SIEMENS

Preface Properties 1 Parameters Diagnostics Analog value representation 4

Connecting

SIMATIC

ET 200S distributed I/O Analog electronic module 2AI TC ST (6ES7134-4JB01-0AB0)

Manual

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

▲ DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

A CAUTION

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the relevant information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

▲ WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Preface

Preface

Purpose of the manual

This manual supplements the *ET 200S Distributed I/O System* Operating Instructions. Functions which apply to the ET 200S in general are described in the ET 200S operating instructions on the Internet (http://support.automation.siemens.com/WW/view/en/1144348).

The information in this document along with the operating instructions enables you to commission the ET 200S.

Basic knowledge requirements

To understand these operating instructions you should have general knowledge of automation engineering.

Scope of validity of the manual

This manual applies to this ET 200S module. It describes the components that are valid at the time of publication.

Recycling and disposal

Due to the fact that it is low in contaminants, this ET 200S module is recyclable. For environmentally compliant recycling and disposal of your electronic waste, please contact a company certified for the disposal of electronic waste.

Additional support

If you have any questions relating to the use of the products described in this manual and do not find the answers in this document, please contact your local Siemens representative or office nearest to you on the Internet (http://www.automation.siemens.com/partner/).

A guide to the technical documentation for the various SIMATIC products and systems is available on the Internet. (http://www.siemens.com/simatic-tech-doku-portal)

The online catalog and ordering system are available on the Internet (http://www.siemens.com/automation/mall).

Training center

We offer courses to help you get started with the ET 200S and the SIMATIC S7 automation system. Please contact your regional training center or the central training center in D-90327, Nuremberg, Germany on the Internet (http://www.siemens.com/sitrain).

Technical Support

You can reach Technical Support for all industry automation products via the support request Web form on the Internet (http://www.siemens.com/automation/support-request).

Additional information about Siemens Technical Support is available on the Internet (http://www.siemens.com/automation/service).

Service & Support on the Internet

In addition to our documentation, we offer a comprehensive knowledge base on the Internet (http://www.siemens.com/automation/service&support).

There you will find:

- Our Newsletter, which constantly provides you with the latest information about your products.
- The right documentation for you using our Service & Support search engine.
- The bulletin board, a worldwide knowledge exchange for users and experts.
- Your local contact for Automation & Drives in our contact database.
- Information about on-site services, repairs, spare parts, and lots more.

Table of contents

	Preface	9	3
1	Proper	ties	7
	1.1	2AI TC ST analog electronic module (6ES7134-4JB00-0AB0)	7
2	Parame	eters	13
	2.1	Parameters	13
	2.2	Parameter description	14
3	Diagno	ostics	15
	3.1	Diagnostics using LED display	15
	3.2	Error types	16
4	Analog	value representation	17
	4.1	Introduction	17
	4.2	Analog value representation for measuring range with SIMATIC S7	17
	4.3 4.3.1	Measuring ranges	
	4.3.2	Voltage measuring ranges	
	4.4	Effect on analog value representation	
	4.4.1 4.4.2	Effect of the supply voltage and the operating state on analog input values Effect of the value range on the 2 AI TC Standard analog input	
5	Conne	cting	
	5.1	Connecting measuring sensors	25
	5.2	Connecting thermocouples	29
	5.3	Wiring unused channels of the analog input modules	34
	5.4	Using the shield connection	
	Index		35

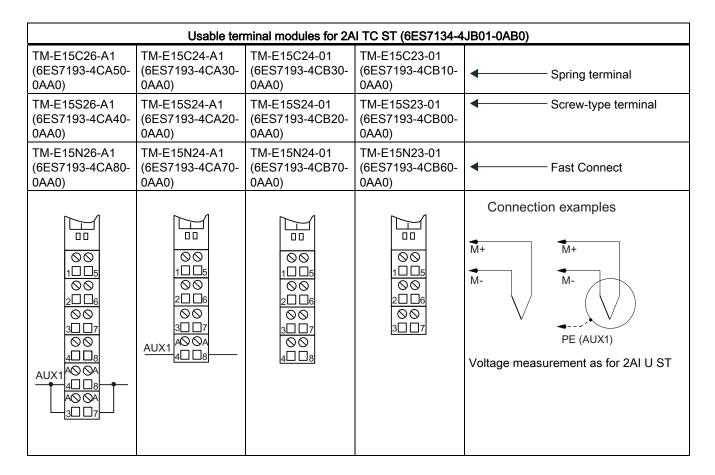
Properties

1.1 2AI TC ST analog electronic module (6ES7134-4JB00-0AB0)

Properties

- 2 inputs for thermocouple or voltage measurement
- Input ranges:
 - Voltage measurement: ± 80 mV, resolution 15 bits + sign
 - Thermocouples: Type E, N, J, K, L, S, R, B, T, resolution 15 bits + sign
- Isolated from the load voltage L+
- Linearization of the sensor characteristic curves
- Permissible common mode voltage 2 VACss
- Extended temperature range from 0 to 50°C with vertical installation
- supports I&M functions
- compatible with 2AI TC ST (6ES7134-4JB00-0AB0)

General terminal assignment


Note

Terminals 4, 8, A4, A8, A3 and A7 are only available at specified terminal modules.

	Terminal assignment for 2AI TC ST (6ES7134-4JB01-0AB0)								
Terminal	Assignment	Terminal	Assignment	Notes					
1	M ₀₊	5	M ₁₊	M _{n+} : Measuring line positive, Channel n					
2	M ₀₋	6	M ₁₋	M _{n-} : Measuring line negative, Channel n					
3	M _{ana}	7	Mana	Mana: Ground of the module					
4	n.c.	8	n.c.	n.c.: Not connected (max. 30 VDC can be connected)					
A4	AUX1	A8	AUX1	AUX1: Protective-conductor terminal or potential bus					
A3	AUX1	A7	AUX1	(freely usable up to 230 VAC)					

1.1 2AI TC ST analog electronic module (6ES7134-4JB00-0AB0)

Usable terminal modules

Block diagram

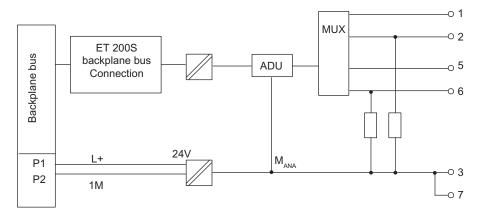


Figure 1-1 Block diagram of the 2AI TC ST

2AI TC ST technical specifications (6ES7134-4JB01-0AB0)

Dimensions and weight						
Width (mm)	15					
Weight	Approx. 40 g					
Module-sp	pecific data					
Supports isochronous operation	No					
Supports I&M functions	Yes					
Number of inputs	2					
Cable length						
Shielded	Max. 50 m					
Parameter length	4 bytes					
Address space	4 bytes					
	ents, potentials					
Rated load voltage L+ (from the power module)	24 VDC					
Reverse polarity protection	Yes					
Electrical isolation						
Between the channels and backplane bus	Yes					
Between the channels and load voltage L+	Yes					
Between the channels	No					
Between the channels and 24 V supply voltage	Yes					
Permissible potential difference						
Between M_{ANA} and the central grounding point (U_{iso})	75 VDC / 60 VAC					
Between the inputs and M _{ANA} (U _{CM})	2 VACss					
Insulation tested	500 VDC					
Current consumption						
From load voltage L+	Max. 30 mA					
Power dissipation of the module	Typically 0.6 W					
•	pts, diagnostics					
Diagnostics function						
Group error	Red "SF" LED					
Diagnostic functions readable	Yes					

1.1 2AI TC ST analog electronic module (6ES7134-4JB00-0AB0)

Analog valu	e generation	
Measuring principle	Integrative	
Integration time/conversion time/resolution per channel:		
Integration time can be assigned parameters	Yes	
Interference frequency suppression in Hz	60 50	
Integration time in ms	16.7 20	
Basic conversion time incl. integration time in ms	55 65	
Additional conversion time for wire break check diagnostics in ms	20 20	
Cycle time in ms	Number of active channels per conversion time	module x
Resolution (including overrange)	15 bits plus sign	
Suppression of inter	erence, limits of error	
Noise suppression for f = n x (f1 ± 1 %), (f1 = interference frequency)		
Common-mode interference (Uss)	Min. 90 dB	
 Common mode interference (peak value of interference < rated value of input range) 	Min. 70 dB	
Crosstalk between the inputs	Min50 dB	
Operational limit (over the entire temperature range, with reference to the input range) ¹	± 0.6 %	
Basic error limit (operational limit at 25°C with reference to input range) ¹	± 0.4 %	
Temperature error (with reference to the input range)	± 0.005 %/K	
Linearity error (with reference to the input range)	± 0.01 %	
Repeatability (in steady state at 25°C with reference to input range)	± 0.05 %	

Data for se	electing a sensor				
Input range (rated value)/input resistance					
• Voltage	\pm 80 mV/min. 1 M Ω				
Thermocouple	Type E, N, J, K,	L, S, R, B, T/min. 1 MΩ			
Permitted input voltage (destruction limit)	± 10 V, continuo	us			
Connection of the sensors					
For measuring voltage	Supported				
Characteristic curve linearization	Yes, can be assi J, K, L, S, R, B,	gned parameters for Type E, N Γ as per IEC 584			
Temperature compensation					
Internal temperature compensation	Not supported	Not supported			
External temperature compensation by looping a compensating box into the measuring circuit	Possible, one external compensating box per channel				
External compensation by means of temperature value obtained at an analog module of the same ET 200S station	Yes				
Smoothing of the measured values	Yes, can be assigned parameters in 4 steps by means of digital filtering				
	Step	Time constant			
	None	1 x cycle time			
	Weak	4 x cycle time			
	Medium	32 x cycle time			
	Strong	64 x cycle time			

Compensation of thermocouples with a compensating box

As well as the error limits of the 2AI TC ST electronic module (see table "Technical data 2AI TC ST (6ES7134-4JB01-0AB0)" in this chapter) you must also take the accuracy of the compensating box into account.

1.1 2AI TC ST analog electronic module (6ES7134-4JB00-0AB0)

Compensation of thermocouples with a Pt100 on 2AI RTD ST, 2/4AI RTD ST and 2AI RTD HF

Factors affecting the accuracy of the temperature measurement							
Wiring rules	Ensure there is good thermal contact between the reference junction and the Pt100 used for compensation.						
	We recommend that you wire the Pt100 with a four-wire connection.						
Additional technical data on the error limits of the 2Al TC	The accuracy of the thermal resistor (Pt100) used for compensation must be taken into account.1						
	The error of the measurement input (2AI RTD ST) used for compensation must be taken into account.1						

¹ In the case of thermocouples with a characteristic curve with a very shallow gradient, these errors can lead to a major measurement discrepancy.

For the following thermocouples, this causes a limitation of the input range of the thermocouples in which the accuracy information in the manual applies:

- Type N: -100 °C
- Type K: -230 C
- Type E: -230 C

I&M functions

The interface modules identified in the table below (as of order number) can be used to read and write I&M data from the module and for the firmware update:

Interface module	as of order number
IM 151-1 STANDARD	6ES7151-1AA05-0AB0
IM 151-1 FO STANDARD	6ES7151-1AB05-0AB0
IM 151-1 HIGH FEATURE	6ES7151-1BA02-0AB0
IM 151-3 PN	6ES7151-3AA22-0AB0
IM 151-3 PN HIGH FEATURE	6ES7151-3BA22-0AB0
IM 151-3 PN HIGH SPEED	6ES7151-3BA60-0AB0
IM 151-3 PN FO	6ES7151-3BB22-0AB0
IM 151-7 CPU	6ES7151-7AA20-0AB0
IM 151-7 F-CPU	6ES7151-7FA20-0AB0
IM 151-8 PN/DP CPU	6ES7151-8AB00-0AB0
IM 151-8 PN/DP F-CPU	6ES7151-8FB00-0AB0

Parameters 2

2.1 Parameters

Table 2- 1 Parameters for analog input module

2AI TC ST	Range of values	Default setting	Applicability
Group diagnostics (parameter assignment error, internal error, channel diagnostics)	DisableEnable	Disable	Module
Diagnostics: Overflow/underflow	DisableEnable	Disable	Module
Diagnostics: Wire-break check *	DisableEnable	Disable	Channel
Smoothing	NoneWeakMediumStrong	None	Channel
Comparison point	NoneRTD	None	Channel
Reference junction number	 None 1 to 8 (in the case of the IM151-1 STANDARD and IM151-1 FO STANDARD) 1 (in the case of the IM151-1 BASIC, IM151-1 COMPACT, IM151-1 HIGH FEATURE) 	None	Module
Type/range of measurement	 Deactivated Voltage ± 80 mV TC-EL Type T (Cu-CuNi) TC-EL Type K (NiCr-Ni) TC-EL Type B (PtRh-PtRh) TC-EL Type N (NiCrSi-NiSi) TC-EL Type E (NiCr-CuNi) TC-EL Type R (PtRh-Pt) TC-EL Type S (PtRh-Pt) TC-EL Type J (Fe-Cu-Ni) TC-EL Type L (Fe-Cu-Ni) 	TC-EL Type K (NiCr-Ni)	Channel

^{*} Only with thermocouples. A parameter assignment error occurs when the wire break diagnosis is enabled in the voltage measuring range. The module does not start up.

2.2 Parameter description

Smoothing

The individual measured values are smoothed by digital filtering. The smoothing can be adjusted in four steps, in which the smoothing factor k multiplied with cycle time of the electronic module equals the time constant of the smoothing filter. The greater the smoothing, the greater the time constant of the filter.

The following diagrams show the step response with the various smoothing factors in relation to the number of module cycles.

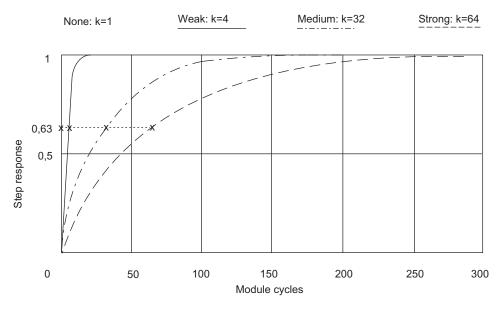
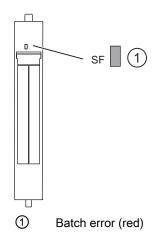



Figure 2-1 Smoothing with the 2AI TC ST

Diagnostics

3.1 Diagnostics using LED display

LED display

Status and error displays

Event (LED)	Cause	Remedy		
SF				
On	No configuration or incorrect module plugged in. No load voltage.present There is a diagnostic message.	Check the parameter assignment. Check the load voltage. Evaluate the diagnostics.		

3.2 Error types

Analog input module error types

Table 3-1 Error types

Erro	r type	Meaning	Remedy
21 _D	10101: Reference channel error*	Error on the reference channel	Check the reference module (2 AI RTD ST).
16 _D	10000: Parameter assignment error	Module cannot use the parameter for the channel: Inserted module does not match the one configured. Incorrect parameter assignment.	Correct the configuration (align actual and set configuration). Correct the parameter assignment (wire break diagnostics only parameterized for the permitted measuring ranges).
9 _D	01001: Error	Internal module error (diagnostic message at channel 0 applies to the entire module)	Replace the module.
7 _D	00111: Upper limit exceeded	Value is above the overrange.	Correct the module/final controlling element tuning.
8 _D	01000: Lower limit value undershot	Value is below the underrange.	Correct the module/final controlling element tuning.
6 _D	00110: Open circuit	Line to the encoder interrupted.	Correct the process wiring.

^{*} Reference channel error is not reported if the RTD module is not parameterized in the GSD file using the PT100 Climatic. This applies to IM151-1 HIGH FEATURE (6ES7151-1BA00-0AB0 or higher), IM151-7 CPU and IM151-3 PROFINET IO (6ES7151-3AA00-0AB0 or higher).

Analog value representation

4.1 Introduction

Electronic modules with analog outputs

With the electronic module with analog inputs, continuously variable signals, such as those occurring in temperature measurement and resistance measurement, can be acquired, evaluated, and converted to digital values for further processing.

4.2 Analog value representation for measuring range with SIMATIC S7

Analog value representation

With the same nominal range, the digitized analog value is the same for input and output values. Analog values are represented in two's complement.

The following table shows the analog value representation for the analog electronic modules.

Table 4- 1 Analog value representation (SIMATIC S7 format)

Resolution	Analo					Analog value										
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Significance of the bits	S	214	213	212	211	210	2 9	28	27	26	2 ⁵	24	23	2 ²	21	20

Sign

The sign (S) of the analog value is always in bit number 15:

- "0" → +
- "1" → -

4.3 Measuring ranges

Analog values

The following table shows the representation of the binary analog values and the corresponding decimal and hexadecimal representation of the units of the analog values.

The table below shows the 11, 12, 13, 14, and 15 bit resolutions + sign. Each analog value is entered left aligned in the ACCU. The bits marked with "x" are set to "0".

Table 4-2 Analog values (SIMATIC S7 format)

Resolution in bits	U	Inits	Analog	g value
	Decimal	Hexadecimal	High byte	Low byte
11+S	16	10н	8000000	0 0 0 1 x x x x
12+S	8	8н	S000000	0 0 0 0 1 x x x
13+S	4	4н	S000000	0 0 0 0 0 1 x x
14+S	2	4 _H	S000000	000001x
15 + sign	1	1н	S000000	0000001

4.3 Measuring ranges

4.3.1 Measuring ranges for thermocouples

Introduction

The following tables contain the digitized analog values for the measuring ranges of the analog input modules.

Measured values in the case of a wire break depending on diagnostic being enabled

Table 4-3 Measured values in the case of a wire break depending on diagnostic being enabled

Format	Parameter assignment	Measu	red values	Description
		Decimal	Hexadecimal	
• S7	"Wire-break check" and "Group diagnostics" enabled	32767	7FFF _H	"Open circuit" diagnostic message
	"Wire-break check" or "Group diagnostics" disabled			Open input: Undefined measured value

Measuring range for thermocouple: Type B

Table 4- 4 SIMATIC S7 format: Type B measuring range in °C

Type B in °C	Units		Range
	Decimal	hexadecimal	
> 2070.0	32767	7FFF _H	Overflow
2070.0	20700	50DC _н	
:	:	:	Overrange
1820.1	18201	4719 _H	
1820.0	18200	4718 _H	
:	:	:	Nominal range
0.0	0	0000н	
-0.1	-1	FFFF _H	
:	:	:	Underrange
-120.0	-1200	FB50 _H	
< -120.0	-32768	8000н	Underflow

Measuring range for thermocouple Type E

Table 4- 5 SIMATIC S7 format: Type E measuring range in °C

Type E in °C	Units		Range
	Decimal	hexadecimal	
> 1200.0	32767	7FFF _H	Overflow
1200.0	12000	2EE0 _H	
:	:	:	Overrange
1000.1	10001	2711 _H	
1000.0	10000	2710 _H	
:	:	:	Nominal range
-270.0	-2700	F574 _H	
< -270.0	- 32768	8000н	Underflow

4.3 Measuring ranges

Measuring range for thermocouple Type J

Table 4- 6 SIMATIC S7 format: Type J measuring range in °C

Type J in °C	Uni	ts	Range
	Decimal	hexadecimal	
> 1450.0	32767	7FFF _H	Overflow
1450.0	14500	38A4 _H	
:	:	:	Overrange
1200.1	12010	2EEA _H	
1200.0	12000	2EE0 _H	
:	:	:	Nominal range
-210.0	-2100	F7CC _H	
< -210.0	- 32768	8000н	Underflow

Measuring range for thermocouple Type K

Table 4-7 SIMATIC S7 format: Type K measuring range in °C

Type K in °C	Units		Range
	Decimal	hexadecimal	
> 1622.0	32767	7FFF _H	Overflow
1622.0	16220	3F5C _H	
:	:	:	Overrange
1372.1	13721	3599н	
1372.0	13720	3589 _H	
:	:	:	Nominal range
-270.0	-2700	F574 _H	
< -270.0	- 32768	8000н	Underflow

Measuring range for thermocouple Type L

Table 4-8 SIMATIC S7 format: Type L measuring range in °C

Type L in °C	Units		Range
	Decimal	hexadecimal	
> 1150.0	32767	7FFF _H	Overflow
1150.0	11500	2CEC _H	
:	:	:	Overrange
900.1	9001	2329н	
900.0	9000	2328н	
:	:	:	Nominal range
-200.0	-2000	F830 _H	
< -200.0	-32768	8000н	Underflow

Measuring range for thermocouple Type N

Table 4- 9 SIMATIC S7 format: Type N measuring range in °C

Type N in °C	Units		Range
	Decimal	hexadecimal	
> 1550.0	32767	7FFF _H	Overflow
1550.0	15500	3С8Сн	
:	:	:	Overrange
1300.1	13001	32С9н	
1300.0	13000	32C8 _H	
:	:	:	Nominal range
-270.0	-2700	F574 _H	
< -270.0	-32768	8000н	Underflow

4.3 Measuring ranges

Measuring range for thermocouple Types R, S

Table 4- 10 SIMATIC S7 format: Type R, S measuring range in °C

Type R, S in °C	Units		Range
	Decimal	hexadecimal	
> 2019.0	32767	7FFF _H	Overflow
2019.0	20190	4EDE _H	
:	:	:	Overrange
1769.1	17691	451Bн	
1769.0	17690	451A _H	
:	:	:	Nominal range
-50.0	-500	FE0C _H	
-50.1	-510	FE0B _H	
:	:	:	Underrange
-170.0	-1700	F95Cн	
< -170.0	-32768	8000н	Underflow

Measuring range for thermocouple Type T

Table 4- 11 SIMATIC S7 format: Type T measuring range in °C

Type T in °C	Units		Range
	Decimal	hexadecimal	
> 540.0	32767	7FFF _H	Overflow
540.0	5400	1518 _H	
:	:	:	Overrange
400.1	4001	0FA1н	
400.0	4000	0FA0 _H	
:	:	:	Nominal range
-270.0	-2700	F574 _H	
< -270.0	-32768	8000н	Underflow

4.3.2 Voltage measuring ranges

Voltage measuring ranges: ±80 mV

Table 4- 12 SIMATIC S7 format: Measuring range ±80 mV

Measuring range ±80 mV	Units		Range
	Decimal	Hexadecimal	
> 94,071	32767	7FFF _H	Overflow
94,071	32511	7EFF _H	
:	:	:	Overshoot range
80,003	27649	6С01н	
80,000	27648	6C00 _H	
60,000	20736	5100н	
:	:	:	Nominal range
-60,000	-20736	AF00 _H	
-80,000	-27648	9400н	
-80,003	-27649	93FFн	
:	:	:	Underrange
-94,074	-32512	8100н	
< -94,074	-32768	8000н	Underflow

4.4 Effect on analog value representation

4.4.1 Effect of the supply voltage and the operating state on analog input values

The input values of the analog modules are dependent on the supply voltage for electronics/encoders and on the operating state of the PLC (CPU of the DP master). This is illustrated by the table below.

Table 4- 13 Relationship between the analog input values for the operating state of the PLC (CPU of the DP master) and the supply voltage L+

Operating state of the PLC (CPU of the DP master)		Supply voltage L+ on ET 200S (power module)	Input value of the electronic module with analog inputs (evaluation possible on the CPU of the DP master)
POWER	RUN	L+ present	Process values
ON			7FFF _H until first conversion after startup, or after assignment of parameters for the module is completed.
		L+ missing	7FFF _H
POWER	STOP	L+ present	Process value
ON		L+ missing	7FFF _H
POWER O	-	L+ present	-
FF		L+ missing	-

4.4.2 Effect of the value range on the 2 Al TC Standard analog input

The way electronic modules respond to analog inputs depends on where the input values fall within the value range. This is illustrated by the table below.

Table 4- 14 Response of the analog modules, depending on where the analog input value falls within the range of values

Measured value within	Input value in SIMATIC S7 format	Input value in SIMATIC S5 format
Nominal range	Measured value	Measured value
Over-/underrange	Measured value	Measured value
Overflow	7FFF _H	End of the overrange +1 plus overflow bit
Underflow	8000 _H	End of the underrange -1 plus overflow bit
prior to parameter assignment, or incorrect parameter assignment	7FFF _H	7FFF _H

Connecting

5.1 Connecting measuring sensors

Introduction

You can connect encoders with voltage signals and thermocouples to the 2AI TC ST analog input module.

In this chapter you will find out how to connect the measuring encoders and what to watch out for when doing so.

Cables for analog signals

You should use shielded and twisted-pair cables for the analog signals. This reduces the effect of interference. You should ground the shield of the analog cables at both ends. If there are differences in potential between the cable ends, an equipotential bonding current that may interfere with the analog signals will flow across the shield. If this is the case, you should only ground the shield at one end of the cable.

Analog input modules

The analog input modules are electrically isolated:

- Between the logic and backplane bus
- Between the load voltage and the channels.
 - Electrical isolation: No link between MANA and the central grounding point (UISO)

Note

Ensure that this difference in potential $U_{\rm ISO}$ does not exceed the permitted value. If there is a possibility of exceeding the permitted value, establish a connection between terminal $M_{\rm ANA}$ and the central grounding point.

5.1 Connecting measuring sensors

Connecting measuring encoders to analog inputs

There can be only a limited potential difference U_{CM} (common mode) between the measuring lines M- of the input channels and the reference point of the measuring circuit M_{ANA} . To ensure that the permitted value is not exceeded, you must take different steps depending on the whether the encoders are isolated or non-isolated. The steps you have to take are described in this chapter.

Abbreviations used

The meanings of the abbreviations in the figures below are as follows:

M+: Measuring line (positive)M- Measuring line (negative)

Mana Reference potential of the analog measuring circuit

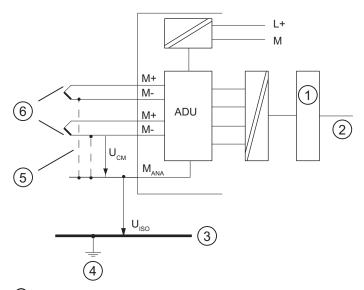
M Ground connection

L+ Rated load voltage 24 V DC

U_{CM} Potential difference between inputs and reference potential of the measuring circuit

Mana

U_{ISO} Potential difference between M_{ANA} and central grounding point


Isolated measuring encoders

The isolated measuring encoders are not connected to the local ground potential. These can be potential-free. Depending on local conditions or interference, potential differences U_{CM} (static or dynamic) can occur between the measuring lines M- of the input channels and the reference point of the measuring circuit M_{ANA} .

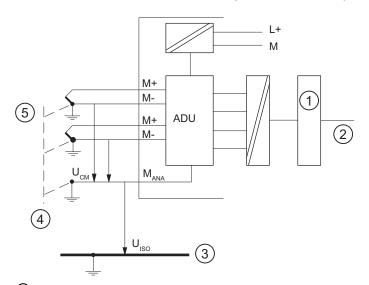
To ensure that the permitted value for U_{CM} is not exceeded in environments with strong EMC interference, the following applies:

• For the 2AI TC analog input module: Connect M- to Mana!

The following schematic representation illustrates the connection of isolated measuring encoders to the optically isolated analog input modules.

- 1 Logic
- ② Backplane bus
- 3 Ground bus
- 4 Central grounding point
- S Recommended connection
- 6 Isolated measuring encoders

5.1 Connecting measuring sensors


Non-isolated measuring encoders

The non-isolated measuring encoders are connected to the local ground potential. You must connect M_{ANA} to the ground potential. Depending on local conditions or interference, potential differences U_{CM} (static or dynamic) can occur between the locally distributed measuring points.

If the permitted value for U_{CM} is exceeded, there must be equipotential bonding conductors between the measuring points.

The following schematic representation illustrates the connection of non-isolated measuring encoders to an optically isolated analog input module.

Connection of non-isolated measuring encoders to an optically isolated analog input module:

- 1 Logic
- ② Backplane bus
- 3 Ground bus
- 4 Equipotential bonding conductor

5.2 Connecting thermocouples

Introduction

This section contains additional information on connecting thermocouples.

Compensation of the comparison point temperature

There are various ways of obtaining the comparison point temperature in order to get an absolute temperature value from the temperature difference between the comparison point and the measuring point.

Table 5-1 Compensation of the comparison point temperature

Option	Description	Comparison point parameters
No compensation	It is not just the temperature of the measuring point that you need to record: The temperature of the comparison point (transition from Cu line to thermocouple line) also affects the thermoelectromotive force. The measured value on its own is incorrect.	None
Using a compensating box on the supply lines of a single thermocouple	You compensate using a compensating box. The compensating box is the transition point from the Cu line to the thermocouple line. No further processing is necessary using the 2AI TC.	None
Use of a Pt 100 Climatic Range resistance thermometer to record the reference junction temperature (best method)	You can record the reference junction temperature using a resistance thermometer (Pt 100 Climatic Range). Given appropriate parameter assignment, this temperature value in the ET 200S is distributed to the 2AI TC modules and calculated in the modules together with the temperature value obtained for the measurement point. Number of reference junctions: 1	The parameter assignment of the IM151-1 and the 2AI TC must be coordinated: 2AI RTD configured to Pt 100 climatic range at the correct slot; 2AI TC: Reference junction: RTD; select reference junction number 1 IM: Assignment of the reference junction to a slot with the 2AI RTD; selection of a channel;

Extension to a comparison point

The thermocouples can be extended from their connection point by means of compensating lines to the comparison point (transition to Cu line) or the compensating box. The comparison point can also be an ET 200S terminal module.

The compensating lines are made of the same material as the wires of the thermocouple. The supply lines are made of copper. Ensure the correct polarity when connecting.

5.2 Connecting thermocouples

Using a compensating box

The effect of the temperature on the comparison point of a thermocouple (such as a terminal box) can be adjusted with a compensating box.

The compensating box contains a bridge circuit that is adjusted for a certain comparison point temperature (compensating temperature). You connect the thermocouples or their compensating lines to the compensating box. The compensating box then forms the comparison point.

If the actual reference temperature differs from the compensating temperature, the temperature-dependent bridge resistance changes. A positive or negative compensation voltage occurs; this is added to the thermo-electromotive force.

Compensating boxes with a **comparison point temperature of 0°C** must be used for the compensation of the analog input modules.

Note:

- The power supply to the compensating box must be isolated.
- The power supply unit must have adequate interference filtering (by means of a grounded shielding winding, for example).

Compensation by means of a resistance thermometer at the 2AI RTD

If thermocouples that are connected to the inputs of the 2Al TC have the same reference junction, compensate by means of a 2Al RTD.

For both channels of the 2AI TC module, you can select "RTD" or "None" as the reference junction. If you select "RTD," the same reference junction (RTD channel) is always used for both channels.

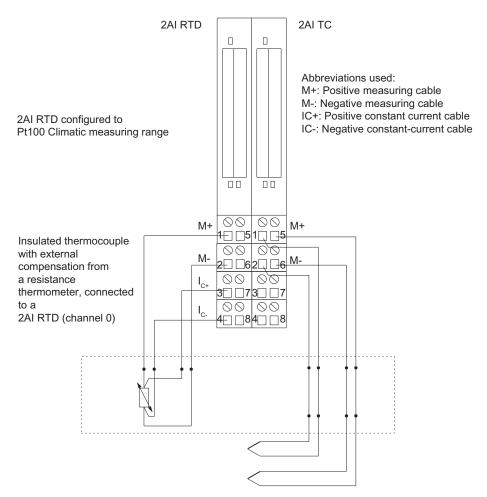


Figure 5-1 Compensation by means of the 2AI RTD

Note

In the case of 2/4Al RTD ST analog electronic module, use the channels 0 and 1 for compensation.

5.2 Connecting thermocouples

Parameter assignment of the reference junction for the 2AI TC and the interface module

You set the reference junctions for the 2AI TC electronic modules by means of the following parameters:

Table 5-2 Reference junction parameters

Parameters	Module	Range of values	Explanation	
Reference junction slot	IM 151	None, 2 to 12 (IM151-1 BASIC) None, 2 to 13 (IM151-1 COMPACT)	A slot with the channel for measuring the reference temperature (determining the compensation value) can be assigned with this parameter.	
		none, 2 to 63 (IM151-1 HIGH FEATURE, IM151-1 STANDARD, IM151-1 FO STANDARD)		
Reference junction input	IM 151	RTD at Channel 0 RTD at Channel 1	This parameter can be used to set the channel (0/1) for measuring the reference temperature (calculation of the compensation value) for the assigned slot	•
Reference junction E0 and reference junction E1	AI TC	None, RTD	This parameter allows you to enable the use of the reference junction.	
Reference junction number	AI TC	1	With this parameter, you assign the reference junction (1) containing the reference temperature (compensation value).	

Example of assigning parameters of reference junctions

Setup: For simplification, only RTD and TC modules are shown in the following figure:

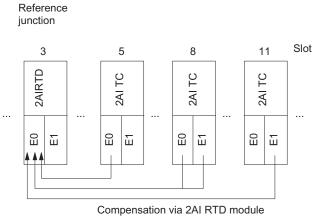


Figure 5-2 Example of assigning parameters of reference junctions

Relevant parameters to be set for the interface module:

Parameters	Value				
Reference junction slot	3				
Reference junction input	RTD at Channel 0				

Relevant parameters to be set for the 2AI TC:

Slot	Parameters	Value
5 (2AI TC)	Reference junction E0	RTD
	Reference junction E1	None
	Reference junction number	1
	Type/range of measurement E0	TC-EL Type
	Type/range of measurement E1	(any)
8 (2AI TC)	Reference junction E0	RTD
	Reference junction E1	RTD
	Reference junction number	1
	Type/range of measurement E0	TC-EL Type
	Type/range of measurement E1	TC-EL Type
11 (2AI TC)	Reference junction E0	None
	Reference junction E1	RTD
	Reference junction number	1
	Type/range of measurement E0	(any)
	Type/range of measurement E1	TC-EL Type

5.3 Wiring unused channels of the analog input modules

Non-isolated thermocouples

When you use non-isolated thermocouples, you must comply with the permitted common-mode voltage.

5.3 Wiring unused channels of the analog input modules

Rules

Pay attention to the following instructions when wiring unused channels:

- "Deactivate" unused input channels when assigning parameters.
- A deactivated channel always returns the value 7FFFH.
- The module cycle time is halved with the 2AI TC ST module.
- To adhere to the permissible potential differences (U_{CM}), you must wire jumpers on the terminal module for the unused channels.

Analog input module	TM connecting terminal							
	Channel 0			Channel 1				
	1	2	3	4	5	6	7	8
2AI TC ST	• • •		• • •					

5.4 Using the shield connection

Rules

To prevent interference we recommend the following for analog electronic modules:

- Use shielded wires to the sensors and actuators.
- Lay out the wire shields on the shield connection.
- Connect the shield connection to the ground bus with low impedance.

Index

2 Parameter assignment of the reference junction, 32 2AI TC ST analog analog electronic module Terminal assignment, 7 R 2AI TC ST analog electronic module Block diagram, 8 Response of the analog modules, 24 Properties, 7 During operation, 24 Technical data, 9 When faults occur, 24 Α S Analog input modules Shield connection, 34 Error types, 16 Smoothing, 14 Analog value processing, 25 Analog value representation for thermocouples, 19, 20, 21, 22 Т Thermocouples, 29 C Cables for analog signals, 25 Compensation of the comparison point temperature, 29 Connecting, 25, 29 Connecting measuring encoders to analog inputs, 26 Isolated measuring encoders, 27 LED display, 15 M Measured value resolution, 18 Measuring encoders, 25 Measuring ranges with SIMATIC S7, 17 Ν

Ρ

Non-isolated measuring encoders, 28