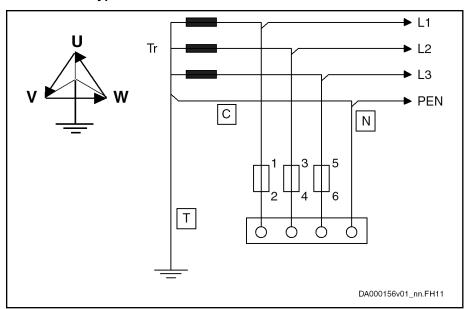
- Each residual-current-operated circuit breaker only supplies one drive controller
- Only Rexroth components and accessories including cables and filters are used

Mains Types

TN-S Mains Type

The TN-S mains type is the usual mains type in Europe.

T = Direct grounding of a point (station ground)

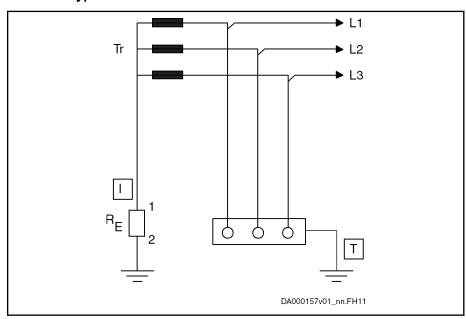

N = Exposed conductive parts directly connected to station ground

S = Separate neutral conductor and equipment grounding conductor in en-

tire mains

Fig.4-41: TN-S Mains Type

TN-C Mains Type



T = Direct grounding of a point (station ground)

N = Exposed conductive parts directly connected to station ground
 C = Neutral conductor and equipment grounding conductor functions in entire mains combined in a single conductor, the PEN conductor.

Fig.4-42: TN-C Mains Type

IT Mains Type

Isolation of all active parts from ground or connection of one point to ground via an impedance RE

T Exposed conductive parts directly grounded, independent of grounding of current source (station ground)

Fig.4-43: IT Mains Type

Notes on Project Planning

Damage to the devices by voltage arcing!

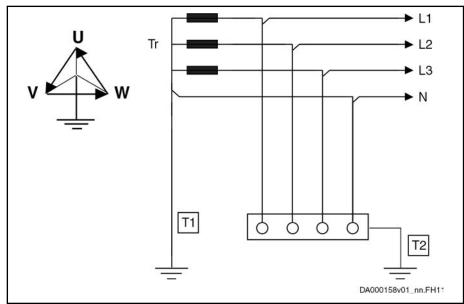
For applications with in which static charging can occur (e.g. printing, packaging), an isolating transformer with $U_x \le 2.5\%$ must be installed for operation at an IT mains.

B

Voltage increase in the case of ground fault!

In case of the error "ground fault" in the IT mains type, higher voltages against ground (device housing) than in error-free operation affect the device.

For operation at the IT mains type, the drive system including mains filter and mains choke should be galvanically decoupled from the mains via an **isolating transformer**.


In this way, the ground fault detection or monitoring can remain effective in the installation.

When operating drive systems with HCS converters in other applications without isolating transformer at the IT mains type:

- Observe the allowed mains voltage U_{LN} at the IT mains type of the corresponding devices
- Observe the allowed switching frequency f_s; see note below
- Check whether the ground fault detection of the mains does not trigger accidentally
- Check whether the interference suppression (that is only activated via the parasitic mains capacitances of the ungrounded mains) is still sufficient to comply with the required limit values

The EMC requirements are only complied with by further measures (special mains filters, among other things)!

TT System

T1 = Direct grounding of a point (station ground)

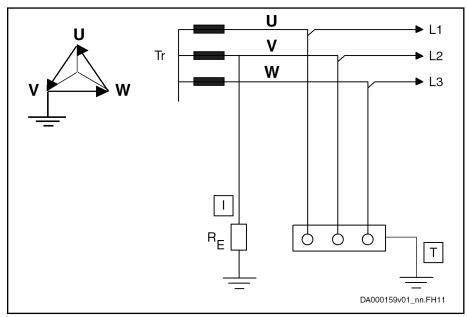

T2 = Exposed conductive parts directly grounded, independent of grounding of current source (station ground)

Fig.4-44: TT Mains System

For applications with in which static charging can occur (e.g. printing, packaging), you must make sure that the "ground loop resistance" between the two grounding points T1 and T2 is smaller than 2 ohm for operation at a TT mains.

The EMC requirements are only complied with by specific measures (special mains filters, among other things).

Mains Grounded via Outer Conductor (Corner-Grounded Delta Mains)

I = Isolation of all active parts from ground, connection of one phase

- generally phase V - to ground or via an impedance

T = Exposed conductive parts directly grounded, independent of ground-

ing of current source (station ground)

Fig.4-45: Mains grounded via outer conductor

Notes on Project Planning

The EMC requirements are only complied with by specific measures (special mains filters, among other things).

Mains filters HNF01, NFD at mains grounded via outer conductor

HNF01.1 or NFD03.1 mains filters are not suited for operation on mains grounded via outer conductor. Use isolating transformers.

Allowed mains connection voltage: See technical data of the respective device

Type of Mains Connection

Mains Supply

1-phase ¹⁾	3-phase		3-phase	
1 AC 110 230 V	3 AC 200 500 V			
	Autotransformer	-		
	3 AC 110 230 V	-		

HCS01.1E-W0003-A- 02	HCS01.1E-W0005-A- 03
HCS01.1E-W0006-A- 02	HCS01.1E-W0008-A- 03
HCS01.1E-W0009-A- 02	HCS01.1E-W0018-A- 03
HCS01.1E-W0013-A- 02	HCS01.1E-W0028-A- 03
HCS01.1E-W0018-A- 02	HCS01.1E-W0054-A- 03
Mains supply	
Individual supply	Individual supply
	Group supply
	Central supply

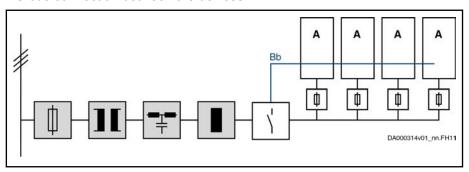

With 1-phase mains supply, you can connect the mains supply line to connector X3 at L1, L2 or L3

Fig.4-46: Mains Supply

Wire the **Bb relay contacts** of the drive controllers supplied with mains voltage in the control circuit of the mains contactor.

Individual Supply

Each component is **individually** connected to the supply mains. There is **no** DC bus connection between the devices.

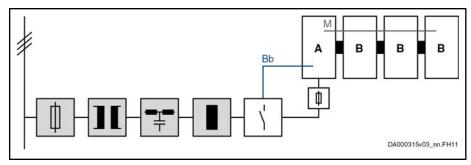
Components marked with gray background color: Optional, depending

on the application
A Component HCS01
Bb Bb relay contact wiring
Fig.4-47: Individual Supply

NOTICE

Risk of fire caused by missing fuses!

Install a fuse **before each drive controller**. In case a short circuit occurs in the drive controller, a fuse provides optimum safety against overheating or fire (see also IEC 61800-5-1 and UL 508C).


Observe the data for dimensioning line cross sections and fuses (see also IEC 60204-1, UL 508A and NFPA 79).

Central Supply

- Only HCS01.1E-W0028 and -W0054 components are suited for central supply.
- Central supply via HCS02.1, HCS03.1, HMV01.1 or HMV02.1 components is not allowed.
- Use the corresponding mains chokes to increase the DC bus continuous power.
- Wire the Bb relay contacts.

One powerful component supplies other components via the common DC bus connection.

Components marked with gray background color: Optional, depending

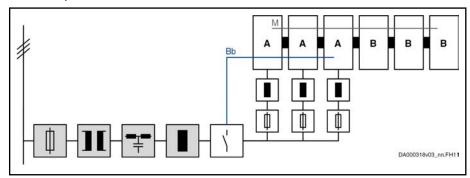
on the application

A Component HCS01 (more powerful than component B); connected to

other components via DC bus

B Component HCS01 (less powerful than component A); connected to

other components vià DC bus


Bb Bb relay contact wiring

M Module bus Fig.4-48: Central Supply

Group Supply

Option 1:

Several powerful components HCS01 (of the same size!) are connected to the mains and supply other components via the common DC bus connection. This requires balancing chokes between supply mains and components.

Components marked with gray background color: Optional, depending on the application; the choke is used to reduce current

harmonics

A Component HCS01 (more powerful than component B; all com-

ponents A identical); connected to supply mains via balancing

chokes; connected to other components via DC bus

B Component HCS01 (less powerful than component A); connec-

ted to other components via DC bus

Bb Bb relay contact wiring

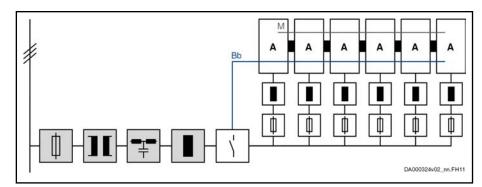

M Module bus

Fig.4-49: Group Supply; Several HCS01 Components Connected to Sup-

ily Mains

• Option 2:

All components HCS01 (of the same size!) are connected to the mains and interconnected via the common DC bus connection. This requires balancing chokes between supply mains and components.

Components marked with gray background color: Optional, depending on the application; the choke is used to reduce current barmanics.

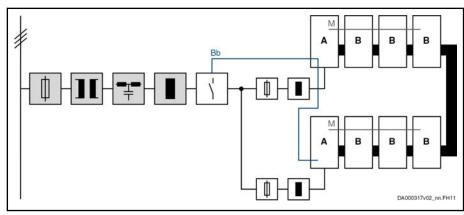
harmonics

A Component HCS01 (all components A identical); connected to supply mains via balancing chokes; interconnected via DC bus

Bb Bb relay contact wiring Module bus (not obligatory)

Fig.4-50: Group Supply; all HCS01 Components Connected to Supply

Mains


Parallel Operation

Group supply or central supply allows parallel operation of the HCS01 components to increase the DC bus continuous power.

Parallel operation of HCS01 components is only allowed under the following conditions:

- The components are of the same range HCS01
- The infeeding HCS01 components are of the same type
- Additional chokes balance the mains current

Components marked with gray background color: Optional, depending on the application; the choke is used to reduce current harmonics

A Component HCS01 (more powerful than component B); connected to other components via DC bus

Component HCS01 (less powerful than component A); connected to other components via DC bus

Bb Bb relay contact wiring

M Module bus

Fig.4-51: Parallel operation

В

Connect the Bb relay contacts of all supplying components in series. You thereby ensure that the mains contactor is switched off in case there is an error in a component.

Bosch Rexroth AG

Mains Connected Load and Mains Current

Technical Data of the Components

See index entry

- HCS01 → Mains voltage, data
- HCS01 → DC bus, data

Calculating the Mains-Side Phase Current

The mains-side phase current is required for the following cases:

- Selecting mains contactor
- Determining fuses in the mains connection
- Determining line cross section
- Selecting other components in the mains connection (mains filter, mains choke)

Operation Under Rated Conditions

For data on mains contactor, fuses and cross section in operation under rated conditions, see technical data of the respective device.

Operation at Partial Load

Operation at partial load can lead to smaller mains contactors, fuses and line cross sections.

If defined data for operation at partial load are available, the mains-side phase current can be determined as follows:

Determine motor power

Take power of drive controller-motor combination from Rexroth Indra-Size or calculate it.

$$P_{mHa} = \frac{M_n \times n_n}{9550}$$

 P_{mHa} Mechanical nominal power for main drives (shaft

output) [kW]

Nominal motor torque [Nm] M_n Nominal motor speed [min-1]

2. Determine **DC** bus power from motor power and efficiency

$$P_{DC} = \frac{M_{eff} \times n_m \times 2\pi}{60} \times k$$

P_{DC} Required DC bus continuous power [W]

M_{eff} Effective torque in Nm n_m Average speed in min-1

Factor for motor and controller efficiency = 1.25

- Add powers of all axes at common DC bus and put them into relation to rated power of supply unit
 - ⇒ Partial load of P_{DC cont} is available
- Determine **power factor TPF** for partial load (TPF = Total Power Factor) For the value TPF at rated power and TPF₁₀ (at 10% of rated power), see technical data (mains voltage) of the component.

5. Calculate mains connected load

$$S_{LN} = \frac{P_{DC}}{TPF}$$

S_{LN} Mains connected load [VA]
P_{DC} DC bus continuous power [W]

TPF Total Power Factor λ

6. Calculate mains-side phase current

 $\label{eq:ln} I_{\text{N}} = \frac{S_{\text{LN}}}{U_{\text{LN}}\sqrt{3}}$ 3-phase:

 $I_{LN} = \frac{S_{LN}}{U_{LN}}$

1-phase:

I_{LN} Mains-side phase current in [A]S_{LN} Mains connected load [VA]

U_{LN} Voltage between phases of mains [V]

7. Select mains contactor

Determine mains circuit breaker and line cross section
 See index entry "Line → Cross sections, dimensioning".

Dimensioning the Line Cross Sections and Fuses

Dimensioning the line cross sections and fuses in the supply feeder and branches to the drive system:

1. Determine current in supply feeder of drive system and correct it with correction factors for ambient temperature and bundling.

(In the technical data of the components in section "Data for Mains Voltage Supply", you can find standardized data for connection cross section and mains circuit breaker at operation under rated conditions.)

- 2. Determine country of use ("international except for USA/Canada" or "USA/Canada")
- 3. Determine installation type (e.g. B1 or B2)
- 4. In table row "Current I", select value immediately above the value determined in the first step
- 5. In table row "Nominal current fuse", read corresponding fuse
- 6. In table row "Cross section A ...", read corresponding required cross section

Country of use: International except for USA/Canada			
Current I	Nominal current fuse	Cross section A	
		for installation type B1	
Α	Α	mm ²	
1,6	2	1,5	
3,3	4	Minimum cross section acc. to EN 60204-1:2006, table 5	
5,0	6	(Main circuits; outside of hous-	
8,6	10	ings; permanently installed; sin-	
10,3	16	gle-core lines; stranded wire design class 2)	
13,5	16	- 0.g.: 0.000 _/	
18,3	20	2,5	
22	25	4	
28	32	6	
31	40	6	
35	40	10	
44	50	10	
59	63	16	
77	80	25	
96	100	35	
117	125	50	
149	160	70	
180	200	95	
208	250	120	
227	250	150	
257	315	185	
301	355	240	
342	400	300	

Fig.4-52: Line Cross Sections and Fuses, B1 According to EN 60204-1:2006, Table 6, as of 150mm² DIN IEC 60364-5-52:2004, Table B.52-4

Country	Country of use: International except for USA/Canada				
Current I	Nominal current fuse	Cross section A			
		for installation type B2			
Α	A	mm²			
1,6	2	0,75			
3,3	4	Minimum cross section acc. to EN 60204-1:2006, table 5			
5,0	6	(Main circuits; outside of hous-			
8,5	10	ings; permanently installed; mul- ti-core lines)			
10,1	16	1,0			
13,1	16	1,5			
17,4	20	2,5			
23	25	4			
28	32	6			
30	40	6			
35	40	10			
40	50	10			
54	63	16			
70	80	25			
86	100	35			
103	125	50			
130	160	70			
156	200	95			
179	200	120			
195	224	150			
221	250	185			
258	315	240			
294	355	300			

Fig.4-53: Line Cross Sections and Fuses, B2 According to EN 60204-1:2006, Table 6, as of 150mm² DIN IEC 60364-5-52:2004, Table B.52-4

Country of use: International except for USA/Canada				
Current I	Nominal current fuse Cross section A			
		for installation type E		
Α	Α	mm ²		
1,6	2	0,75		
3,3	4	Minimum cross section acc. to EN 60204-1:2006, table 5		
5,0	6	(Main circuits; outside of hous-		
8,3	10	ings; permanently installed; mul-		
10,4	16	ti-core lines)		
12,4	16	1		
16,1	20	1,5		
22	25	2,5		
28	32	4		
30	40	4		
37	40	6		
44	50	10		
52	63	10		
70	80	16		
88	100	25		
110	125	35		
133	160	50		
171	200	70		
207	250	95		
240	315	120		
277	355	150		
316	400	185		
374	425	240		
432	500	300		

Fig.4-54: Line Cross Sections and Fuses, E According to EN 60204-1:2006, Table 6, as of 150mm² DIN IEC 60364-5-52:2004, Table B.52-10

	Country of use: USA/Canada			
Current I	Nominal current fuse	Cross section A		
Α	A	AWG		
1,6	2	14		
		Minimum cross section acc. to UL 508 A:2007, chapter 29.6		
3,3	4	14		
5,0	6	14		
8,3	10	14		
13	15	14		
15	20	14		
20	25	12		
30	40	10		
50	70	8		
65	80	6		
85	100	4		
100	110	3		
115	125	2		
130	150	1		
150	175	1/0		
175	200	2/0		
200	225	3/0		
230	250	4/0		
255	300	250 kcmil		
285	300	300 kcmil		
310	350	350 kcmil		
335	350	400 kcmil		
380	400	500 kcmil		
420	450	600 kcmil		

Fig.4-55: Line Cross Sections and Fuses According to UL508A:2007, Table 28.1

Dimensioning variables of the table values

- 1. Ambient temperature T_A of routed lines \leq 40 °C
- 2. Temperature T_L at conductor at nominal current: 90 °C for UL-listed lines (USA/Canada) or 70 °C for PVC lines
- 3. The nominal current of the fuse is approx. 10-20% above the nominal current I_{LN} of the converter/supply unit or the determined current of the drive system.
- 4. Installation types:

Bosch Rexroth AG

- B1 according to IEC 60364-5-52, e.g. stranded wires routed in cable duct
- B2 according to IEC 60364-5-52, e.g. multi-core line routed in cable duct
- E according to EN 60204-1, e.g. multi-core line routed on open cable tray
- According to NFPA 79 (external wiring), UL508A (internal wiring), NEC, NFPA 70:
 - 1 cable with 3 conductors, 1 neutral conductor and 1 equipment grounding conductor
 - Routed in pipe on the wall

Internal wiring: Routing inside of control cabinet or inside of devi-

External wiring: Routing outside of control cabinet

Field wiring: Data of cross sections of terminal connectors wired by the user (in the field)

- 5. Recommendation for design of the fuses:
 - International except for USA/Canada: Class gG; 500V, 690V; design NH, D (DIAZED) or D0 (NEOZED)

Characteristic

In the case of error (e.g. ground fault at connections L+, L-), fuses of characteristic gG (general-purpose fuse link for general installations), as well as circuit breakers, protect the lines in the supply feeder to the drive system.

To protect the semiconductors in the input of supply units and converters, you can use fuses of characteristic gR.

USA / Canada: Class J; 600V

Circuit breaker

As an alternative to fuses, you can use circuit breakers with lower peak let-through current and lower let-through energy than the corresponding fuse.

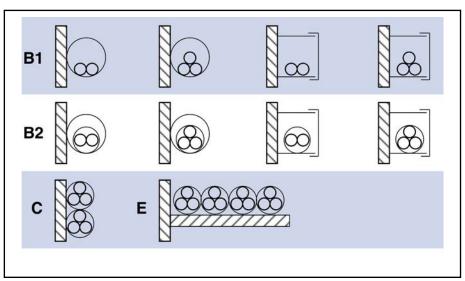
Correction factors

For deviating dimensioning variables, the corresponding standards specify correction factors.

Below you can find the correction factors for ambient temperature and numbers of routed lines and circuits. If necessary, multiply the determined current in the supply feeder with these factors.

Correction Factor Ambient Temperature

Ambient temperature T _A / °C	30	35	40	45	50	55	60
Correction factor according to EN 60204-1:2006, table D.1	0,87	0,93	1,00	1,1	1,22	1,41	1,73
Correction factor according to NFPA 79:2007, table 12.5.5(a)	0,88	0,94	1,00	1,1	1.18	1.32	1,52


Fig.4-56: Correction Factor Ambient Temperature According to EN 60204-1:2006 and NFPA 79:2007

Correction Factor for Bundling of Lines (Installation Methods B2 and E) and Circuits (Installation Method B1¹⁾)

Number of lines	1	2	3	4	5
Correction factor according to EN 60204-1:2006, table D.2	1	1,25	1,43	1,54	1,67
Correction factor according to NFPA 79:2007, table 12.5.5(b)	1	1,25			

1) Three single cores (L1, L2, L3) for mains supply of a device are to be considered as one circuit.

Fig.4-57: Correction Factor for Bundling of Lines and Circuits According to EN 60204-1:2006 and NFPA 79:2007

B1 Conductors in installation pipes and in installation channels that can be opened

B2 Cables or lines in installation pipes and in installation channels that

can be opened

C Cables or lines on walls

E Cables or lines on open cable trays

Fig.4-58: Installation Types (cf. IEC 60364-5-52; DIN VDE 0298-4; EN 60204-1)

Dimensioning and Selecting the Mains Transformer

Mains transformers are always needed when the mains voltage is outside of the allowed nominal voltage of the component.

Grounded Mains

As a matter of principle, the mains voltage for grounded mains is adjusted by means of **autotransformers**.

Bosch Rexroth AG

Ungrounded Mains

As a matter of principle, the mains voltage for ungrounded mains is adjusted by means of isolating transformers to avoid prevent overvoltages between outer conductor and ground. Short-circuit voltage of the isolating transformer: ≤ 4%

Applications for Autotransformers

With HCS01 components, there are two applications for which autotransformers are necessary:

HCS01.1E-W00xx-A-02 components are used:

With a mains voltage of 3 AC 400 V, the voltage must be adjusted via an autotransformer to use HCS01.1E-W00xx-A-02 components with an input voltage range of 3 AC 110...230 V.

2. An MSM motor is used in conjunction with an HCS01.1E-W00xx-A-03 component:

MSM motors have been dimensioned for a voltage of 230 V. To operate MSM motors at a mains voltage of 3 AC 400 V at an HCS01.1E-W00xx-A-03 component, the mains voltage must be adjusted to 3 AC 230 V via an autotransformer.

Dimensioning the Mains Filter

Criteria for Selecting the Mains Fil-

Take the following criteria into account for selecting the appropriate mains filter:

- EMC limit value class on site
- Ambient conditions on site
- Harmonics on mains voltage on site
- Loading by mains voltage and mains frequency on site
- Loading by harmonics on site
- Loading by mains-side phase current
- Total length of connected power cables
- Sum of leakage capacitances
- Clock frequency of drive controller

How to Proceed for Selecting the **Mains Filter**

The selection of the mains filter is significantly determined by the operating conditions.

How to proceed for selecting the mains filter:

- Determine the required EMC limit value class for the application.
- Determine the maximum applied mains voltage. Observe that not all Rexroth IndraDrive Cs mains filters are suited for a mains voltage of 3 AC 500 V.

Check whether the mains voltage of the mains filter is loaded with harmonics and still allowed for the mains filter.

If necessary, reduce the harmonics on site.

- Determine the kind of mains connection, such as central supply, group supply etc. (to do this, it is useful to outline the involved components and their interaction).
- Calculate the mains-side phase current of the mains filter. You can find the procedure for calculating the mains-side phase current in a separate chapter (see index entry "Phase current → Calculating"). For selecting the components, calculate the effective rms value.

Check or determine the maximum occurring ambient temperature. Select a mains filter with higher nominal current, when the ambient temperature is above 45 °C.

- 5. Select a mains contactor the nominal current of which does not exceed nominal current of the mains filter.
- 6. Determine the number of drive axes.
- 7. Determine the total length of the connected power cables.
- 8. Determine the sum of the leakage capacitances on the load side of the mains filter.

The sum of the leakage capacitances results from the number of operated axes and the length of the connected power cables. You can find the procedure for determining the leakage capacitance in a separate chapter (see index entry "Leakage capacitance → Determining").

9. Take the clock frequency of the drive controller into account.

The higher the clock frequency of the drive controller, the higher the leakage currents and the interference emissions they involve.

The following leakage capacitances (motor cable + motor) mustn't be exceeded per drive controller.

HCS01.1E-W0003, -W0006, -W0009, -W0013

Clock frequency [kHz]	Maximum leakage capacitance (Motor + cable) per device [nF]	Motor cable length [m]
4	33	40
8	17	20
12	13	15
16	5	5

Fig.4-59: Clock Frequency, Leakage Capacitance, Motor Cable Length

HCS01.1E-W0005, -W0008

Clock frequency [kHz]	Maximum leakage capacitance (Motor + cable) per device [nF]	Motor cable length [m]
4	34	40
8	18	20
12	14	15
16	6	5

Fig.4-60: Clock Frequency, Leakage Capacitance, Motor Cable Length

HCS01.1E-W0018, -W0028

Clock frequency [kHz]	Maximum leakage capacitance (Motor + cable) per device [nF]	Motor cable length [m]
4	40	40
8	24	20

Bosch Rexroth AG

Clock frequency [kHz]	Maximum leakage capacitance (Motor + cable) per device [nF]	Motor cable length [m]
12	20	15
16	12	5

Fig.4-61: Clock Frequency, Leakage Capacitance, Motor Cable Length

HCS01.1E-W0054

Clock frequency [kHz]	Maximum leakage capacitance (Motor + cable) per device [nF]	Motor cable length [m]
4	85	75
8	43	38
12	30	25

Fig.4-62: Clock Frequency, Leakage Capacitance, Motor Cable Length

Select the appropriate mains connection (supply unit/converter, mains choke, mains filter) from the tables in the corresponding chapter (see index entry "Mains connection → Transformer, mains filter, mains choke").

Notes on Installation

When using NFE02 or NFD03 mains filters at mains grounded via outer conductor, install an isolating transformer between mains and mains filter.

Selecting the Mains Filter

The specified mains filter types are exclusively suited for TN and

The EMC limit values relate to line-based noise emission in the frequency range of 0.15... 30 MHz on the mains connection lines.

HCS01.1E-W0005, -W0008, -W0018-A-03, -W00028, -W00054					
Nominal voltage of	Nominal voltage of mains filter: 3 × 400 V				
Clock frequency Leakage capacitance (motor + cable) Leakage capacitance (motor + cable) Mains filter EMC limit value class to ieved			EMC limit value class to be ach- ieved		
	[nF]		(IEC / EN 61800-3)		
4; 8	< 100	NFD03.1	C2		
4; 8	100 < < 150		C3		
12; 16	< 30		C2		
12; 16	30 < < 70		C3		

Fig.4-63: Mains filter; 3 × 400 V

HCS01.1E-W0005, -W0008, -W0018-A-03, -W00028, -W00054 Nominal voltage of mains filter: 3 × 400 500 V				
	[nF]		(IEC / EN 61800-3)	
4; 8	< 70	FN3258H (Schaffner)	C2	
4; 8	70 < < 100		C3	
12; 16	< 20		C2	
12: 16	20 < < 50		C3	

Fig.4-64: Mains filter; 3 × 400 ... 500 V

HCS01.1E-W0003, -W0006, -W0009, -W0013, -W0018-A-02

Nominal voltage of mains filter: 1 × 230 V

Clock frequency [kHz]	Leakage capacitance (motor + cable)	Mains filter	EMC limit value class to be achieved
	[nF]		(IEC / EN 61800-3)
4; 8	< 90	NFE02.1 1)	C2
4; 8	90 < < 120	FN350 (Schaffner)	C3
12	< 20		C2
12	20 < < 40		C3

1) Only allowe up to a nominal current of 8 A Fig.4-65: Mains Filter; 1 × 230 V

HCS01.1E-W0005, -W0008, -W0018-A-03, -W00028, -W00054, (mains voltage: $3 \times 400 \text{ V}$, L1-L2-L3)

can be combined with 1)

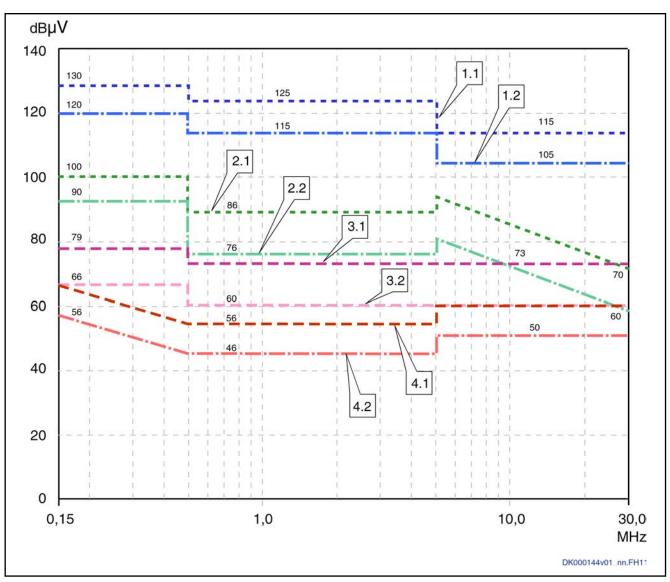
HCS01.1E-W0003, -W0006, -W0009, -W0013, -W0018-A-02, (mains voltage: 1 × 230 V, L-N)

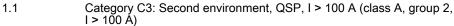
Nominal voltage of mains filter: 3 × 400 V + N

Clock frequency [kHz]	Leakage capacitance (motor + ca- ble) [nF]	Mains filter	EMC limit value class to be achieved (IEC / EN 61800-3)
4	< 70	FN3280H (Schaffner)	C2
4	70 < < 120		C3
4	< 70	FN3256H (Schaffner)	C3
8	< 40	FN3280H (Schaffner)	C2
8	40 < < 70		C3
8	< 40	FN3256H (Schaffner)	C3
12	< 20	FN3280H (Schaffner)	C2

This combination allows interconnecting 3-phase and 1-phase HCS01 devices at one common 4-phase mains filter. Thereby, the nominal current of the mains filter and the maximum allowed leakage capacitance are taken into account.

6: Mains Filter; 3 × 400 V + N


Fig.4-66:


1)

Limit Value Classes

IEC / EN 61800-3	CISPR 11 (EN55011)	Explanation	Curves of limit value characteristic
Category C4, 2nd environ- ment	None	One of the following 3 requirements must have been fulfilled: Mains connection current >400 A, IT mains or required dynamic drive behavior not reached by means of EMC filter. Adjust limit values to use and operation on site. User has to carry out and provide evidence of EMC planning.	-
Category C3, 2nd environ-	Class A; Group	Limit value in industrial areas to be complied with for applications operated at supply mains with nominal currents > 100 A.	1.1
ment	I > 100 A	ed at supply mains with nominal currents > 100 A.	1.2
Category C3,	Class A; Group	Limit value in industrial areas to be complied with for applications operat-	2.1
2nd environ- ment	2 I < 100 A	ed at supply mains with nominal currents < 100 A.	
Category C2,	Class A;	Limit value in residential area or at facilities at low-voltage mains supply-	3.1
1st environ- ment;	Group 1	ing buildings in residential areas. To be complied with for applications with restricted distribution.	3.2
Restricted dis- tribution			
Category C1,	Class B;	Limit value in residential areas to be complied with for applications with	4.1
1st environ- ment;	Group 1	unrestricted distribution.	4.2
Unrestricted distribution			

Fig.4-67: Limit Value Classes

- 1.2 Category C3: Second environment, AV, I > 100 A (class A, group 2, I > 100 A)
- 2.1 Category C3: Second environment, QSP, I < 100 A (class A, group 2, I < 100 A)
- 2.2 Category C3: Second environment, AV, I < 100 A (class A, group 2, I < 100 A)</p>
- 3.1 Category C2: First environment, restricted distribution, QSP (first environment, even if source of interference in second environment) (class A, group 1)
- 3.2 Category C2: First environment, restricted distribution, AV (first environment, even if source of interference in second environment) (class A, group 1)
- 4.1 Category C1: First environment, unrestricted distribution, QSP (first environment, even if source of interference in second environment) (class B, group 1)
- 4.2 Category C1: First environment, unrestricted distribution, AV (first environment, even if source of interference in second environment) (class B, group 1)
- Notes (1) Limit value for first environment is also relevant, if source of interference of second environment affects first environment
 - (2) Designations "class" and "group" according to IEC CISPR 11

Bosch Rexroth AG

QSP: Measuring method quasi peak measurement; AV: Measuring method arithmetic averaging

Fig.4-68: Limit Values for Line-Based Disturbances (IEC 61800-3); Limit Value

Characteristic through Frequency Range

Determining the Mains Choke

When using mains chokes, take their effect on the connected drive controllers into account. Due to their inductance, mains chokes have a smoothing effect on the current and thereby reduce harmonics.

Take the nominal current of the mains choke into account to have the inductance of the mains choke available.

Some mains chokes are assigned to certain drive controllers (see Data for mains voltage supply → Assigned type of mains choke).

Dimensioning the Mains Contactor

Required data:

- Nominal current I_{LN} of the drive controller
- Number of drive controllers connected to the mains contactor

For the Nominal current I_{LN}, see the technical data of the drive controller (Data for Mains Voltage Supply; see index entry "HCS01 → Mains voltage, data").

If you use mains contactors of utilization category AC-1, observe the conventional thermal continuous current I_{th} (see data sheet of mains contactor) when dimensioning the mains contactor.

The minimum required conventional thermal continuous current Ith results from the sum of nominal currents Σ I_{LN} of all connected drive controllers.

Combining Transformer, Mains Filter and Mains Choke

HCS01.1E	Trans	former		Mains filter	•	Mains choke
	DST ³⁾	DLT ⁴⁾	NFE 02.1	NFD 03.1	HNF01.1*-****- E ****	HNL01.1 E
W0003						
W0006						
W0009	•	•	•	•	1)	-
W0013						
W0018-A-02						
W0005						
W0008						
W0018-A-03	•	•	-	•	1)	= 2)
W0028						
W0054						

Allowed

- Not allowed

1) We are currently checking whether it is possible to combine HNF mains filters and several HCS01 components.

Only possible with -W0028 and -W0054 components

Only possible with -W00DST = Autotransformer

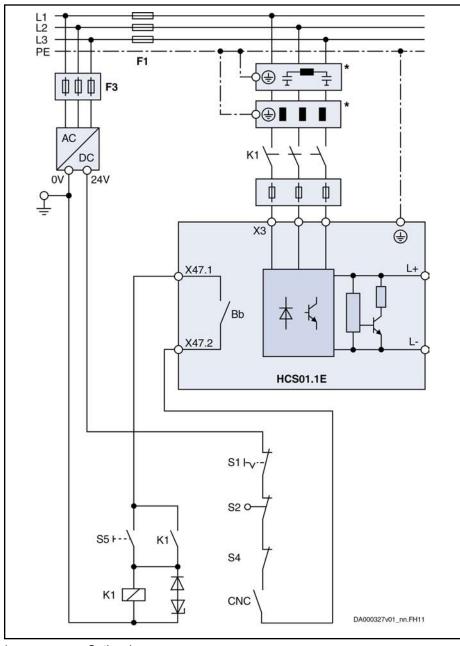

4) DLT = Isolating transformer

Fig.4-69: Additional Components in the Mains Connection of HCS01 Compo-

nents

Bosch Rexroth AG

Control Circuit for the Mains Connection

*	Optional
Bb	Bb relay contact (see Connection point X47)
CNC	Lag error message of control unit
F1	Fuse of power supply
F3	Fuse of 24V power supply unit
K1	External mains contactor
S1	Emergency stop
S2	Axis end position
S4	Power Off
S5	Power On
Fia.4-70:	Control Circuit for the Mains Connection

4.6.4 DC Bus Coupling

Requirements for DC Bus Coupling

Device Types

Only devices of the "HCS01.1E-W00**-*-03" type are suited for DC bus coupling. DC bus coupling takes place via the optionally available DC bus connector at the connection point X77.

Parameterization: For all devices which are only supplied via the DC bus, "DC bus → inverter mode" must be set as the source of power supply in parameter "P-0-0860, Converter configuration" (see also Parameter Description of the firmware used).

Number

A maximum of 8 devices can be coupled at a common DC bus.

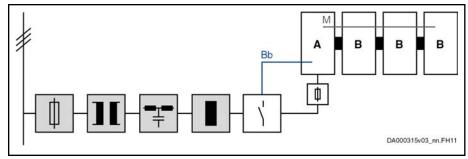
Mains Connection

DC bus coupling is possible for the following types of mains connection:

- Central Supply
- Group Supply

DC bus coupling requires:

- That the Bb contacts of all devices connected to the mains be wired
- That the module bus be wired via all devices at the common DC bus


Central Supply and DC Bus Coupling

Use this type of DC bus coupling, when the DC bus continuous power of the infeeding device makes available sufficient power reserves to supply other HCS01 devices. The devices in the group can be of different types. For the project planning of the application, observe that the supplying devices can only make available the DC bus power for other devices which they do not consume themselves.

With central supply, **one** HCS01 **device** charges the DC bus and the other devices are supplied via DC bus coupling.

Features

- The supplying device must be of the HCS01.1E-W0028 or -W0054 type
- Energy compensation between the devices is possible (the DC bus capacitors of the devices are connected in parallel)
- Balancing of the integrated braking resistors exists (equal load of all braking resistors integrated in the devices)
- No balancing measures required in the supply feeder
- To increase the DC bus power, a mains choke can be optionally used
- It is possible to connect DC bus capacitor units; DC bus capacitor units should always be placed directly next to the most powerful device
 - A DC bus capacitor unit HLC requires a mains choke to be installed
- Small wiring effort for the mains connection
- DC bus short circuit functionality must be realized externally, if required

Components marked with gray background color: Optional, depending

on the application

Α Component HCS01 (more powerful than component B); connected to

other components via DC bus

Component HCS01 (less powerful than component A); connected to other components via DC bus В

Bb Bb relay contact wiring

Μ Module bus Fig.4-71: Central Supply

Group Supply and DC Bus Coupling

Possibilities of DC Bus Coupling

For group supply with DC bus coupling, there are **two options**:

- At least two devices supply the DC bus and other devices are supplied via th common DC bus connection
- 2. **All devices** with common DC bus connection supply the DC bus

When sizing the devices for group supply, observe the balancing factor:

- 0.8 (when balancing is used)
- 0.5 (when balancing is not used)

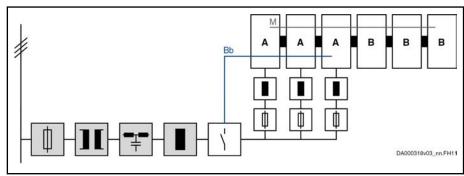
With group supply, the Bb relay contacts of all supplying devices must be connected in series. This guarantees that the mains contactor is switched off in the case of error in a device.

The lines of DC bus coupling mustn't be run outside of the control cabinet. The maximum line length of a DC bus coupling is 2 m. See also description of the connection point X77 for more information (see page 131).

Balancing: To distribute the charging process of the DC bus equally over all supplying devices, balancing chokes or balancing resistors must be installed in the supply feeder.

Balancing Choke

- HCS01.1E-W0028: Mains choke HNL01.1E-1000-N0012-A-500-NNNN
- HCS01.1E-W0054: Mains choke HNL01.1E-0600-N0032-A-500-NNNN


The firmware provides for the balancing of the power over all braking resistors. See also the documentation of the firmware used (parameter "P-0-0860, Converter configuration").

The parallel connection of the braking resistors causes **derating/ reduction of power** of the continuous braking resistor power to the factor 0.8.

Supply via at Least Two Devices

Use this type of DC bus coupling if you use **different HCS01 device types** in your application.

Components marked with gray background color: Optional, depending on the application; the choke is used to reduce current harmonics

Component HCS01 (more powerful than component B; all compo-

nents A identical); connected to supply mains via balancing chokes; connected to other components via DC bus

B Component HCS01 (less powerful than component A); connected to

other components vià DC bus

Bb Bb relay contact wiring

M Module bus

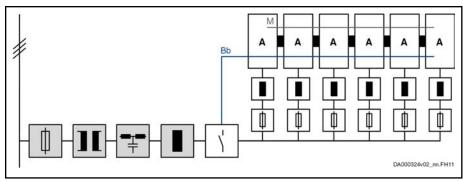
Fig.4-72: Group Supply; Several HCS01 Components Connected to Supply

Mains

Features

Α

- The supplying devices^{1) 2)} must be of the same type. The following devices are suited as supplying devices:
 - HCS01.1E-W0028
 - HCS01.1E-W0054
- DC bus continuous power of the supplying devices reduced by parallel operation
- Energy compensation between the devices is possible (the DC bus capacitors of the devices are connected in parallel)
- Balancing of the integrated braking resistors exists (equal load of all braking resistors integrated in the devices)
- Balancing chokes or balancing resistors required in supply feeder
- It is possible to connect DC bus capacitor units
- Wiring effort for the mains connection relatively small
- It is possible to use a common mains contactor, as well as a common mains filter
- DC bus short circuit functionality must be realized externally, if required


Supplying devices are devices connected to the mains which supply power to other devices via a DC bus connection

²⁾ Supplied devices are devices not connected to the mains which are supplied with power by the supplying devices via a DC bus connection

Supply via all Devices

Bosch Rexroth AG

Use this type of DC bus coupling if you exclusively use **one HCS01 device type** in your application.

Components marked with gray background color: Optional, depending on the application; the choke is used to reduce current harmonics Component HCS01 (all components A identical); connected to supply

mains via balancing chokes; interconnected via DC bus

Bb Bb relay contact wiring Module bus (not obligatory)

Fig.4-73: Group Supply; all HCS01 Components Connected to Supply Mains

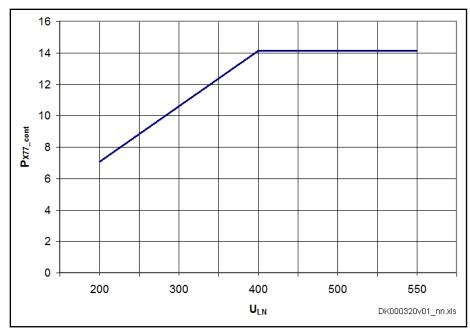
Features

Α

- All devices must be of the same type
- DC bus continuous power of the supplying devices reduced by parallel operation
- Energy compensation between the devices is possible (the DC bus capacitors of the devices are connected in parallel)
- Balancing of the integrated braking resistors exists (equal load of all braking resistors integrated in the devices)
- Balancing chokes or balancing resistors required in supply feeder
- It is possible to connect DC bus capacitor units
- Wiring effort for the mains connection of all devices relatively big
- DC bus short circuit functionality must be realized externally, if required

Implementation of DC Bus Coupling

Maximum Number of Devices


A maximum of 8 devices can be coupled at a common DC bus.

The maximum number of devices which can be interconnected via DC bus coupling depends on

- the power reserves of the supplying devices
 - (The power reserve (P_{reserve}) results from the difference between the possible DC bus continuous power of the device and the power consumed by the motor connected to the device.)
- the type of DC bus connection:
 - Connection looped through via DC bus connector X77
 - DC bus connecting bar with spur lines to the individual devices
- the sum of DC bus continuous powers of all supplied devices
- the mains voltage value
- the maximum continuous power which can be looped through via the DC bus connector X77

(The continuous power results from the current carrying capacity of the DC bus connector X77 and the mains voltage value.)

Load of DC Bus Connector at I = 25 A:

U_{LN} Mains voltage

P_{X77_cont} Continuous power at DC bus connector X77

Fig.4-74: Load of DC Bus Connector

U _{LN}	P _{X77_cont}
200 V AC	7 kW
400 V AC	14 kW
500 V AC	14 kW

Fig.4-75: Selected Values of Continuous Power via DC Bus Connector X77 (Px77_cont) Depending on Mains Voltage

Number of supplied devices:

If the sum of power reserves ($P_{reserve}$) of the supplying devices is **greater then** the continuous power of X77 (P_{X77_cont}), the maximum number of supplied devices results from P_{X77_cont} minus the respective DC bus continuous power of the individual devices at average speed.

If the sum of power reserves ($P_{reserve}$) of the supplying devices is **smaller** than the continuous power of X77 (P_{X77_cont}), the maximum number of supplied devices results from $P_{reserve}$ minus the respective DC bus continuous power of the individual devices at average speed.

Bosch Rexroth AG

Looping Through the DC Bus Connection via DC Bus Connector

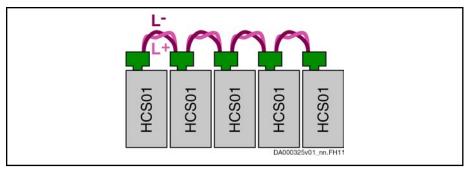
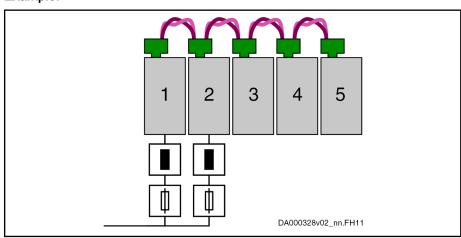


Fig.4-76: Looping Through via DC Bus Connector


The DC buses of the individual devices are connected via the DC bus connectors X77.

When the devices are supplied via group supply, the DC bus connector X77 of the last infeeding device is the limiting factor in the DC bus group.

Arrangement of the devices: The higher the power consumption of a device, the nearer to the supplying devices it must be arranged.

Example:

1, 2 HCS01.1E-W0028 (supplying devices) 3, 4, 5 HCS01.1E-W0018 (supplied devices)

Fig.4-77: Looping Through

On the left, the two supplying HCS01.1E-W0028 devices have been arranged; to their right the three supplied HCS01.1E-W0018 devices.

The DC bus connector of the second device from the left (2) limits the possible number of devices at the common DC bus.

DC Bus Connecting Bar

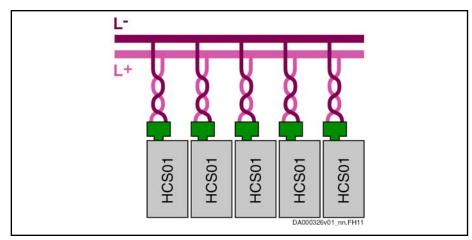


Fig.4-78: DC Bus Connection via Connecting Bar

Via a "spur line", the DC buses of the individual devices are connected to the DC bus connecting bar.

The power reserve of the supplying devices limits the number of devices at the common DC bus.

DC Bus Capacitor Unit

Function

DC bus capacitor units are optional additional components and increase

- the DC bus continuous power
- the available DC bus energy

Mains Choke

Always operate the DC bus capacitor units together with the mains choke assigned to the drive controller (see Data for mains voltage supply → Assigned type of mains choke).

Special case "HCS01.1E-W0018-_-03" (in the technical data, no mains choke has been assigned to this drive controller):

Use the mains choke "HNL01.1E-1000-N0012-A-500-NNNN".

Connection

The maximum allowed capacitance of a DC bus capacitor unit depends on the device which assumes the DC bus supply.

Even if several devices supply the DC bus, the specific external DC bus capacitance of the biggest supplying device may only be connected **once** for the entire DC bus group!

For the maximum allowed external DC bus capacitance at U_{LN_nenn} , see the Technical Data (see index entry "DC bus \rightarrow Data, HCS01").

Maximum Allowed External DC Bus Capacitance [mF] vs. Mains Voltage

HCS01.1E-	Mains Voltage			
	400 V	440 V	480 V	500 V
W0018-A-03	3	2	1	-
W0028-A-03	4	3	1	-
W0054-A-03	13	9	6	5

Fig.4-79: Maximum Allowed External DC Bus Capacitance (in mF)

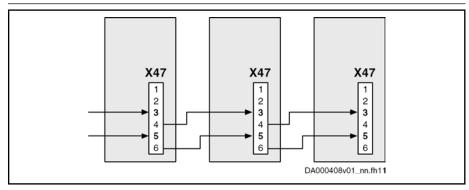
Bosch Rexroth AG

If possible, place the DC bus capacitor unit directly next to the drive controller to be supplied or the most powerful drive controller. Connect the DC bus capacitor unit to the drive controller via the DC bus connection X77.

See also index entry "HLC → DC bus capacitor unit".

Module Bus and Parameterization

Module Bus


The module bus is an internal system connection. To ensure the coordinated behavior of all devices of a drive system, the devices must exchange information via the module bus.

With the parameter "P-0-0118, Power supply, configuration", you can parameterize both a common error reaction for all axes and power off in the case of error.

When several devices are coupled via the DC bus, it is obligatory to loop through the module bus.

Use shielded lines to loop through the module bus, when the length of all module bus connections is greater than 3 m.

Looping through the Module Bus Fig.4-80:

Parameterization

For all devices which are only supplied via the DC bus, "DC bus → inverter mode" must be set as the source of power supply in parameter "P-0-0860, Converter configuration".

For detailed information, see the documentation of the firmware used:

- Parameter Description:
 - P-0-0860, Converter configuration
 - P-0-0118, Power supply, configuration
- Functional Description: "Power Supply"

Bb Relay Contact

Generally, the following applies: Include the Bb contact in the mains contactor circuit at all devices connected to the mains. (See also index entry "Mains connection → Control circuit".)

When several devices assume the DC bus supply (group supply), connect the Bb relay contacts (X47) of all supplying devices in series. This guarantees that the mains contactor is switched off in the case of error in a device.

For devices which are only supplied via the DC bus, it is sufficient that you establish the module bus connection. You do not need to connect the Bb relay contacts of these devices in series.

NOTICE

Risk of fire in the case of error caused by missing mains contactor control!

Include the Bb relay contact in the switch-off chain of the mains contactor so that the power supply is interrupted in the case of error.

4.7 Acceptance Tests and Approvals

Declaration of Conformity

Declarations of conformity confirm that the components comply with the valid EN standards and EC directives. If required, our sales representative can provide you with the declarations of conformity for components.

DX000011v01.an.FH11	Drive controllers, Supply units	Motors
CE conformity regarding Low-Voltage Directive	EN 61800-5-1 (IEC 61800-5-1:2007)	EN 60034-1 (IEC 60034-1:2010)
		EN 60034-5 (IEC 60034-5:2000 + Corrigendum 2001+A1:2006)
CE conformity regarding EMC product standard	EN 61800-3 (IEC 61800-3:2004)	

Fig.4-81: CE - Applied Standards

C-UL-US Listing

The components are listed by **UL** (Underwriters Laboratories Inc.®). You can find the evidence of certification on the Internet under http://www.ul.com under "Certifications" by entering the file number or the "Company Name: Rexroth".

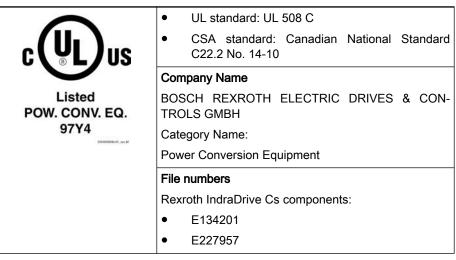


Fig.4-82: C-UL Listing

Bosch Rexroth AG

UL ratings

For using the component in the scope of CSA / UL, take the UL ratings of the individual components into account.

Make sure that the indicated **short circuit current rating SCCR** is not exceeded, e.g. by appropriate fuses in the mains supply of the supply unit.

礟

Wiring material UL

In the scope of CSA / UL, use copper 60/75 °C only; class 1 or equivalent only.

Allowed pollution degree

Comply with the allowed pollution degree of the components (see "Ambient and Operating Conditions").

C-UR-US Listing

The motors are listed by UL ("Underwriters Laboratories Inc.®"). You can find the evidence of certification on the Internet under http://www.ul.com under "Certifications" by entering the file number or the "Company Name: Rexroth".

CUR Zeichen.fh11

- UL standard: UL 1004-1
- standard: Canadian National Standard C22.2 No. 100

Company Name

BOSCH REXROTH ELECTRIC DRIVES & **CONTROLS GMBH**

Category Name:

Servo and Stepper Motors - Component

File numbers

MSK, MSM motors: E335445

Fig.4-83: C-UR Listing

Wiring material UL (ready-made cables by Rexroth)

In the scope of CSA / UL, use copper 60/75 °C only; class 6 or equivalent only.

Allowed pollution degree

Comply with the allowed pollution degree of the components (see "Ambient and Operating Conditions").

CCC (China Compulsory Certification)

The CCC test symbol comprises a compulsory certification of safety and quality for certain products mentioned in the product catalog "First Catalogue of Products Subject to Compulsory Certification" and in the CNCA document "Application Scope for Compulsory Certification of Products acc. first Cataloque" and put in circulation in China. This compulsory certification has been existing since 2003.

CNCA is the Chinese authority responsible for certification directives. When a product is imported in China, the certification will be checked at the customs Rexroth IndraDrive Cs Drive Systems with HCS01

Combining the Individual Components

by means of entries in a database. For the requirement of certification three criteria are normally relevant:

- Customs tariff number (HS code) according to CNCA document "Application Scope for Compulsory Certification of Products acc. first Catalogue".
- 2. Scope of application according to CNCA document "Application Scope for Compulsory Certification of Products acc. first Catalogue".
- 3. For the IEC product standard used, the corresponding Chinese GB standard must exist.

For the drive components by Rexroth described in this documentation, **certification is not required at present**, thus they are not CCC certified. Negative certifications will not be issued.

Condition as Supplied, Identification, Transport and Storage

5 Condition as Supplied, Identification, Transport and Storage

5.1 Condition as Supplied

5.1.1 Factory-Side Test

Voltage Test and Insulation Resistance Test

According to standard, the **components** of the Rexroth IndraDrive Cs range are tested with voltage.

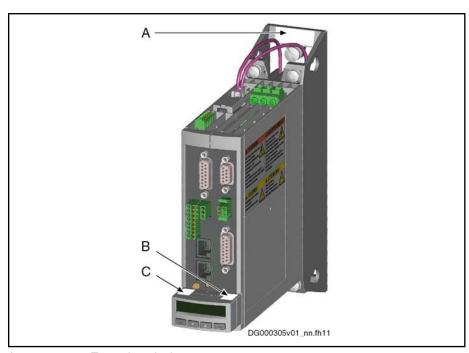
Test	Test rate
Voltage test	100% (EN 61800-5-1)
Insulation resistance test	100% (EN 60204-1)

Fig.5-1: Applied Standards

5.1.2 Customer-Side Test

Risk of damage to the installed Rexroth components by customer-side test of the machine or installation!

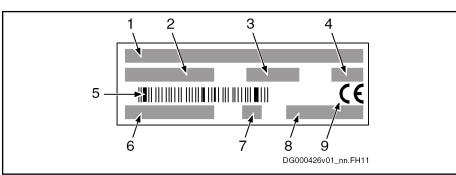
Before making a voltage test or an insulation resistance test for an **installation or machine** in which these components are used:


Disconnect all connections to the Rexroth components or disconnect the plug-in connections to protect the electronic components.

Condition as Supplied, Identification, Transport and Storage

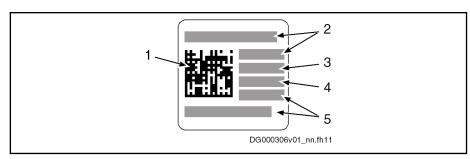
5.2 Identification

5.2.1 Type Plates


Arrangement

A Type plate device
B Type plate firmware
C Type plate control panel
Fig.5-2: Type Plate Arrangement

Structure

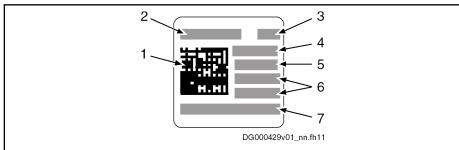

Type Plate (Device)

1	Device type
2	Part number
3	Production week; 11W36, for example, means year 2011, week 36
4	Factory identifier
5	Bar code
6	Serial number
7	Hardware index
8	Country of manufacture
9	Identification
Fia.5-3:	Type Plate (Device)

Condition as Supplied, Identification, Transport and Storage

Type Plate (Firmware)

1	Bar code
2	Type


3 Factory identifier

4 Production week (example: 11W36 means: year 2011, week 36)

5 Part number

Fig.5-4: Type Plate (Firmware)

Type Plate (Control Panel)

1 Bar code 2 Type

3 Hardware index4 Factory identifier

5 Production week (example: 11W36 means: year 2011, week 36)

6 Part number7 Serial number

Fig.5-5: Type Plate (Control Panel)

5.2.2 Scope of Supply

Standard	To be ordered separately		
Drive controller HCS01	DC bus connector X77 (DC bus connection; for HCS01.1E-W00xx-x- 03 devices)		
	Order code: RLS0778/K06		
Mounting and connection accessories HAS09	microSD memory card:		
	Only for HCS01.1E-W00**-A-0*- A-CC (ADVANCED) devices		
	Order code:		
	PFM04.1-512- F W (with firmware)		
	PFM04.1-512- N W (without firmware)		
Connectors X3, X5, X6, X13, X31, X32, X47	Other accessories, such as SUP-E01-MSM-BATTERYBOX		
Touch guard X77 (DC bus connection; for HCS01.1E-W00xx-x-03 devices)			
Documentation			

Fig.5-6: Scope of Supply HCS01

Condition as Supplied, Identification, Transport and Storage

5.3 Transport of the Components

Ambient and Operating Conditions - Transport

Description	Symbol	Unit	Value	
Temperature range	T _{a_tran}	°C	Supply units and drive controllers: -25 +70	Motors: -20 +80
Relative humidity		%	5 95	
Absolute humidity		g/m³	1 60	
Climatic category (IEC 721)			2K3	
Moisture condensation			Not allowed	
Icing			Not allowed	

Fig.5-7: Ambient and operating conditions - transport

5.4 Storage of the Components

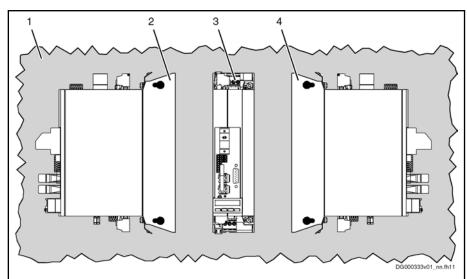
NOTICE

Damage to the component caused by long storage periods!

Some components contain electrolytic capacitors which may deteriorate during storage.

When storing the following components for a longer period of time, operate them **once a year for at least 1 hour**:

- Converters and supply units: operation with mains voltage U_{LN}
- \bullet Inverters and DC bus capacitor units: operation with DC bus voltage U_{DC}


Ambient and operating conditions - storage

Description	Symbol	Unit	Value	
Temperature range	T _{a_store}	°C	Supply units and drive controllers: -25 55	Motors: -20 +60
Relative humidity		%	5 95	
Absolute humidity		g/m³	1 29	
Climatic category (IEC 721)			1K3	
Moisture condensation			Not allowed	
Icing			Not allowed	

Fig.5-8: Ambient and operating conditions - storage

6 Mounting and Installation

6.1 Mounting HCS01 Devices in the Control Cabinet

1 Mounting surface in control cabinet

2 Left-hand mounting

3 Back-side mounting (standard mounting)

4 Right-hand mounting *Fig.6-1: Options for Mounting*

Notes on Mounting

• Observe the **minimum distances** to be complied with for mounting (see technical data or dimensional drawings).

The specified horizontal minimum distance refers to the distance to neighboring devices or equipment installed in the control cabinet (such as cable ducts) and not to the distance to the control cabinet wall.

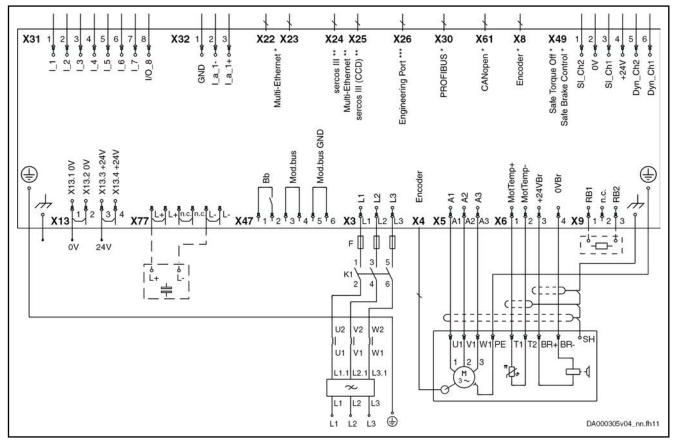
- The back-side mounting (back of device directly mounted to mounting surface in control cabinet) is the standard and should be used, if possible.
- The left-hand or right-hand mounting (left or right side of device directly mounted to mounting surface in control cabinet) can be used, if the mounting clearance between control cabinet wall and control cabinet front is not sufficient for back-side mounting.

NOTICE! Risk of damage by high temperatures! At the **back of the HCS01 devices**, there are **braking resistors** which can become very hot during operation. When arranging the devices in the control cabinet, make sure there aren't any heat-sensitive materials close to the braking resistors.

In the case of left-hand or right-hand mounting, you **must not pile the devices**. Each device must have immediate contact to the control cabinet wall.

- Tightening torque of the mounting screws: 6 Nm
- On the sides of the devices, there are adhesive labels with notes on safety. The supplied accessory HAS09 additionally contains these adhesive labels. If the adhesive labels at the devices are no longer visible after mounting, place the adhesive labels from the HAS09 accessory clearly visibly at the device or in the immediate vicinity of the device.

Required Steps to Follow


HCS01 drive controllers were designed for control cabinet mounting. They are mounted with two screws (M6×20; contained in the supplied accessory HAS09).

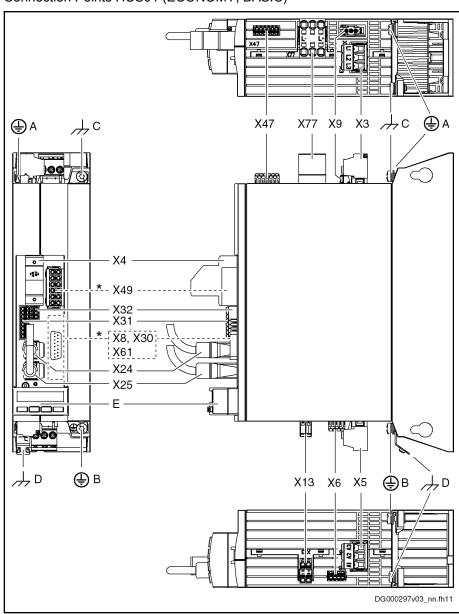
Mounting the drive controller

- 1. Fix screws to the back panel of the control cabinet.
- 2. Attach the drive controller to the screws.
- 3. Fix the screws with 6 Nm.

6.2 Electrical Connection

6.2.1 Overall Connection Diagram

Connection Diagram

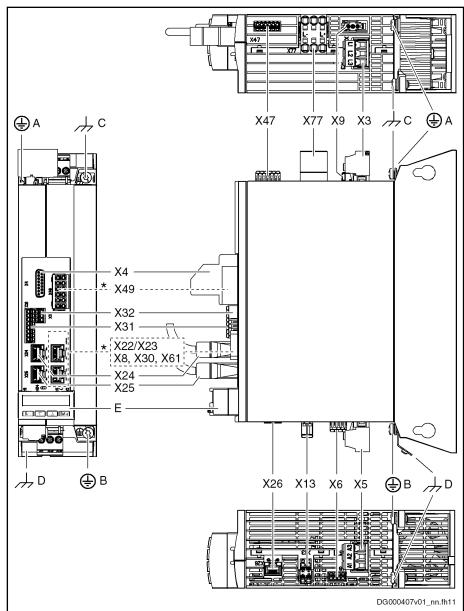

Fig.6-2:

*	Optional
**	ECONOMY = sercos III; BASIC = Multi-Ethernet; ADVANCED = sercos III cross communication (CCD)
***	Only available at HCS01.1E-W00**-A-0*-A-CC (ADVANCED) devices
X6.1, X6.2	T1 and T2 are not available at MSM motors
X31	No standard assignment preset; make the assignment by means of firmware documentation (see Functional Description, index entry "Digital inputs/outputs")
X47.1, X47.2	For the "ready for operation" message of the device, the Bb relay contact (X47.1, X47.2) must be wired
X47.36	Module bus only available at HCS01.1E-W00xx-x-03 devices
X77	DC bus connection (L+, L-) only available at HCS01.1E-W00xx-x-03 devices

6.2.2 Connection Points

Arrangement of the Connection Points HCS01

Connection Points HCS01 (ECONOMY, BASIC)



*	Optional connection point
Α	Connection point of equipment grounding conductor, mains
В	Connection point of equipment grounding conductor, motor
С	Shield connection control lines
D	Shield connection motor cable
E	Control panel
X3	Mains connection
X4	Motor encoder
X5	Motor connection
X6	Motor temperature monitoring, motor holding brake
X8	Optional encoder evaluation (EC); optional encoder emulation (EM)
X9	Integrated/external braking resistor
X13	24V supply (control voltage)

Bosch Rexroth AG

X24 / X25	ECONOMY : Communication sercos III; BASIC : Communication Multi-Ethernet
X30	Optional communication PROFIBUS (PB)
X31	Digital inputs, digital output
X32	Analog input
X47	Bb relay contact, module bus (module bus only at HCS01.1E-W00xx-x-03 devices)
X49	Optional safety technology (L3: "Safe Torque Off"; L4: "Safe Torque Off", "Safe Brake Control")
X61	Optional communication CANopen (CN)
X77	DC bus connection (only at HCS01.1E-W00xx-x-03 devices); DC bus connector optionally available (if the DC bus connector is not used, the DC bus connection must be covered with the supplied touch guard)
Fig.6-3:	Connection Points HCS01

Connection Points HCS01 (ADVANCED)

*	Optional connection point
Α	Connection point of equipment grounding conductor, mains
В	Connection point of equipment grounding conductor, motor
С	Shield connection control lines
D	Shield connection motor cable
E	Control panel
X3	Mains connection
X4	Motor encoder
X5	Motor connection
X6	Motor temperature monitoring, motor holding brake
X8	Optional encoder evaluation (EC); optional encoder emulation (EM)
X9	Integrated/external braking resistor
X13	24V supply (control voltage)
X22 / X23	Optional communication Multi-Ethernet (ET)
X24 / X25	sercos III master
X26	Engineering interface
X30	Optional communication PROFIBUS (PB)

Bosch Rexroth AG

X31	Digital inputs, digital output
X32	Analog input
X47	Bb relay contact, module bus (module bus only at HCS01.1E-W00xx-x-03 devices)
X49	Optional safety technology (L3: "Safe Torque Off"; L4: "Safe Torque Off", "Safe Brake Control")
X61	Optional communication CANopen (CN)
X77	DC bus connection (only at HCS01.1E-W00xx-x-03 devices); DC bus connector optionally available (if the DC bus connector is not used, the DC bus connection must be covered with the supplied touch guard)

Fia.6-4:

6.2.3 On-Board Connection Points

Connection of Equipment Grounding Conductor

WARNING

High housing voltage and high leakage current! Danger to life, risk of injury by electric shock!

- Before switching on and before commissioning, ground or connect the components of the electric drive and control system to the equipment grounding conductor at the grounding points.
- Connect the equipment grounding conductor of the components of the electric drive and control system permanently to the main power supply at all times. The leakage current is greater than 3.5 mA.
- Establish an equipment grounding connection with a copper wire of a cross section of at least 10 mm² (8 AWG) or additionally run a second equipment grounding conductor of the same cross section as the original equipment grounding conductor.

▲ WARNING

Lethal electric shock by live parts with more than 50 V!

Exclusively operate the device

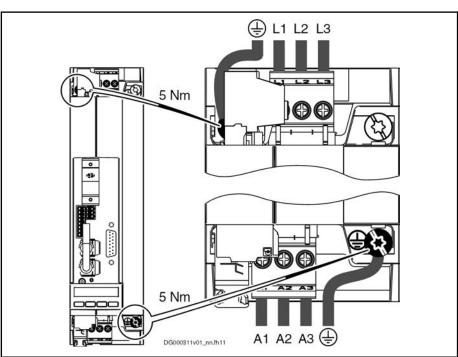
- with plugged on connectors (even if there haven't been any lines connected to the connectors) and
- with connected equipment grounding conductor!

礟

Equipment grounding conductor: Material and cross section

For the equipment grounding conductor, use the same metal (e.g. copper) as for the outer conductors.

For the connections from the equipment grounding conductor connection of the device to the equipment grounding conductor system in the control cabinet, make sure the cross sections of the lines are sufficient.


Cross sections of the equipment grounding connections:

For HCS01 drive controllers, at least 10 mm², but not smaller than the cross sections of the outer conductors of the mains supply feeder.

Additionally, mount the housing to a bare metal mounting plate. Connect the mounting plate, too, with at least the same cross section to the equipment grounding conductor system in the control cabinet.

Installation

Connect the equipment grounding conductor of the mains or motor cable via thread M5 to the housing of the device (identification mark ; tightening torque: 5 Nm). The screws M5×12 required for this purpose are part of the supplied accessory HAS09.

L1, L2, L3 Mains connection A1, A2, A3 Motor connection

Fig.6-5: Connection Point of Equipment Grounding Conductor

X3, Mains Connection

Important Notes

WARNING

Lethal electric shock by live parts with more than 50 V!

Exclusively operate the device

- with plugged on connectors (even if there haven't been any lines connected to the connectors) and
- with connected equipment grounding conductor!

Notes on Installation

- The equipment grounding conductor is connected directly to the device and not via the connection point X3 (see description for connection of equipment grounding conductor).
- Dimension the **required cross section** of the connection cables according to the determined phase current I_{LN} and the mains fuse.
- Single-phase mains connection (outer conductor and neutral conductor): Connection to X3 can be made via L1, L2 or L3.

NOTICE Risk of damage to the device!

Provide strain relief for the terminal connectors of the device in the control cabinet.

X3, Mains Connection HCS01.1E-W0003...W0013-x-02, -W0005-x-03, -W0008-x-03

View	Identifica- tion	Fun	ction
4550	L1	Connection to supply mains (L1)	
	L2	Connection to supply mains (L2)	
L2 L3	L3	Connection to supply mains (L3)	
Terminal block	Unit	Min.	Max.
Connection cable	mm²	0,25	2,5
Stranded wire	AWG	24	12
Stripped length	mm	8	
Tightening torque	Nm	0,5	0,6
Occurring current load and minimum required connection cross section		See technical data of device used (I _{LN} and A _{LN})	
Occurring voltage load		See technical data of device used (U _{LN} or U _{LN_nenn})	

Fig.6-6: Function, Pin Assignment, Properties

X3, Mains Connection HCS01.1E-W0018-x-02, -W0018-x-03, -W0028-x-03

1100=01100				
View	Identifica- tion	Func	tion	
	L1	Connection to supply mains (L1)		
	L2	Connection to supply mains (L2)		
L1 L2 L3	L3	Connection to supply mains (L3)		
Terminal block	Unit	Min.	Max.	
Connection cable	mm ²	0,25	6,0	
Stranded wire	AWG	24	10	
Stripped length	mm	10		
Tightening torque	Nm	0,7	0,8	
Occurring current load and minimum required connection cross section		See technical data of device used (I _{LN} and A _{LN})		
Occurring voltage load		See technical data of device used (U _{LN} or U _{LN_nenn})		

Fig.6-7: Function, Pin Assignment, Properties

X3, Mains Connection HCS01.1E-W0054-x-03

View	Identifica- tion	Fund	ction
	L1	Connection to supply mains (L1)	
	L2	Connection to supply mains (L2)	
L1 L2 L3	L3	Connection to supply mains (L3)	
Terminal block	Unit	Min.	Max.
Connection cable	mm²	0,75	10,0
Stranded wire	AWG	18	8
Stripped length	mm	14	
Tightening torque	Nm	1,5	1,7
Occurring current load and minimum required connection cross section		See technical data of device used (I _{LN} and A _{LN})	
Occurring voltage load		See technical data of device used (U _{LN} or U _{LN_nenn})	

Fig.6-8: Fund

Function, Pin Assignment, Properties

X4, Connection Motor Encoder

View	Identifica- tion	Fund	tion
1 9 8 0000053v01_nn.FH9	X4	Motor encode	er connection
D-Sub, 15-pin, female	Unit	Min.	Max.
Connection cable	mm ²	0,25	0,5
Stranded wire			
Kind of encoder evaluation		E	C
		Technical data: See descript Evalua	

Fig.6-9: Function, Pin Assignment, Properties

Supported Encoder Systems

Encoder systems with a supply voltage of 5 and 12 volt

- MSM motor encoder
- MSK motor encoder

- Sin-cos encoder 1V_{pp}; HIPERFACE®
- Sin-cos encoder 1V_{pp}; EnDat 2.1; (EnDat 2.2 in preparation)
- Sin-cos encoder 1V_{pp}; with reference track
- 5V-TTL square-wave encoder; with reference track
- SSI
- \bullet Combined encoder for SSI (combination of SSI and sin-cos encoder $1V_{pp})$
- Resolver
- Hall sensor box SHL02.1
- Digital Hall sensor in conjunction with Hall sensor adapter box SHL03.1

Pin Assignment

Connection	Signal	Function
1	GND_shld	Connection signal shields (internal shields)
2	A+	Track A analog positive
3	A-	Track A analog negative
4	GND_Encoder	Reference potential power supplies
5	B+	Track B analog positive
6	B-	Track B analog negative
7	EncData+	Data transmission positive
	A+TTL	Track A TTL positive
8	EncData-	Data transmission negative
	A-TTL	Track A TTL negative
9	R+	Reference track positive
10	R-	Reference track negative
11	+12V	Encoder supply 12V
12	+5V	Encoder supply 5V
13	EncCLK+	Clock positive
	B+TTL	Track B TTL positive
14	EncCLK-	Clock negative
	B-TTL	Track B TTL negative
15	Sense-	Return of reference potential (Sense line)
	VCC_Resolver	Resolver supply
Connector housing		Overall shield

Fig.6-10: Pin Assignment

X5, Motor Connection

Important Notes

A WARNING

Lethal electric shock by live parts with more than 50 V!

Exclusively operate the device

- with plugged on connectors (even if there haven't been any lines connected to the connectors) and
- with connected equipment grounding conductor!

NOTICE

Risk of damage to the device!

Provide strain relief for the terminal connectors of the device in the control cabinet.

Notes on Installation

The equipment grounding conductor is connected directly to the device and not via the connection point X5 (see description for connection of equipment grounding conductor).

The indicated connection cross sections are the cross sections which can be connected. Dimension the **required cross section** of the connection lines according to the occurring current load.

- For optimum shield contact of the motor power cable, use the supplied accessory HAS09.
- For the connection between drive controller and motor use our ready-made motor power cables, where possible.
- When using NFD03.1 mains filters, the maximum allowed conductor cross section is limited to 4 mm².

X5, Motor Connection HCS01.1E-W0003...W0013-x-02, -W0005-x-03, -W0008-x-03

View	Identifica- tion	Fund	tion	
BBB	A1	For power connection U1 at motor		
A1 A2 A3	A2	For power connection V1 at motor		
	A3	For power connec	tion W1 at motor	
Screw connection at connector	Unit	Min.	Мах.	
Connection cable	mm²	0,25	2,5	
Stranded wire	AWG	24	12	
Stripped length	mm	8		
Tightening torque	Nm	0,5	0,6	
Occurring current load and minimum required connection cross section	А	See technical data of	of device used (I _{out})	

Bosch Rexroth AG

Occurring voltage load	V	See technical data of device used (U _{out})
Short circuit protection		A1, A2, A3 against each other and each of them against ground
Connection of equipment grounding conductor		Via connection point of equipment grounding conductor at device (see index entry "Connection → Equipment grounding conductor")

Fig.6-11: Function, Pin Assignment, Properties

X5, Motor Connection HCS01.1E-W0018-x-02, -W0018-x-03, -W0028-x-03

View	Identifica- tion	Fund	ction	
econ	A1	For power conne	ction U1 at motor	
A1 A2 A3	A2	For power connection V1 at motor		
AAA	A3	For power connection W1 at motor		
Screw connection at connector	Unit	Min.	Max.	
Connection cable	mm ²	0,25	6,0	
Stranded wire	AWG	24	10	
Stripped length	mm	10		
Tightening torque	Nm	0,7 0,8		
Occurring current load and minimum required connection cross section	А	See technical data of device used (I _{out})		
Occurring voltage load	V	See technical data of device used (U _{out})		
Short circuit protection		A1, A2, A3 against each other and each of them against ground		
Connection of equipment grounding conductor		Via connection point of equipr at device (see index entry "Co- ing con-	nnection → Equipment ground-	

Fig.6-12: Function, Pin Assignment, Properties

X5, Motor Connection HCS01.1E-W0054-x-03

View	Identifica- tion	Fund	ction
A1 A2 A3	A1	For power conne	ction U1 at motor
	A2	For power conne	ction V1 at motor
1414	A3	For power conne	ction W1 at motor
Screw connection at connector	Unit	Min.	Max.

Connection cable	mm ²	0,75	10,0
Stranded wire	AWG	18	8
Stripped length	mm	1.	4
Tightening torque	Nm	Nm 1,5	
Occurring current load and minimum required connection cross section	А	See technical data	of device used (I _{out})
Occurring voltage load	V	See technical data of device used (U _{out})	
Short circuit protection		A1, A2, A3 against each other and each of them again ground	
Connection of equipment grounding conductor		Via connection point of equipment grounding conducto at device (see index entry "Connection → Equipment grounding conductor")	

Fig.6-13: Function, Pin Assignment, Properties

X6, Motor Temperature Monitoring and Motor Holding Brake

WARNING Dangerous movements! Danger to persons from falling or dropping axes!

The standard motor holding brake provided or an external motor holding brake controlled directly by the drive controller are not sufficient on their own to guarantee personal safety!

Personal safety must be achieved using higher-level, fail-safe measures:

- Block off danger zones with safety fences or safety guards
- Additionally secure vertical axes against falling or dropping after switching off the motor power by, for example,
 - mechanically securing the vertical axes
 - adding external braking/arrester/clamping mechanisms
 - ensuring sufficient equilibration of the vertical axes

▲ WARNING Lethal electric shock by live parts with more than 50 V!

The input of the motor temperature evaluation is not galvanically isolated from the housing. If the voltage applied to the input is impermissibly high (e.g. because of a flashover of the motor winding voltage), this voltage may come into contact with the housing. Ensure that the temperature sensor of the connected motor has a double isolation against the motor winding.

NOTICE Excessive voltage at the input of the motor temperature evaluation may cause damage

The voltage allowed at the input of the motor temperature evaluation must correspond to the allowed control voltage of the device. If the voltage applied to the input is impermissibly high, the device may be damaged.

to the device!

Function

Bosch Rexroth AG

Connection point X6 contains the connections for

- monitoring the motor temperature
- controlling the motor holding brake

B

Via an integrated contact element (BR), the power section switches the voltage of the **external** 24-V supply to the output for controlling the motor holding brake.

	_		
View	Connec- tion	Signal name	Function
1	1	MotTemp+	Motor temperature evaluation in-
2	2	MotTemp-	put
4	3	+24VBr	Output for controlling the motor
DGGCGRRVG1, mn. std	4	0VBr	holding brake
Spring terminal (connector)	Unit	Min.	Max.
Connection cable	mm²	0,25	1,5
Stranded wire	AWG	24	16
Stripped length	mm		10
Current carrying capacity of outputs X6	А	-	1,25
Time constant of load	ms	-	50
Number of switching operations at maximum time constant of load		Wear-free	electronic contact
Switching frequency	Hz	-	0,5
Short circuit protection		X6.3 against X6.4 (output fo	r controlling the motor holding brake)
Overload protection		X6.3 against X6.4 (output for controlling the motor holding brake)	

Fig.6-14: Function, pin assignment

Motor holding brake: selection

Maximum current carrying capacity of outputs X6: 1.25 A

$$\Rightarrow$$
 R_{br (min)} = U_{br (max)} / 1.25 A

R_{br (min)}: Minimum allowed resistance of the motor holding brake

U_{br (max)}: Maximum supply voltage of the motor holding brake

If $U_{br (max)} = 24 \text{ V} + 5\% = 25.2 \text{ V}$, this results in:

 $R_{br (min)}$ = 20.16 Ω (applicable to all operating and ambient conditions)

Motor holding brake: installation instructions

Make sure the **power supply** for the motor holding brake at the motor is sufficient. You have to take into account that voltage drops on the supply line. Use connection lines with the highest possible cross section of the single strands.

Use an external contact element in accordance with the required safety category, if you wish to supply motor holding brakes with higher currents than the

allowed current load at X6. Make sure to comply with the required minimum current consumption of 100 mA when using the external contact element. Otherwise, the brake current monitoring unit signals an error.

Connection diagram

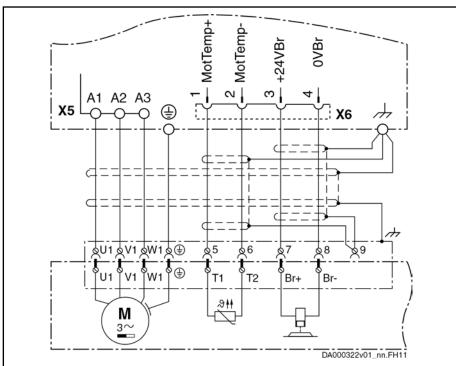


Fig.6-15: Connection of motor temperature monitoring and motor holding brake

X9, Integrated/External Braking Resistor

A WARNING

Lethal electric shock by live parts with more than 50 V!

Exclusively operate the device

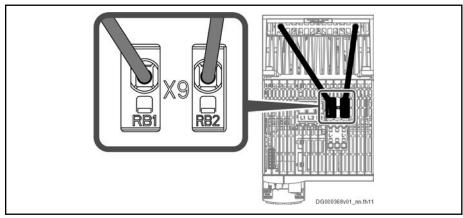
- with plugged on connectors (even if there haven't been any lines connected to the connectors) and
- with connected equipment grounding conductor!

Function

X9 is used to connect the integrated or external braking resistor **HLR**. By means of an internal switch, the braking resistor is connected to the DC bus.

Parameterize the external braking resistor by means of the firmware to protect the drive controller and the braking resistor against overload:

- P-0-0860, Converter configuration
- P-0-0858, Data of external braking resistor


Connection (HCS01.1E-W0003... W0028)

Bosch Rexroth AG

Fig.6-16: Connecting the Braking Resistor (HCS01.1E-W0003...W0028)

Connection (HCS01.1E-W0054)

Connecting the Braking Resistor (HCS01.1E-W0054) Fig.6-17:

Notes on Installation

Maximum allowed line length to external braking resistor: 5 m Twist unshielded lines.

WARNING

Lethal electric shock by live parts with more than 50 V!

Risk of burns by hot housing surfaces! Risk of fire!

The temperature of the housing surface of an external HLR braking resistor can rise up to 150 °C. Run the connection lines with a sufficient distance (> 200 mm) to the housing of the HLR braking resistor to avoid damaging the insulation of the connection lines. Outside of the control cabinet, run the connection lines of an HLR braking resistor in a metal pipe with a wall thickness of at least 1 mm.

Do not touch hot housing surfaces! Mount the HLR braking resistor on a temperature-resistant mounting surface. Provide a sufficient distance between the HLR braking resistor and heat-sensitive materials. Make sure the cooling air supply is unrestricted. Take care that the environment can discharge the dissipation heat.

Danger by insufficient installation! NOTICE

Protect the lines with the appropriate fusing elements in the supply feeder.

For the connection lines at X9, use at least the cross section of the lines for mains connection at X3. If this is impossible, select the cross section of the connection line at X9 in accordance with the continuous power of the braking resistor.

X13, 24V Supply (Control Voltage)

Function, Pin Assignment

The external 24V supply is applied via connection point X13 for

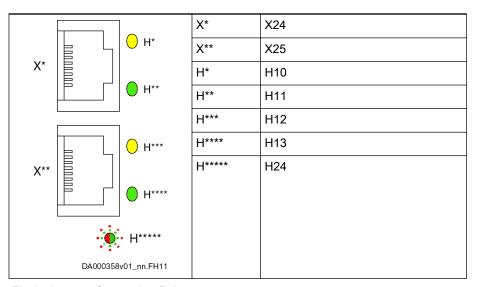
- the control section and power section of the drive controller
- brake control via X6
- the digital inputs and the digital output to X31 / X32

View	Connec- tion	Signal name	Function
	1	0V	Reference potential for pow-
	2	0V	er supply
	3	+24V	Power supply
_	4	+24V	
	•		
Spring terminal (connector)	Unit	Min.	Max.
Connection cable	mm²	1,0	2,5
Stranded wire	AWG	16	12
Stripped length	mm	,	10
Power consumption	W	P _{N3} (see data for control voltage)	
Voltage load capacity	V	U _{N3} (see data for control voltage)	
Current carrying capacity "looping through" from 0V to 0V, 24V to 24V	А		10
Polarity reversal protection		Within the allowed voltage range by internal protective	
Insulation monitoring		Possible	

Fig.6-18: Function, Pin Assignment, Properties

Notes on Installation

Requirements on the connection to the 24V supply:


- Minimum cross section: 1 mm²
- Maximum allowed inductance: 100 μH (2 twisted single strands, 75 m long)
- Parallel line routing where possible

Depending on the power consumption of the devices and the current carrying capacity of the connector X13, check via how many devices one line for 24V supply can be looped through. You might possibly have to connect another device directly to the 24V supply and then loop through the control voltage from this device to other devices.

X24, X25, Multi-Ethernet

Description

With the Multi-Ethernet communication module "ET", drive controllers can be integrated in different Ethernet field bus systems (e.g. sercos III, EtherCAT, EtherNet/IP or ProfiNet). For devices of ADVANCED design, the interface is used as sercos III master.

Connection

Fig.6-19: Connection Point sercos III, EtherNet/IP, ProfiNet:

Input: X24 or X25Output: X25 or X24

EtherCAT:Input: X25Output: X24

View	Connection	Signal name	Function	
	1	TD+	Transmit, differential output A	
	2	TD-	Transmit, differential output B	
	3	RD+	Receive, differential input A	
	4	n. c.	-	
	5	n. c.	-	
DA000041v01_nn.FH	6	RD-	Receive, differential input B	
	7	n. c.	-	
	8	n. c.	-	
	Housing		Shield connection	
Properties				
Standard	Ethernet			
	• Type: RJ-45, 8-pin			

Compatibility	100Base-TX according to IEEE 802.3u
Recommended cable type	According to CAT5e; type of shield ITP (Industrial Twisted Pair)
	Ready-made cables which can be ordered:
	– RKB0011
	Long cables (no more than 100 m) to connect the drive system to the higher-level control unit or remoter communication users.
	Minimum bending radius:
	 48.75 mm if laid flexibly
	 32.50 mm if laid permanently
	Order code for a 30 m long cable: RKB0011/030,0
	– RKB0013
	Short cables to connect devices arranged side by side in the control cabinet.
	4 lengths available: 0.19 m; 0.25 m; 0.35 m; 0.55 m
	Order code for a 0.55 m long cable: RKB0013/00,55
	Minimum bending radius: 30.75 mm

Fig.6-20: Function, Pin Assignment, Properties

LEDs See index entry "LED \rightarrow H10, H11, H12, H13" and "LED \rightarrow H24".

X24, X25, sercos III Master (CCD)

Description

- Only available at HCS01.1E-W00**-A-0*-A-CC (ADVANCED) devices
- Complies with IEEE 802.3 standard
- Is used as "master" for cross communication (CCD = Cross Communication Drives)

Connection Point

Technical data: See description "X24, X25, Multi-Ethernet - ET"

LEDs

See index entry "LED \rightarrow H10, H11, H12, H13" and "LED \rightarrow H24".

X26, Engineering Interface

Description Exclusively available at HCS01.1E-W00**-A-0*-**A-CC** (ADVANCED).

View	Connection	Signal name	Function	
	1	TD+	Transmit, differential output A	
	2	TD-	Transmit, differential output B	
	3	RD+	Receive, differential input A	
	4	n. c.	-	
	5	n. c.	-	
DA000041v01_nn.FH	6	RD-	Receive, differential input B	
	7	n. c.	-	
	8	n. c.	-	
	Housing		Shield connection	
Properties				

Standard	Ethernet
	• Type: RJ-45, 8-pin
Compatibility	100Base-TX according to IEEE 802.3u
Recommended cable type	According to CAT5e; type of shield ITP (Industrial Twisted Pair)
	Ready-made cables which can be ordered:
	- RKB0011
	Long cables (no more than 100 m) to connect the drive system to the higher-level control unit or remoter communication users.
	Minimum bending radius:
	 48.75 mm if laid flexibly
	 32.50 mm if laid permanently
	Order code for a 30 m long cable: RKB0011/030,0
	– RKB0013
	Short cables to connect devices arranged side by side in the control cabinet.
	4 lengths available: 0.19 m; 0.25 m; 0.35 m; 0.55 m
	Order code for a 0.55 m long cable: RKB0013/00,55
	Minimum bending radius: 30.75 mm

Fig.6-21: Function, Pin Assignment, Properties

LEDs See index entry "LED \rightarrow H10, H11, H12, H13".

X31, Digital Inputs, Digital Output

View	Connec- tion	Signal name	Function	Default assignment
1	1	I_1	Digital input	Probe 1
2	2	I_2		Probe 2
DG000291v01_nn.tif	3	I_3		E-Stop input
	4	l_4		Travel range limit switch input
	5	I_5		Travel range limit switch input
	6	I_6		Not assigned
	7	I_7		Not assigned
	8	I/O_8	Digital input/output	Not assigned
Spring terminal (connector)	Unit	Min.	N	Max.
Connection cable	mm ²	0,2		1,5
Stranded wire	AWG	24	16	
Stripped length	mm	-	10	
Input current	А	-	(),01

Input voltage	V	-	24
Output current I/O_8	Α	-	0,5

Fig. 6-22: Function, Pin Assignment, Properties

The **reference potential** for the digital inputs and the digital input/ output is applied to **X13.1** and **X13.2**.

Technical Data See index entry "Technical data → Digital inputs"

X32, Analog Input

View	Connec- tion	Signal name	Function
	1	GND	GND reference
2	2	l_a_1-	Analog input
3 DG000332v01_nn.tif	3	l_a_1+	
Spring terminal (connector)	Unit	Min.	Max.
Connection cable	mm ²	0,2	1,5
Stranded wire	AWG	24	16
Stripped length	mm	1	0
Input current	Α	-	0,01
Input voltage	V	-	±10

Fig.6-23: Function, Pin Assignment, Properties

Technical Data See index entry "Technical data → Analog input"

X47, Bb Relay Contact, Module Bus

HCS01.1E-xxxxx-x-02						
View	Connec- tion	Signal name	Function			
	1	Rel1	Bb relay contact 1)			
DG009283v01_nn.tH	2	Rel2	Bb relay contact 1)			
Spring terminal (connector)	Unit	Min.	Max.			
Connection cable	mm ²	0,2	1,5			
Stranded wire	AWG	24	16			

Bosch Rexroth AG

Stripped length	mm	10	
Contact rating	V	30	
	А	0,01	1

1) Wire the Bb relay contact in the control circuit for mains connection

(see index entry "Mains connection → Control circuit"). When the contact opens, the mains contactor must interrupt the power supply.

Fig.6-24: Function, Pin Assignment, Properties

Technical Data See index entry "Technical data → Relay contact"

View	Connec- tion	Signal name	Function
1 2 3 4 5 6	1	Rel1	Bb relay contact 1)
	2	Rel2	Bb relay contact 1)
5	3	Mod1	Module bus ²⁾
DG000294v91_mm.ssf	4	Mod2	Module bus ²⁾
	5	0V_Mod	Module bus GND 2)
	6	0V_Mod	Module bus GND ²⁾
Spring terminal (connector)	Unit	Min.	Max.
Connection cable	mm ²	0,2	1,5
Stranded wire	AWG	24	16
Stripped length	mm		10
Contact rating	V		30
	А	0,01	1

Wire the Bb relay contact in the control circuit for mains connection (see index entry "Mains connection → Control circuit"). When the contact opens, the mains contactor must interrupt the power supply. When several devices assume the DC bus supply (group supply), connect the Bb relay contacts (X47) of all supplying devices in series. 1)

2) The pins 3, 4 and 5, 6 are jumpered. This allows looping through the module bus from one device to the next. Use shielded lines to loop through the module bus, when the length of all module bus connec-

tions is greater than 3 m.

Fig.6-25: Function, Pin Assignment, Properties

Technical Data See index entry "Technical data → Relay contact"

X77, L+ L-, DC Bus Connection

▲ WARNING

Lethal electric shock by live parts with more than 50 V!

Before working on live parts: De-energize installation and secure power switch against unintentional or unauthorized re-energization.

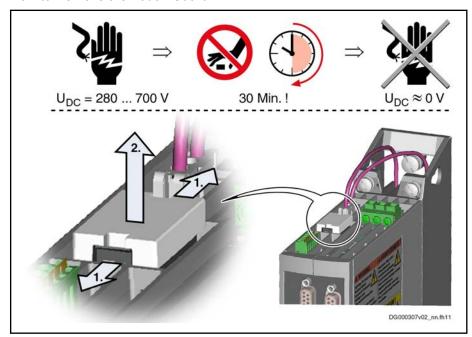
Before accessing the device, wait at least **30 minutes** after switching off the supply voltages to allow discharging.

Check whether voltage has fallen below 50 V before touching live parts!

Never operate the drive controller without touch guard or without DC bus connector. Only remove the touch guard, if you want to use the DC bus connector at the drive controller. If you do not use the DC bus connector any longer, you have to cover the DC bus connection with the supplied touch guard.

Observe the information on DC bus coupling (index entry "DC bus \rightarrow Coupling").

Function, Pin Assignment


The DC bus connection connects

- several HCS01.1E-W00xx-x-03 to each other
- one drive controller to a DC bus capacitor unit (to backup the DC bus voltage)

Touch Guard

The DC bus connection has been provided with a touch guard at the factory. To plug the DC bus connector, you have to remove the touch guard.

How to Remove the Touch Guard:

 $U_{\text{DC}} \\$ DC bus voltage

Before accessing the device, wait at least 30 minutes after switching off the supply voltages to allow discharging. 30 Min.!

With a small screwdriver (blade width < 3 mm), push the fixing device outwards and simultaneously lever out the touch guard. 1.

2. Pull off touch guard.

Store the touch guard in a place where you can find it later on. If you want to operate the device without DC bus connector, you have to 3.

plug the touch guard on connection point X77 again.

Fig.6-26: How to Remove the Touch Guard

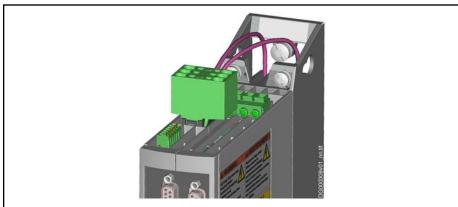


Fig.6-27: DC Bus Connector at Device

31

View	Identifica- tion	Function	
335	L-	Connection points for connecti	ng DC bus connections of
	L-	several devices	labla as an assassany ass in
	n. c.	(The DC bus connector is available as an accessory; see dex entry "Accessories → DC bus connector")	
	n. c.		
DG000295v01 nn.tif	L+		
	L+		
	Unit	Min.	Max.
Connection cable	mm ²	0,25	6
Stranded wire	AWG	24	8
Stripped length	mm	1	5
Short circuit protection		Via fusing elements connected in the incoming circuit to the mains connection	
Overload protection		Via fusing elements connected in the incoming circuit to the mains connection	

Fig.6-28: Function, Pin Assignment, Properties

Notes on Installation

Current carrying capacity "looping through" from

L+ to L+, L- to L-

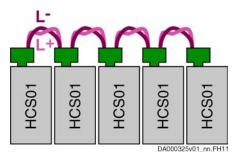
To wire the DC bus, use the shortest possible flexible, **twisted** wires.

When the DC buses of several devices have been coupled, the lines **mustn't** be run outside of the control cabinet.

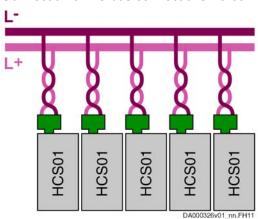
NOTICE	Risk of damage by reversing the polarity of
	the DC bus connections I - and I +

Make sure the polarity is correct.

Length of twisted wire	Max. 2 m
Line cross section	Min. 6 mm ² , but not smaller than cross section of supply feed- er
Line protection	By means of fuses in the mains connection
Dielectric strength of single strand against ground	≥ 750 V (e.g.: strand type – H07)

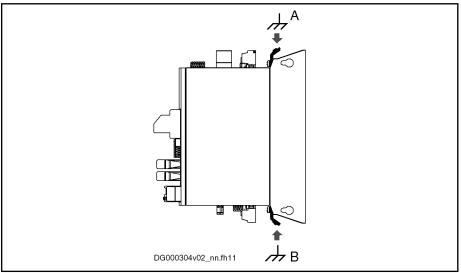

Fig.6-29: DC Bus Line

There are two options for interconnecting the DC buses of several devices:


Direct connection of the DC bus connections:

Bosch Rexroth AG

Mounting and Installation



Connection of DC bus connections via connecting bars:

Shield Connection

Special plates are used for shield connection of cables which are connected to the device. The plates are part of the HAS09 accessories and are screwed to the device.

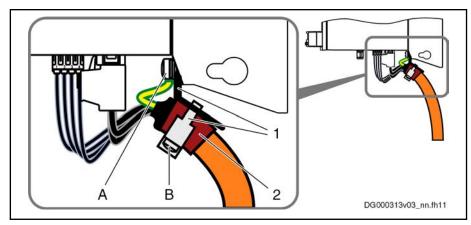

Shield connection control lines Shield connection motor cable

Fig.6-30: Shield Connection

礟

The shield connection mustn't be used for strain relief of the cables. Mount a separate strain relief near the drive controller.

Shield Connection Motor Cable

1 Plates

2 Shield of motor cable

A Screw (M5×12 or M5×16); tightening torque: 5 Nm

Screw (M5×30); tightening torque: 1 Nm

Fig.6-31: Shield Connection Motor Cable

Shield Connection Control Lines

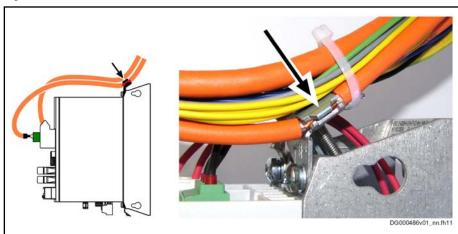


Fig.6-32: Shield Connection of Shielded Lines at the Top of the Device

Ground Connection

The ground connection of the housing is used to provide functional safety of the drive controllers and protection against contact in conjunction with the equipment grounding conductor.

Ground the housings of the drive controllers:

- Connect the bare metal back panel of the drive controller in conductive form to the mounting surface in the control cabinet. To do this, use the supplied mounting screws.
- 2. Connect the mounting surface of the control cabinet in conductive form to the equipment grounding system.
- For the ground connection, observe the maximum allowed ground resistance.

6.2.4 Optional Connection Points

X8, Optional Encoder (Option EC)

You can connect an optional encoder to connection point X8.

Technical data: See description of connection point X4.

X8, Encoder Emulation (Option EM)

Description

Emulation of absolute value and incremental encoder signals for further evaluation by a control unit. The signals are galvanically isolated from the circuit board.

View	Identifica- tion	Function		
8 15 15 1 9 DA000056v01_nn.FH9	X8	Encoder emulation		
D-Sub 15-pin, male	Unit	Min.	Max.	
Connection cable Stranded wire	mm ²	0,25	0,5	

Fig.6-33:

Function, Pin Assignment, Properties

Emulated Encoder Systems

- Incremental encoder
- SSI encoder
- Incremental encoder with signal level converter

Pin Assignment

Connection	Signal	Level	Input/ Output	Function	Incremental encoder	SSI en- coder	Incremen- tal encod- er with signal lev- el convert- er
1	n. c.	-	-	Not assigned			
2	UL	5 30 V	In	Power supply for output driver			✓
3	SSI_CLK+	RS422	In	SSI clock positive		✓	
4	SSI_CLK-	RS422	In	SSI clock negative		✓	
5	n. c.	-	-	Not assigned			
6	ULA0	UL	Out	Reference track with UL level			✓
7	ULA1	UL	Out	Track A1 with UL level			✓
8	ULA2	UL	Out	Track A2 with UL level			✓
9	ULA0+	RS422	Out	Reference track positive	✓		
	SSI_Data+	RS422	Out	SSI data positive		✓	
10	0 V	0 V	-	Reference potential / inner shield	✓	✓	✓

Connection	Signal	Level	Input/ Output	Function	Incremen- tal encod- er	SSI en- coder	Incremen- tal encod- er with signal lev- el convert- er
11	ULA0-	RS422	Out	Reference track negative	✓		
	SSI_Data-	RS422	Out	SSI data negative		✓	
12	UA1+	RS422	Out	Track A1 positive	✓		
13	UA1-	RS422	Out	Track A1 negative	✓		
14	UA2+	RS422	Out	Track A2 positive	✓		
15	UA2-	RS422	Out	Track A2 negative	✓		
Connector housing	-	-	-	Overall shield			

Fig.6-34: Pin Assignment

X22/X23, Multi-Ethernet / sercos III (Option ET)

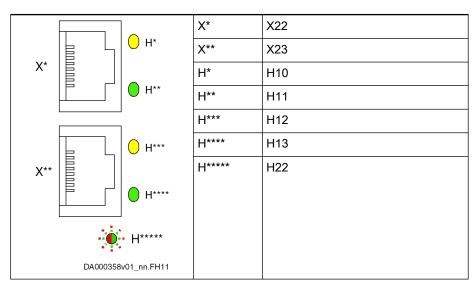


Fig.6-35: Connection Point

Technical data: See description "X24, X25, Multi-Ethernet - ET"

X30, PROFIBUS PB

Description

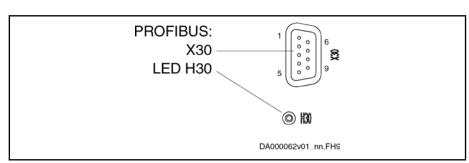


Fig.6-36: PROFIBUS Interface

138/271

View	Identifica- tion	Fund	ction
1 6 6 9	X30	PROFIE	BUS PB
DA000054v01_nn.FH9			
D-Sub, 9-pin, female	Unit	Min.	Max.
Connection cable	mm²	0,08	0,5
Stranded wire			

Fig.6-37: Function, Pin Assignment, Properties

Pin Assignment

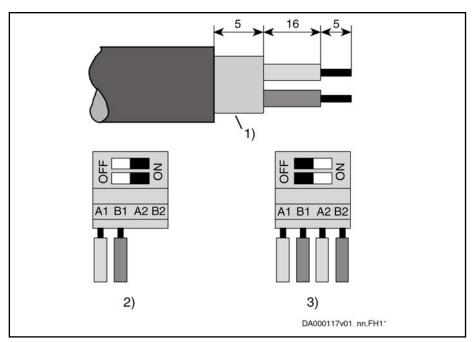
0		, ,	'
Pin	DIR	Signal	Function
1		-	n. c.
2		-	n. c.
3	I/O	RS485+	Receive/transmit data-positive
4	0	CNTR-P	Repeater control signal
5		0 V	0 V
6	0	+5 V	Repeater supply
7		-	n. c.
8	I/O	RS485-	Receive/transmit data-negative
9		0V	0 V

Fig.6-38: Signal Assignment

Shield Connection

Via D-sub mounting screws and metallized connector housing.

Compatibility of the Interface


According to DIN EN 50 170

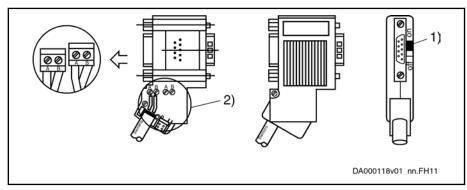
Recommended Cable Type

According to DIN EN 50 170 - 2, cable type A

Bus Connectors

The PROFIBUS connectors each have a connectable terminating resistor. The terminating resistor must always be active at both the first and last bus node. Carry out the connection as shown in the figures below.

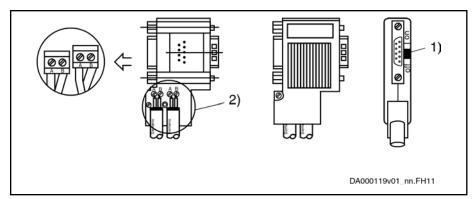
- 1) Shield
- 2) Bus connection and switch position for first node and last node
- 3) Bus connection and switch position for all other nodes


Fig.6-39: Preparing a Cable for Connecting a Bus Connector

To assemble the bus cable, proceed as follows:

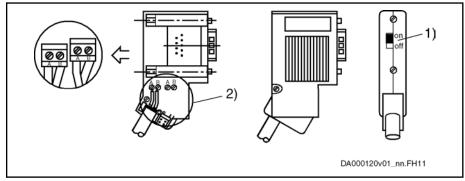
- Use cable according to DIN EN50170 / 2 edition 1996
- Strip cable (see figure above)
- Insert both cores into screw terminal block

Do not interchange the cores for A and B.


- Press cable sheath between both clamps
- Screw on both cores in screw terminals

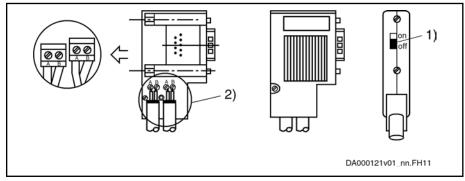
- 1) Switch position for first slave and last slave in PROFIBUS-DP
- 2) Cable shield must have direct contact to metal

Fig.6-40: Bus Connection for First and Last Slave, Bus Connector With 9-pin D-Sub Female Connector, INS0541


Bosch Rexroth AG

1) Terminating resistor is off

2) Cable shield must have direct contact to metal


Fig. 6-41: Bus Connection for all Other Slaves, Bus Connector With 9-pin D-Sub Female Connector, INS0541

1) Switch position for first slave and last slave in PROFIBUS-DP

2) Cable shield must have direct contact to metal

Fig. 6-42: Bus Connection for First and Last Slave, Without 9-pin D-Sub Female Connector, INS0540

1) Terminating resistor is off

2) Cable shield must have direct contact to metal

Fig.6-43: Bus Connection for all Other Slaves, Without 9-pin D-Sub Female Connector, INS0540

Connect the drive controller to a control unit using a shielded two-wire line in accordance with DIN 19245/Part 1.

Signal Specification See index entry "PROFIBUS → Signal specification"

X49, Optional Safety Technology L3 or L4

Data

View	Identifica- tion	Function	
SI_Ch2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X49		orque Off , Safe Brake Control
Spring terminal (connector)	Unit	Min.	Мах.
Connection cable	mm ²	1	1,5
Stranded wire	AWG	16	16
Stripped length	mm	8	
Output current per output	mA	-	350
Input current 24V supply	mA	-	700
Voltage load	V	-	60
Polarity reversal protection for power supply	-	Available	

Fig.6-44: Data

Pin Assignment, Function

Function	Signal	Connection	Technical data
Selection channel 1	SI_Ch1	3	Digital Inputs 1)
Selection channel 2	SI_Ch2	1	
Dynamization output channel 1	Dyn_Ch1	6	Digital Outputs ²⁾
Dynamization output channel 2	Dyn_Ch2	5	
Power supply of isolated inputs and outputs	+24V	4	DC 19.2 30 V
	0V	2	Min. 100 mA
			Max. 700 mA

1) See index entry "Digital inputs → Technical data; safety technology "L options""

2) See index entry "Digital outputs → Technical data; safety technology "L options""

Fig.6-45: Pin Assignment, Function

When the dynamization outputs do not work, check the power supply connection. The polarity might possibly have been reversed.

X61, CANopen (Option CN)

Bosch Rexroth AG

Description

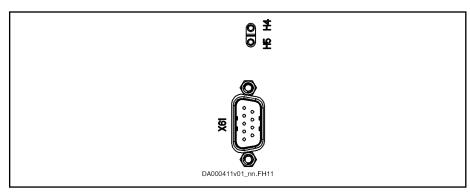


Fig.6-46: CANopen

Connection Point

Connection point	Туре	Num- ber of poles	Type of de- sign	Stranded wire [mm²]	Figure
X61	D-Sub	9	Pins on device	0,25–0,5	1 6 5 9 DA000194v01_nn.FH11

Fig.6-47: Connection Point

Pin Assignment

Pin	Signal	Function
1	n. c.	-
2	CAN-L	Negated CAN signal (Dominant Low)
3	CAN-GND	Reference potential of CAN signals
4	n. c.	-
5	Drain/Shield	Shield connection
6	GND	Reference potential of device
7	CAN-H	Positive CAN signal (Dominant High)
8	n. c.	-
9	VCC	24 V supply voltage – plus

Fig.6-48: Signal Assignment

6.2.5 EMC Measures for Design and Installation

Rules for Design of Installations With Drive Controllers in Compliance With EMC

The following rules are the basics for designing and installing drives in compliance with EMC.

Mains filter

Correctly use a mains filter recommended by Rexroth for radio interference suppression in the supply feeder of the drive system.

Control Cabinet Grounding

Connect all metal parts of the cabinet with one another over the largest possible surface area to establish a good electrical connection. This, too, applies to the mounting of the mains filter. If required, use serrated washers which

cut through the paint surface. Connect the cabinet door to the control cabinet using the shortest possible grounding straps.

Line Routing

Avoid coupling routes between lines with high potential of noise and noise-free lines; therefore, signal, mains and motor lines and power cables have to be routed separately from another. Minimum distance: 10 cm. Provide separating sheets between power and signal lines. Ground separating sheets several times.

The lines with high potential of noise include:

- Lines at the mains connection (incl. synchronization connection)
- Lines at the motor connection
- Lines at the DC bus connection

Generally, interference injections are reduced by routing cables close to grounded sheet steel plates. For this reason, cables and wires should not be routed freely in the cabinet, but close to the cabinet housing or mounting panels. Separate the incoming and outgoing cables of the radio interference suppression filter.

Interference Suppression Elements

Provide the following components in the control cabinet with interference suppression combinations:

- Contactors
- Relays
- Solenoid valves
- Electromechanical operating hours counters

Connect these combinations directly at each coil.

Twisted Wires

Twist unshielded wires belonging to the same circuit (feeder and return cable) or keep the surface between feeder and return cable as small as possible. Wires that are not used have to be grounded at both ends.

Lines of Measuring Systems

Lines of measuring systems must be shielded. Connect the shield to ground at both ends and over the largest possible surface area. The shield may not be interrupted, e.g. using intermediate terminals.

Digital Signal Lines

Ground the shields of digital signal lines at both ends (transmitter **and** receiver) over the largest possible surface area and with low impedance. In the case of bad ground connection between transmitter and receiver, additionally route a bonding conductor (min. 10 mm²). Braided shields are better than foil shields.

Analog Signal Lines

Ground the shields of analog signal lines at one end (transmitter **or** receiver) over the largest possible surface area and with low impedance. This avoids low-frequency interference current (in the mains frequency range) on the shield.

Connecting the Mains Choke

Keep connection lines of the mains choke at the drive controller as short as possible and twist them.

Installing the Motor Power Cable

- Use shielded motor power cables or run motor power cables in a shielded duct
- Use the shortest possible motor power cables
- Ground shield of motor power cable at both ends over the largest possible surface area to establish a good electrical connection
- Run motor lines in shielded form inside the control cabinet
- Do not use any steel-shielded lines
- The shield of the motor power cable mustn't be interrupted by mounted components, such as output chokes, sine filters or motor filters

Bosch Rexroth AG

EMC-Optimal Installation in Facility and Control Cabinet

General Information

For EMC-optimal installation, a spatial separation of the interference-free area (mains connection) and the interference-susceptible area (drive components) is recommended, as shown in the figures below.

Recommendation: For EMC-optimal installation in the control cabinet, use a separate control cabinet panel for the drive components.

Division Into Areas (Zones)

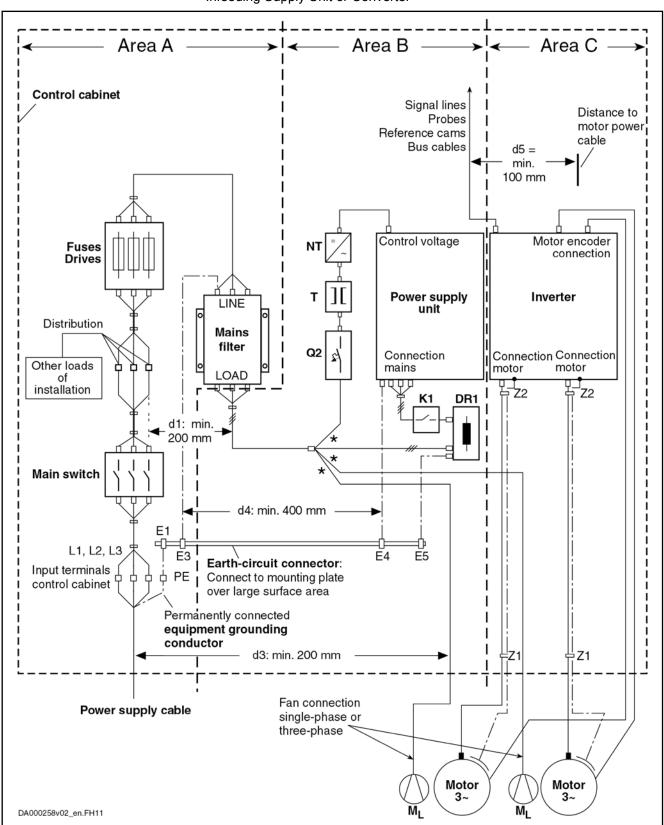
Exemplary arrangements in the control cabinet: See section Control Cabinet Design According to Interference Areas - Exemplary Arrangements, page 145.

We distinguish three areas:

1. Interference-free area of control cabinet (area A):

This includes:

- Supply feeder, input terminals, fuse, main switch, mains side of mains filter for drives and corresponding connecting lines
- Control voltage or auxiliary voltage connection with power supply unit, fuse and other parts unless connection is run via the mains filter of the AC drives
- All components that are not electrically connected with the drive system
- 2. Interference-susceptible area (area B):
 - Mains connections between drive system and mains filter for drives, mains contactor
 - Interface lines of drive controller
- 3. Strongly interference-susceptible area (area C):
 - Motor power cables including single cores


Never run lines of one of these areas in parallel with lines of another area so that there isn't any unwanted interference injection from one area to the other and that the filter is jumpered with regard to high frequency. Use the shortest possible connecting lines.

Recommendation for complex systems: Install drive components in one cabinet and the control units in a second, separate cabinet.

Badly grounded control cabinet doors act as antennas. Therefore, connect the control cabinet doors to the cabinet on top, in the middle and on the bottom via short equipment grounding conductors with a cross section of at least 6 mm² or, even better, via grounding straps with the same cross section. Make sure connection points have good contact.

Control Cabinet Design According to Interference Areas - Exemplary Arrangements

Infeeding Supply Unit or Converter

DR1

Bosch Rexroth AG

E1E5	Equipment grounding conductor of the components
------	---

K1 External mains contactor for supply units and converters without inte-

grated mains contactor

 M_{I} Motor fan

NT Power supply unit

Q2 Fusing Τ Transformer

Z1, Z2 Shield connection points for cables Not allowed at HNF mains filter

Fig.6-49: Infeeding Supply Unit or Converter - EMC Areas in the Control Cabi-

Design and Installation in Area A - Interference-Free Area of Control Cabinet

Arranging the Components in the **Control Cabinet**

Comply with recommended distance of at least 200 mm (distance d1 in the figure):

Between components and electrical elements (switches, pushbuttons, fuses, terminal connectors) in the interference-free area A and the components in the two other areas B and C

Comply with recommended distance of at least 400 mm (distance d4 in the figure):

Between magnetic components (such as transformers, mains chokes and DC bus chokes that are directly connected to the power connections of the drive system) and the interference-free components and lines between mains and filter including the mains filter in area A

If these distances are not kept, the magnetic leakage fields are injected to the interference-free components and lines connected to the mains and the limit values at the mains connection are exceeded in spite of the installed filter.

Cable Routing of the Interference-Free Lines to the Mains Connection Comply with recommended distance of at least 200 mm (distance d1 and d3 in the figure):

Between supply feeder or lines between filter and exit point from the control cabinet in area A and the lines in area B and C

If this is impossible, there are two alternatives:

- Install lines in shielded form and connect the shield at several points (at least at the beginning and at the end of the line) to the mounting plate or the control cabinet housing over a large surface area.
- 2. Separate lines from the other interference-susceptible lines in areas B and C by means of a grounded distance plate vertically attached to the mounting plate.

Install the shortest possible lines within the control cabinet and install them directly on the grounded metal surface of the mounting plate or of the control cabinet housing.

Mains supply lines from areas B and C must not be connected to the mains without a filter.

In case you do not observe the information on cable routing given in this section, the effect of the mains filter is totally or partly neutralized. This will cause the noise level of the interference emission to be higher within the range of 150 kHz to 40 MHz and the limit values at the connection points of the machine or installation will thereby be exceeded. Consider the specified distances to be recommended data, provided that the dimensions of the control cabinet allow installing the lines accordingly.

Routing and Connecting a Neutral Conductor (N)

If a neutral conductor is used together with a three-phase connection, it must not be installed unfiltered in zones B and C, in order to keep interference off the mains.

Motor Fan at Mains Filter

Single-phase or three-phase supply lines of motor fans, that are usually routed in parallel with motor power cables or interference-susceptible lines, must be filtered:

- In drive systems with regenerative supply units, via a separate singlephase (NFE type) or three-phase filter (HNF type) near the mains connection of the control cabinet
- In drive systems with only infeeding supply units, via the available threephase filter of the drive system

When switching power off, make sure the fan is not switched off.

When switching power off, make sure the fan is not switched off.

Loads at Mains Filter of Drive System

Only operate allowed loads at the mains filter of the drive system!

At the three-phase filter for the power connection of regenerative supply units, it is only allowed to operate the following loads:

HMV supply unit with mains choke and, if necessary, mains contactor

Do not operate any motor fans, power supply units etc. at the mains filter of the drive system.

Shielding Mains Supply Lines in Control Cabinet

If there is a high degree of interference injection to the mains supply line within the control cabinet, although you have observed the above instructions (to be found out by EMC measurement according to standard), proceed as follows:

- Only use shielded lines in area A
- Connect shields to the mounting plate at the beginning and the end of the line by means of clips

The same procedure may be required for long cables of more than 2 m between the point of power supply connection of the control cabinet and the filter within the control cabinet.

Mains Filters for AC Drives

Ideally mount the mains filter on the parting line between the areas A and B. Make sure the ground connection between filter housing and housing of the drive controllers has good electrically conductive properties.

If **single-phase** loads are connected on the load side of the filter, their current may be a maximum of 10% of the three-phase operating current. A highly imbalanced load of the filter would deteriorate its interference suppression capacity.

If the mains voltage is more than 480 V, connect the filter to the output side of the transformer and not to the supply side of the transformer.

Grounding

In the case of bad ground connections in the installation, the distance between the lines to the grounding points E1, E2 in area A and the other grounding points of the drive system should be at least d4 = 400 mm, in order to minimize interference injection from ground and ground cables to the power input lines.

See also Division Into Areas (Zones), page 144.

Point of Connection for Equipment Grounding Conductor at Machine, Installation, Control Cabinet The equipment grounding conductor of the power cable of the machine, installation or control cabinet has to be **permanently connected** at point PE and have a **cross section of at least 10 mm**² or to be complemented by a second equipment grounding conductor via separate terminal connectors (according to EN 61800-5-1:2007, section 4.3.5.5.2). If the cross section of the outer

conductor is bigger, the cross section of the equipment grounding conductor must be accordingly bigger.

Design and Installation in Area B - Interference-Susceptible Area of Control Cabinet

Arranging Components and Lines

Bosch Rexroth AG

Modules, components and lines in area B should be placed at a distance of at least **d1 = 200 mm** from modules and lines in area A.

Alternative: Shield modules, components and lines in area B by distance plates mounted vertically on the mounting plate from modules and lines in area A or use shielded lines.

Only connect power supply units for auxiliary or control voltage connections in the drive system to the mains via a mains filter. See Division Into Areas (Zones), page 144.

Install the shortest possible lines between drive controller and filter.

Control Voltage or Auxiliary Voltage Connection

Only in exceptional cases should you connect power supply unit and fusing for the control voltage connection to phase and neutral conductor. In this case, mount and install these components in area A far away from the areas B and C of the drive system. For details see section Design and Installation in Area A - Interference-Free Area of Control Cabinet, page 146.

Run the connection between control voltage connection of the drive system and power supply unit used through area B over the shortest distance.

Line Routing

Run the lines along grounded metal surfaces, in order to minimize radiation of interference fields to area A (transmitting antenna effect).

Design and Installation in Area C - Strongly Interference-Susceptible Area of Control Cabinet

Area C mainly concerns the motor power cables, especially at the connection point at the drive controller.

Influence of the Motor Power Ca-

The longer the motor power cable, the greater its leakage capacitance. To comply with a certain EMC limit value, the allowed leakage capacitance of the mains filter is limited. For the calculation of the leakage capacitance, see the documentation on the drive system of the drive controller used.

- Run the shortest possible motor power cables.
- Only use shielded motor power cables by Rexroth.

Routing the Motor Power Cables and Motor Encoder Cables

Route the motor power cables and motor encoder cables along grounded metal surfaces, both inside the control cabinet and outside of it, in order to minimize radiation of interference fields. If possible, route the motor power cables and motor encoder cables in metal-grounded cable ducts.

Route the motor power cables and motor encoder cables

- with a distance of at least **d5 = 100 mm** to interference-free lines, as well as to signal cables and signal lines
 - (alternatively separated by a grounded distance plate)
- in separate cable ducts, if possible

Routing the Motor Power Cables and Mains Connection Lines

For converters (drive controllers with individual mains connection), route motor power cables and (unfiltered) mains connection lines **in parallel for a maximum distance of 300 mm**. After that distance, route motor power cables and power supply cables in opposite directions and preferably in separate **cable ducts**.

Ideally, the outlet of the motor power cables at the control cabinet should be provided in a distance of at least **d3 = 200 mm** from the (filtered) power supply cable.

Converter - Routing the Motor Power Cables

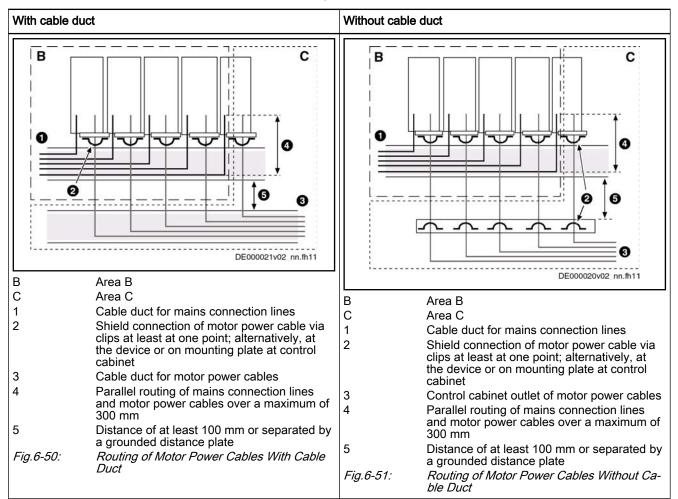


Fig.6-52: Routing of Cables for Converter

Ground Connections

Housing and Mounting Plate

By means of appropriate ground connections, it is possible to avoid the emission of interference, because interference is discharged to ground on the shortest possible way.

Ground connections of the metal housings of EMC-critical components (such as filters, devices of the drive system, connection points of the cable shields, devices with microprocessor and switching power supply units) have to be well contacted over a large surface area. This also applies to all screw connections between mounting plate and control cabinet wall and to the mounting of a ground bus to the mounting plate.

The best solution is to use a zinc-coated mounting plate. Compared to a lacquered plate, the connections in this case have a good long-time stability.

Connection Elements

For lacquered mounting plates, always use screw connections with tooth lock washers and zinc-coated, tinned screws as connection elements. At the connection points, remove the lacquer so that there is safe electrical contact over a large surface area. You achieve contact over a large surface area by

means of bare connection surfaces or several connection screws. For screw connections, you can establish the contact to lacquered surfaces by using tooth lock washers.

Metal Surfaces

Bosch Rexroth AG

Always use connection elements (screws, nuts, plain washers) with good electroconductive surface.

Bare zinc-coated or tinned metal surfaces have good electroconductive properties.

Anodized, yellow chromatized, black gunmetal finish or lacquered metal surfaces have bad electroconductive properties.

Ground Wires and Shield Connec-

For connecting ground wires and shield connections, it is not the cross section but the size of contact surface that is important, as the high-frequency interference currents mainly flow on the surface of the conductor.

Always connect cable shields, especially shields of the motor power cables, to ground potential over a large surface area.

Installing Signal Lines and Signal Cables

Line Routing

For measures to prevent interference, see the Project Planning Manuals of the respective device. In addition, we recommend the following measures:

- Route signal and control lines separately from the power cables with a minimum distance of d5 = 100 mm (see Division Into Areas (Zones), page 144) or with a grounded separating sheet. The optimum way is to route them in separate cable ducts. If possible, lead signal lines into the control cabinet at one point only.
- If signal lines are crossing power cables, route them in an angle of 90° in order to avoid interference injection.
- Ground spare cables, that are not used and have been connected, at least at both ends so that they do not have any antenna effect.
- Avoid unnecessary line lengths.
- Run cables as close as possible to grounded metal surfaces (reference potential). The ideal solution are closed, grounded cable ducts or metal pipes which, however, is only obligatory for high requirements (sensitive instrument leads).
- Avoid suspended lines or lines routed along synthetic carriers, because they are functioning like reception antennas (noise immunity) and like transmitting antennas (emission of interference). Exceptional cases are flexible cable tracks over short distances of a maximum of 5 m.

Shieldina

Connect the cable shield immediately at the devices in the shortest and most direct possible way and over the largest possible surface area.

Connect the shield of analog signal lines at one end over a large surface area, normally in the control cabinet at the analog device. Make sure the connection to ground/housing is short and over a large surface area.

Connect the shield of digital signal lines at both ends over a large surface area and in short form. In the case of potential differences between beginning and end of the line, run an additional bonding conductor in parallel. This prevents compensating current from flowing via the shield. The guide value for the cross section is 10 mm².

You absolutely have to equip separable connections with connectors with grounded metal housing.

In the case of non-shielded lines belonging to the same circuit, twist feeder and return cable.

General Measures of Radio Interference Suppression for Relays, Contactors, Switches, Chokes and Inductive Loads

If, in conjunction with electronic devices and components, inductive loads, such as chokes, contactors, relays are switched by contacts or semiconductors, appropriate interference suppression has to be provided for them:

- By arranging free-wheeling diodes in the case of d.c. operation
- In the case of a.c. operation, by arranging usual RC interference suppression elements depending on the contactor type, immediately at the inductance

Only the interference suppression element arranged immediately at the inductance does serve this purpose. Otherwise, the emitted noise level is too high which can affect the function of the electronic system and of the drive.

7 Technical Data of the Components

7.1 Control Section

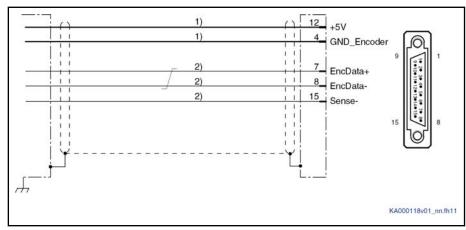
7.1.1 EC - Standard Encoder Evaluation

Supported Encoder Systems

Supported Encoder Systems

Encoder systems with a supply voltage of 5 and 12 volt

- MSM motor encoder
- MSK motor encoder
- Sin-cos encoder 1V_{pp}; HIPERFACE®
- Sin-cos encoder 1V_{pp}; EnDat 2.1; (EnDat 2.2 in preparation)
- Sin-cos encoder 1V_{pp}; with reference track
- 5V-TTL square-wave encoder; with reference track
- SSI
- Combined encoder for SSI (combination of SSI and sin-cos encoder 1V_{pp})
- Resolver
- Hall sensor box SHL02.1
- Digital Hall sensor in conjunction with Hall sensor adapter box SHL03.1


Encoder Type

IndraDyn S MSM Motors (5V Supply Voltage)

Properties

Encoder systems of the MSM motors are digital encoder systems that can be evaluated in absolute form. The optionally available battery box (see index entry "SUP-E01-MSM-BATTERYBOX") allows multi-turn functionality.

Connection Diagram

1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length

2) Line cross section ≥ 0.14 mm²
Fig. 7-1: Connection Diagram EC with Encoder System of II

Fig.7-1: Connection Diagram EC with Encoder System of IndraDyn S MSM Motors

图

For **direct** connection to the encoder system, use our cable **RKG0033**.

Power Supply

5 V (the voltage is made available via the EC interface)

Technical specification of the power supply: See index entry "Encoder \rightarrow 5 V power supply".

Cable Length 75 m at most (when using the Sense function)

When you do not use the Sense function, the maximum cable length is reduced (see index entry "Encoder → Cable length").

Battery Box

With long encoder cables, use the optionally available battery box (SUP-E01-MSM-BATTERYBOX) to correct the supply voltage at the encoder. The battery box contains a connection between Sense- and GND.

Install the battery box as near as possible to the motor so that the voltage drop via the supply line between battery box and encoder is as small as possible

Description of the Sense function: See index entry "Encoder \rightarrow 5 V power supply".

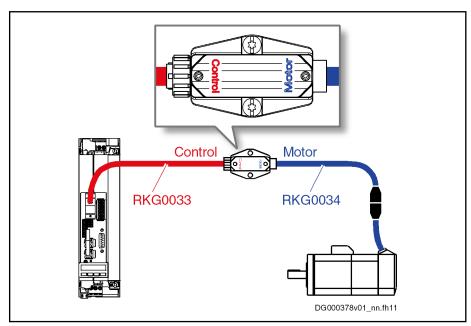
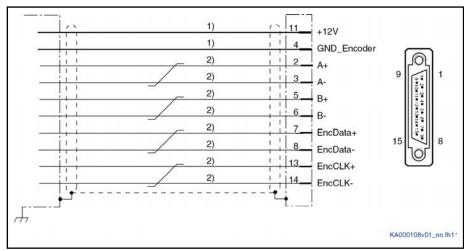


Fig.7-2: Battery Box SUP-E01-MSM-BATTERYBOX


IndraDyn S MSK/QSK Motors S1/M1, S2/M2, S3/M3, S5/M5 (12 V Supply Voltage)

Properties

Encoder systems of the MSK/QSK motors are HIPERFACE® (S1/M1, S3/M3, S5/M5) or EnDat 2.1 (S2/M2) encoder systems.

The type code of the motor shows whether the encoder system supports the single-turn (Sx) or multi-turn (Mx) functionality. Example: The MSK050C-0600-NN-**S1**-UG0-NNNN motor has a single-turn HIPERFACE® encoder system.

Connection Diagram

1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length

2) Line cross section ≥ 0.14 mm²

Fig. 7-3: Connection Diagram MSK/QSK Encoder Interface for S1/M1, S2/M2, S5/M5 Encoder Systems

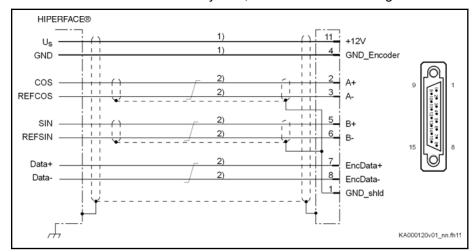
For **direct** connection to the encoder system, use our cable **RKG4200**.

Power Supply

12 V (the voltage is made available via the EC interface)

Technical specification of the power supply: See index entry "Encoder \rightarrow 12 V power supply".

Cable Length


The maximum allowed cable length depends on several factors: See index entry "Encoder → Cable length".

HIPERFACE® (12 V Supply Voltage)

For how to connect the encoder system, see the connection diagram.

Connection Diagram

Bosch Rexroth AG

- 1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length
- 2) Line cross section ≥ 0.14 mm²

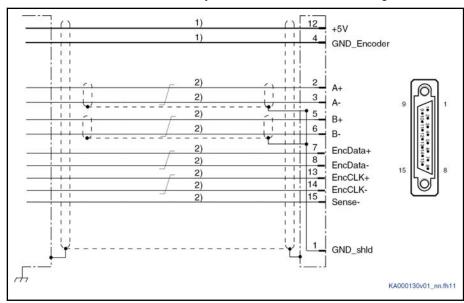
Fig.7-4: Connection Diagram HIPERFACE® Encoder System

Power Supply

The HIPERFACE® encoder system needs a supply voltage of 12 V. This supply voltage is made available via the EC interface.

Technical specification of the power supply: See index entry "Encoder → 12 V power supply".

Observe that the third-party encoder used must be suited for the voltage available at the EC interface as voltage for encoder supply.


Cable Length

The maximum possible cable length depends on several factors: See index entry "Encoder → Cable length".

EnDat 2.1 according to Heidenhain Standard (5 V Supply Voltage)

For how to connect the encoder system, see the connection diagram.

Connection Diagram

1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length

2) Line cross section ≥ 0.14 mm²

Connection Diagram EC with EnDat 2.1 Encoder System Fig.7-5:

B

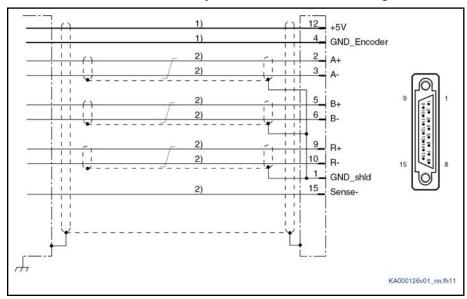
For direct connection to the encoder system, use our cable RKG0036.

Power Supply 5 V (the voltage is made available via the EC interface)

> Technical specification of the power supply: See index entry "Encoder → 5 V power supply".

Cable Length **75 m** at most (when using the Sense function)

> When you do not use the Sense function, the maximum cable length is reduced (see index entry "Encoder → Cable length").


Technical Properties To ensure stable power supply at the encoder, use the Sense function. De-

scription of the Sense function: See index entry "Encoder → 5 V power supply".

1V_{pp} according to Heidenhain Standard (5 V Supply Voltage)

For how to connect the encoder system, see the connection diagram.

Connection Diagram

Line cross section ≥ 0.5 mm²; observe allowed encoder cable length

2) Line cross section ≥ 0.14 mm²

Fig.7-6: Connection Diagram EC with 1Vpp Encoder System

B

For direct connection to the encoder system, use our cable RKG0035.

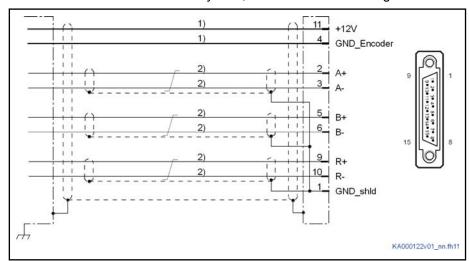
Power Supply 5 V (the voltage is made available via the EC interface)

> Technical specification of the power supply: See index entry "Encoder → 5 V power supply".

Cable Length 75 m at most (when using the Sense function)

> When you do not use the Sense function, the maximum cable length is reduced (see index entry "Encoder → Cable length").

To ensure stable power supply at the encoder, use the Sense function. Description of the Sense function: See index entry "Encoder → 5 V power sup-


ply".

Technical Properties

1V_{pp} (12 V Supply Voltage)

For how to connect the encoder system, see the connection diagram.

Connection Diagram

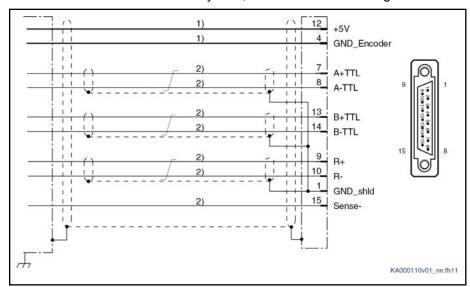
- 1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length
- 2) Line cross section ≥ 0.14 mm²

Fig.7-7: Connection Diagram 1V_{pp} Encoder System

Power Supply

12 V (the voltage is made available via the EC interface)

Technical specification of the power supply: See index entry "Encoder \rightarrow 12 V power supply".


Cable Length

The maximum allowed cable length depends on several factors: See index entry "Encoder \rightarrow Cable length".

TTL (5 V Supply Voltage)

For how to connect the encoder system, see the connection diagram.

Connection Diagram

- 1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length
- 2) Line cross section ≥ 0.14 mm²

Fig.7-8: Connection Diagram EC with TTL Encoder System

Power Supply

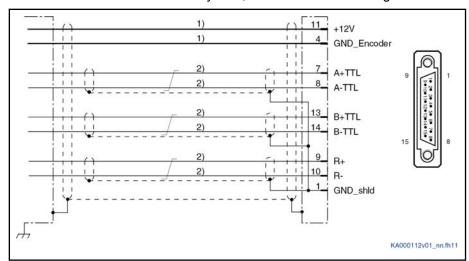
5 V (the voltage is made available via the EC interface)

Technical specification of the power supply: See index entry "Encoder → 5 V power supply".

Cable Length

75 m at most (when using the Sense function)

When you do not use the Sense function, the maximum cable length is reduced (see index entry "Encoder → Cable length").


Technical Properties

To ensure stable power supply at the encoder, use the Sense function. Description of the Sense function: See index entry "Encoder → 5 V power supply".

TTL (12 V Supply Voltage)

For how to connect the encoder system, see the connection diagram.

Connection Diagram

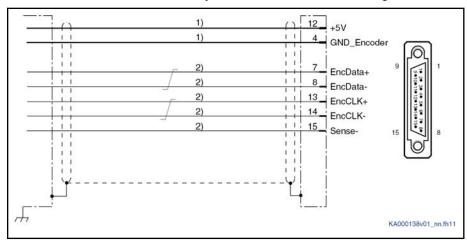
- 1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length
- 2) Line cross section ≥ 0.14 mm²

Fig.7-9: Connection Diagram TTL Encoder System

Power Supply 12 V (the voltage is made available via the EC interface)

Technical specification of the power supply: See index entry "Encoder \rightarrow 12 V power supply".

power supply


Cable Length The maximum allowed cable length depends on several factors: See index entry "Encoder → Cable length".

SSI (5 V Supply Voltage)

For how to connect the encoder system, see the connection diagram.

Connection Diagram

Bosch Rexroth AG

1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length

2) Line cross section ≥ 0.14 mm²

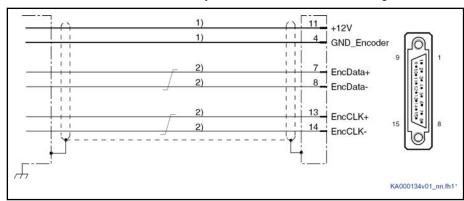
Fig.7-10: Connection Diagram EC with SSI Encoder System

Power Supply 5 V (the voltage is made available via the EC interface)

Technical specification of the power supply: See index entry "Encoder \rightarrow 5 V power supply".

Cable Length 75 m at most (when using the Sense function)

When you do not use the Sense function, the maximum cable length is reduced (see index entry "Encoder \rightarrow Cable length").


Technical Properties

To ensure stable power supply at the encoder, use the Sense function. Description of the Sense function: See index entry "Encoder \rightarrow 5 V power supply".

SSI (12 V Supply Voltage)

For how to connect the encoder system, see the connection diagram.

Connection Diagram

- 1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length
- 2) Line cross section ≥ 0.14 mm²

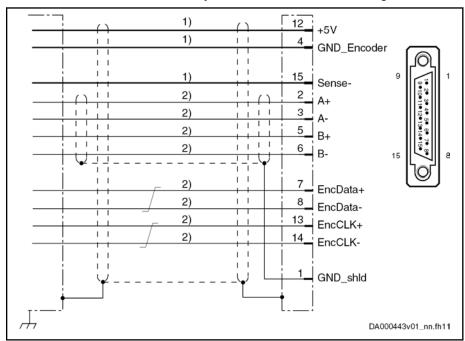
Fig.7-11: Connection Diagram SSI Encoder System

Power Supply

12 V (the voltage is made available via the EC interface)

Technical specification of the power supply: See index entry "Encoder \rightarrow 12 V power supply".

Cable Length


The maximum allowed cable length depends on several factors: See index entry "Encoder \rightarrow Cable length".

Combined Encoder for SSI (5 V Supply Voltage)

The combined encoder for SSI is a combination of SSI and sin-cos encoder $1\mbox{\ensuremath{V_{pp}}}.$

For how to connect the encoder system, see the connection diagram.

Connection Diagram

- 1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length
- 2) Line cross section ≥ 0.14 mm²

Fig.7-12: Connection Diagram EC with SSI Encoder System

Power Supply

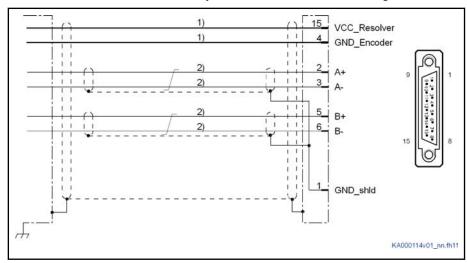
5 V (the voltage is made available via the EC interface)

Technical specification of the power supply: See index entry "Encoder \rightarrow 5 V power supply".

Cable Length

75 m at most (when using the Sense function)

When you do not use the Sense function, the maximum cable length is reduced (see index entry "Encoder \rightarrow Cable length").


Technical Properties

To ensure stable power supply at the encoder, use the Sense function. Description of the Sense function: See index entry "Encoder \rightarrow 5 V power supply".

Resolver without Encoder Data Memory

For how to connect the encoder system, see the connection diagram.

Connection Diagram

- 1) Line cross section ≥ 0.5 mm²; observe allowed encoder cable length
- 2) Line cross section ≥ 0.14 mm² Fig.7-13: Connection Diagram EC with Resolver Encoder System

Power Supply

The EC interface supplies the resolver encoder system with a carrier voltage amplitude of 11 $V_{\rm pp}$.

Technical specification of the power supply: See index entry "Encoder → Resolver power supply".

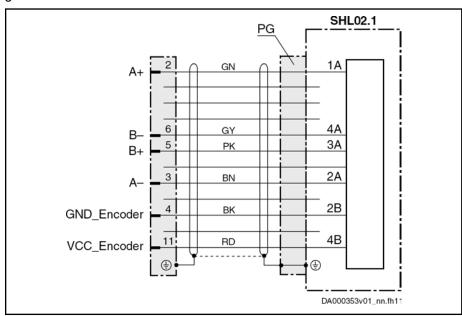
Observe that the resolver encoder used must be suited for the voltage available at the EC interface as voltage for encoder supply.

Cable Length

75 m at most

Specific Technical Features

The encoder evaluation has been sized for resolvers with a **transfer ratio** of 0.5


166/271

Technical Data of the Components

Hall Sensor Box SHL02.1 (12 V Supply Voltage)

For how to connect the Hall sensor box SHL02.1, see the connection diagram.

Connection Diagram

VCC_En- +12 V coder

Fig.7-14: Connection Diagram Hall Sensor Box SHL02.1

Power Supply 12 V (the voltage is made available via the EC interface)

Technical specification of the power supply: See index entry "Encoder \rightarrow 12 V power supply".

power supply

Cable Length The maximum allowed cable length depends on several factors: See index

entry "Encoder → Cable length".

Specific Technical Features

For detailed information on the Hall sensor box SHL02.1, see the Functional Description "Rexroth Hall Sensor Box SHL02.1" (R911292537).

Power Supply

5 V Power Supply

5 V Power Supply

Data	Unit	Min.	Тур.	Max.
DC output voltage +5V	V	5,0		5,25
Output current	mA			500 ¹⁾

1) The sum of the power consumptions of all connected encoder systems (5 V / 12 V) mustn't exceed **6 W**. See also index entry "Control voltage → Project planning".

Fig.7-15: 5 V Power Supply

Sense Function

The EC encoder evaluation provides the option of correcting the 5 V supply voltage at the encoder. It is thereby possible, within certain limits, to compensate for voltage drops on the encoder cable.

Functional principle: The current consumption of the connected encoder system generates a voltage drop due to the ohmic resistance of the encoder cable (line cross section and line length). This reduces the signal at the encoder input. The actual value of the 0 V encoder potential at the encoder is measured via a separate "Sense" line (Sense-) and is fed back to the drive controller. Thus, the drive controller can influence the voltage of the encoder supply.

For correct "Sense" evaluation, the encoder supply lines "+5V" and "GND_Encoder" must have the same line cross section..

If the encoder has a "Sense-" connection, connect the "Sense-" line at this connection. The "Sense+" connection, which might possibly exist, is not used.

If the encoder has no "Sense" connection, apply the 0 V encoder potential to the "Sense-" line on the encoder side.

168/271

Technical Data of the Components

12 V Power Supply

12 V Power Supply

Data	Unit	Min.	Тур.	Max.
Voltage for encoder supply	V	10,7	12	12,3
Output current	mA			500 ¹⁾

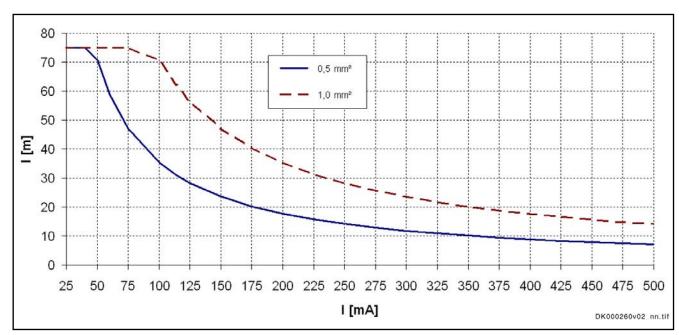
The sum of the power consumptions of all connected encoder systems (5 V / 12 V) mustn't exceed **6 W**. See also index entry "Control voltage → Project planning".

Fig.7-16: 12 V Power Supply

Resolver Power Supply

Resolver Encoder System

Data	Unit	Min.	Тур.	Max.
AC output voltage VCC_Resolver (peak-peak value)	V	8,3	10	12
Output frequency sine	kHz		8	
Output current (peak value)	mA			60
Output current (rms value)	mA			40


Fig.7-17: Resolver Encoder Supply

Encoder Cable Length

B

For encoder supply, use lines with the same line cross section.

Allowed Encoder Cable Length for 5 V Encoder Systems without Sense Function If the encoder system used does not support the Sense function, the maximum possible cable length results from the diagram below.

I [mA] Encoder current consumption
I [m] Cable length

I [m] Cable length 0.5 mm²; Line Cross Sections

1.0 mm² Fig.7-18:

Maximum Allowed Encoder Cable Lengths for 5 V Encoder Systems without Sense Connection Depending on Line Cross Section

Nominal current consumption of the MSM motor encoders: 75 mA

Allowed Encoder Cable Length for 5 V Encoder Systems with Sense Function **75 m** at most (The cross section of the supply voltage lines must be at least 0.5 mm^2 .)


Allowed Encoder Cable Length for 12 V Encoder Systems

Requirements:

- The cross section of the supply voltage lines is at least 0.5 mm²
- The minimum allowed supply voltage at the encoder is 10 V

Bosch Rexroth AG

Technical Data of the Components

I [mA] Encoder current consumption
I [m] Cable length
0.5 mm²; Line Cross Sections

1.0 mm²

Fig.7-19: Maximum Allowed Encoder Cable Lengths for 12 V Encoder Systems Depending on Line Cross Section at a Supply Voltage of 10 V

B

Nominal current consumption of the MSK motor encoders: 60 mA

Allowed Encoder Cable Length for Resolver Encoder Systems

75 m at most (The cross section of the supply voltage lines must be at least 0.5 mm².)

Technical Data of Encoder Evaluation EC

Input Circuit for Sine Signals A+, A-, B+, B-, R+, R-

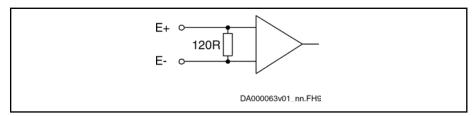


Fig.7-20: Input Circuit for Sine Signals (Block Diagram)

Properties of Differential Input for Sine Signals

Data	Unit	Min.	Тур.	Max.
Amplitude of encoder signal peak- peak (U _{PPencodersignal})	V	0,8	1,0	1,2
Cut-off frequency (-3 dB)	kHz		400	
Converter width A/D converter	Bit		12	
Input resistance	ohm		120	

Fig.7-21: Differential Input Sine

Resolver Input Circuit for A+, A-, B +. B-

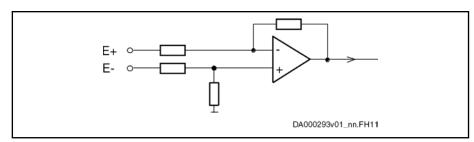


Fig.7-22: Input Circuit for Resolver Evaluation (Block Diagram)

Input Circuit for Square-Wave Sig-

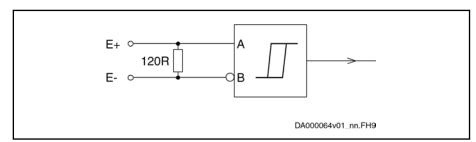


Fig.7-23: Input Circuit for Square-Wave Signals (Block Diagram)

Properties of Differential Input for Square-Wave Signals

Data	Unit	Min.	Тур.	Max.
Input voltage "high"	V	2,4		5,0
Input voltage "low"	V	0		0,8
Input frequency	kHz			1000
Input resistance	ohm		120	

Fig.7-24: Differential Input Square-Wave Signals

Differential Input for Resolver Operation

Data	Unit	Min.	Тур.	Max.
Amplitude encoder signal sine (U_{pp})	V		5	6
Input resistance	kohm		12	
Converter width A/D converter	Bit		12	

Fig.7-25: Input Data Resolver Operation

Bosch Rexroth AG

Signal Assignment to the Actual Position Value

Signal assignment 1)	Signal designation	Signal shape	Actual position value (with default setting)
DK000089v01_nn.FH9	A+	Sine (1 V _{pp}) Without absolute value	Increasing
DK000090v01_nn.FH9	A+TTL A-TTL B+TTL B-TTL B-TTL DF000380v01_nn.FH11	Square-wave (TTL) Without absolute value	Increasing
DK000088v01_nn.FH9	A+	Sine (1 V _{pp}) With absolute value (e.g. En- Dat)	Increasing
DK000087v01_nn.FH9 Amplitude-modulated signal	A+	Resolver	Increasing

1) See following note Fig.7-26: Signal Assignment to the Actual Position Value

The encoder signal assignment to the inputs is based on clockwise rotation (front view to motor shaft).

- Track A (A+, A-) advances track B (B+, B-) 90° electrically.
- The actual position value increases (prerequisite: negation of the encoder signals was not parameterized).
- If available, the reference track R (R+, R-) provides the reference mark pulse at positive signals of track A and track B (in the so-called "0-th" quadrant).

Standard setting: See Functional Description of firmware.

7.1.2 EM - Encoder Emulation

Cable

Data	Unit	Min.	Тур.	Max.
Allowed length	m			40
Allowed capacitance between outputs	nF/m			5
Allowed capacitance between output and 0 V	nF/m			10
Shielding		Double shielding (individual shields and overall shield)		

Fig.7-27: Line at MEM

NOTICE

Risk of damage by use of unshielded lines and lines with single shielding!

Use lines with double shielding.

Incremental Encoder Emulation

Connection

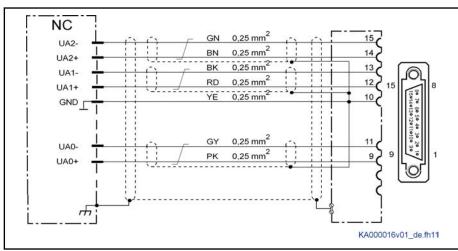
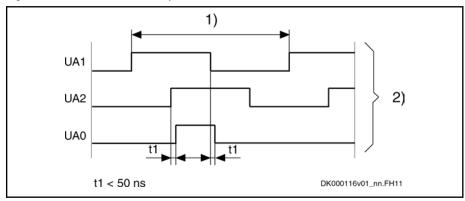


Fig.7-28: Connection of Incremental Actual Position Value Output


Bosch Rexroth AG

Differential Outputs Incremental Encoder Emulation

Data	Unit	Min.	Тур.	Max.
Output voltage "high"	V	2,5		5
Output voltage "low"	V	0		0,5
Output current I _{out}	mA			1 20 1
Load capacitance between output and 0 V	nF			10
Output frequency f	MHz			1
Overload protection		Available		

Signals for Incremental Actual Position Value Output

Fig.7-29: Differential Outputs

- t1 < 50 ns
- 1) One line
- 2) Square-wave pulses with view to the motor shaft and clockwise rota-

tion

Fig.7-30: Signals for Incremental Actual Position Value Output

Output frequency f

$$f = \frac{S}{U} \times n$$

f Output frequency
S Number of lines
U Revolution
n Speed

Fig.7-31: Calculating the Output Frequency f

The output frequency results from the respective parameter set-

See also Functional Description of firmware: Encoder Emulation.

Control-Side Signal Filter for UA1 and UA2

Due to the signal processing in the control section, the periodic time and duty cycle of the output signals are influenced.

Depending on the parameterized output frequency, there are the following requirements to the signal filtering of the control unit for channels UA1 and UA2:

- With f_{out} ≥ 500 kHz: f_{filter} ≥ 1 MHz
- With $f_{out} < 500 \text{ kHz}$: $f_{filter} \ge 2 \times f_{out}$

Speed Measurement

Frequency measurement is **not** suited to measure the speed from the incremental emulator signals.

Incremental Encoder Emulation with Signal Level Conversion

Connection

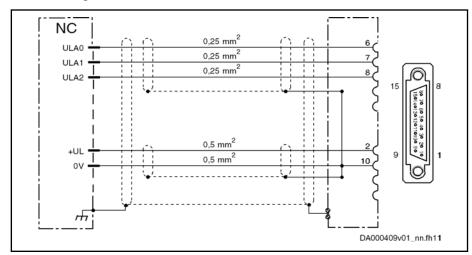


Fig.7-32: Connection

Electrical Data

_				
Data	Unit	Min.	Тур.	Max.
Supply voltage UL	V	5		30
Supply current UL	mA		16	
Output voltage "high"	V	UL - 0.7		
Output voltage "low"	V	0		
Output current I _{out}	mA			40
Output frequency f	MHz			1
Overload protection		Present, output voltage is reduced		

Fig.7-33: Supply and outputs

Absolute Encoder Emulation (SSI Format)

Connection Absolute Encoder Emulation

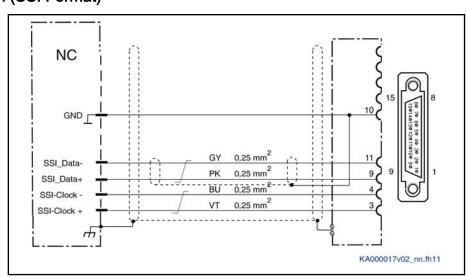


Fig.7-34: Output of Absolute Actual Position Values According to SSI Format

Bosch Rexroth AG

Differential Input Circuit Absolute Encoder Emulation

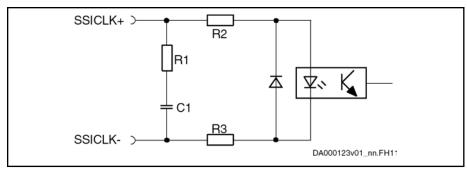
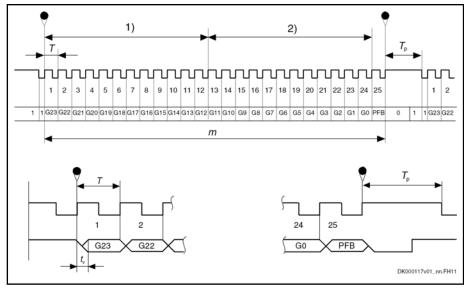


Fig.7-35: Differential Input Circuit (Block Diagram)

Differential Inputs Absolute Encoder Emulation

Data	Unit	Min.	Тур.	Max.
Input voltage "high"	V	2,5		5
Input voltage "low"	V	0		0,5
Input resistance	ohm	Approx. 160 (see circuit)		
Clock frequency f	kHz	100–1000		
Polarity reversal protection		Within the allowed input voltage range		
Galvanic isolation		Signals from circuit board		

Fig.7-36: Differential Inputs


Differential Outputs Absolute Encoder Emulation

Data	Unit	Min.	Тур.	Max.
Output voltage "high"	V	2,5		5
Output voltage "low"	V	0		0,5
Output current lout	mA			I 20 I
Load capacitance between output and 0 V	nF			10
Output frequency f	MHz			1
Overload protection		Available		
Terminating resistor at load	ohm	150–180		

Fig.7-37: Differential Outputs

The differential output corresponds to the RS422 specifications. On the control side, a line terminating resistor must be available for the SSI data signal. If this resistor is not available, connect an external line terminating resistor (150–180 ohm).

1)	Resolution for 4096 revolutions		
2)	Resolution for 1 revolution		
G0	Least significant bit in Gray code		
G23	Most significant bit in Gray code		
m	Stored parallel information		
T	Clock time		

 T_p Clock break \geq 20 μ s t_v Delay time max. 200 ns

PFB Power failure bit (not used and always logically LOW)

Fig. 7-38: Pulse Diagram With Absolute Actual Position Value Output (SSI Format)

7.1.3 ET - Multi-Ethernet

Display Elements

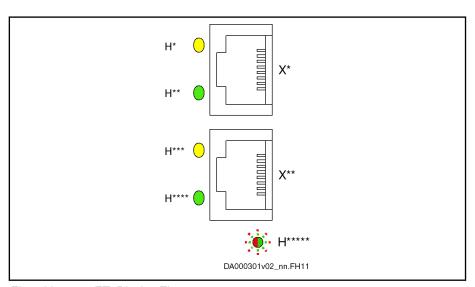


Fig.7-39: ET, Display Elements

Display elements of optional module ET:

- Two LEDs at each connection point
- One bicolor LED (H****: H24, for example)

The significance of the LED displays depends on the field bus system.

Ethernet/IP

Ethernet/IP Display Elements

LED	Significance	Color	Description
H10, H12	Status	Permanently lit yellow	Data transmission running
H11, H13	Link	Permanently lit green	Connection to network available
H****	Not active	Off	Interface has been switched off (24V supply) or has no IP address
	Not connected	Flashing green	Interface has an IP address, but no connection
	Connected	Permanently lit green	Connection to network available, data transmission running
	Timeout	Flashing red	Existing connection was aborted
	Invalid IP address	Permanently lit red	Assigned IP address is already used by another device
	Self test	Flashing red- green	After switching on, interface carries out a self test

H****

H24, for example

Fig.7-40:

Ethernet/IP Display Elements

EtherCAT

EtherCAT Display Elements

LED	Significance	Color / flashing pattern	Description
H10, H12	None	-	With EtherCAT, these LEDs have no function
H11, H13	Link	0	No connection to the network
		Off	
		*	Connection to network available, but no telegram exchange (EtherCAT bus inactive)
		Permanently lit green	
		•	Connection to network available with telegram exchange (EtherCAT bus active)
		Flickering green	
H****	Status	0	Cyclic process data and acyclic data
	INIT	Off	channel are not transmitted
			No error
	Status	GN 1)	Acyclic data channel is transmitted
	PRE-OPERATIONAL	Flashing green	
	Status	GN 1)	Acyclic data channel is transmitted
	SAFE-OPERATIONAL	Green, one LED lighting up	
	Status OPERATIONAL	*	Cyclic process data and acyclic data channel are transmitted
		Permanently lit green	
	Configuration error	RD 1)	General EtherCAT configuration error
		Flashing red	
	Synchronization error	RD 1)	The drive controller has not been synchronized to the EtherCAT master
		Red, one LED lighting up	Communication error of the drive control- ler
	Timeout - watchdog	RD RD 1)	Timeout during monitoring of the cyclic process data
		Red, two LEDs lighting up	Watchdog of the EtherCAT master

Flashing pattern: One square corresponds to a duration of 200 ms; the arrow marks the end of a cycle; abbreviations on the squares: GN = LED permanently lit green, RD = LED permanently lit red, -- = LED is off 1)

H**** H24, for example

Fig.7-41: EtherCAT Display Elements

7.1.4 PB - PROFIBUS

Signal Specification

Signal	Specification
+5V	+5 V (±10%)
Repeater supply	Max. 75 mA
Repeater control signal	TTL-compatible:
	• 1: Transmit
	0: Receive
	Output resistance: 350R
	$V_{OL} \le 0.8 \text{ V at } I_{OL} \le 2 \text{ mA}$
	V _{OH} ≥ 3.5 V at I _{OH} ≤ 1 mA
Receive/transmit data	EIA-RS485 standard

Fig.7-42: Signal Specification

NOTICE

Danger of destroying output
"+5V repeater supply" by overload!

Do not short-circuit the output.

Do not exceed the maximum current.

Diagnostic Displays

For the significance of the diagnostic displays, see firmware documentation.

7.1.5 CN - CANopen

Display Elements CANopen

Run		
	Green	Signals operating states; see Functional Description of firmware
Error	*	Signals error states; see Functional Description of firmware
	Error	

Fig.7-43: Significance of Display Elements for CANopen

Main Features

Feature	CANopen
Compatibility	According to EN 50325-4
Max. possible number of nodes	127 nodes
Bus Topology	Line topology
Bus terminator (ISO 11898)	124 ohm each, 1%, 200 mW; connect at both bus ends to X61.2 and X61.7
Transmission medium	2 twisted two-wire lines (4-pin) with shield
Max. allowed bus (line) lengths	Depending on bit rate
Recommended connection cable	Our RKS number or third-party type

Fig.7-44: Main Features

Bus Lengths Depending on Bit Rates

Bit rate	Max. allowed network dimension
[kBaud]	[m]
1000	25
800	50
500	100
250	250
125	500
50	1000
20	2500
10	5000

Fig.7-45: Network Dimension

7.1.6 Digital Inputs/Outputs

General Information

The digital inputs/outputs correspond to "IEC 61131, type 1".

Do not operate digital outputs at low-resistance sources! In the Functional Description of the firmware, observe the Notes on Commissioning for digital inputs/outputs.

Digital Inputs

Digital Inputs Type A (Standard)

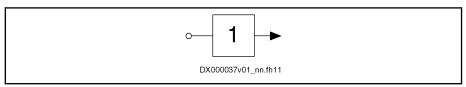


Fig.7-46: Symbol

Data	Unit	Min.	Тур.	Max.
Allowed input voltage	V	-3		30
On	V	15		
Off	V			5
Input current	mA	2		5
Input resistance	kΩ	7,42		
Sampling frequency	kHz	Depending on firmware		nware
Control delay	μs	20		1000 +
				1 cycle time of po- sition con- trol

Fig.7-47: Digital Inputs Type A

Bosch Rexroth AG

Digital Inputs Type B (Probe)

Function

See "Probe" in the Functional Description of the firmware.

Technical data

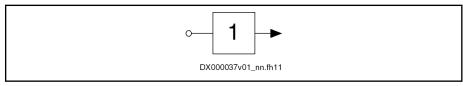
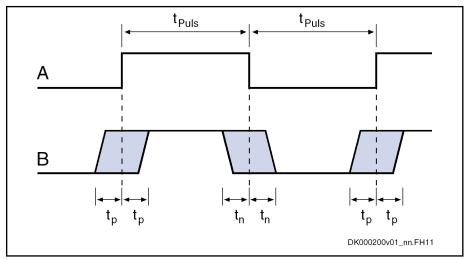



Fig.7-48: Symbol

Data	Unit	Min.	Тур.	Max.
Allowed input voltage	V	-3		30
On	V	15		
Off	V			5
Input current	mA	2		5
Input resistance	kΩ	Ω 7,42		
Pulse width t _{Puls}	μs	4		
Measuring accuracy t _x	μs			1

Fig.7-49: Digital Inputs Type B

A Signal

B Signal detection at probe input

t_{Puls} Pulse width

 $\begin{array}{ll} t_p & & \text{Measuring accuracy of the positive signal edge} \\ t_n & & \text{Measuring accuracy of the negative signal edge} \end{array}$

Fig. 7-50: Signal Detection at Probe Input

Use To acquire fast digital input signals.

Probe inputs are "fast" inputs. For control use bounce-free switching elements (e.g. electronic switches) to avoid incorrect evaluation.

Digital Inputs (Safety Technology "L Options")

The digital inputs correspond to IEC 61131, type 2.

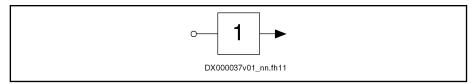


Fig.7-51: Symbol

Data	Unit	Min.	Тур.	Max.
Allowed input voltage	V	0		30
On	V	11		
Off	V			5
Input current				
On	mA	7		
Off	mA			2
Input resistance	kΩ		1 3,5	

Fig.7-52: Digital Inputs (Safety Technology "L Options")

Digital Outputs

The digital outputs are compatible with digital inputs of types 1, 2 and 3 (IEC 61131).

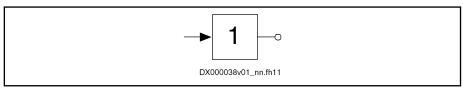


Fig.7-53: Symbol

Data	Unit	Min.	Тур.	Max.
Output voltage ON	V	U _{ext} - 0.5	24	U _{ext}
Output voltage OFF	V			2,1
Output current OFF	mA			0,05
Allowed output current per output	mA			500
Allowed output current per group (8 outputs)	mA			2000
Update interval	ns	Depending on firmware		ware
Short circuit protection		Present		
Overload protection		Present		
Allowed energy content of connected inductive loads, e.g. relay coils; only allowed as single pulse Per output	mJ			250

		1000
Output 1		
_		Out

Fig.7-54: Digital outputs

- The digital outputs have been realized with high-side switches. This means that these outputs only can actively supply current.
- The energy absorption capacity of the outputs is used to limit voltage peaks caused when inductive loads are switched off.
 Limit voltage peaks by using free-wheeling diodes directly at the relay coil.

Digital Outputs (Safety Technology "L Options")

The digital outputs are compatible with digital inputs of types 1, 2 and 3 (IEC 61131).

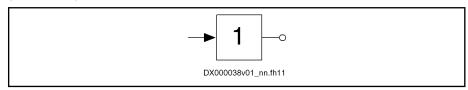
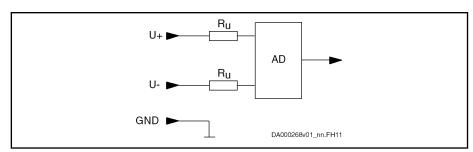



Fig.7-55: Symbol

Data	Unit	Min.	Тур.	Max.
Output voltage ON	V	11	24	30
Output voltage OFF	V			5
Output current OFF	mA			2
Allowed output current per output	mA			300
Short circuit protection		Available		
Overload protection		Available		

Fig.7-56: Digital Outputs (Safety Technology "L Options")

7.1.7 Analog Input

AD Analog/digital converter Fig.7-57: Analog Voltage Input

Data	Unit	Min.	Тур.	Max.
Allowed input voltage	V	-50		+50
Working range input voltage U _{on_work}	V	-10		+10
Input resistance	kΩ		240	
Input bandwidth (-3 dB)	kHz		1,3	
Common-mode range	V	-50		+50
Common-mode rejection	dB	50		
Relative measuring error at 90% U _{on_work}	%	-1		+1
Converter width A/D converter incl. polarity sign	Bit		12	
Oversampling			8-fold	
Dynamic converter width with over- sampling	Bit		14	
Resulting resolution	mV/inc		1,23	
Cyclic conversion	μs	n.s.		
Conversion time	μs	n.s.		

Fig.7-58: Analog Voltage Input

7.1.8 Relay Contacts

Relay Contact Type 2

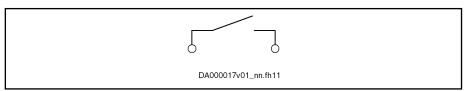


Fig.7-59: Relay Contact

Data	Unit	Min.	Тур.	Max.
Current carrying capacity	Α			DC 1
Voltage load capacity	V			DC 30
Minimum load of the contacts	mA	10		

Data	Unit	Min.	Тур.	Max.
Contact resistance at minimum current	mΩ			1000
Switching actions at max. time constant of load			1 × 10 ⁶	
Number of mechanical switching cycles			1 × 10 ⁸	
Time constant of load	ms		ohmic	
Pick up delay	ms			10
Drop out delay	ms			10

Fig.7-60: Relay Contacts Type 2

7.2 Control Panel

7.2.1 Design

Standard Control Panel

For a detailed description of the standard control panel, see the documentation "Application Manual, Functions" of the firmware used (index entry "Control panels").

Fig.7-61: Standard Control Panel

Description

The standard control panel

- has a single-line display
- must have been plugged in when the drive controller is switched on so that it can be recognized (not suited for hot plug)
- can be used as programming module
- The display shows operating states, command and error diagnoses and pending warnings.
- Using the four **keys**, the commissioning engineer or service technician can have extended diagnoses displayed and trigger simple commands.
- Memory
 - 400 kbytes for MLD boot program
 - 492 bytes for MLD retain variables

ADVANCED Control Panel

For a detailed description of the ADVANCED control panel, see the documentation "Application Manual, Functions" of the firmware used (index entry "Control panels").

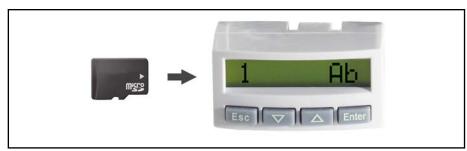


Fig.7-62: ADVANCED Control Panel

Description

The ADVANCED control panel

- has a slot for a microSD memory card (PFM04.1)
- has a single-line display
- must have been plugged in when the drive controller is switched on so that it can be recognized (not suited for hot plug)
- can be used as programming module
- The display shows operating states, command and error diagnoses and pending warnings.
- Using the four keys, the commissioning engineer or service technician can have extended diagnoses displayed and trigger simple commands.
- Memory
 - 400 kbytes for MLD boot program
 (4 MB with optional microSD memory card)
 - 31724 bytes for MLD retain variables

7.3 Power Section

7.3.1 Control Voltage

Data for Control Voltage Supply

Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02		
Rated control voltage input (UL) ¹⁾	U _{N3}	V			24 ± 20%				
Control voltage when using motor holding brake with motor cable length < 50 m (HCS01< 40 m) ²⁾	U _{N3}	V			24 ± 5%				
Control voltage when using motor holding brake with motor cable length > 50 m ³⁾	U _{N3}	V			26 ± 5%				
Maximum inrush current at 24V supply	I _{EIN3_max}	А			3,30				
Pulse width of I _{EIN3}	t _{EIN3Lade}	ms			2				
Last modification: 2012-01-23									

Bosch Rexroth AG

Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02			
Input capacitance	C _{N3}	mF	0,04							
Rated power consumption control voltage input at U _{N3} (UL) ⁴⁾	P _{N3}	W	2	7	28		34			
Last modification: 2012-01-23										

Observe supply voltage for motor holding brakes 1) 2) 3)

4) HMS, HMD, HCS plus motor holding brake and control section;

HCS01 including control section

Fig.7-63: HCS - Data for Control Voltage Supply

Data for Control Voltage Supply

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03			
Rated control voltage input (UL) ¹⁾	U _{N3}	V			24 ± 20%					
Control voltage when using motor holding brake with motor cable length < 50 m (HCS01< 40 m) ²⁾	U _{N3}	V	24 ± 5%							
Control voltage when using motor holding brake with motor cable length > 50 m ³⁾	U _{N3}	V	26 ± 5%							
Maximum inrush current at 24V supply	I _{EIN3_max}	Α		3,	30		4,50			
Pulse width of I _{EIN3}	t _{EIN3Lade}	ms			2					
Input capacitance	C _{N3}	mF		0,	04		0,06			
Rated power consumption control voltage input at U _{N3} (UL) ⁴⁾	P _{N3}	W	27 28 34							
Last modification: 2012-01-23										

Observe supply voltage for motor holding brakes 1) 2) 3)

HMS, HMD, HCS plus motor holding brake and control section; 4)

HCS01 including control section

Fig.7-64: HCS - Data for Control Voltage Supply

B Overvoltage

Overvoltage greater than 33 V has to be discharged by means of the appropriate electrical equipment of the machine or installation.

This includes:

- 24V power supply units that reduce incoming overvoltage to the allowed value.
- Overvoltage limiters at the control cabinet input that limit existing overvoltage to the allowed value. This, too, applies to long 24V lines that have been run in parallel to power cables and mains cables and can absorb overvoltage by inductive or capacitive coupling.

7.3.2 Mains Voltage

Data for Mains Voltage Supply

Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02		
Input frequency (UL)	f _{LN}	Hz			5060				
Tolerance input frequency (UL)		Hz			± 2				
Maximum allowed mains frequency change	$\Delta f_{LN}/\Delta t$	Hz/s	2						
Rotary field condition			None						
Short circuit current rating (UL)	SCCR	A rms			42000				
Nominal mains voltage	U _{LN_nenn}	V			3 AC 230				
Mains voltage single-phase	U _{LN}	V			110230				
Mains voltage three-phase at TN-S, TN-C, TT mains	U _{LN}	V			110230				
Mains voltage three-phase at IT mains ¹⁾	U _{LN}	V	110230						
Mains voltage three-phase at Corner-grounded-Delta mains ²⁾	U _{LN}	V	110230						
Tolerance rated input voltage (UL)		%			± 10				
Minimum short circuit power of the mains for failure-free operation	S_{k_min}	MVA	0,02	0,03	0,05	0,1	0,2		
Minimum inductance of the mains supply (inductance of mains phase) ³⁾	L _{min}	μH			40				
Assigned type of mains choke					-				
Inrush current	I _{L_trans_max}	Α			See figure				
Maximum allowed ON-OFF cycles per minute ⁴⁾					1				
$\begin{array}{lll} \text{Mains input continuous current at} \\ \text{$U_{\text{LN}_{\text{nenn}}}$} & \text{and} & \text{$P_{\text{DC}_{\text{cont}}}$} & \text{(single-phase, without mains choke)}^{5)} \end{array}$	I _{LN}	A	1,80	2,80	5,00	8,30	12,80		
Mains input continuous current at U_{LN_nenn} and P_{DC_cont} (three-phase, without mains choke) ⁶⁾	I _{LN}	А	0,60	1,20	2,30	4,50	9,60		
Mains input continuous current at U_{LN_nenn} and P_{DC_cont} (single-phase, with mains choke) ⁷⁾	I _{LN}	А			-	,			
Mains input continuous current at U_{LN_nenn} and P_{DC_cont} (three-phase, with mains choke) ⁸⁾	I _{LN}	А			-				
	!				Last	modification:	2012-06-28		

Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02	
		ILN					
	А	4;;	gG	6;gG	10;gG	16;gG	
	A	2;	gG	4;gG	6;gG	16;gG	
	A	-					
	А	-					
A _{LN}	mm²	1,5					
A _{LN}	AWG	AWG 14					
	kVA	0,30	0,53	0,92	1,55	3,52	
	kVA			-			
	kVA			tbd			
S _{LN}	kVA			-			
		0,29	0,32	0,35	0,37	0,49	
		0,47		0,52	0,56	0,52	
		-					
		-					
	A _{LN} A _{LN} S _{LN} S _{LN} TPF TPF	A A A A A A A A A A A A A A A A A A A	Symbol Unit -W0003- 02 A 4; A 2; A A ALN mm² ALN AWG SLN kVA SLN kVA TPF 0,29 TPF 0, TPF 0,	Symbol Unit -W000302 -W000602 A 4;gG A 2;gG A A ALN mm² ALN AWG SLN kVA SLN kVA SLN kVA TPF 0,29 TPF 0,47 TPF 0,47	Symbol Unit -W000302 -W000602 -W000902 ILN A 4;gG 6;gG A 2;gG 4;gG A - - ALN mm² 1,5 ALN AWG 14 AWG 14 SLN kVA 0,30 0,53 0,92 SLN kVA - - SLN kVA - - TPF 0,29 0,32 0,35 TPF 0,52 - - TPF - - -	Symbol Unit -W000302 -W000602 -W000902 -W001302 A A ;gG 6;gG 10;gG A 2;gG 4;gG 6;gG A - - ALN mm² 1,5 ALN AWG AWG 14 SLN kVA 0,30 0,53 0,92 1,55 SLN kVA - - - SLN kVA - - TPF 0,29 0,32 0,35 0,37 TPF 0,47 0,52 0,56 TPF - - - -	

Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02	
TPF _{10%}				tbd			
TPF _{10%}		0,28	0,33	0,38	0,40	0,37	
TPF _{10%}				-			
TPF _{10%}		-					
cosφ ^{h1}				tbd			
cosφ ^{h1}				0,99			
cosφ ^{h1}				-			
cosφ ^{h1}				-			
	$TPF_{10\%}$ $TPF_{10\%}$ $TPF_{10\%}$ $TPF_{10\%}$ $TPF_{10\%}$ $TPF_{10\%}$ $TPF_{10\%}$	$TPF_{10\%}$ $TPF_{10\%}$ $TPF_{10\%}$ $TPF_{10\%}$ $Cos\phi^{h1}$ $Cos\phi^{h1}$	Symbol Unit -W0003- 02 TPF _{10%} 0,28 TPF _{10%} 0,28 TPF _{10%} - cosφ ^{h1} - cosφ ^{h1} - cosφ ^{h1} -	Symbol Unit -W0003- 2-02 -W0006- 2-02 TPF 10% 0,28 0,33 TPF 10% 0,28 0,33 TPF 10% 0,28 0,33 $Cosφ^{h1}$ 0,28 0,33	Symbol Unit -W0003- $_{-}$ -02 -W0006- $_{-}$ -02 -W0009- $_{-}$ -02 TPF _{10%} 0,28 0,33 0,38 TPF _{10%} - - TPF _{10%} - - cosφ ^{h1} tbd - cosφ ^{h1} 0,99 -	Symbol Unit -W0003-2-02 -W0006-2-02 -W0009-2-02 -W0013-2-02 TPF10% 0,28 0,33 0,38 0,40 TPF10% - - - TPF10% - - - $cosφh1$ tbd - $cosφh1$ 0,99 - $cosφh1$ - -	

1) 2) Mains voltage > U_{LN}: Use a transformer with grounded neutral point, don't use autotransformers!

3) Otherwise use mains choke HNL

Observe allowed number of switch-on processes; without external ca-4) pacitors at the DC bus

5) 6) 7) 8) 11) 12) 13) 14) Find interim values by interpolation

Copper wire; PVC-insulation (conductor temperature 70 $^{\circ}\text{C}$); installation method B1; table 6 9)

Copper wire; PVC-insulation (conductor temperature 90 °C); table 28.1; $T_a \le 40$ °C 10)

Fig.7-65: HCS - Data for Mains Voltage Supply

Data for Mains Voltage Supply

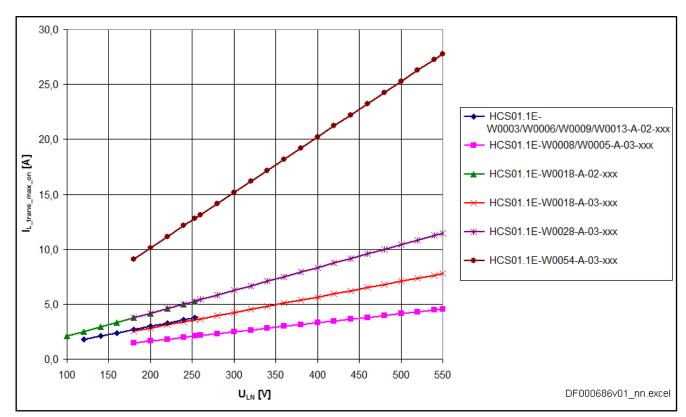
Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03		
Input frequency (UL)	f _{LN}	Hz	5060						
Tolerance input frequency (UL)		Hz			± 2				
Last modification: 2012-06-28									

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03	
Maximum allowed mains frequency change	Δf _{LN} /Δt	Hz/s			2			
Rotary field condition					None			
Short circuit current rating (UL)	SCCR	A rms	42000					
Nominal mains voltage	U _{LN_nenn}	V			3 AC 400			
Mains voltage single-phase	U _{LN}	V			Not allowed			
Mains voltage three-phase at TN-S, TN-C, TT mains	U _{LN}	V			200500			
Mains voltage three-phase at IT mains ¹⁾	U _{LN}	V			200230			
Mains voltage three-phase at Corner-grounded-Delta mains ²⁾	U _{LN}	V			200230			
Tolerance rated input voltage (UL)		%			± 10			
Minimum short circuit power of the mains for failure-free operation	S _{k_min}	MVA	0,05	0,1	0,2	0,3	0,9	
Minimum inductance of the mains supply (inductance of mains phase) ³⁾	L _{min}	μH			40			
Assigned type of mains choke				-		HNL01.1E -1000- N0012- A-500- NNNN	HNL01.1E -0600- N0032- A-500- NNNN	
Inrush current	I _{L_trans_max} _on	Α			See figure			
Maximum allowed ON-OFF cycles per minute ⁴⁾					1			
Mains input continuous current at U_{LN_nenn} and P_{DC_cont} (single-phase, without mains choke) ⁵⁾	I _{LN}	А			-			
Mains input continuous current at U_{LN_nenn} and P_{DC_cont} (three-phase, without mains choke) ⁶⁾	I _{LN}	А	1,50	2,50	5,00	8,00	25,00	
Mains input continuous current at U_{LN_nenn} and P_{DC_cont} (single-phase, with mains choke) ⁷⁾	I _{LN}	А			-			
Mains input continuous current at U_{LN_nenn} and P_{DC_cont} (three-phase, with mains choke) ⁸⁾	I _{LN}	Α		-	tbd	10,00	28,00	
Nominal current AC1 for mains contactor at nom. data					ILN			

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03
Mains fuse according to EN 60204-1 (single-phase, without mains choke)		А			-		
Mains fuse according to EN 60204-1 (three-phase, without mains choke)		A	2;gG	4;gG	6;gG	10;gG	32;gG
Mains fuse according to EN 60204-1 (single-phase, with mains choke)		A			-		
Mains fuse according to EN 60204-1 (three-phase, with mains choke)		A	- tbd 16;gG				32;gG
Required wire size according to EN 60204-19)	A _{LN}	mm²		6			
Required wire size according to UL 508 A (internal wiring); (UL) ¹⁰⁾	A _{LN}	AWG		AWG 10			
$\begin{array}{lll} \text{Mains} & \text{connection} & \text{power} & \text{at} \\ \text{U_{LN_nenn}} & \text{and P_{DC_cont}} & \text{(three-phase,} \\ \text{without mains choke)} \end{array}$	S _{LN}	kVA	1,00	1,54	3,50	4,90	16,00
$\begin{array}{lll} \text{Mains} & \text{connection} & \text{power} & \text{at} \\ \text{U_{LN_nenn} and P_{DC_cont} (three-phase,} \\ \text{with mains choke)} \end{array}$	S _{LN}	kVA		-	tbd	5,50	18,00
$\begin{array}{lllll} \text{Mains} & \text{connection} & \text{power} & \text{at} \\ \text{U_{LN_nenn}} & \text{and} & \text{P_{DC_cont}} & \text{(single-phase, without mains choke)} \end{array}$	S _{LN}	kVA			-		
$ \begin{array}{cccc} \text{Mains} & \text{connection} & \text{power} & \text{at} \\ \text{U}_{\text{LN_nenn}} & \text{and} & \text{P}_{\text{DC_cont}} & \text{(single-phase, with mains choke)} \\ \end{array} $	S _{LN}	kVA			-		
Power factor TPF (λ_L) at U_{LN_nenn} and P_{DC_cont} (single-phase, without mains choke) ¹¹⁾	TPF				-		
Power factor TPF (λ_L) at U_{LN_nenn} and P_{DC_cont} (three-phase, without mains choke) ¹²⁾	TPF		0,49	0,56	0,52	0,53	0,56
Power factor TPF (λ_L) at U_{LN_nenn} and P_{DC_cont} (single-phase, with mains choke) ¹³⁾	TPF			•	-		
Power factor TPF (λ_L) at U_{LN_nenn} and P_{DC_cont} (three-phase, with mains choke) ¹⁴⁾	TPF			-	tbd	0,72	0,78
			•		Last r	modification:	2012-06-28

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03		
Power factor TPF (λ_L) at U_{LN_nenn} and 10% P_{DC_cont} (single-phase, without mains choke)	TPF _{10%}				-				
Power factor TPF (λ_L) at U_{LN_nenn} and 10% P_{DC_cont} (three-phase, without mains choke)	TPF _{10%}		0,30	0,35	0,38	0,40	0,45		
Power factor TPF (λ_L) at U_{LN_nenn} and 10% P_{DC_cont} (single-phase, with mains choke)	TPF _{10%}				-				
Power factor TPF (λ_L) at U_{LN_nenn} and 10% P_{DC_cont} (three-phase, with mains choke)	TPF _{10%}			-		tbd			
Power factor of fundamental component DPF at P _{DC_cont} (single-phase, without mains choke)	cosφ ^{h1}				-				
Power factor of fundamental component DPF at P _{DC_cont} (three-phase, without mains choke)	cosφ ^{h1}		0,99	0,98	0,99	0,98	0,97		
Power factor of fundamental component DPF at P _{DC_cont} (single-phase, with mains choke)	cosφ ^{h1}				-				
Power factor of fundamental component DPF at P _{DC_cont} (three-phase, with mains choke)	cosφ ^{h1}			-	tbd	0,99	0,95		
Last modification: 2012-06-28									

Mains voltage > U_{LN}: Use a transformer with grounded neutral point, 1) 2) don't use autotransformers! 3) Otherwise use mains choke HNL


Observe allowed number of switch-on processes; without external ca-4) pacitors at the DC bus

5) 6) 7) 8) 11) 12) 13) 14) Find interim values by interpolation

Copper wire; PVC-insulation (conductor temperature 70 $^{\circ}\text{C}$); installation method B1; table 6 9)

Copper wire; PVC-insulation (conductor temperature 90 °C); table 28.1; $T_a \le 40$ °C 10)

Fig.7-66: HCS - Data for Mains Voltage Supply

 $\begin{matrix} I_{L_trans_max_on} \\ U_{LN} \end{matrix}$

Maximum inrush current

Mains voltage

Fig.7-67:

Maximum Inrush Current vs. Mains Voltage

7.3.3 DC Bus

Data of Power Section - DC Bus

Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02	
DC bus voltage	U _{DC}	V			ULN x 1,41			
Capacitance in DC bus	C _{DC}	mF	0,	44	0,	78	1,20	
DC resistance in DC bus (L+ to L-)	R _{DC}	kohm		663,00				
Rated power (t > 10 min) at $f_s = 4$ kHz; U_{LN_nenn} ; control factor $a_0 > 0.8$; with mains choke	P _{DC_cont}	kW	-					
Rated power (t > 10 min) at $f_s = 4$ kHz; U_{LN_nenn} ; control factor $a_0 > 0.8$; without mains choke		kW	0,15	0,25	0,46	0,80	1,80	
Factor to reduce P _{DC_cont} at single-phase mains voltage	f _{1_3ph}		1,00 0,80 0,7					
P_{DC_cont} and P_{DC_max} vs. mains input voltage; $U_{LN} \le U_{LN_nenn}$		%/V	PDC_cont (ULN) = PDC_cont x [1 - (230-ULN) x 0,0025]					

Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02	
P_{DC_cont} and P_{DC_max} vs. mains input voltage; $U_{LN} > U_{LN_nenn}$		%/V	No power increase					
Maximum allowed DC bus power at U_{LN_nenn} ; with mains choke	P _{DC_max}	kW			-			
Maximum allowed DC bus power at U_{LN_nenn} ; without mains choke	P _{DC_max}	kW	0,45 0,75 1,38 2,40					
Balancing factor for P_{DC_cont} (for parallel operation at common DC bus) with mains choke			-					
Balancing factor for P_{DC_cont} (for parallel operation at common DC bus) without mains choke			-					
Monitoring value maximum DC bus voltage, switch-off threshold	U _{DC_lim-}	V			420			
Monitoring value minimum DC bus voltage, undervoltage threshold	U _{DC_lim-}	V	0.75 x l	JLN or "P-0- P-0-0	0114, Under 0114 > 0.75 x	-	hold", if	
Charging resistor continuous power	P _{DC_Start}	kW		0,	03		0,15	
Allowed external DC bus capacitance (nom.) at $U_{LN_nenn}^{1}$	C _{DCext}	mF	-					
Charging time at maximum allowed C_{DCext} external DC bus capacitance at $U_{\text{LN_nenn}}$	t _{lade_DC_Ce}	s	2,50					
					Last r	modification:	2012-05-16	

1) Use assigned type of mains choke Fig.7-68: HCS - Data of Power Section - DC bus

Data of Power Section - DC Bus

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03
DC bus voltage	U _{DC}	V			ULN x 1,41		
Capacitance in DC bus	C _{DC}	mF	0,	0,11 0,33			
DC resistance in DC bus (L+ to L-)	R _{DC}	kohm	320,00		230,00		136,00
Rated power (t > 10 min) at $f_s = 4$ kHz; U_{LN_nenn} ; control factor $a_0 > 0.8$; with mains choke	P _{DC_cont}	kW	-		tbd	4,00	14,00
Rated power (t > 10 min) at $f_s = 4$ kHz; U_{LN_nenn} ; control factor $a_0 > 0.8$; without mains choke		kW	0,46 0,86		1,70	2,60	9,00
		!	!		Last r	nodification:	2012-06-26

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03	
Factor to reduce P _{DC_cont} at single-phase mains voltage	f _{1_3ph}		1-phase operation not allowed					
P_{DC_cont} and P_{DC_max} vs. mains input voltage; $U_{LN} \le U_{LN_nenn}$		%/V	PDC_cont (ULN) = PDC_cont x [1 - (400-ULN) x 0,0025					
P_{DC_cont} and P_{DC_max} vs. mains input voltage; $U_{LN} > U_{LN_nenn}$		%/V		No	power increa	ase		
Maximum allowed DC bus power at U_{LN_nenn} ; with mains choke	P _{DC_max}	kW		9,70	19,00			
Maximum allowed DC bus power at U_{LN_nenn} ; without mains choke	P _{DC_max}	kW	1,38	2,58	5,10	6,20	14,00	
Balancing factor for P_{DC_cont} (for parallel operation at common DC bus) with mains choke			- 0,80					
Balancing factor for P _{DC_cont} (for parallel operation at common DC bus) without mains choke				-		0,:	50	
Monitoring value maximum DC bus voltage, switch-off threshold	U _{DC_lim-}	V			900			
Monitoring value minimum DC bus voltage, undervoltage threshold	U _{DC_lim-}	V	0.75 x l		0114, Under 0114 > 0.75 x	voltage thres	hold", if	
Charging resistor continuous power	P _{DC_Start}	kW	0,	03	0,05	0,15	0,50	
Allowed external DC bus capacitance (nom.) at $U_{LN_nenn}^{1}$	C_{DCext}	mF	- 3,00 4,00				13,00	
Charging time at maximum allowed C_{DCext} external DC bus capacitance at U_{LN_nenn}	t _{lade_DC_Ce}	s	2,50					
					Last r	modification:	2012-06-26	

1) Use assigned type of mains choke Fig.7-69: HCS - Data of Power Section - DC bus

7.3.4 Integrated Braking Resistor

R.

Information on the external braking resistor: See chapter 8.3.4 "External Braking Resistors HLR" on page 246.

Data of Integrated Braking Resistor

Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02		
Braking Resistor Continuous Power	P _{BD}	kW		0,02 0,03					
Braking Resistor Peak Power	P _{BS}	kW		1,68					
Nominal braking resistance	R _{DC_Bleed} -	ohm		100					
Braking resistor switch-on threshold - mains voltage independent ¹⁾	U _{R_DC_On_f}	V	390						
Braking resistor switch-on threshold - mains voltage dependent ²⁾	U _{R_DC_On_}		-						
Maximum allowed on-time duty	t _{on_max}	S		0,	20		1,34		
Minimum allowed cycle time	T _{cycl}	S	16	,80	11	,20	20,00		
Regenerative power to be absorbed	$W_{R_{max}}$	kWs		0,	40		3,00		
Balancing factor for P_{BD} (for parallel operation at common DC bus)	f		-						
Cooling of integrated braking resistor			Natural convection Forced ventilation						
	-				Last r	nodification:	2012-05-16		

1) 2) Factory setting

Fig.7-70: HCS - Data of Integrated Braking Resistor

Data of Integrated Braking Resistor

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03			
Braking Resistor Continuous Power	P _{BD}	kW	0,02	0,03	0,05	0,15	0,50			
Braking Resistor Peak Power	P _{BS}	kW	4,00		7,20	10,60	25,80			
Nominal braking resistance	R _{DC_Bleed-}	ohm	180		100	68	28			
Braking resistor switch-on threshold - mains voltage independent ¹⁾	U _{R_DC_On_f}	V	820							
Braking resistor switch-on threshold - mains voltage dependent ²⁾	U _{R_DC_On_}		1;	30% of parar	neter P-0-08	15, max. 820)V			
Maximum allowed on-time duty	t _{on_max}	S	0,	20	0,32	0,28	0,50			
Minimum allowed cycle time	T _{cycl}	S	40,00	26,70	45,40	20,00	26,00			
Regenerative power to be absorbed	W_{R_max}	kWs	0,80		2,25	3,00	13,00			
					Last r	modification:	2012-05-16			

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03	
Balancing factor for P _{BD} (for parallel operation at common DC bus)	f		0,80					
Cooling of integrated braking resistor			Forced ventilation					
	Last modification: 2012-05-							

1) 2) Factory setting

Fig.7-71: HCS - Data of Integrated Braking Resistor

7.3.5 Inverter

Data of Power Section - Inverter

	Data of	. 00. 0	GOLIOII - IIIV	51 (51							
Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02				
Allowed switching frequencies 1)	f _s	kHz		•	4, 8, 12, 16						
Output voltage, fundamental wave with open-loop operation	U_{out_eff}	V		~ UDC x 0,71							
Output voltage, fundamental wave with closed-loop operation	U_{out_eff}	V		~ UDC x 0,71							
Rise of voltage at output with U_{LN_nenn} and 15 m motor cable length phase-phase (10-90%) ²⁾	dv/dt	kV/μs	5,00								
Rise of voltage at output with U_{LN_nenn} and 15 m motor cable length phase-ground (10-90%) ³⁾	dv/dt	kV/μs	5,00								
Output frequency range at $f_s = 4$ kHz	f _{out_4k}	Hz	0400								
Output frequency range at $f_s = 8$ kHz	f _{out_8k}	Hz			0800						
Output frequency range at $f_s = 12$ kHz	f _{out_12k}	Hz			01200						
Output frequency range at f_s = 16 kHz	f _{out_16k}	Hz			01600						
Output frequency threshold to detect motor standstill ⁴⁾	f _{out_still}	Hz			4						
Maximum output current at $f_s = 4 \text{ kHz}$	I _{out_max4}	Α	3,3 6,0 9,0 13,0 18								
Maximum output current at $f_s = 8$ kHz	I _{out_max8}	Α	3,3 6,0 9,0 13,0 18,0								
Maximum output current at f _s = 12 kHz	I _{out_max12}	Α	3,3 6,0 9,0 13,0 18,0								
	Last modification: 2012-01-2										

Bosch Rexroth AG

Description	Symbol	Unit	HCS01.1E -W0003- 02	HCS01.1E -W0006- 02	HCS01.1E -W0009- 02	HCS01.1E -W0013- 02	HCS01.1E -W0018- 02	
Maximum output current at $f_s = 16$ kHz	I _{out_max16}	Α	3,3	6,0	9,0	13,0	16,5	
Continuous output current at $f_s = 4$ kHz	I _{out_cont4}	Α	1,4	2,4	3,0	4,4	7,6	
Continuous output current at $f_s = 8$ kHz	I _{out_cont8}	Α	1,0	1,8	2,6	4,2	6,1	
Continuous output current at $f_s = 12 \text{ kHz}^{5)}$	I _{out_cont12}	А	0,6	1,2	1,7	2,7	4,1	
Continuous output current at $f_s = 16 \text{ kHz}^{6)}$	I _{out_cont16}	Α	0,5	0,8	1,1	1,9	2,5	
Continuous output current at $f_s = 4$ kHz; output frequency $f_{out} < f_{out_still}$	I _{out_cont0Hz}	Α	1,1	2,1	3,0	4,4	7,0	
Continuous output current at $f_s = 8$ kHz; output frequency $f_{out} < f_{out_still}$	I _{out_cont0Hz}	Α	0,9	1,6	2,3	3,1	2,3	
Continuous output current at $f_s = 12 \text{ kHz}$; output frequency $f_{\text{out}} < f_{\text{out_still}}^{7}$	I _{out_cont0Hz}	А	0,5	1,0	1,4	2,0	1,4	
Continuous output current at $f_s = 16 \text{ kHz}$; output frequency $f_{out} < f_{out_still}^{8)}$	I _{out_cont0Hz}	А	0,4	0,7	0,9	1,3	0,4	
Assigned output filters at nom. data; $f_s = 4 \text{ kHz}$			tbd					
Last modification: 2012-01-2								

Also depending on firmware and control section; see parameter description "P-0-0001, Switching frequency of the power output stage"; see "P-0-4058, Amplifier type data" 1)

2) 3) Guide value, see following note

See following note regarding reduction output current

See parameter description "P-0-0556, Config word of axis controller", load-depending reduction of switching frequency fs 5) 6) 7) 8)

HCS - Data of Power Section - Inverter Fig.7-72:

Data of Power Section - Inverter

Description	Symbol	Unit	HCS01.1E -W0005- 03	-W0005W0008W0018W0028-					
Allowed switching frequencies 1)	f_s	kHz	4, 8, 12, 16 4, 8						
Output voltage, fundamental wave with open-loop operation	$U_{\text{out_eff}}$	V	~ UDC x 0,71						
Output voltage, fundamental wave with closed-loop operation	U_{out_eff}	V	~ UDC x 0,71						
Last modification: 2012-05-									

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03	
Rise of voltage at output with U_{LN_nenn} and 15 m motor cable length phase-phase (10-90%) ²⁾	dv/dt	kV/μs	5,00					
Rise of voltage at output with U_{LN_nenn} and 15 m motor cable length phase-ground (10-90%) ³⁾	dv/dt	kV/μs	5,00					
Output frequency range at f_s = 4 kHz	f _{out_4k}	Hz			0400			
Output frequency range at $f_s = 8$ kHz	f _{out_8k}	Hz			0800			
Output frequency range at $f_s = 12$ kHz	f _{out_12k}	Hz	01200					
Output frequency range at f_s = 16 kHz	f _{out_16k}	Hz		-				
Output frequency threshold to detect motor standstill ⁴⁾	f _{out_still}	Hz			4			
Maximum output current at $f_s = 4$ kHz	I _{out_max4}	А	5,0	8,0	18,0	28,5	54,0	
Maximum output current at $f_s = 8$ kHz	I _{out_max8}	Α	5,0	8,0	18,0	28,5	40,0	
Maximum output current at $f_s = 12$ kHz	I _{out_max12}	А	5,0	8,0	18,0	21,9	30,4	
Maximum output current at $f_s = 16$ kHz	I _{out_max16}	А	5,0	8,0	16,5	17,6	-	
Continuous output current at $f_s = 4$ kHz	I _{out_cont4}	Α	2,0	2,7	7,6	11,5	21,0	
Continuous output current at $f_s = 8$ kHz	I _{out_cont8}	Α	1,6	2,3	6,1	7,9	21,0	
Continuous output current at $f_s = 12 \text{ kHz}^{5)}$	I _{out_cont12}	А	1,0	1,5	4,1	4,6	15,5	
Continuous output current at $f_s = 16 \text{ kHz}^{6)}$	I _{out_cont16}	Α	0,7	1,0	2,5	3,1	-	
Continuous output current at $f_s = 4$ kHz; output frequency $f_{out} < f_{out_still}$	I _{out_cont0Hz}	Α	1,8	2,7	7,0	11,5	21,0	
Continuous output current at $f_s = 8$ kHz; output frequency $f_{out} < f_{out_still}$	I _{out_cont0Hz}	Α	1,3	1,9	2,3	4,7	12,0	
Continuous output current at $f_s = 12$ kHz; output frequency $f_{out} < f_{out_still}^{7/}$	I _{out_cont0Hz}	A	0,8	1,2	1,4	2,2	7,5	

Bosch Rexroth AG

Description	Symbol	Unit	HCS01.1E -W0005- 03	HCS01.1E -W0008- 03	HCS01.1E -W0018- 03	HCS01.1E -W0028- 03	HCS01.1E -W0054- 03	
Continuous output current at $f_s = 16 \text{ kHz}$; output frequency $f_{\text{out}} < f_{\text{out_still}}^{8)}$	I _{out_cont0Hz}	А	0,6	0,8	0,4	1,2	-	
Assigned output filters at nom. data; $f_s = 4 \text{ kHz}$			tbd					
			•		Last r	modification:	2012-05-16	

1)	Also depending on firmware and control section; see parameter de- scription "P-0-0001, Switching frequency of the power output stage";
	see "P-0-4058, Amplifier type data"
2) 3)	Guide value, see following note

See following note regarding reduction output current

See parameter description "P-0-0556, Config word of axis controller", 5) 6) 7) 8) load-depending reduction of switching frequency fs

HCS - Data of Power Section - Inverter Fig.7-73:

Guide value "Rise of voltage at output" 礟

Observe that the voltage load at the motor is almost independent of the power section used.

Especially when using standard motors, make sure that they comply with the occurring voltage load.

B Reduced output current at motor standstill

Depending on the electric output frequency, the output current is reduced for thermal protection of the power section.

The output current is reduced, when the electric output frequency has fallen below the threshold to detect motor standstill.

8 Cables, Accessories, Additional Components

8.1 Overview

8.1.1 Cables

Motor power cables	See documentation "Rexroth Connection Cables IndraDrive and IndraDyn"	
Encoder cables	RKG0033 (MSM motor)	
	RKG0034 (MSM motor, extension)	
	RKG0035 (1V _{pp} Heidenhain standard)	
	RKG0036 (EnDat, SSI)	
	RKG0041 (incl. D-Sub connector RGS0001/K01; MSM motor)	
	RKG4200 (HIPERFACE®)	
	See also index entry "Cables → Encoder cables"	
Multi-Ethernet cables	• RKB0011	
	(To connect the drive system to the higher-level control unit)	
	• RKB0013	
	(To connect devices arranged side by side)	
	See also index entry "Cables → RKB0011" and "Cables → RKB0013"	

Fig.8-1: Cables - Overview

8.1.2 Accessories

Accessories	
Mounting and connection accessories (HAS09)	
Screws for mounting the component	ply
Screws for connecting the equipment grounding conductor	
 Parts for shield connection and strain relief of cables (plates, screws, clips) 	
Adhesive labels with notes on safety in the English and French languages	
DC bus connector (RLS0778/K06)	
Connector for connecting	
• the DC buses of several HCS01.1E-W00xx-x-03 drive controllers	
• an HCS01.1E-W00xx-x-03 drive controller to an HLC01.2 DC bus capacitor unit	
Battery box (SUP-E01-MSM-BATTERYBOX)	
Accessory for operating MSM motors with absolute value encoder separately	
Replacement battery (SUP-E03-DKC*CS-BATTRY)	
Replacement battery for SUP-E01-MSM-BATTERYBOX	
Encoder cable (RKG0041)	
Accessory for operating MSM motors with absolute value encoder	

Bosch Rexroth AG

Accessories		
D-Sub connector (RGS0001/K01)		
Accessory for assembling an encoder cable for MSM motors with absolute value encoder	separately	
Hall sensor adapter box (SHL03.1-NNN-S-NNN)		
Accessory for connecting digital Hall sensors	separately	

Fig.8-2: Accessories - Overview

8.1.3 Additional Components

Additional component	Туре
Transformer	DST (autotransformer)
Mains filter	NFE
	NFD
Mains choke	HNL01.1E
Braking resistor	HLR01.2
DC bus capacitor unit	HLC01.2

Fig.8-3: Additional Components - Overview

8.2 Accessories

8.2.1 Mounting and Connection Accessories (HAS09)

Use The accessories contain:

- Screws for mounting the component
- Screws for connecting the equipment grounding conductor
- Parts for shield connection of cables (plates, screws)
- Adhesive labels with notes on safety in the English and French languages. Place the adhesive labels clearly visibly at the component or in the immediate vicinity of the component, if the adhesive labels existing at the component are hidden by neighboring components.

Assignment

Accessories	Component
HAS09.1- 001 -NNN-NN	HCS01.1E-W0003 W0028
HAS09.1- 003 -NNN-NN	HCS01.1E-W0054
HAS09.1- 004 -NNN-NN	HLC01.2; HLR01.2N

Fig.8-4: HAS09 and HCS01

206/271

Product Insert HAS09.1-001-NNN-NN

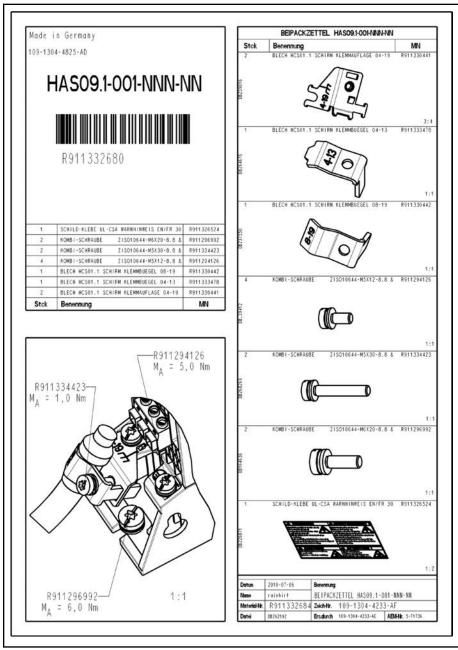


Fig.8-5: Product Insert HAS09.1-001-NNN-NN

HAS09.1-003-NNN-NN

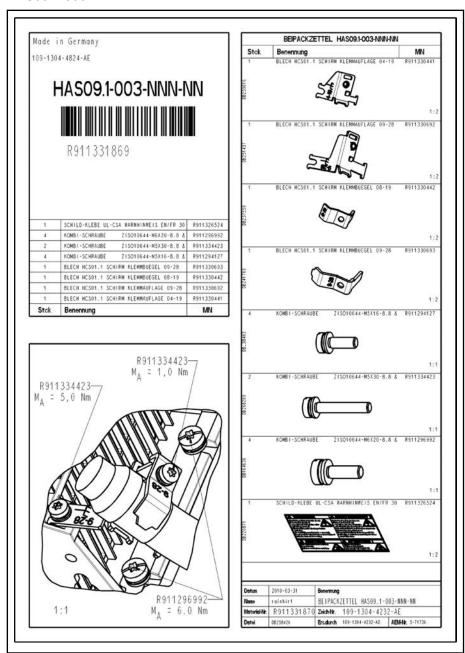
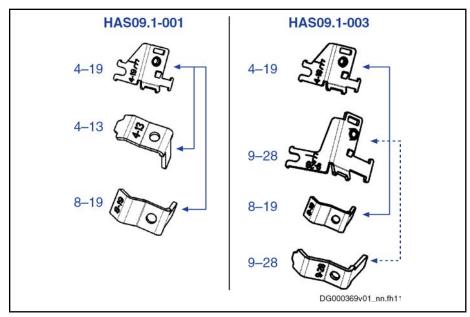



Fig.8-6: Product Insert HAS09.1-003-NNN-NN

Bosch Rexroth AG

Plates for Shield Connection of Cables

HAS09.1-0 01 Plates for cable diameters 4-13 mm and 8-19 mm

HAS09.1-0 03 Plates for cable diameters 8-19 mm and 9-28 mm

Fig.8-7: HAS09; Plates

HAS09.1-004-NNN-NN

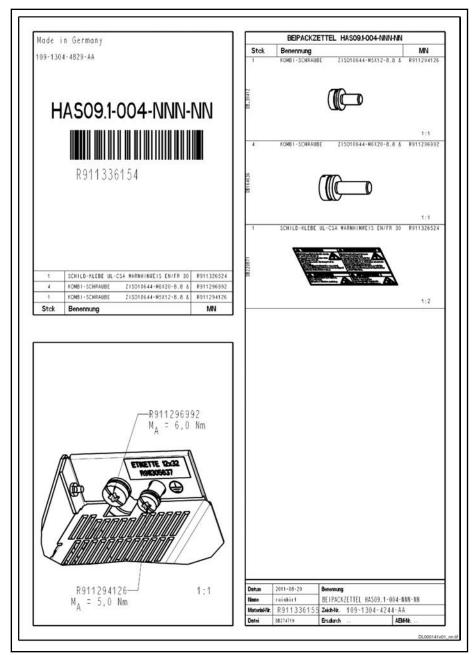


Fig.8-8: Product Insert HAS09.1-004-NNN-NN

Bosch Rexroth AG

DC Bus Connector (RLS0778/K06) 8.2.2

Use Connector for connecting

- the DC buses of several HCS01.1E-W00xx-x-03 drive controllers
- an HCS01.1E-W00xx-x-03 drive controller to a DC bus capacitor unit

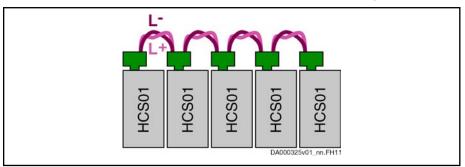


Fig.8-9: Connecting the DC Buses via DC Bus Connectors

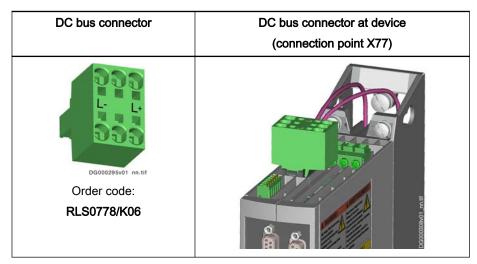
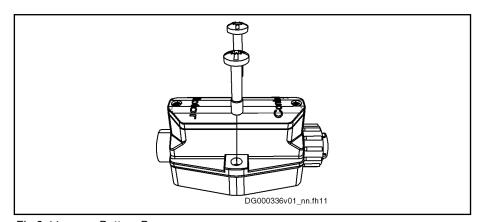


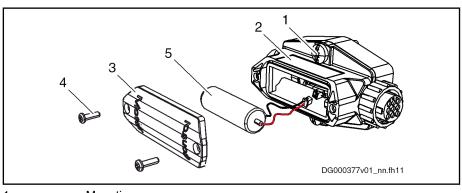
Fig.8-10: DC Bus Connector

8.2.3 Battery Box for MSM Motors (SUP-E01-MSM-BATTERYBOX)

Use The battery box "SUP-E01-MSM-BATTERYBOX" is a set of accessories used to operate MSM motors with absolute value encoder and to backup the encoder data in case voltage is switched off.

Scope of Supply




Fig.8-11: Battery Box

Battery box complete with

- **Battery:** Type: ER6C, 3.6 V; 1800 mA, lithium; Service life: Up to 10 years, according to load and ambient temperature
- Mounting screws: M6×30; Screw head: Torx and slot

The battery box "SUP-E01-MSM-BATTERYBOX" is supplied in ready-for-operation status with battery.

Parts:

Mounting screw
 Housing
 Housing cover

Housing cover screw (self-shaping screw 30×10; tightening torque 0.8

Nm) Battery

Fig.8-12: Parts of the Battery Box

Dimensions

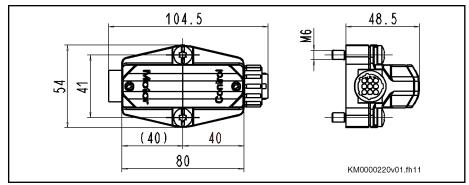


Fig.8-13: Dimensions

Weight 120 g

Mounting

图

Mount the battery box as near as possible to the motor (maximum distance: 2 m).

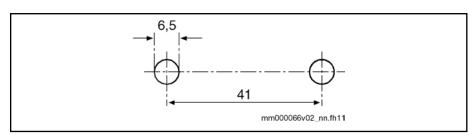
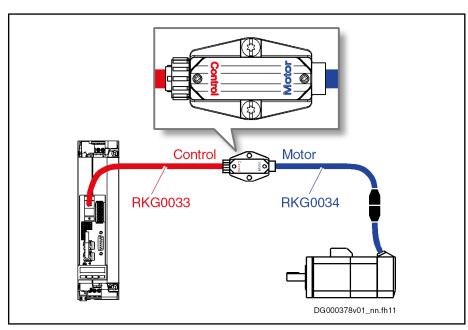



Fig.8-14: Boring Diagram for Battery Box

Mounting screws: M6×30

• Tightening torque M_A: 3 Nm

Cabling

RKG0033 Encoder cable

RKG0034 Extension cable (optional)
Fig.8-15: Cabling of the Battery Box

8.2.4 Battery and Refresh Resistor (SUP-E03-DKC*CS-BATTRY)

Use The **battery** is used as a replacement battery for the battery box "SUP-E01-MSM-BATTERYBOX".

The **refresh resistor** is used to prepare the battery before the battery is used in the battery box "SUP-E01-MSM-BATTERYBOX".

Content

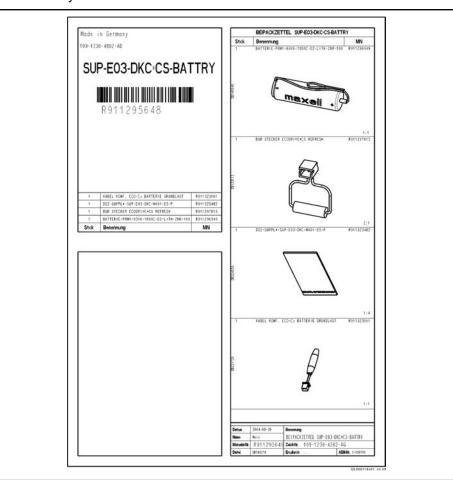
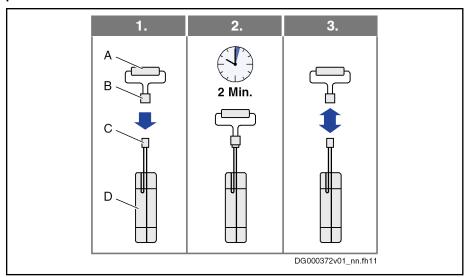



Fig.8-16: SUP-E03-DKC*CS-BATTRY - Product Insert

Battery	Type: ER6C, 3.6 V; 1800 mA, lithium; Service life: Up to 10 years, according to load and ambient temperature
Refresh resistor	10 ohm; the refresh resistor is used to prepare the battery before the battery is used in the battery box "SUP-E01-MSM-BATTERYBOX".
Documentation (DOZ-SUPPL*-SUP-E03-DKC-MA01-D5-P)	Information in 5 languages on the refresh procedure of the battery and on how to connect the battery and the base load resistor.
Base load resistor	The base load resistor (500 kOhm) is only relevant to EcoDrive Cs drive controllers (when they are operated without the SUP-E01-MSM-BATTERYBOX battery box).

Fig.8-17: SUP-E03-DKC*CS-BATTRY - Content

Refresh Before using a new battery, you must always carry out the so-called "refresh" procedure:

Α Refresh resistor В Mating connector С Connector D Battery

Refresh Procedure of the Battery Fig.8-18:

- Connect connector of battery to mating connector at refresh resistor. 1.
- 2. Wait 2 minutes.
- 3. Disconnect connector from mating connector.

Replacing the Battery

In order to maintain the absolute value encoder position when the battery is replaced, the following requirements must be fulfilled:

- The control voltage at the drive controller has been switched on
- The encoder has been connected to the drive controller via the encoder cable

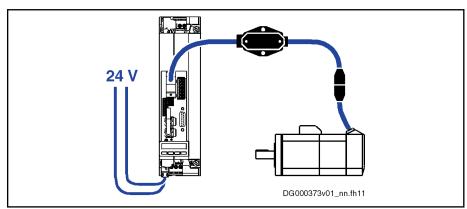
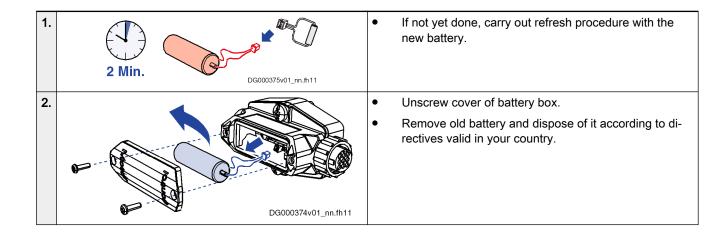
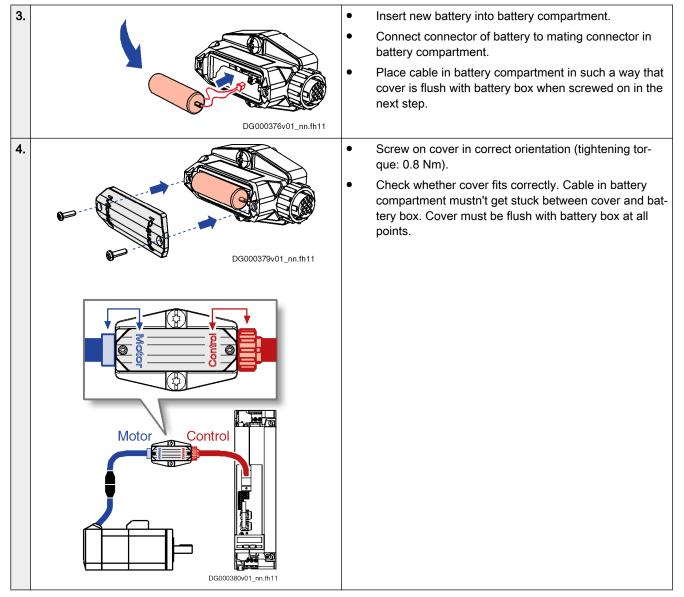



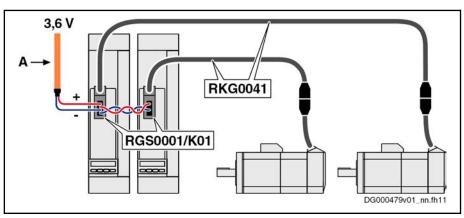
Fig.8-19: Control Voltage Switched On and Encoder Connected

When you replace the battery with the control voltage switched off, the absolute value encoder position and thereby the position data reference of the axis are lost.

Reestablishing the position data reference: See firmware function "Establishing Position Data Reference for Absolute Measuring Systems → "Set Absolute Position" Command"

Bosch Rexroth AG




Fig.8-20: Replacing the Battery

8.2.5 Encoder Cable for MSM Motors with Absolute Value Encoder (RKG0041)

Use

The encoder cable **RGK0041** (part no.: R911335747) is used to operate MSM motors with absolute value encoder. The encoder cable is connected to the encoder evaluation of the drive controller via a D-Sub connector with integrated 4-pin spring terminal (RGS0001/K01).

A battery or a UPS is connected to the spring terminal so that the encoder data are buffered and the position of the absolute value encoder is retained in case voltage is switched off. For drive controllers arranged side by side, the voltage can be looped through via the spring terminal to the neighboring drive controllers.

3.6 V Direct voltage source (battery or UPS)

A Shielded lines; e.g. (2x0.5)C

RGK0041 Encoder cable

RGS0001/K0 D-Sub connector with integrated 4-pin spring terminal

Fig.8-21: RKG0041 with D-Sub Connector RGS0001/K01

Bosch Rexroth AG

Properties

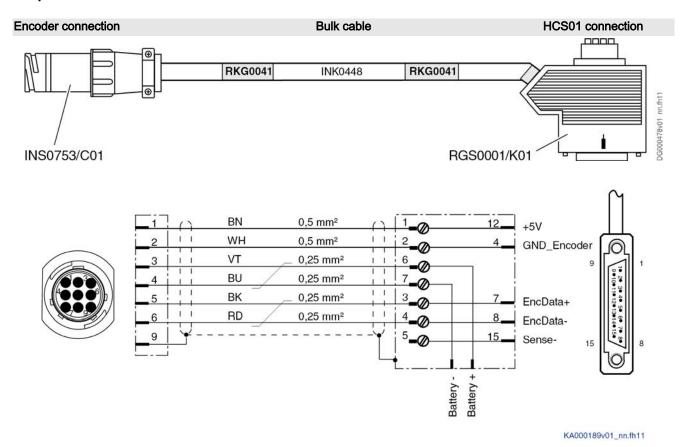


Fig.8-22: RKG0041

Length 40 m at most (reason: no Sense line active).

> If you need longer encoder cables, use the accessory SUP-E01-MSM-BAT-TERYBOX.

Spring Terminal

View		Con- nection	Signal name	Function
		+	+3.6V	Voltage input
+ [+ (1)	+		
+ (-	0V	Reference potential
-		-		
		'		
Spring terminal (connector	r)	Unit	Min.	Max.
Connection cable		mm ²	0,25	1,5
Stranded wire		AWG	24	16
Stripped length		mm		10

Fig.8-23: Spring Terminal

Project Planning

UPS DC 3.6 V ±10%; 1 mA

Battery 3.6 V; lithium

Lithium batteries are long-life batteries and can be stored for a long time. The required capacity depends on the desired service life of the battery and the number of connected motors. The battery is not included in the scope of supply and must be ordered separately.

Recommended battery type:

maxell ER6C; 3.6 V / 1.8 Ah

(The accessory SUP-E03-DKC*CS-BATTRY (part no.: R911295648) contains this battery.)

- Alternative battery types:
 - TADIRAN SL760, 3.6 V / 2.1 Ah
 - JAUCH ER17505, 3.6 V / 3.6 Ah
 - JAUCH ER34615 3.6 V / 19 Ah

图

To be observed for transport:

The alternative battery types have a relatively high content of lithium and are hazardous material Class 9.

Selecting the Battery Capacity

1.8 Ah per drive

The base load resistance in the D-Sub connector has been adjusted to this battery capacity. The service life of the battery depends on the switch-on and switch-off times of the drive and with a battery capacity of 1.8 Ah it is approx. 2 to 10 years.

Battery current per drive (encoder current + base load current):

- Drive Off: Approx. 70 μA
- Drive On: Approx. 10 μA

Battery Base Load and Battery Capacity

The D-Sub connector contains a base load resistance of 499 k Ω . The base load resistance causes a standby current of 7 μ A which must flow with 3.6 V / 1.8 Ah for a lithium battery. This avoids premature aging of the battery and a relatively long service life.

If you use a bigger battery (> 1.8 Ah) at one D-Sub connector only, connect an external resistor at the 4-pin spring terminal so that a higher standby current flows.

How to calculate the external resistance (R_{ext}):

 $R_{ext} = 3.6 \text{ V} / I_{ext}$

 I_{ext} = [battery capacity / 1.8 Ah] × 7 μ A - (7 μ A × number_connectors)

Examples

• 1 D-Sub connector + battery 1.8 Ah ⇒

No additional base load resistance required

Bosch Rexroth AG

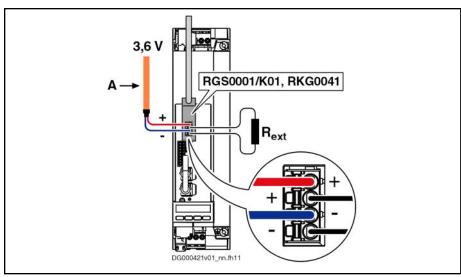
- 1 D-Sub connector + battery 3.6 Ah ⇒ Additional base load resistance of 499 kΩ required
- 2 D-Sub connectors + battery 3.6 Ah ⇒ No additional base load resistance required
- 5 D-Sub connectors + battery 36 Ah ⇒ Additional base load resistance of 34 kΩ required Calculation
 - $I_{ext} = [36 \text{ Ah} / 1.8 \text{ Ah}] \times 7 \mu\text{A} (7 \mu\text{A} \times 5) = 105 \mu\text{A}$
 - R_{ext} = 3.6 V / 105 μA = 3.6 V / 0.000105 A = 34 $k\Omega$

ESP

The examples contain guide values for the base load resistance. The required base load resistance cannot be calculated by means of the capacity for every lithium battery.

A lithium battery with a 5-fold higher capacity might possibly require not more that a 3-fold higher base load current. If you use other batteries than ER6C (1800 mAh), ask the battery manufacturer for the required base load current.

Installation


Connecting the Battery / UPS

▲ WARNING

Risk of injury by exploding batteries!

Pay attention to

- the correct polarity when connecting the battery
- the correct dimensioning of the external resistor
- the safety instructions of the battery manufacturer

Direct voltage source (battery or UPS)

Α Shielded lines, e.g. (2x0.5)C; connect shield of cable to the shield

connection at the top of the device

External resistor: If you use a bigger battery (> 1.8 Ah) at one

RGS0001/K01 D-Sub connector only, connect an additional external resistor (value of Rext: See "Battery Base Load and Battery Capacity").

Connecting the Battery / UPS Fig.8-24:

3.6 V

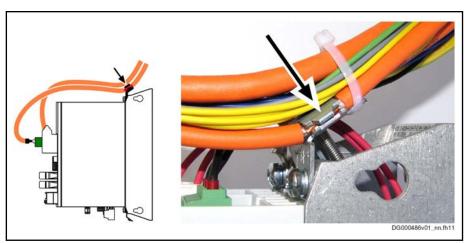


Fig.8-25: Shield Connection of Shielded Lines at the Top of the Device

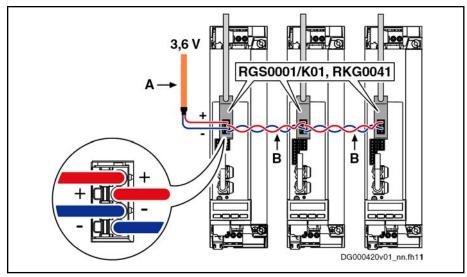



Fig.8-26: Example of a Complete Wiring

Fixing the Battery You can fix the battery to the encoder cable with a cable tie, for example.

Bosch Rexroth AG

Looping Through the Voltage

3.6 V Direct voltage source (battery or UPS)

Shielded lines, e.g. (2x0.5)C; connect shield of cable to the shield connection at the top of the device Α

Twisted single wires

Fig.8-27: Looping Through the Voltage

Replacing the Device

When replacing an HCS01, observe the following aspect:

Leave the 4-pin spring terminal with the connected battery/UPS at the D-Sub connector so that voltage is still applied and the encoder position is retained.

8.2.6 D-Sub Connector for Encoder Cable and Battery Connection (RGS0001/K01)

Using our **ready-made encoder cable RKG0041** (part no. R911335747) saves you the time-consuming and error-prone work of assembling your encoder cable.

The RKG0041 encoder cable comes with an RGS0001/K01 D-Sub connector and a correctly wired motor-side encoder connection.

Use

The accessory **RGS0001/K01** (part no. R911335738) is used to operate MSM motors with absolute value encoders. RGS0001/K01 is a D-Sub connector with an integrated 4-pin spring terminal and an internal terminal connector for encoder cables.

A battery or a UPS is connected to the spring terminal so that the encoder data are buffered and the position of the absolute value encoder is retained in case voltage is switched off.

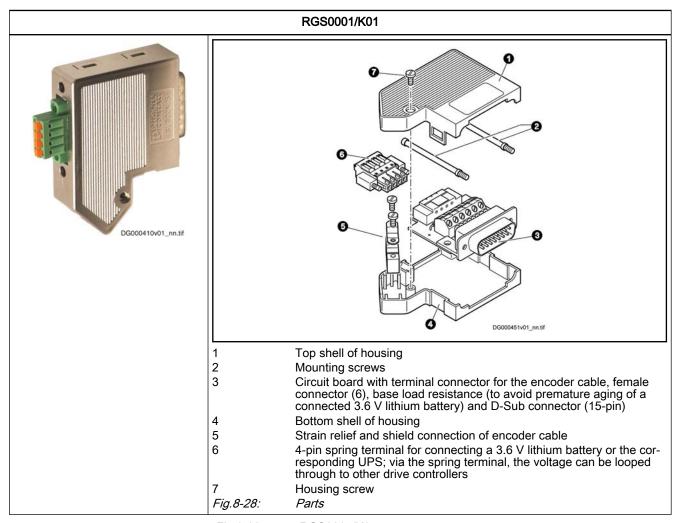


Fig.8-29: RGS0001/K01

Bosch Rexroth AG

When you connect the RGS0001/K01 connector to an encoder cable, you must assemble the encoder cable accordingly on the motor side:

In accordance with the interconnection diagram, connect the battery wires for motor-side encoder connection in the connector (INS0753/C01).

Scope of Supply

- RGS0001/K01
- Product insert with information on assembly

Dimensions

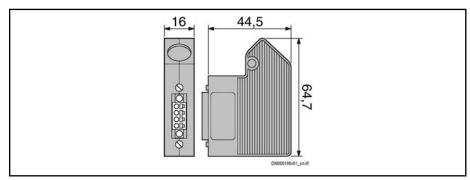


Fig.8-30: **Dimensions**

Interconnection Diagram

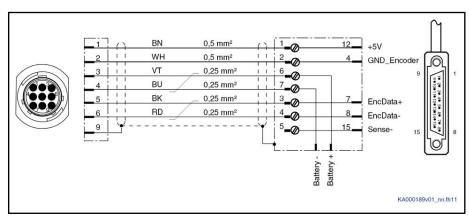
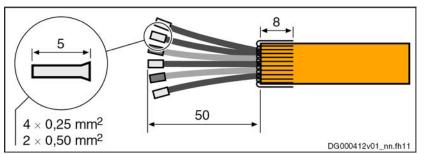



Fig.8-31: Interconnection Diagram

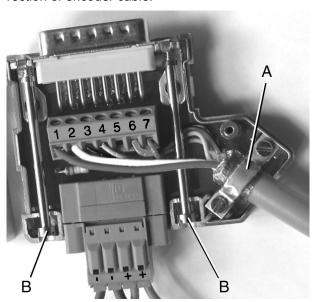
Assembly in Conjunction with Cable INK0448

1. Assemble cable:

Required ferrules:


4 × 0.25 mm²

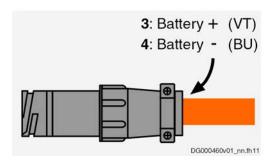
- 2 × 0.50 mm²
- Length: 5 mm
- Without plastic collar


Length of inner wires incl. ferrules starting at cable jacket: 50 mm

Fold back shield braid over outer cable jacket, comb it out and cut it to 8 mm.

2. Open housing:

- Unscrew housing screw ①.
- Unlock top shell of housing with screwdriver and open housing ②.
- 3. Connect cable according to interconnection diagram.
- Insert circuit board into housing in accordance with desired outgoing direction of encoder cable.



- Put shield braid under clip (A) of strain relief and screw on clip (A).
- Insert mounting screws (B) and tuck wires away.
- 5. Close housing:

Put top shell of housing onto bottom shell of housing, engage it in bottom shell and screw housing screw down.

- 6. Unless already done:
 - By means of appropriate crimping tool, add the two contacts for battery connection.

Bosch Rexroth AG

8.2.7 Hall Sensor Adapter Box (SHL03.1-NNN-S-NNN)

Use The Hall sensor adapter box "SHL03.1-NNN-S-NNN" (part number: R911335257) is used to operate linear MCL motors. The Hall sensor adapter box processes signals of the following systems:

- Digital Hall sensor
- Length measuring system

The Hall sensor adapter box transmits the signals for encoder evaluation to the drive controller.

The housing is made of sheet steel and has the degree of protection IP20.

For detailed information on linear MCL motors, see the documentation "Rexroth IndraDyn L, Coreless Linear Motors MCL" (R911330592).

Dimensions

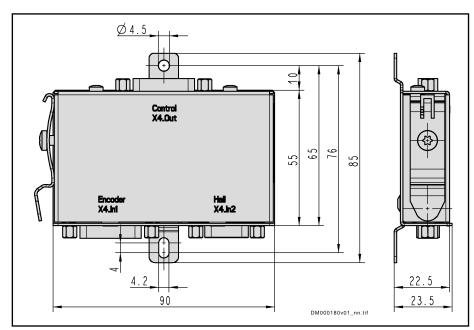


Fig.8-32: Dimensions

Mounting Options for mounting:

- Top-hat rail (TH 35-7.5 according to EN 60715)
- With 2 screws (M4) to the mounting surface; select the appropriate screw type and length for the mounting surface

The mounting position can be selected as desired.

Connection Points

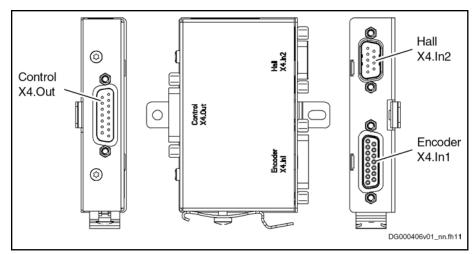


Fig.8-33: Connection Points

Encoder X4.In1

View	Identification	Function				
1 9 8 0000053v01_nn.FH9	Encoder X4.In1	Encoder o	connection			
D-Sub, 15-pin, female	Unit	Min.	Max.			
Connection cable	mm ²	0,25	0,5			
Stranded wire	111111	5,25	3,0			

Fig.8-34: Function, Pin Assignment, Properties

Connection	Signal	Function
1	GND_shld	Connection signal shields (inner shields)
2	A+	Track A positive
3	A-	Track A negative
4	GND_Encoder	Reference potential for power supplies
5	B+	Track B positive
6	B-	Track B negative
7	n. c.	
8	n. c.	
9	R+	Reference track positive
10	R-	Reference track negative

Connection	Signal	Function
11	+12V	Encoder supply 12 V
12	+5V	Encoder supply 5V
13	n. c.	
14	n. c.	
15	Sense	Return of reference potential (Sense line)
Connector housing		Overall shield

Fig.8-35: Pin Assignment

Hall X4.ln2

View	Identification	Function
1 6 9 9 DA000194v01_nn.FH11	Hall X4.In2	Hall sensor connection

D-Sub 9-pin, male	Unit	Min.	Max.
Connection cable	mm ²	0,25	0,5
Stranded wire			

Fig.8-36: Function, Pin Assignment, Properties

Connection	Signal	Function
1	+12 V	Power supply
2	S1	Hall sensor signal 1
3	GND	Reference potential for power supply
4	S2	Hall sensor signal 2
5	GND	Reference potential for power supply
6	GND	Reference potential for power supply
7	GND	Reference potential for power supply
8	S3	Hall sensor signal 3
9	GND	Reference potential for power supply
Connector housing		Overall shield

Fig.8-37: Pin Assignment

Control X4.Out

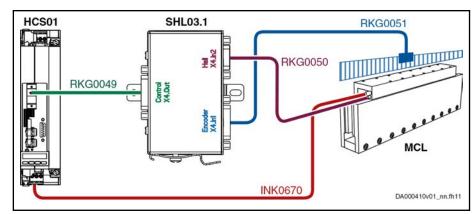

View	Identification	Function			
8 15 1 9 DA000056v01_nn.FH9	Control X4.Out	Connection for encoder evaluation of drive controller			
D-Sub 15-pin, male	Unit	Min.	Max.		
Connection cable	mm ²	0,25	0,5		
Stranded wire					

Fig.8-38: Function, Pin Assignment, Properties

Connection	Signal	Function
1	GND_shld	Connection signal shields (inner shields)
2	A+	Track A analog positive
3	A-	Track A analog negative
4	GND_Encoder	Reference potential for power supplies
5	B+	Track B analog positive
6	B-	Track B analog negative
7	Data_Hall+	Data transmission Hall sensor signal positive
8	Data_Hall-	Data transmission Hall sensor signal negative
9	R+	Reference track positive
10	R-	Reference track negative
11	+12V	Encoder supply 12 V
12	+5V	Encoder supply 5V
13	CLK_Hall+	Clock Hall sensor signal positive
14	CLK_Hall-	Clock Hall sensor signal negative
15	Sense-	Return of reference potential (Sense line)
Connector housing		Overall shield

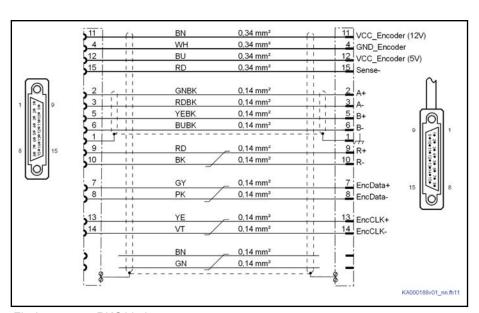
Fig.8-39: Pin Assignment

Cables

INK0670 Motor power cable; length: max. 75 m

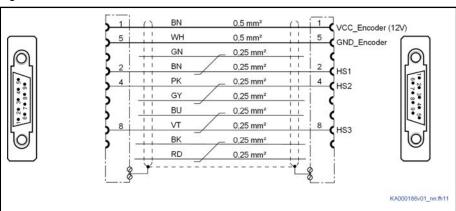
RKG0049 Hall sensor adapter box (Control X4.Out) ↔ Encoder evaluation at

drive controller (X4, X8); length: max. 75 m


RKG0050 Digital Hall sensor ↔ Hall sensor adapter box (Hall X4.In2);

length: max. 30 m

Length measuring system \leftrightarrow Hall sensor adapter box (Encoder X4.In1); length: max. 30 m **RKG0051**


Fig.8-40: Cables

Interconnection Diagram **RKG0049**

Fig.8-41: RKG0049

Interconnection Diagram **RKG0050**

RKG0050 Fig.8-42:

Bosch Rexroth AG

Interconnection Diagram RKG0051

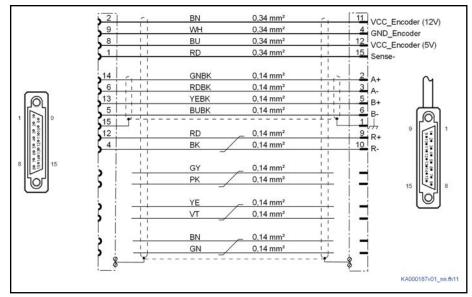


Fig.8-43: RKG0051

8.3 Additional Components

8.3.1 Transformers

General Information

Transformers are only needed when the mains voltage is outside of the allowed nominal voltage of the drive controller.

Grounded Mains

For grounded mains, the mains voltage is adjusted to the nominal voltage of the device by means of **autotransformers** which have been sized for **a specific output voltage range**.

Ungrounded Mains

For voltage adjustment of ungrounded mains, always connect **isolating transformers** to prevent overvoltages between outer conductor and ground.

Autotransformers for Drive Controllers

Types

Fig. 8-44: Type Code DST

Selected Transformers Degree of protection IP00

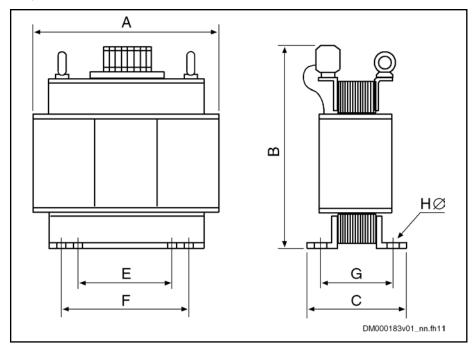


Fig.8-45: Dimensional Drawing

kVA / type of construction / nominal in- put voltage - nominal output voltage (Part number)	Α	В	С	E	F	V	HØ	Terminal con- nector [mm²]	Weight [kg]
2.00 / S / 380,400,415,440 - 220 (R911226187)	205	210	120	95	145	85	7×15	4	12
15.00 / S / 400,460 - 220 (R911255074)	360	395	190	170	250	160	11×18	16	62
35.00 / S / 380,415 - 220 (R911226907)	420	450	245	190	280	200	14×26	35	125
50.00 / S / 380,415 - 220 (R911236960)	420	450	275	190	280	225	14×26	70	157

Fig.8-46: Data

Degree of Protection IP55

2.5...5.0 kVA

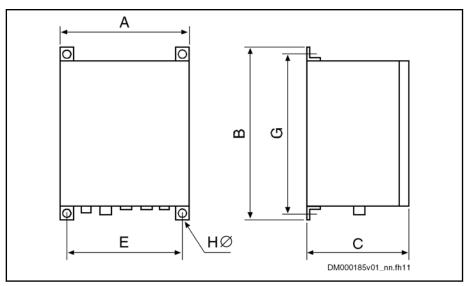


Fig.8-47: Dimensional Drawing

kVA / type of construction / nominal in- put voltage - nominal output voltage (Part number)	A	В	С	E	V	HØ	Terminal connector [mm²]	Weight [kg]
2.50 / G / 400,415,440,460 - 230 (R911264345)	300	445	235	250	415	12	4	31
3.00 / G / 400,480,500,525 - 230 (R911269274)	300	445	235	250	415	12	4	31
5.00 / G / 400,415,440,460 - 230 (R911264346)	375	570	235	300	540	12	6	51

Fig.8-48: Data

10...25 kVA

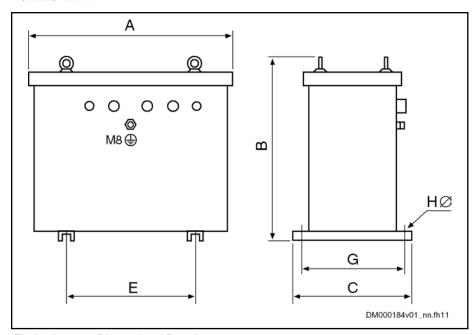


Fig.8-49: Dimensional Drawing

kVA / type of construction / nominal in- put voltage - nominal output voltage (Part number)	A	В	С	E	V	HØ	Terminal connector [mm²]	Weight [kg]
10.00 / G / 400,415,440,460 - 230 (R911267133)	490	500	400	250	370	16	6	90
10.00 / G / 400,480,500,525 - 230 (R911264347)	490	500	400	250	370	16	6	90
10.00 / G / 400,500,525 - 230 (R911260301)	490	500	400	250	370	16	6	88
15.00 / G / 400,500,525 - 230 (R911260303)	595	600	480	280	440	16	16	143
25.00 / G / 400,415,440,460 - 230 (R911269581)	595	600	480	280	440	16	35	165

Fig.8-50: Data

8.3.2 Mains Filters NFD / NFE

Type Code NFE / NFD

NFE02.1 - Mains Filter, Single-Phase

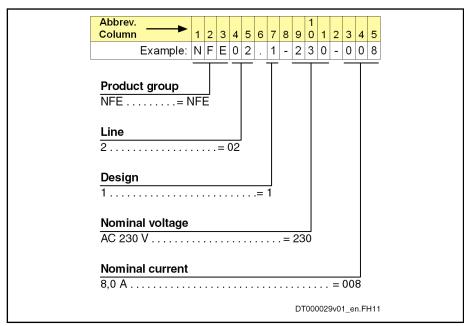


Fig.8-51: Type Code NFE02.1

NFD03.1 - Mains Filter, Three-Phase

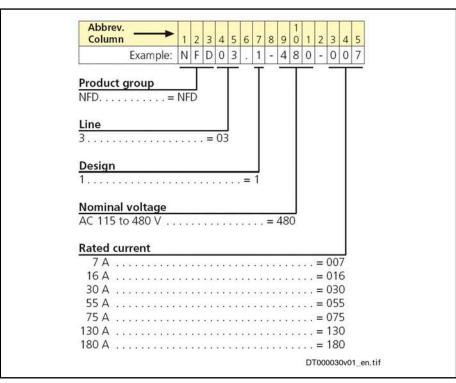
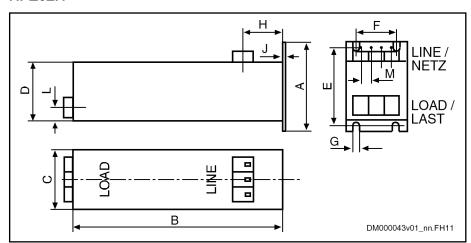


Fig.8-52: Type Code NFD03.1


Rexroth IndraDrive Cs Drive Systems with HCS01

Cables, Accessories, Additional Components

Bosch Rexroth AG

Mechanical Data NFE / NFD

NFE02.1

NFE02.1-230-008 (with 3 terminal connectors) Type Single-Phase Filter NFE02.1 for Drives Fig.8-53:

Allowed Mounting Positions

Every mounting position is allowed.

NFD03.1

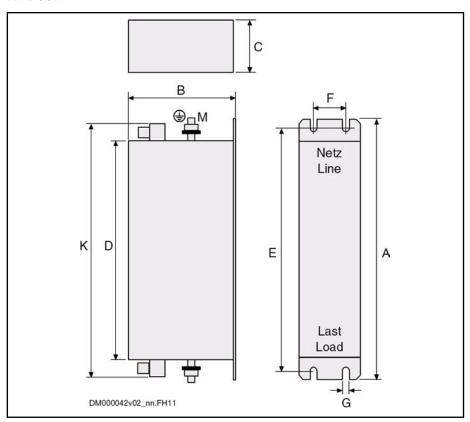


Fig.8-54: Three-Phase Current Filter NFD03.1 for Drives

Tolerance limits for NFD03.1:

- The dimensions B, C, D, K are maximum values. They can be reduced up to 15 mm.
- The ground studs M can also be arranged horizontally (protruding from the mounting flange), instead of vertically (as illustrated above).

Mains filter type	Α	В	С	D	Е	F	G	Н	J	K	L	М	M _{AE}	M _{AKI}
NFD 03.1-480-007	190	90	50	160	180	20	5,4	-	_	190	_	M5	2,2	0,8
NFD 03.1-480-016	250	90	55	220	235	25	5,4	-	_	250	-	M5	2,2	0,8
NFD 03.1-480-030	270	100	60	240	255	30	5,4	-	_	270	-	M5	2,2	2
NFD 03.1-480-055	250	105	90	220	235	60	5,4	_	_	260	_	M6	4	2,2
NFD 03.1-480-075	270	145	90	240	255	60	6,5	_	_	280	_	M6	4	4,5
NFD 03.1-480-130	270	160	100	240	255	65	6,5	_	_	330	_	M10	18	8
NFD 03.1-480-180	380	180	130	350	365	102	6,5	-	_	455	-	M10	18	20
NFE 02.1-230-008	90	210	60	60	80	40	5,3	40	0,75	-	15	10	0,8	0,8
			•		•	•	•		•			•		•

M_{AE} Maximum tightening torque of the ground stud in Nm Maximum tightening torque of the terminal in Nm Fig.8-55: Dimensions of the Mains Filters NFD/NFE

Bosch Rexroth AG

Allowed Mounting Positions

Mounting posi- tion	Note
G1	Allowed without restrictions
G2	Allowed without restrictions
G3	Mains filter may only be loaded with 80% of the maximum allowed continuous current
G4	Allowed without restrictions
G5	Mains filter may only be loaded with 80% of the maximum allowed continuous current

Fig.8-56: Allowed Mounting Positions

Electrical Data NFE / NFD

图

Using mains filters in mains grounded via outer conductor

When using mains filters NFD03 in mains grounded via outer conductor, use an isolating transformer between mains and mains fil-

Maximum mains con- nection voltage of mains 5060 Hz U _N	Nominal mains current I _{nenn} (1)	Number of pha- ses	Mains filter type	Terminal connectors (3)			Power dissipation approx.	Weig ht	Type of construc- tion
In V	In A			Flexible	Rigid	AWG	W	kg	
				[mm²]	[mm²]				
AC 480V +10%	7	3	NFD 03.1-480-007	4 (3)	6 (3)	AWG 12	3,9	0,7	Vertical
AC 480V +10%	16	3	NFD 03.1-480-016	4 (3)	6 (3)	AWG 12	6,4	1,0	Vertical
AC 480V +10%	30	3	NFD 03.1-480-030	10	16	AWG 6	11,9	1,4	Vertical
AC 480V +10%	55	3	NFD 03.1-480-055	16	25	AWG 4	25,9	2,0	Vertical
AC 480V +10%	75	3	NFD 03.1-480-075	25	35	AWG 3	30,4	3,5	Vertical
AC 480V +10%	130	3	NFD 03.1-480-130	50	50	AWG 1/0	38	4,7	Vertical
AC 480V +10%	180	3	NFD 03.1-480-180	95	95	AWG 4/0	61	10	Vertical

Maximum mains connection voltage of mains 5060 Hz	Nominal mains current I _{nenn} (1)	Number of pha- ses	Mains filter type			Power dissipa-tion approx.	Weig ht	Type of construction	
AC 230V +10%	7,5	1	NFE 02.1-230-008	4 (3) 6 (3) AWG 10		7,2	1,1	Vertical	
						•			

NFD	Three-phase filter
NFE	Single-phase filter
(1)	Mains-side maximum continuous current at 45 °C ambient temperature
(2)	Only use for interference suppression of the power supply unit NTM
(3)	For the equipment grounding conductor, connect a conductor cross section of 10 mm2 by means of terminal pin or ring cable lug
Fig.8-57:	Technical data

Operating frequency	From 0–60 Hz at 45 °C
Power dissipation	Measured 2 or 3 × RI ² _{Nenn DC}
Temperature range	-25 +85 °C
Overload	1.5 × I _{Nenn} 1 minute per hour or 4 × I _{Nenn} for 10 s
Effective attenuation	Frequency range 0.15–30 MHz
Saturation behavior	Reduction of filter attenuation by 6 dB at 2.5-fold to 3-fold nominal current
Test voltage	L/N → PE or L → PE: 2000 V, 50 Hz, 2 s at 25 °C
	L/ N → L: DC 1,100 V, 2 s at 25 °C
Current reduction in the case of overtemperature	See formula for reduction in chapter "Calculations"
Leakage current at	Symmetrical three-phase operation: Typ. 30 mA
50 Hz	Single-phase operation or in the case of tripped fuses of a phase: Typ. 175 190 mA
Degree of protection	IP 20

Fig.8-58: Technical Data

8.3.3 Mains Chokes

Type Code

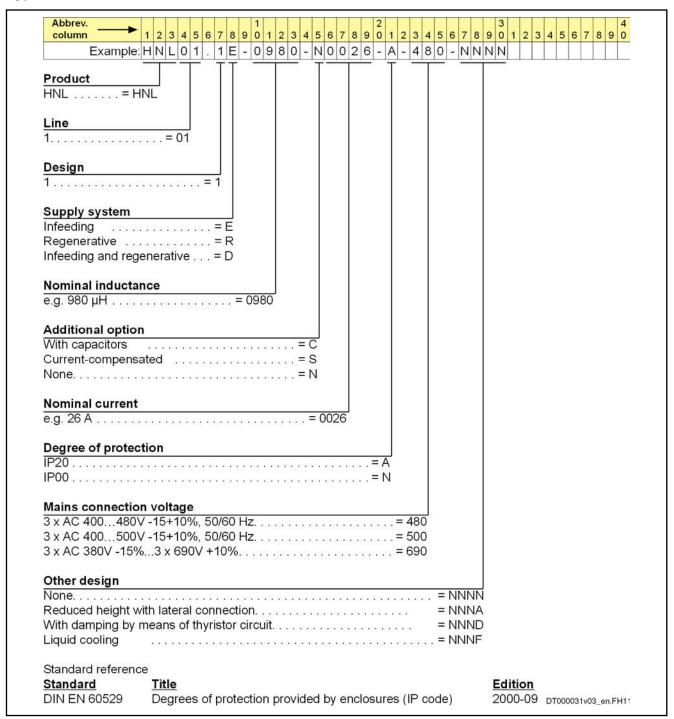
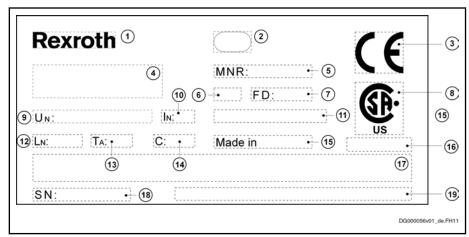



Fig.8-59: Type Code

Type Plate

1	Word mark
2	Business facility number
3	CE label
4	Type designation (two lines, 20 characters each)
5	Part number
6	Change release
7	Production date (YYWww)
8	Certification label
9	Nominal voltage / frequency
10	Nominal current
11	Number of design specification
12	Nominal inductance
13	Temperature
14	Number and value of additional capacitors
15	Designation of origin
16	Approval number
17	Bar code (39 or 93)
18	Serial number
19	Company address
Fig.8-60:	Type Plate

HNL01.1E - Mains Chokes, Infeeding

Technical Data

Mechanical System and Mounting

Dimensions Type 1:

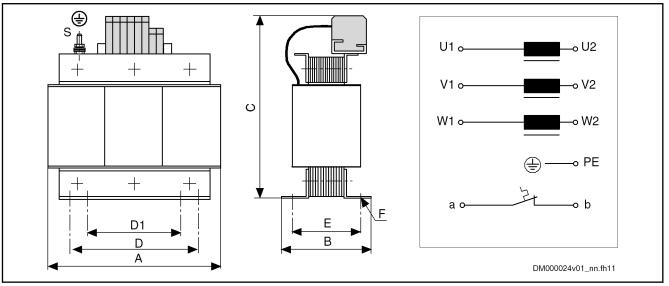


Fig.8-61: Dimensions Type 1

Mains choke	Туре		Dimensions [mm]							Weight [kg]		
		Α	В	С	D	D1	Е	F 1)	G	Н	s	
HNL01.1E-1000-N0012-A-500-NNNN	1	120	61	164	81	-	44	6,4 × 11	-	-	M5	2,7
HNL01.1E-0600-N0032-A-500-NNNN	1	150	66,5	185	113	-	49,5	6,4 × 11	-	-	M5	4,5

1) Long hole in "B" direction *Fig.8-62: Dimensions, Weight*

Mains choke	Connection cross sec mm ² /AWG	tion	Tightening torque Nm			
	U1, V1, W1 U2, V2, W2	a, b	U1, V1, W1 U2, V2, W2			
HNL01.1E-1000-N0012-A-500-NNNN	4	4	Observe the data imprinted on the co			
HNL01.1E-0600-N0032-A-500-NNNN	10	4	ponent.			

Fig.8-63: Connection Cross Section, Tightening Torque

Basic Data

Mains choke	U _N [V]	I _N [A]	L _N [µH]	P _V [W]	I _{max} [A]	L _{min} At I _{max}
HNL01.1E-1000-N0012-A-500-NNNN	500	12	3 × 1000	40	25	50% of LN
HNL01.1E-0600-N0032-A-500-NNNN	500	32	3 × 600	75	80	50% of LN

Fig.8-64: Electrical Data

Temperature Contact a, b

Switching capacity	Switching temperature
1 A / AC 250 V	125 ℃
DC 24 V	HNL01.1E mains chokes of type 1 are equipped with a temperature contact (a, b), types 2, 3 and 4 are not.

Fig.8-65: Temperature Contact

8.3.4 External Braking Resistors HLR

Types

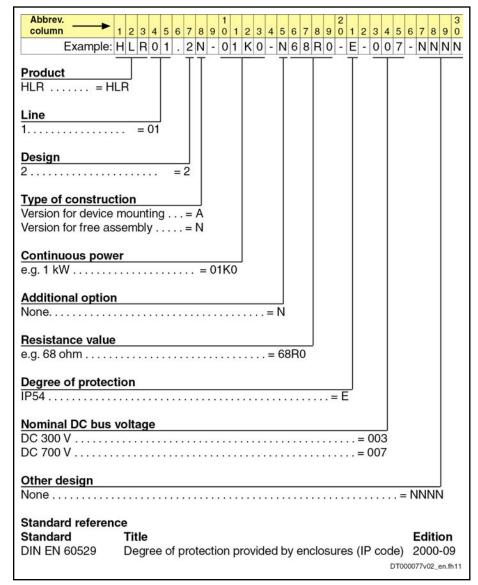


Fig.8-66: Type Code

Braking resistor HLR01.2N	Drive controller HCS01.1E-W00	Continuous power [W]	Peak power [kW]	Resistance [Ω]	Energy absorption [kWs]	Weight [kg]
0100-N100R-E-003	03, 06, 09, 13	100	1,6	100	1	tbd
0100-N180R-E-007	05, 08	100	4	180	2,4	tbd
01K0-N68R0-E-007	18-02	1000	2,2	68	10	4,2
	18-03, 28		10			
01K0-N28R0-E-007	54	1000	25	28	30	

Fig.8-67: External Braking Resistors HLR

Dimensions

HLR01.2N-01K0-N28R0, ...-N68R0

Boring Dimensions

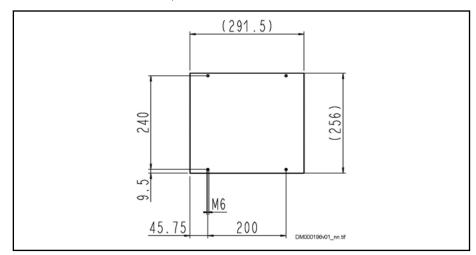
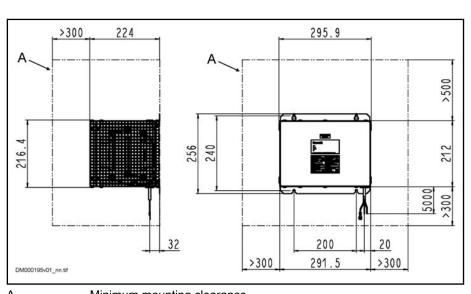
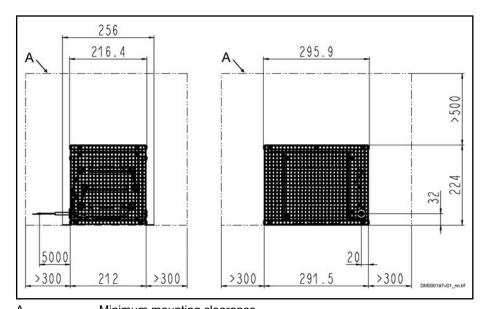



Fig.8-68: Boring Dimensions


Dimensions (with Suspended Mounting)

A Minimum mounting clearance
Fig. 8-69: Dimensions (with Suspended Mounting on the Wall)

Bosch Rexroth AG

Dimensions (with Upright Mounting)

A Minimum mounting clearance Fig.8-70: Dimensions (with Upright Mounting on the Floor)

Installation

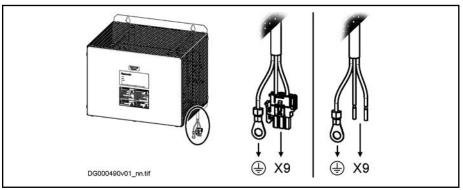


Fig.8-71: Connection

When installing the braking resistor, observe the instructions given in the description of connection point X9.

8.3.5 DC Bus Capacitor Units HLC

Type Code

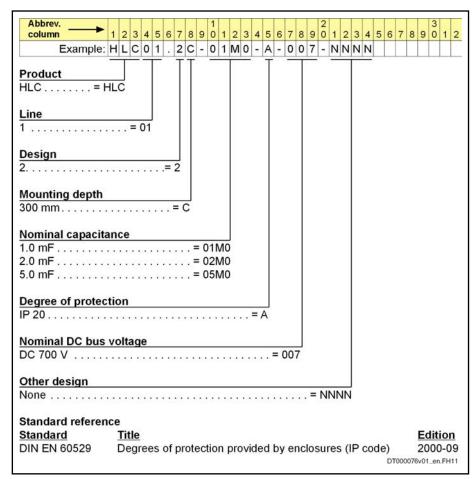
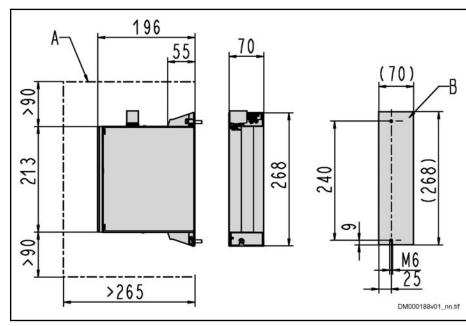


Fig.8-72: Type Code

Technical Data


Technical Data

Description	Symbol	Unit	HLC01.2C-01M0	HLC01.2C-02M0	HLC01.2C-05M0	
Allowed mounting position			G1			
Mass	m	kg	2,2	2,7	tbd	
Allowed input voltage	U _{DC}	V	DC 254750			
DC bus capacitance	C _{DC}	mF	1 ±20%	2 ±20%	5 ±20%	
Power dissipation at continuous current and continuous DC bus power respectively (UL)	P _{Diss_cont}	W	4,10	5,28	tbd	
Maximum discharge time from U _{R_DC_On} to DC 50 V	t _{entl_ZK}	S	238	378	tbd	
Allowed input current at L+ L-	I _{max(rms)}	Α	15	30	tbd	

Description	Symbol	Unit	HLC01.2C-01M0	HLC01.2C-02M0	HLC01.2C-05M0
Insulation resistance (at DC 500 V)	R _{is}	Mohm	> 10	> 10	tbd
Cooling			Natural convection		

Fig.8-73: HLC - Technical Data

Dimensions

A Minimum mounting clearance

Boring dimensions

Fig.8-74: Dimensions

Connection

Lethal electric shock by live parts with more than 50 V!

Before working on live parts: De-energize installation and secure power switch against unintentional or unauthorized re-energization.

Wait at least **30 minutes** after switching off the supply voltages to allow **discharging**.

Check whether voltage has fallen below 50 V before touching live parts!

Cables, Accessories, Additional Components

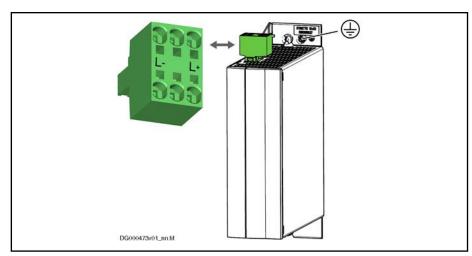


Fig. 8-75: Connection Points (DC Bus (L+ L-), Equipment Grounding Conductor)

Equipment Grounding Conductor

Connect the equipment grounding conductor via thread M5 to the housing of the device (identification mark \bigoplus ; tightening torque: 5 Nm). The M5×12 screw required for this purpose is part of the supplied accessory HAS09.

DC Bus

Connect HLC01 to HCS01 with twisted lines: L+ to L+; L- to L-

Technical data of the connection point: See description of connection point x77

Arrangement

Place the HLC next to the most powerful drive controller of a drive system.

Operation

Mains Choke

Always operate the DC bus capacitor units together with the mains choke assigned to the drive controller (see Data for mains voltage supply → Assigned type of mains choke).

Special case "HCS01.1E-W0018-_-03" (in the technical data, no mains choke has been assigned to this drive controller):

Use the mains choke "HNL01.1E-1000-N0012-A-500-NNNN".

DC Bus Coupling

Information on DC bus coupling: See index entry "DC bus \rightarrow Coupling, DC bus capacitor unit".

Environmental Protection and Disposal

Environmental Protection and Disposal 9

Environmental Protection 9.1

Production Processes

The products are made with energy- and resource-optimized production processes which allow re-using and recycling the resulting waste. We regularly try to replace pollutant-loaded raw materials and supplies by more environment-friendly alternatives.

No Release of Hazardous Sub-

stances

Our products do not contain any hazardous substances which may be released in the case of appropriate use. Normally, our products will not have any negativ influences on the environment.

Significant Components

Basically, our products contain the following components:

Electronic devices	Motors
• steel	steel
aluminum	 aluminum
• copper	copper
 synthetic materials 	brass

electronic components and modules

· magnetic materials · electronic components and modules

Disposal 9.2

Return of Products

Our products can be returned to our premises free of charge for disposal. It is a precondition, however, that the products are free of oil, grease or other dirt.

Furthermore, the products returned for disposal must not contain any undue foreign material or foreign components.

Send the products "free domicile" to the following address:

Bosch Rexroth AG **Electric Drives and Controls** Buergermeister-Dr.-Nebel-Strasse 2 97816 Lohr am Main, Germany

Packaging

The packaging materials consist of cardboard, wood and polystyrene. These materials can be recycled anywhere without any problem.

For ecological reasons, please refrain from returning the empty packages to

Batteries and Accumulators

Batteries and accumulators can be labeled with this symbol.

The symbol indicating "separate collection" for all batteries and accumulators is the crossed-out wheeled bin.

The end user within the EU is legally obligated to return used batteries. Outside the validity of the EU Directive 2006/66/EC keep the stipulated directives.

Used batteries can contain hazardous substances, which can harm the environment or the people's health when they are improper stored or disposed of.

After use, the batteries or accumulators contained in Rexroth products have to be properly disposed of according to the country-specific collection.

Recycling

Most of the products can be recycled due to their high content of metal. In order to recycle the metal in the best possible way, the products must be disassembled into individual modules.

Environmental Protection and Disposal

Bosch Rexroth AG

Metals contained in electric and electronic modules can also be recycled by means of special separation processes.

Products made of plastics can contain flame retardants. These plastic parts are labeled according to EN ISO 1043. They have to be recycled separately or disposed of according to the valid legal requirements.

Service and Support

10 Service and Support

Our worldwide service network provides an optimized and efficient support. Our experts offer you advice and assistance should you have any queries. You can contact us **24/7**.

Service Germany

Our technology-oriented Competence Center in Lohr, Germany, is responsible for all your service-related queries for electric drive and controls.

Contact the Service Helpdesk & Hotline under:

Phone: +49 9352 40 5060 Fax: +49 9352 18 4941

E-mail: service.svc@boschrexroth.de
Internet: http://www.boschrexroth.com

Additional information on service, repair (e.g. delivery addresses) and training can be found on our internet sites.

Service worldwide

Outside Germany, please contact your local service office first. For hotline numbers, refer to the sales office addresses on the internet.

Preparing information

To be able to help you more quickly and efficiently, please have the following information ready:

- Detailed description of malfunction and circumstances resulting in the malfunction
- Type plate name of the affected products, in particular type codes and serial numbers
- Your contact data (phone and fax number as well as your email address)

Appendix

11 Appendix

11.1 Determining the Leakage Capacitance

The capacitances which generate so-called leakage currents against ground at the outputs of inverters are regarded as leakage capacitance C_{ab} . The decisive values for the total value C_{ab_q} of the leakage capacitance are:

- Capacitances of output filters
- Capacitances of power cables (capacitance per unit length against shield and ground wire)
- Capacitances of motors (winding capacitance against housing)

The leakage capacitance consists of the values of power cable and motor of all individual drives operated at the mains filter.

Calculation:

$$C_{ab_g} = C_{ab_Mg} + C_{ab_Kg}$$

 $C_{ab\ q}$ Total value of leakage capacitance

 $\begin{array}{ll} C_{ab_Mg} & \quad & \text{Total value of leakage capacitance of motor} \\ C_{ab_Kg} & \quad & \text{Total value of leakage capacitance of cable} \end{array}$

Fig. 11-1: Total Leakage Capacitance

The total capacitance C_{ab_Mg} results from the sum of capacitances of the individual motors. For these individual capacitances, see documentation of the motor. For a list of selected values, see Appendix of this documentation under "Leakage Capacitances".

$$C_{ab_Mg} = C_{ab(Motor_1)} + C_{ab(Motor_2)} \dots + C_{ab(Motor_n)}$$

C_{ab(motor)} Leakage capacitance of a motor
Fig. 11-2: Total Leakage Capacitance of Motor

$$C_{ab_Kg} = C_{Y_K\ typ\ (K1)} \times I_{(K1)} + C_{Y_K\ typ\ (K2)} \times I_{(K2)} \dots + C_{Y_K\ typ\ (Kn)} \times I_{(Kn)}$$

 $C_{Y_K\,typ}$ Capacitance per unit length of cables C_{ab_Kg} Total leakage capacitance of cables Fig.11-3: Total Leakage Capacitance of Cables

The total capacitance C_ab_Kg consists of the sum of capacitances of the individual power cables. For the individual capacitances per unit length, see the technical data of the power cables. For a list of selected values, see Appendix of this documentation under "Leakage Capacitances".

11.2 Leakage Capacitances

11.2.1 Leakage Capacitance of Motors

The data of the typical leakage capacitance refer to the total capacitance of the power connections U, V, W against the motor housing. The tables below contain excerpts from the technical data of motors:

Appendix

Leakage Capacitance

Туре	Leakage capacitance of the component
	C _{ab}
	nF
MSM019A-0300-NN	0,3
MSM019B-0300-NN	0,7
MSM031B-0300-NN	0,7
MSM031C-0300-NN	1,4
MSM041B-0300-NN	1,3
	Last modification: 2008-11-20

Fig.11-4: MSM019A-0300-NN, MSM019B-0300-NN

Туре	Leakage capacitance of the component
	C _{ab}
	nF
MSK030B-0900-NN	0,7
MSK030C-0900-NN	1,3
MSK040B-0450-NN	1,3
MSK040C-0450-NN	2,0
MSK043C-0600-NN	2,1
MSK050B-0300-NN	2,1
MSK050C-0300-NN	2,6
MSK060B-0300-NN	2,1
MSK060C-0300-NN	2,1
MSK061B-0300-NN	1,8
MSK061C-0300-NN	2,4
MSK070C-0150-NN	3,8
MSK070D-0150-NN	5,0
MSK070E-0150-NN	6,3
MSK071C-0200-FN	4,6
MSK071D-0200-FN	6,9
MSK071E-0200-FN	8,9
MSK075C-0200-NN	
MSK075D-0200-NN	4,6
MSK075E-0200-NN	5,8
MSK076C-0300-NN	6,5
MSK100A-0200-NN	4,8
•	Last modification: 2008-12-10

Appendix

Туре	Leakage capacitance of the component
	C _{ab}
	nF
MSK100B-0200-NN	10,3
MSK100C-0200-NN	12,8
MSK100D-0200-NN	17,6
MSK101C-0200-FN	6,2
MSK101D-0200-FN	13,2
MSK101E-0200-FN	15,2
MSK103A-0300-NN	1,5
MSK103B-0300-NN	2,1
MSK103D-0300-NN	6,0
MSK131B-0200-NN	14,3
MSK131D-0200-NN	27,7
	Last modification: 2008-12

Fig.11-5: MSK - Leakage Capacitance (Excerpt)
See also Rexroth IndraDyn - Technical Data.

11.2.2 Leakage Capacitance of Power Cables

The power cables (bulk cables) of the "RKL" line by Rexroth have the capacitances per unit length listed below. The values refer to the sum of the single capacitances of power cores 1, 2 and 3 against the overall shield.

See also Rexroth Connection Cables - Data Sheet Bulk Cables.

Data Sheet Excerpt- Bulk Cables

Туре	Cross section of power core	Leakage capacitance
	mm²	C _{Y_K_typ} nF/m
INK0653	1,0	0,6
INK0650	1,5	0,8
INK0602	2,5	0,7
INK0603	4,0	0,8
INK0604	6,0	0,8
INK0605	10,0	1,0
INK0606	16,0	1,2
INK0607	25,0	1,1
INK0667	35,0	1,2
INK0668	50,0	1,3
	Ĺ	ast modification: 2007-11-08

Fig. 11-6: INK - Technical Data (Excerpt)

Appendix

Data Sheet Excerpt- Bulk Cables

Туре	Cross section of power core	Leakage capacitance C _{Y_K_typ}
	mm²	nF/m
REH0800	2,5	0,2

Fig.11-7: REH - Technical Data (Excerpt)

B

Approximate calculation is allowed with the following values:

- Cross section 1 ... 6 mm²: 1 nF/m
- Cross section 10 ... 50 mm²: 1.2 nF/m

Index

Symbols	В	
$1V_{pp}$	Bb relay contact	
Encoder, 12 V supply voltage 159	Connection point X47 12	29
Encoder, 5 V supply voltage 158	Control circuit for the mains connection 9) 2
24V supply	DC bus coupling 10)()
Connection point 125	Technical data 18	35
Continuous power 64	Braking resistor	
Installation 64	External, connection 12	23
Peak current	External, data 24	16
Project planning 60	HLR, data 24	16
3	Integrated, connection 12	
	Integrated, data 19	
A	Parameterization 12	
Acceptance tests	Brief description	
Accessories	HCS01 3	35
Battery 213		
Battery box, SUP-E01-MSM-BATTERY-		
BOX 211	C	
DC bus connector 210	Cables	
HAS09 205	Capacitance 25	
Mounting and connection accessories	Documentation 2	20
(HAS09) 205	Encoder cable for MSM motors with ab-	
Overview 203	solute value encoder (RKG0041) 21	
Replacement battery 213	Encoder cables, selection table 4	16
SUP-E03-DKC*CS-BATTRY 213	Leakage capacitance 25	
X77, DC bus connector 210	Motor power cables, allowed cable lengths . 4	
Accumulators253	Motor power cables, selection 4	15
Additional components232	Overview 20)3
Overview 204	RKB0011 127, 12	28
Additional documentations	RKB0013 127, 12	28
ADVANCED	RKG0033 15	53
Control panel 186	RKG0035 15	58
HCS01 9, 37	RKG0036 15	57
Ambient conditions	RKG0041 21	17
Analog input	RKG4200 15	55
Connection point X32 129	Shield connection 13	34
Technical data 185	Calculations	
Appropriate use	Leakage capacitance 25	57
Applications	Mains choke HNL 9	
Approvals101	Mains-side phase current 7	
Autotransformers	Phase current 7	
Axis coupling	CANopen	
, and coopg	Bus length 18	31
	Connection point X61 14	
В	Display elements 18	
BASIC	Main features 18	
HCS01 9, 37	Network dimension 18	
Batteries	Capacitance	
Battery	Additional capacitance (DC bus capacitor	
Battery box 211	unit) 24	19
Buffer battery for absolute value encoder	Motors	
of an MSM motor 219	Power cables	
Refresh 214	CCC, China Compulsory Certification	
Replace 214	CE label	
Replacement battery 213	Central supply	
SUP-E03-DKC*CS-BATTRY 213	Certifications	
	Oci (III) di (IOI) 5	, 1

Rexroth IndraDrive Cs Drive Systems with HCS01

Characteristic Fuses	e-susceptible 148 49 49
China Compulsory Certification (CCC)	e-susceptible 148 49 49
Combined encoder for SSI Cooling	49 49
Encoder, 5 V supply voltage	49
Communication module Interference areas	
Multi-Ethernet - ET	1/16
PROFIBUS PB, interface	140
	00
PROFIBUS PR Signal Specification 180 HUSUT	
, 0 1	92
Compatibility Control lines	425
With foreign matters	135
Components Control panel	400
Combining	
Mounting positions 58 HAP01	
Supplied	
Supplying	
Condition as supplied	107
Conditions Control voltage	
Ambient and operating conditions	
Configuration Continuous power	
Drive system	
Connection Determining the power requi	
24V supply (X13) 125 For drive systems	
Analog input (X32) 129 HCS01	187
Bb relay contact (X47)	64
Braking resistor (X9) 123 Looping through	66
Connection diagram) 125
Connection points, overview	64
Control voltage (X13) 125 Project planning	60
DC bus (X77)	
Digital inputs, digital output (X31)	
Electrical	
Encoder emulation (X8)	
Equipment grounding conductor 114 HCS01	56
Ground	
Mains	
Mains (X3)	93
Module bus (X47)	
Motor (X5)	
Motor encoder (X4)	
Motor holding brake (X6)	
Motor temperature monitoring (X6) 121	
Multi-Ethernet (X24, X25)	
Optional encoder (X8)	
Probe	47
PROFIBUS (X30)	ternal) 246
HUSUI praving recietor (into	egrated) 197
HCS01 control voltage	
Connection diagram	
HCS01 DC hus	
TICSUT, Overview	
On-board	
Optional	
Contained substances LCS01 housing dimensions	
see Significant components 200	
Control Cabinet	
Area A, interference-free	

n	М	\sim	v
	u	┖	л

D	D	
Data	Documentation	
HCS01, mass 55	Editions	19
HCS01, power dissipation 56	Firmware	20
HCS01, temperatures 56	Motors	20
HCS01, UL ratings 50	Overview	
Operating conditions	Purpose	
DC bus	Reference documentations	
Connection point X77 131	System components	
Connector, accessories	Drive range	20
Coupling	Rexroth IndraDrive Cs	7
Coupling, DC bus capacitor unit	Drive system	
Data, HCS01 195	Configuring	
DC bus capacitor unit, HLC	System structure	14
Group	DST	222
Declaration of conformity	Autotransformers	233
Derating vs. installation altitude		
Overvoltage limiter	E	
Design	EC	
HCS01	Standard encoder evaluation	153
Devices	ECONOMY	100
Mounting positions 58	HCS01	9 37
Supplied 95	Electrical connection	
Supplying 95	Electrical project planning	
Digital inputs	Electrical project planning	
Connection point X31 128	EM	23
Probe 128, 182	Encoder emulation	126
Technical data 181		
Technical data; safety technology "L op-	Encoder emulation, data	173
tions" 182	EMC	00
Digital outputs	Limit value classes	
Connection point X31 128	Measures for design and installation	142
Technical data 183	Encoder	400
Technical data; safety technology "L op-	12 V power supply	
tions" 184	1V _{pp} , 12 V supply voltage	
Dimensional drawing	1V _{pp} , 5 V supply voltage	
HCS01.1E-W0003/5/6/8/9/1352	5 V power supply	
HCS01.1E-W0018/28 53	Cable length	169
HCS01.1E-W0054 54	Combined encoder for SSI, 5 V supply	
Dimensional drawings	voltage	164
HCS01 51	Connection, X4	117
Dimensioning	Connection, X8, encoder emulation	136
Line cross sections and fuses	EC, Standard encoder evaluation	
Dimensions	Emulated encoder systems	
HCS01.1E-W0003/5/6/8/9/13 52	EnDat 2.1, 5 V supply voltage	
HCS01.1E-W0003/3/0/8/9/13 52	HIPERFACE®, 12 V supply voltage	
HCS01.1E-W0054 54	Input circuit, resolver	
	Input circuit, sine signals	
Display elements	Input circuit, square-wave signals	
Multi-Ethernet, LEDs	MSK/QSK encoder interface	
Disposal	MSM, 5V supply voltage	
Distances	Optional, X8	
HCS01 56	Power supply	
Documentation		107
Additional documentations	Resolver encoder system without encoders data memory	165
Cables 20	er data memory	
Changes 19	Resolver power supply	168
Drive systems	RGS0001/K01, D-Sub connector for en-	000
	coder cable and battery connection	773

E	G	
Encoder	G1, G2, G3, G4, G5	
Signal assignment to actual position value 172	Mounting positions	58
SSI, 12 V supply voltage 163	Ground	
SSI, 5 V supply voltage 162	Connection	135
Standard encoder evaluation EC 153	Ground connection	135
Supported encoder systems 12, 117, 153	Ground connections	149
TTL, 12 V supply voltage 161	Group supply	. 74
TTL, 5 V supply voltage 160		
Encoder cable length	Н	
Encoder emulation	H10, H11, H12, H13	
EM 136	LEDs 177, 7	170
EM, data 173	H22	173
EnDat 2.1	LED 177, 7	170
Encoder, 5 V supply voltage 157	H24	173
Environmental protection	LED 177, 7	170
Equipment grounding conductor	H4, H5	175
Connection 114	LED (CANopen)	120
ET	Hall sensor adapter box	100
Multi-Ethernet, LEDs 177	SHL03.1-NNN-S-NNN	227
Optional module, Multi-Ethernet 125	Hall sensor box	-21
EtherCAT	SHL02.1	166
Multi-Ethernet, interface	HAP01	100
Ethernet	Control panel	16
Multi-Ethernet, interface	HAS09	
External braking resistor	Accessories (for mounting and installa-	
Data	tion)	205
External wiring 82	Hazardous substances	
	HCS01	
F	ADVANCED 9,	. 37
Field wiring 82	BASIC 9,	
File numbers	Block diagram	
UL 101	Braking resistor (external), data	
Firmware	Braking resistor (integrated), data	
Assigned HCS01 device types	Brief description	
Documentation	Combination with MSM	
MPB-16VRS 38	Connection points, overview	
MPB-17VRS 38	Control voltage, data	
MPC-17VRS 38	DC bus, data	
MPE-16VRS 38	Design (block diagram)	
MPE-17VRS 38	Dimensional drawings	
Type plate 107	Dimensions	
Types 38	Distances	56
Variants 39	ECONOMY 9,	
Foreign matters	Emulated encoder systems	136
Compatibility 51	Firmware	
Functional equipment	Functional equipment	
HCS01 9, 37	Functional features	
Functional features	Housing dimensions	
HCS01 9	Insulation	55
Fuses	Inverter, data	
Characteristic 82	Mains voltage, data	
Circuit breaker 82	Mass	
Design 82	Mounting in the control cabinet	
Dimensioning 77	MSM, selection table	
-	On-board connection points	
	Optional connection points	

Н	1
HCS01	Installation types83
Performance features	Insulation
Power dissipation	HCS01 55
	Insulation resistance test
Scope of supply	
Select appropriate converter	Integrated braking resistor
Sound pressure level	Data
Supported encoder systems 12, 117, 153	Internal wiring
Temperatures 56	Inverter, data
Type code 15	HCS01 199
UL ratings 50	IT mains type70
HIPERFACE® 156	
HLC	1
DC bus capacitor unit	 L+, L-
Type code 249	DC bus 131
HLR	L3
Braking resistor (external) 246	Safe Torque Off
Type code 246	L4
HNL	
Type code 242	Safe Torque Off, Safe Brake Control 141
Type plate 243	Leakage capacitance
HNL01.1E244	Calculations
Technical data 244	Determining
Housing dimensions	Motors
HCS01 55	Power cables
	Leakage currents
	Cause 67
	LED
Identification	H10, H11, H12, H13 177, 179
Of the components 106	H22 177, 179
Inappropriate use	H24 177, 179
Consequences, exclusion of liability 23	H4, H5 (CANopen) 180
Individual components	Limit value classes
Combining 35	EMC (table) 88
Individual supply73	Line
IndraDrive Cs	Correction factor 82
Overview 7	Cross sections, dimensioning 77
Target applications 8	Fuses, dimensioning
Input	Listing
Analog, X32 129	C-UL-US 101
Digital, X31 128	C-UR-US 102
Probe	0-010-00 102
Installation	
	M
24V supply	Mains
Connection points	Grounded via outer conductor
Control voltage supply	Types 69
Electrical connection	Mains choke
EMC measures	Combining with mains filter 91
Ground connections 149	Determining
Signal lines 150	HNL01.1E
Installation conditions	Infeeding
Installation methods 83	
Installation type	Selection
B1 78, 81	Types
B2 79, 81	Mains connection
E 80, 81	Central supply
NFPA 81	Circuit
Ι ΙΙ 508Δ 81	Control circuit 92

Rexroth IndraDrive Cs Drive Systems with HCS01

M	M	
Mains connection	Motor fan	
Group supply 74	Mains filter	. 147
Individual supply 73	Mounting	
Mains current 76	HCS01 in the control cabinet	. 109
Parallel operation 75	Mounting positions	
Power 76	Definitions	58
Project planning 66	MPB-16VRS	
Transformer, mains filter, mains choke 91	MPB-17VRS	
Types	MPC-17VRS	
X3 115	MPE-16VRS	
Mains contactor	MPE-17VRS	
Dimensioning	MSK/QSK encoder interface	50
•		
Mains current	For S1/M1, S2/M2, S3/M3, S5/M5 encod-	455
Mains filter	er systems	. 155
Combining with mains choke	MSM	
Dimensioning	Combination with HCS01	
Motor fan 147	Encoder, 5V supply voltage	. 153
NFD, NFE 237	Multi-Ethernet	
Other loads 147	Display elements (LEDs)	
Mains-side phase current	Interface	
Calculating 76	Optional	. 137
Mains transformer		
Dimensioning 83	A I	
Selecting 83	N	
Mains types	NFD	
Mains voltage	Data, electrical	
HCS01 189	Data, mechanical	
Mass	Mains filter	. 237
HCS01 55	NFE	
Measures of radio interference suppression	Data, electrical	. 240
	Data, mechanical	. 238
For relays, contactors, switches, chokes,	Mains filter	
inductive loads		
Mechanical project planning		
microSD memory card	0	
ADVANCED control panel 187	On-board connection points	
PFM04.1 107	HCS01	
Module bus	Operating conditions	
Connection point X47 129	Operation at partial load	76
Parameterization 100	Optional connection points	135
Motor	Optional encoder	
Cable, shield connection 135	X8	. 135
Cable lengths 46	Optional module	
Capacitance 257	CN, CANopen	. 142
Connection (X5) 119	EC, Standard encoder evaluation	
Connection motor encoder (X4) 117	EM, encoder emulation	
Connection motor holding brake (X6) 121	ET, Multi-Ethernet	
Connection motor temperature monitor-	L3, Safe Torque Off	
ing (X6) 121		
Documentation	L4, Safe Torque Off, Safe Brake Control	
	PB, PROFIBUS, interface	
Leakage capacitance	PB, PROFIBUS, signal specification	
Motor holding brake	S, standard control panel	. 186
Motor output (X5)	Output, digital	
Motor temperature monitoring 121	X31	
MSM, supported MSM motors	Overall connection diagram	110
Supported motors 39	Overview	
Third-party motors 40	Accessories	. 203

Additional components	0	R
Cables	Overview	Rexroth IndraDrive Cs
Cables	Additional components 204	Target applications 8
Devaltage limiter		
Derating vs. installation altitude		D-Sub connector for encoder cable and
RKB0011.		
Packaging		
Packaging		
Packaging 253 RKG0034 212 212 212 212 212 213 213 214 215 214 215	P	
Parallel operation		
PB	Parallel operation	
Optional module, interface 137 Optional module, signal specification 180 PELV 29 Performance features 11 HCS01 11 PFM04.1 107 Phase current 20 Calculating 76 Probe S Technical data 182 Probe input (X31) 128 Production processes 253 PROFIBUS Safe Brake Control Interface 137 Signal specification 180 Multi-Ethernet, interface 126 Mechanical project planning 60 Electrical project planning 61 Electrical project planning 51 Protective extra-low voltage 29 Protective extra-low voltage 29 Reference documentations 20 Reference documentations 20 Reference documentations 20 Connection point X47 129 Connection point X47 129 Connection point X47	PB	
Deptonal module, signal specification 180 PELV 29 Performance features 11 HCS01 11 PFM04.1 1 microSD memory card 107 Phase current Calculating 76 Calculating 76 8 Technical data 182 Probe input (X31) 128 Production processes 253 Nerfersh 181 Nerfersh 181 Nerfersh 182 Profue input (X31) 128 Nerfersh 182 Profue input current 180 Nerfersh	Optional module, interface 137	
PELV 29 Endown advanced seatures 217 PCS01 11 RKG4200 155 PFM04.1 107 RLS0778/K06 DC bus connector 210 Phase current 76 S S Procecled and and and and and and and and and an		
Performance features		
HCS01		
PFM04.1 microSD memory card 107 107 107 108 107 108 107 108		
MicroSD memory card 107		
Phase current 76 S Calculating 76 S Probe 182 Optional module, standard control panel 186 Probe input (X31) 128 Safe Brake Control 140 Production processes 253 X49 141 Profice IBUS 180 X49 141 Interface 137 3 141 Signal specification 180 X49 141 Profile Multi-Ethernet, interface 126 14 X49 141 Project planning 60 14 X49 141 Safe proque Off, Safe Brake Control 14 X49 141 Safe ty instructions for electric drives and controls 25 Safety technology 25 Protective extra-low voltage 29 136 14 <t< td=""><td></td><td>DC bus connector 210</td></t<>		DC bus connector 210
Calculating 76 S Probe Technical data 182 Optional module, standard control panel 186 Probe input (X31) 128 Optional module, standard control panel 186 Probe input (X31) 128 Safe Brake Control X49 141 PROFIBUS Safe Torque Off 141 Safe Dray of Control 141 X49 141 Profice trical project planning 180 X49 141 X49 141 Profice trical project planning 180 X49 141 X49 X49 141 X49 X4		
Probe Technical data		e
Technical data	G	
Probe input (X31) 128 Safe Brake Control Production processes 253 X49 141 PROFIBUS Safe Torque Off 141 Interface 137 X49 141 Signal specification 180 X49 141 ProfiNet Safe Torque Off, Safe Brake Control 141 Project planning 60 Safet Torque Off, Safe Brake Control 141 Project planning 51 Safet Torque Off, Safe Brake Control 141 Safety instructions for electric drives and controls. 25 25 Protective extra-low voltage 29 L3 (Safe Torque Off) 141 Scope of supply HCS01 107 Seros III 11 11 11 Reference documentations. 20 Protective (Sup-E03-DKC*CS-BATTRY) 214 Safe Torque Off, Safe Brake Control 107 Sericular (Supple Collanning 253 Safet ytechnology 107 Sercos III 11 11 11 11 11 11 11 11 11 11		_
Production processes		
PROFIBUS Safe Torque Off Interface 137 L3 141 Signal specification 180 X49 141 Profilet Safe Torque Off, Safe Brake Control 141 Multi-Ethernet, interface 126 L4 141 Project planning 60 Safety instructions for electric drives and controls. 25 Electrical project planning 51 Safety technology Protective extra-low voltage 29 L3 (Safe Torque Off) 141 RCB Safety technology 141 Safety technology RCCB 66 Safety technology 141 Safety technology L4 (Safe Torque Off) 141 Safety technology L3 (Safe Torque Off) 141 Safety technology L4 (Safe Torque Off) 141 Scope of supply HCS01 107 Sercos III Recorder leave (Supply Server) 124 Safety technology HCS01 125 Optional Safety technology HCS01 125 Optional Safety technology </td <td></td> <td></td>		
Interface		
Signal specification		
ProfiNet Multi-Ethernet, interface 126	Interface 137	
Multi-Ethernet, interface	Signal specification 180	X49 141
Project planning	ProfiNet	Safe Torque Off, Safe Brake Control
Electrical project planning	Multi-Ethernet, interface 126	L4 141
Electrical project planning	Project planning	Safety instructions for electric drives and
Mechanical project planning	• •	
Protective extra-low voltage		
L4 (Safe Torque Off, Safe Brake Control) 141		
R Scope of supply RCCB 66 RCD 66 Recycling 253 Reference documentations 20 Refresh Optional 137 Refresh Connection 134 Battery (SUP-E03-DKC*CS-BATTRY) 214 Connection 134 Relay contact Connection point X47 129 Control lines 135 Control circuit for the mains connection 92 Hall sensor box 166 Type 2 185 SHL02.1 Hall sensor adapter box 227 Residual-current-operated circuit breakers 66 Signal lines Installation 150 Resolver Installation 150 Significant components 253 Resolver Installation 150 Significant components 253 Sine signals Encoder, input circuit 170 Sound pressure level HCS01 55 Rexroth IndraDrive Cs Torverview 7 Square-wave signals Frecoder, input circuit 171	Trotodive extra few voltage	
College		
RCB. 66 sercos III RCD. 66 Interface 125 Recycling. 253 Optional 137 Reference documentations. 20 Shield Refresh Connection 134 Battery (SUP-E03-DKC*CS-BATTRY) 214 Connection 134 Relay contact Connection point X47 129 Motor cable 135 Control circuit for the mains connection 92 Hall sensor box 166 Type 2 185 SHL02.1 Hall sensor adapter box 227 Residual-current-operated circuit breakers 66 Signal lines Installation 150 Resolver Installation 150 Significant components 253 Resolver input circuit 170 Significant components 253 Resurrence input circuit 170 Sound pressure level 170 Resurrence input circuit 170 Sound pressure level 170 Revroth IndraDrive Cs 55 Square-wave signals 170 Sound pressure i	R	
RCD 66 Interface 125 Recycling 253 Optional 137 Reference documentations 20 Shield Refresh Connection 134 Battery (SUP-E03-DKC*CS-BATTRY) 214 Connection 134 Relay contact Connection point X47 129 Motor cable 135 Control circuit for the mains connection 92 Hall sensor box 166 Type 2 185 SHL02.1 Hall sensor box 166 Residual-current-operated circuit breakers 66 SHL03.1-NNN-S-NNN Hall sensor adapter box 227 Signal lines Installation 150 Significant components 253 Resolver Installation 150 Significant components 253 Sine signals Encoder, input circuit 170 Sound pressure level HCS01 55 Rexroth IndraDrive Cs Total properties 170 Square-wave signals 55 Drive range 7 Square-wave signals Freeder, input circuit 171	RCCB	
Recycling. 253 Reference documentations 20 Refresh Battery (SUP-E03-DKC*CS-BATTRY) 214 Relay contact Connection point X47 129 Control circuit for the mains connection 92 Technical data 185 Type 2 185 Residual-current-operated circuit breakers 66 Resolver Encoder, input circuit	RCD	
Reference documentations. 20 Shield 137 Refresh Connection 134 Connection 134 Relay contact Control lines 135 Motor cable 135 Control circuit for the mains connection 92 Hall sensor box 166 Technical data 185 SHL02.1 Hall sensor box 166 Type 2 185 SHL03.1-NNN-S-NNN Hall sensor adapter box 227 Residual-current-operated circuit breakers 66 Signal lines Installation 150 Resolver Installation 150 Significant components 253 Encoder, input circuit 170 Sound pressure level 170 Return of products 253 Sound pressure level 170 Rexroth IndraDrive Cs 55 Square-wave signals 55 Drive range 7 Square-wave signals 57 Overview 7 Tencoder input circuit 171	Recycling	
Refresh Snleid Battery (SUP-E03-DKC*CS-BATTRY) 214 Connection 134 Relay contact Motor cable 135 Control circuit for the mains connection 92 Hall sensor box 166 Technical data 185 SHL02.1 Hall sensor box 166 Type 2 185 SHL03.1-NNN-S-NNN Hall sensor adapter box 227 Residual-current-operated circuit breakers 66 Signal lines Installation 150 Resolver Installation 150 Significant components 253 Encoder system without encoder data memory 165 Encoder, input circuit 170 Rexroth IndraDrive Cs 50 Sound pressure level HCS01 55 Drive range 7 Square-wave signals 50 Verview 7 Fneeder input circuit 171		
Battery (SUP-E03-DKC*CS-BATTRY) 214 Control circuit for the mains connection 135		
Relay contact Connection point X47		
Connection point X47		
Control circuit for the mains connection 92 Technical data 185 Type 2 185 Residual-current-operated circuit breakers 66 Resolver Encoder, input circuit 171 Encoder system without encoder data memory 165 Return of products 253 Rexroth IndraDrive Cs Drive range 7 Overview 171 Encontrol circuit for the mains connection 92 Hall sensor box 166 SHL03.1-NNN-S-NNN Hall sensor adapter box 227 Signal lines Installation 150 Significant components 253 Sine signals Encoder, input circuit 170 Sound pressure level HCS01 55 Square-wave signals Encoder, input circuit 171		
Technical data		SHL02.1
Type 2		Hall sensor box 166
Residual-current-operated circuit breakers		SHL03.1-NNN-S-NNN
Residual-current-operated circuit breakers		Hall sensor adapter box 227
Resolver Encoder, input circuit	•	
Encoder, input circuit		•
Encoder system without encoder data memory		
Return of products	Encoder system without encoder data	•
Rexroth IndraDrive Cs Sound pressure level Drive range 7 Overview 7 Square-wave signals Encoder input circuit 171	memory 165	
Rexroth IndraDrive Cs Drive range		
Drive range	·	
Overview		
		Encoder, input circuit

S	T
SSI	Type code
Encoder, 12 V supply voltage 163	HCS01 15
Encoder, 5 V supply voltage 162	HLC 249
Standard control panel 186	HLR 246
Standard encoder evaluation EC	HNL 242
Standard motors	Type plate
Voltage load	Arrangement at the device
State-of-the-art	Control panel
Storage	Device
Of the components 108	Firmware
SUP-E01-MSM-BATTERYBOX	HNL 243
Battery box	7 IIVL 270
SUP-E03-DKC*CS-BATTRY	
	U
Supplied components	UL
Supplied devices	File numbers 10 ²
Supply 200	Listing 101, 102
With control voltage 24 V	Ratings, HCS01 50
With mains voltage	Ungrounded mains
Supplying components95	Use
Supplying devices95	Appropriate use
Support	Inappropriate use
See service hotline	mappropriate asc
System structure	
	V
Т	Voltage test 105
•	
Target applications IndraDrive Cs 8	V
	X
Technical data	X13
Analog input	Control voltage (24 V) 125
Digital inputs	X22/X23
Digital inputs; safety technology "L op-	Multi-Ethernet / sercos III
tions"	X24, X25
Digital outputs	Multi-Ethernet
Digital outputs; safety technology "L op-	X3
tions" 184	Mains connection 115
HCS01, power section 187	X30
Relay contact 185	PROFIBUS PB 137
See also index entry "Data" 153	X31
Test	Digital inputs, digital output 128
Customer-side 105	X32
Factory-side 105	Analog input 129
Insulation resistance 105	X4
Voltage test 105	Motor encoder 117
Third-party motors	X47
At drive controllers	Bb relay contact, module bus 129
TN-C mains type	X49
TN-S mains type	Safe Torque Off, Safe Brake Control 14
Transformers	X5
Transport	Motor output 119
Of the components	X6
TTL	
	Motor temperature monitoring and motor
Encoder, 12 V supply voltage	holding brake 12 ²
Encoder, 5 V supply voltage	X61
TT system	CANopen 142
Type code	X77
HAP01 16	DC bus connection 13 ²

		Ir	ndex
x		X	
X77		X8	
DC bus connector	210	Optional encoder	135
X8		X9 .	
Encoder emulation	136	Braking resistor	123

Rexroth IndraDrive Cs Drive Systems with HCS01

270/271

Notes

Bosch Rexroth AG
Electric Drives and Controls
P.O. Box 13 57
97803 Lohr, Germany
Bgm.-Dr.-Nebel-Str. 2
97816 Lohr, Germany
Tel. +49 9352 18 0
Fax +49 9352 18 8400

www.boschrexroth.com/electrics

