CC 100 M User Handbook

Version 104

2555

User Handbook

1070 073 401-104 (89.04) GB

(S32)

Reg. Nr. 16149-03

© 1989

by Robert Bosch GmbH, All rights reserved, including applications for protective rights. Reproduction or handing over to third parties are subject to our written permission.

Discretionary charge 21,30 DM

DESCRIPTION	Page	
Component parts		
General	1-1	
Survey of modules	1-2	
Operating panel	1-3	
Manual panel	1-4	
CP/MEM module	1-5	
Interfaces		
Data interfaces, general	1-6	
Data format	1-7	
V.24 cable	1-8	
20 mA cable	1-9	
20 mA terminal	1-10	
Peripherals		
Cassette unit DCR terminal	1-11	
Mini cassette unit	1-14	
Program Header		
External program production	1-16	
General header format	1-17	
Program header - example	1-18	
Program header in DFS format	1-19	
Position, calculation, input and output of the checksum	1-22	

2 OPERATING

Main Modes	
Survey	2-1
Subdivision of VDU display; reset conditions	2-2
Edit	
General	2-3
Program editor and cycles	2-4
Machine	
Manual machine operation	2-5
MDI	2-6
Teach In	2-7
Automatic	
Operating procedure before program/cycle start	2- 9
Interruption/re-entry	2-10
Operating procedure after cycle start	2-11
Accessing tables	2-12

Information	Page
General, machine status	2-13
Axes display, PIC/PLC display	2-15
Inch/metric switching	2-18
Data Handling	
General, load/save	2-20
Load programs/cycles	2-21
Save programs/cycles	2-22
Delete programs/cycles	2-23
Load tools, zero shifts, variables	2-25
Save tools, zero shifts, variables	2-26
Load machine parameters, texts, graphics	2-26
Output logbook data	2-27
3 PROGRAMMING	

General

Program production, memory allocation	3-1
Memory allocation - programs/cycles	3-2
Part programs and cycles	3-3
Subprograms	3-4
Jump instructions	3-5
Subprogram call-ups	3-5
Parallel programming	3-7
Drip feeding	3-9

Addresses

F-address, T-address	3-14
M-address	3-15
S-address, gear ranges	3-16
H-address	3-17
Operator instruction programming	3-18

Tables

Tools,	zero shifts,	variables	3-19
--------	--------------	-----------	------

G-Functions

Linear interpolation in rapid G0	3-20
Linear interpolation in feed G1	3-21
Circular interpolation G2, G3, G5	3-22
Dwell G4	3-27
Linear interpolation in rapid with extended in position range Ge	3-28
Plane selection G17/18/19	3-29
Setting a pole G20	3-30
Conditional subprogram call-up G21	3-32
Subprogram call-up G22	3-33
Conditional jump G23	3-34

	Page		
Unconditional jump G24	3-35		
Field limitation G25/26/27			
Scale factor switching G36			
Programmable mirroring G38/39	3-39		
Tool radius compensation G40/41/42	3-41		
Zero shift G53, G54 - G59	3-42		
In position logic ON/OFF G61/G62	3-43		
Feedrate and spindle speed G63/G66	3-44		
Effect of feedrate G64/G65	3-45		
Contour transitions G68/G69	3-46		
Referencing G74	3-47		
Measuring probe input G75	3-48		
Machining of bores G80, G81 - G87	3-49		
Survey of fixed machining cycle	3-51		
Fixed machining cycles G80 - G87	3-52		
Drilling G81	3-55		
Boring/end facing G82	3-56		
Deep hole drilling	3-57		
Tapping	3-5 9		
Boring G85	3-61		
Reaming G86	3-63		
Thread milling G87	3-65		
Dimensioning G90/G91	3-67		
Setting position stores G92	3-68		
Feedrates G93/ G94	3-70		
Automatic calculation of cutting speed G96	3-72		
Spindle speed, direct G97	3-73		
Subprogram end G99	3-74		
Three-digit G-codes G800 - G869	3-75		
General G890 - G898	3-76		
Intersection circle/circle G890	3-78		
Intersection line/circle G891	3-79		
Rounding corners (3 points) G892	3-80		
Rounding corners (2 angles) G893	3-81		
Chamfering G894	3-82		
Calculate end point of an arc G895	3-83		
Transition point arc/arc tangential G896	3-84		
Calculate end point of a straight line G897	3-85		
Intersection of two straight lines G898	3-86		
Survey of firmly allocated cycles	3-87		

.

4	PARAMETRIC FUNCTIONS	Page
	General	
	Range, programming	4-1
	Program planning, aims, use of forms	4-2
	Memory allocation form	4-3
	Program planning form	4-4
	Variable (global) form	4-5
	Load function	4-6
	Arithmetic functions	4-7
	Trigonometric functions	4-9
	Tools	
	Load tool store	4-10
	Copy tool data	4-10
	Load/copy zero shifts	4-11
	Unconditional branching	4-12
	Conditional branching, setting condition register	4-13
	Conditional branching/condition register (CR)	4-13
	Conditional branching after mathematical comparison	4-15
	Branching condition: NC instruction	4-17
	Axis information	4-18
	Positioning POS	4-19
	STV function	4-20
	CPC programming examples	
	Ellipse	4-22
	Row of holes	4-23
	Bolt hole circle	4-24
5	TECHNOLOGY	
	Internal processing of tool, technology data	5-1
	Tool compensation, general	5-2
	Tool length compensation T-address	5-3
	Tool radius compensation G40/41/42	5-5
	Starting point, beginning of contour	5-6
	Entry into contour from different starting points	5-7
	Contour transitions with G68 (auxiliary arcs)	5-8
	Contour transitions with G69 (intersections)	5-9
	Examples for G41/42	5-10
	End point, cancelling the compensation	5-11
	Line point, cancelling the compensation	• • •
	Special Cases - Tool Compensation	
	Change of compensation, switching between G41/G42	5-12
	Examples	5-13
	Suppression of contour elements	5-14
	Cancelling compensation at inside corners	5-14
	Outside corners	5-15

6	APPENDIX	Page
	Programming Code	
	G-codes, 2-digit	6-1
	G-codes, 3-digit	6-2
	M-codes	6-3
	Parametric functions	6-4
	Axis information, auxiliary functions, subprograms	
	and jumps, special characters, control characters	6-6
	ASCII character set	6-7
	Qutput of Error Messages	
	Definition, operating	6-8
	Error message group 0	6-9
	Error message group 1	6-11
	Error message group 2	6-13

SUBJECT INDEX

1. DESCRIPTION

4

CC 100 M

Full CNC continuous path control for up to 4 numerically controlled axes plus controlled main spindle.

Programming based on DIN 66025, extended by graphic and arithmetic functions.

This manual is intended for the use by the enduser of the control.

Component parts of the control, operating elements, maintenance, working with the data interface are described in chapter 1.

Reset conditions, the reference system, operation of the operating panel and the manual panel, and the technology stores are described in chapter 2.

Chapter 3 describes the conventional programming to DIN, 3-digit G-codes and contour cycles.

Parametric functions, user graphic, operation of the tool compensation and special applications are described in chapters 4 - 7.

BOSCHCC 100 M User Handbook

COMPONENT PARTS

Operating Panel

graphic screen, 10", green soft keys main mode input keyboard

Manual Panel

handwheel, jog buttons, override switches customer keyboard reentry / display distance to go start / stop / emergency stop button

Logic Modules: CP/MEM module: connections for 2 serial data I/0 devices, operating panel, external VDU, battery and software module

Module PS 75:

Displays for

- Ready (green)
- 24 V (green),
- internal voltage levels ok (green) reset button connections for:
- ready 2
- 24V

SERVO module:

connections for 5 incremental measuring systems, analogue outputs time-critical signals

PIC module or PLC connection

OPERATING PANEL

Operating panel in main mode AUTOMATIC

UAL PANEL

INTERFACES

INTERFACES, general

The user can connect up to 2 external data terminals at the CP/MEM.

20 mA	1 device of this type can be connected to X11 (see page 1-5).	
	This interface is particularly suitable for use where long distances are involved and/or where there is a high level of interference in the surroundings.	
	With this type of interface one side is active (serves as source of current), the other must be made passive. This is achieved by specific pin allocations in the connections (see page 1-10, 1-11).	
V.24	1 device of this type can be connected to X11 or X12.	
	This interface allows higher transfer speeds than the TTY interface but is more susceptible to interference.	
Control Signals		
DTR	Data Terminal Ready: Status of readyness to receive data is output (output signal).	
DSR	Data Set Ready: Status of permission to send is recognized (input signal).	
Note: Data Lines	Switch off handshake by means of a bridge, Pins 4 and 6 at the control side.	
тх	Data output at the device sending the data.	
RX	Receipt of data at the receiving device.	
	Make sure not to confuse the plugs when connecting the devices! Only connect one device per interface (V.24/20mA) !	

DESCRIPTION

INTERFACES

DATA FORMAT 1 start bit, 7 data b

1 start bit, 7 data bits, 1 stop bit, "even" parity bit (1 start bit, 7 data bits, 2 stop bits, "even" parity bit for 110 Bd)

Control

Characters (ASCII)

- DC1 Tape reader ON or input START.
- DC2 Punch ON or output START. Output comes from the controlling device. It starts the transmission.
- DC3 Tape reader OFF or input STOP.
- DC4 Punch OFF or output STOP. Output comes from the controlling device. It interrupts (stops) the transmission.
- STX Start of text.
- ETX End of text.
- EOT End of transmission.

Sub-miniature D-type connector 25-pole socket on device plug on cable

Plug: side for soldering

V.24 CABLE

Cable length	max. 15 m
	transfer rate max. 9600 Baud, always with handshake
Signal levels	high +3 V to +12 V low -3 V to - 12 V

Note: X12 interface does not use handshake signals.

20 mA CABLE

.

Cable lengths:	CC active CC passive	max. 15 m max. 100 m
	Baudrates: max. 4800 Bd with ha max. 300 Bd withou	indshake t handshake
Signal levels:	high Iow	approx. 20 mA approx. 0 mA

max. external voltage drop 2 V

CC active

The CC serves as source of current:

1 - 9

20 mA TERMINAL

CC passive

Pin Allocation

The peripheral device serves as source of current. Max. admissible voltage drop in the control 2V. The supply to the driving device can be up to 24V.

User Handbook

PERIPHERALS

OPERATING ELEMENTS

- Read (DCR ----- parallel)

- fast rewind

- Search forwards

Read (DCR ---- serial) -

Write (serial ---- DCR) -

Search backwards -

DESCRIPTION PERIPHERALS

User Handbook

DESCRIPTION PERIPHERALS

DCR Rear Panel

Settings:

- 1. CODE: BIN
- 2. BAUDRATE: C (= 4800 Bd)
- 3. PARITY: EVEN
- 4. STOP BIT: 1 (as in control)
- 5. Connector for use with CC 100 M is SERIAL
- 6. Cable used: 046266

Explanations:

- NETZ EIN/AUS MAINS ON/OFF
- Schalterst. switch position

Vor Öffnen des Gehäuses Netzstecker ziehen!

- Unplug mains cable before opening the housing !

MINI CASSETTE UNIT

GENERAL

DISPLAYS

Error ()

()

Test

error indicator

ready indicator

- recording process:
 ECMA 34
- •storage capacity: 20 KB each side
- •data format and baudrate
- set on back
- •automatic self-diagnosis after switch-on with "Ready" indicator
- •serial interface with V24 or 20 mA

OPERATING ELEMENTS

1 - 14

DESCRIPTION PERIPHERALS

User Handbook

Rear Panel of MINI CASS

Settings:

- 1. code: BIN
- 2. MODE:
- 3. BAUDRATE: 7 (= 1200 Baud)

4

4. cable used: 20 mA - 2.5 m part no. 046266

Data carrier:

Digital mini-cassette LDB 400 part no. 910749

Control	Mode	Number of data bits	Parity bit	Start bit	Stop bit	Operating buttons active	Binary data
micro 5/8 CC 100/200/300	4	7	even	1	1	yes	no

PROGRAM HEADER

EXTERNAL PROGRAM PRODUCTION

The following text explains the methods by which part programs and part program type subprograms (or cycles) are produced.

Such programs are constructed from program language elements to DIN 66025 and can be produced by one of the following methods:

- 1. via keyboard input, using the program editor in the NC
- 2. via the manual panel with 'Teach In', in the NC
- 3. via a programming unit onto a data carrier (paper tape, for instance), outside the NC
- 4. by computer, outside the NC

Programs produced outside the NC must conform to the NC machine code and the NC syntax. In addition programs which are input from a data carrier (tape or digital cassette) or via an interface (V24/20 mA) must have a leader (header) and a trailer. Leader and trailer, the beginning of the individual program lines, as well as the program identifications of the header lines of data blocks must be provided in the correct format.

Note:

When data needs to be transmitted the external data carrier must be activated before the control.

User Handbook

- *) CR LF must be in columns 63 and 64 respectively.

Program Header - Original Print-out

Data is output by the control in this format, and the same format must be used when programming data externally (see also previous page).

Tool	m		IDENTIFICA	TION AS TOOL	_ DATA	
	T1 T2	R= 18.0 R= 0.0) DR= DR=	0.0	L= 200.0 L= 0.0	S= 0.0 S= 0.0
Zero Shift	ZERO	-SHIFT		TION AS ZERC) SHIFT	1 2
	G55	X= 91.2 X= 0.0	Y=	0.0	Z= 0.0	E= 0.0
Variable	VARI Vi	[ABLE [= 45.(IDENTIFICA	TION AS VARIA 0.707106	ABLE	ו 3
	DDO	CDAM	PROGR. NAMI			ACCESS LEVEL
Program	N 1 N 2 N 3 N 4	GRAM G879 G1 X2 M2 (PROG	00 F2000 RAM END)		n K wed	4
Cycle	C N 1 N 2	YCLE G92 X M21	IDENTIFICA -20***** 0 Y0	TION AS CYCL	E	ר 5
		- = spac	e character			· .
Identification Letters		The acce	ess level is ide	entified as follow	vs:	
		RWED	read, write e	execute, delete (permitted	
		RE	read, execu	te permitted		
		Ε	execute per	mitted (cycles c	only)	
		Dimensio M = met	oning: tric I =	= inch		

PROGRAM HEADER IN DFS FORMAT

The CC 100 program header in DFS format has been designed on the basis of the header format of the cc 200/300, in order to create uniformity in this area for the future. Specific types of files can be loaded and output.

The uniform DFS program header has the following (basic) format:

At the positions indicated by an asterisk it is possible to insert one, several or no space character (s).

Different

possibilities

(DFS, Pxx) (DFS, Pxx, . suffix) (DFS, Pxx, name . suffix) (DFS, Pxx, . suffix, RWED) (DFS, Pxx, name . suffix, RWED)

Explanations

- DFS

Identification of the program header in DFS format (defined storage).

- File type

Specific letters identify the file type:

- P = program
- C = cycle
- E = text
- K = compensation table (K0)
- V = zero shift table (V0)
- X = variables (X0)
- L = machine parameters

File number

- Program numbers can contain up to 9 digits, cycle numbers up to 2 digits.

File name

The file name can contain up to 15 characters, which can be letters as well as numbers. Tables are transferred without name. The file type to be transferred is simply identified as X0, V0 or K0.

1 - 19

- Suffix

The suffix consists of one letter and determines the dimensioning method (I = inch/M = metric). It is separated from the file name by a decimal point.

- Access level

The access level is defined by a 2-character code. 2-char.: RE (read, execute) 4-char.: RWED (read, write, execute, delete)

Note

Input of file name, suffix and access level is not compulsory. They are purely optional . If no file name is programmed the suffix can be ommitted. The control will then automatically assume the dimensioning to be metric (= suffix M). If a file name is stated in the program header the suffix must be entered too.

Examples of DFS program header for different file types

(DFS, P12)	 transfer of a single program, program number 12
(DFS, P10,.M)	 transfer of a metric program, program number 10
(DFS, C 4,TOOL CHANGE . I)	- transfer of the tool change cycle in inch format
(DFS, P1, TEST RAPID.M,RWED)	- transfer of program P1 with metric dimensions under access level RWED
(DFS, X0)	- transfer of the variable table
(DFS, K0)	" compensation table
(DFS, V0)	" zero shift table

Examples:

.

(DFS,P 1,TEST RAPID.M,RWED) (DFS,C 79,.H,RWED) (DFS,K Q) (DFS,X 0) (DFS, 9 0)

OPERATING SEQUENCES FOR OUTPUT AND INPUT

The files to be output are determined via soft key and marked on the screen in reverse video:

SELECTED FILE ONLY	 Output if specific file had previously been selected.
PROGRAMS OR CYCLES	 Output if no specific file had previously been selected Whether programs or cycles are output depends on the file type active at the time.
PROGRAMS AND CYCLES	- Selection via soft key.
FILE + TOOLS FILE + ZERO SHIFT FILE + VARIABLES	 Output of a specific file, as well as tool, zero shift or variable file.

Files to be loaded can be transferred several at a time in any sequence.

If loading via interface is selected in main mode MEMORY a specific number of files can be selected by soft key operation:

ALL FILES YES NO	START	PORT NO	BAUDRATE	CONTROL YES NO
How many?	(199)		······	

CHECKSUM

- The DFS program header is output without checksum.
- In each program block the checksum is inserted directly before the CR LF control character.

Position, calculation, input/output of the checksum

1) Position of the checksum

At the end of the data and before CR LF, a space, the character ":" and then the checksum value (a 2-digit number)are written.

- Whatever the tape format, programs can be output with or without checksum.

e.g. N-11---G1 CR LF becomes N-11---G1-:nn CR LF

- = space

nn = 2-digit number for the checksum

2) How to calculate the checksum

Every character between the LF of the previous line and the ":" is included into the checksum calculation. The ASCII value of each character is added up and multiples of 256 are removed until 255 or less remain, and this remainder is converted into a hexadecimal number.

e.g. N-1	e.g. N-11G1-:nn CR		
CODE	ASCII VALUE		
<u></u>			
Ν	78		
-	32		
1	49		
1	49		
-	32		
-	32		
-	32		
G	71		
1	49		
-	32		

456 - 256 = 200 = C8

The block will now read: N-11- -- G1-: C8 CR LF

3) Input/out	put of the checksum	
INPUT	SK "CONTROL YES" active	- control checks syntax
	SK "CONTROL NO" active	- control checks the checksum, if it exists, otherwise it checks the syntax
OUTPUT	SK "CHECKSUM YES/NO" is a SK "CHECKSUM YES" active	alled up via SK "FORMAT". - programs are stored with checksum
	SK "CHECKSUM NO" active 1 - 22	- programs are stored without checksum

2. OPERATING

User Handbook

MAIN MODES

SURVEY The operation of the control is subdivided into the following main modes, which are directly selectable by pushbuttons:

EDIT working with stored data	MACHINE manual operation	AUTOMATIC execution of programs	INFO additional information
display input, modification of: programs.	direct execution without storage execution of cycles	execution of stored programs, cycles	status displays, NC/IO, axis displays, error list
subprograms, cycles, tools zero shifts	reference axes, reference cycle, MDI, manual machine, operation	execution continuous/ block by block, variable step size	deletion of: programs, variables, tool/zero shift
variables	teach in	block selection, break points, reentry	control reset
input and	customer keys	with/without	MTB SERVICE
output via	handwheel	path compensation	only for machine
data inter- faces V.24/20 mA	jog buttons	tool length compensation	tool builder
baudrates	distance to go display	distance to go display	SERVICE load M-parameters
automatic			
generation of		milling	logbook
header lines		conditions	set clock
for PROGRAM/			mode
CYCLE etc.			read in text

The active main mode is displayed continuously in the top right corner of the screen.

To come out of the current main mode altogether:

Use the page back button to revert through the levels until the 1st soft key level is reached, then select new mode. Exception: For change-over MEMORY/EDIT to AUTOMATIC no paging back required.

To come out of the current main mode temporarily:

Select a different main mode directly. The old main mode is retained in the background (display flashes) and can be reactivated by pressing the relevant mode key once more.

Subdivision of

VDU Display

active data block

data blocks:

User Handbook

active main mode

		data depending on main mode	program cycle variable table zero shift table tool table
	command SK1	ine SK2 SK3 SK4 SK5	
Reset Conditions	Immediatel	y after switch-on the following modal	conditions are active:
	G1 linear in	terpolation	
	G17 p	ane X/Y	
	G39 p	rogrammed mirror image off	
	G40 ra	adius compensation off	
	G53 n	o zero offset	
	G62 in	position operation off	
	G65 p	rogrammed feedrate applies to cutter	centre path
	G66 fe	edrate and spindle speed can be mo	dified
G6	8/G69 ce	ontour transition as arc/intersection (c	lependent on machine parameter)
	G80 n	o fixed cycle active	
	G90 al	osolute dimensions	
	G94 fe	edrate in mm/min	
	G97 di	rect spindle speed programming	
	so	cale for factor 1	
	n	o feedrate effective	
	These mod	al conditions are active in all main mo	des.
	The G-code in the follow	es which become active on switch-on ving descriptions, i.e. G39A.	are denoted with an "A"
Note	When worki the followin	ng in AUTOMATIC or MACHINE mod g types of messages, as and when ap	e the control will output propriate:
	MESSAGE	xxx - further operation possible	
	ERROR xxx	- further operation is inhibited	
	The content	t of the message can be displayed in I	NFO mode.

O P E R A T I N G MAIN MODES

EDIT	\bigcirc			
Access to Data	In this main mode all user data can be handled (se	e EDITOR).		
	Selectable data blocks:			
	- tool table - zero shift table - variable table - programs - cycles			
	The menue for part programs and cycles can be pawith soft key "NEXT PAGE".	aged forwards		
Access Levels	Unauthorized accessing of the data can be preven softkey operation. Execution is always permitted.	ted via		
	The access levels are expressed as follows:			
	 RWED read, write, execute and delete are possil RE only reading and executing are possible E only executing is possible (cycles only) 	ble		
Dimensioning	The dimensions can be selected by soft key to be i	n metric or inch.		
	Display in index and in "active datablock" line:			
	- M metric - L inch			
Commands	Under this SK the following functions are available	in 2 levels:		
	 resequence block numbers transfer program to a cycle rename a file inch/metric 	- copy file - file protection - delete file		
Data Interfaces	See chapter on "Data Handling"			
Сору	Programs stored in the memory can be duplicated The user must enter a new file name and the control	with SK function "COPY". I will select the file number.		

O P E R A T I N G MAIN MODES

arrow - edit line - cursor	-> SEARCH GRAPHIC SCROLL MODIFY INSERT	Selection via SK "PROGRAMS" or "CYCLES", program name or number SK "EDIT" The position of the <u>arrow</u> indicates which line is being worked with. This block is repeated in the edit line which contains a <u>cursor</u> (bright rectangle)
Cursor Functions	Switch-over between MODIFY/INSERT Scrolling blocks up/down by simultaneous actuation of	MODIFY INSERT + SCROLL
Block	Moving cursor sideways	or t
Selection	at which a letter is to be inserted/modified.	
Search	A characteristic string (sequence of letters, number	rs and ENTER
Functions	characters) from the required line is entered, i.e. G	41.
Delete	- individual character to the left of the cursor	
Line Delete	- content of the line to the right of the cursor is dele	
Modify	- First delete individual character,	
	- then key in new character(s)	ENTER
Insert	- enter new character(s)	

2 - 4

.

MACHINE

MANUAL MACHINE OPERATION

The manual panel is always activated in MACHINE mode.

Recording of elements of a sample contour (see p. 2 - 7)
MDI

After SK selection of MDI one block can be executed after the relevant data has been entered. The execution is initiated with the start button. Under the SK HELP the permanently stored drilling and milling cycles can be selected, parameterized and executed,

as well as the user-definable cycles.

REFERENCE	REFERENCE	MDI	TEACH IN	INCH
AXES	CYCLE			METRIC

MTB-specific soft keys (cycles)

Note:

 It is not possible to return to previous SK levels while a block/cycle is being executed.

- G41/G42 are not permitted.

- MTB cycle PRIOTITY ROUTINE can not be called up.

- Axes which have been driven onto the software limit switches can only be moved by means of the JOG

buttons +

in reverse direction.

When working in manual mode the type of traversing movement needs to be defined:

 With the jog buttons the axes can be traversed individually in incremental steps (of 1, 10, 100, 1000 or 10,000 increments). The max. feedrate corresponds to the limit determined by the machine parameter for manual feed (1 - 120,000 mm/min).

- The electronic handwheel can be activated for individual axes.

- Change-over between feed and rapid.

O P E R A T I N G MAIN MODES

BOSCHCC 100 M User Handbook

TEACH IN

- Definition
 By tracking the outline of a sample contour with the machine the specific contour features are recorded by key actuation (soft key RECORD).

 During this procedure the control stores the position values of all axes.

 A circular movement is generated by positioning to three points of the circle (soft key CIRCLE COMPUTE).
- MDI function As in MDI mode blocks can be keyed in. The data is transferred into memory with SK "RECORD".

Operating

Main mode MACHINE

REFERENCE	REFERENCE	MDI	TEACH IN	INCH
AXES	CYCLE			METRIC

Function Keys

RECORD

- Storing positions of moved axes
- Storing entered blocks
- Storing positions of blocks generated internally

- Automatic calculation of circles
- The CC 100 calculates circle data from 3 scanned points (SK 'RECORD POINT 1', 'RECORD POINT 2' and 'RECORD POINT 3')
- Circular interpolation G2/G3 is also modal in TEACH IN mode.
 If a linear movement is to follow G0/G1 must be programmend:
 Key in G0/G1 before the linear movement and transfer into memory with SK RECORD.

- Clearing blocks which have not yet been stored from the edit line.

O P E R A T I N G MAIN MODES

.

TEACH IN

Calculation of Circles with Parameter R	The control calculates the radius R from the 3 recorded axis positions and generates the circular contour.
	The diapley will show the last evic position with the calculated radius
	The display will show the last axis position with the calculated radius.
Display	G2/3 X Y R The block is stored with soft key RECORD
Note	- The CC 100 automatically generates a program with the name "TEACH IN". If a program with this name is already stored in the memory, this program has the newly entered TEACH IN functions added to it.
	If several independent programs are to be generated via TEACH IN, the old program must first be renamed in EDIT mode with SK RENAME.
	- Switching of the dimensioning unit INCH/METRIC during TEACH IN operation is not permitted.
	Should it be attempted an error message will be displayed: "inch/metric selection incorrect".

AUTOMATIC

Execution of programs and/or cycles from memory.

PROGRAM / CYCLE - Selection

The stored cycles and programs are listed in ascending numerical order. The selection is made by entering the name or the number.

OPERATING PROCEDURE BEFORE START OF PROGRAM/CYCLE

NORMAL

step: no

O P E R A T I N G MAIN MODES

AUTOMATIC

INTERRUPTION / RE-ENTRY during program execution

Possibility of external intervention by the operator with tool compensation active / not active, after at least one block has been executed completely:

Sequence

c) Manual intervention

movement away from contour for measuring purposes, for instance

- d) Tool change with
 - replacement by identical tool
 - replacement by a different tool

Tool Change

Response of machine and possible actions:

feed hold is effective

manual mode/MDI are activated

manual panel is active. spindle can be stopped or oriented

old values are retained, input of new tool data is possible (tool wear is set to 0)

it is also possible to modify the active block; re-entry onto linear and circular contour elements

 e) Drive to suitable position S to start re-entry

This position must allow direct traversing onto the contour.(no automatic evasion of obstacles)

control drives back onto the contour, with the tool centre vertical above the beginning of the unfinished contour-program execution is resumed

Note:

- G92 must not be active (see chapter 3)
- If main mode AUTOMATIC is selected between exit and reentry the reentry operation is abandoned and the basic display for main mode AUTOMATIC is displayed. Continuation is possible via reselection of the program and CYCLE START.

OPERATING PROCEDURE AFTER CYCLE START

After selection of block or a jump target the previous SK line will appear once more. The breakpoint should then be set.

O P E R A T I N G MAIN MODES

TABLES

DRY RUN	STEP	SELECT	BREAKPOINT	TABLE
RAPID		BREAKPOINT		

TOOLS	ZERO	VARIABLES	
	SHIFTS		

Zero shifts and variables can be checked, tools can be checked and edited.

TOOLS

TOOLS	ZERO	VARIABLES	1	
	SHIFTS		↓	

Tool data appears in the edit line.

TOOL		SCROLL	
NUMBER			

Tool data can be selected directly via their number (+ ENTER) or by cursor control. The cursor is positioned on the DR value (wear). The wear value compensation value can now be updated by an incremental input. Conclude with ENTER (see p. 4 - 1).

ZERO SHIFTS

TOOLS	ZERO	VARIABLES	
	SHIFTS		

Zero shift data appears in the edit line.

ZERO SHIFT	-	SCROLL	ł	
NUMBER	ł			

Direct selection via number (+ ENTER) or by cursor control (+ SCROLL).

VARIABLES

TOOLS	ZERO	VARIABLES	
	SHIFTS		

VARIABLE		SCROLL	+	
NUMBER	ŧ			

Operating and function as for zero shifts.

INFO

The INFO mode is subdivided into two separate sections:

•the machine tool builder section, protected by the MTB code

•the user section.

Within the user section additional information is made available to the operator.

selection

CC 100M	EXTERNAL	MESSAGE	AXES	PIC/PLC
STATUS	STATUS	LIST	DISPLAY	DISPLAY

TABLE	LIST		an Maine - Mindren - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

TABLE	LIST	PAGE +	PAGE -	

Display of machine status conditions, defined by MTB.

.

(Seperate DNC description in preparation)

THE FOLLOWING COST KEVE ADDRAD

DISPLAY

AXES

IH	= FC	JLLO	AAHZA	9 2	ĸE	12	AP	PEA	H:

COMMAND	LAG	MACHINE	DISTANCE	INCH	
POSITION	-	POSITION	TO GO	METRIC	
COMMAND POSITION	- The programmed position is displayed.				
LAG	- The lag, (also called following error), is displayed.				
MACHINE POSITION	- The actual position is displayed as long as there are neither zero shifts nor G92 active. The MACHINE POSITION results from the COMMAND POSITION minus the lag.				
DISTANCE TO GO	- The different position and distance to	ce between the p d the actual posit go, is displayed.	programmed con ion, i.e.the	nmand	
INCH METRIC	- The default s system sele the display i over is how	setting is metric. cted with this so in the other main ever also possibl	The dimensionin ft key determines modes; a chang e in these modes	g ; je- s.	

PIC/PLC The PIC program is displayed and the following soft keys DISPLAY are offered:

SEARCH	ł	1	TABLES	TRIGGER

SEARCH

With this soft key

- addresses
- instructions (command + operator)
- commands (CMD)
- operators
- can be searched for and displayed, entered either with the full number or part of the number or without the number.

If a string is not found the message STRING NOT FOUND appears in the edit line. If an instruction, a command etc. is not found the NC gives the message

NOT FOUND in the edit line.

SOFT KEYS

-7.

- The program display can be scrolled up and down line by line (no repeat function)

TABLES

- makes the following soft keys available:

COUNTER	TIMER	1/0		1	1
		TEMP.STORE			
		T	• ····· • ·· ····· · · · · · · · · · ·		
]				
counters 1-8					
and timers 1-8					
with current					
and loaded					
value.					
		*			
INPUT	•	OUTPUT		TEMP.STORE	
	l		ł		
soft kevs	- Thes	e soft kevs are u	sed to select the	corresponding	
INPUT	data	or clear them fro	m the screen. S	elected data	
OUTPUT	is ma	rked by hiahliah	ting of the corre	sponding soft ke	v.
TEMP.STORE	Data	used in the NC-F	PLC interface are	e highlighted in th	, ne display.
	Seve	ral or all sets of c	lata can be seled	cted simultaneos	iy.
soft keys	- The s	selected data dis	played on the so	reen can be scro	olled up
	or do	wn line by line (r	no repeat function	on).	
$\dot{\mathbf{U}}$					
TRIGGER	- make	es the following s	oft kevs availabl	e:	
				-	
		нен		TRIGGER	
2011				OFF	
		L		1	
7 . 3	.				- * 1
soft keys	- The t	rigger function re	esponds to a low	i signal or a high	signal.
LOW, HIGH					•••
soft kevs	- The t	riager function re	esponds to a risi	na or failina edae	9.
				3 3 3 -	
~_					

If one of these soft keys is actuated the following soft keys appear:

SEARCH	4	1	TABLES	TRIGGER
		↓		OFF

The selected trigger condition is displayed in the highlighted line at the top of the screen.

The highlighted line at the top of the screen contains the following information:

STATUS SIGNAL TYPE INSTRUCTION ADDRESS

STATUS - waiting for (signal has not occurred yet)

> - triggered (signal has occurred)

SIGNAL TYPE as selected by soft key

- low level
- high level
- rising edge
- falling edge

INSTRUCTION - instruction marked by the cursor in the displayed program

ADDRESS - address of the displayed instruction

While the trigger function is switched on it is possible to page through the program. Soft key TRIGGER OFF switches the trigger function off. The purpose of the trigger function is the monitoring of signals which occur intermittently; it is an important aid for fault finding.

LINES SERVICE SOFTKEY LINE FOR DNC OPERATION

Lines service

(separate DNC description in preparation)

DIMENSIONING - SWITCHING BETWEEN INCH/METRIC

MEMORY mode

TOOLS	ZERO	VARIABLES	PROGRAMS	CYCLES
	SHIFTS			

ACCESS	EDIT	SAVE
ON/OFF		

ACCESS	INCH	EDIT	LOAD	SAVE
ON/OFF	METRIC			

TOOLS	ZERO	VARIABLES	PROGRAMS	CYCLES

NEXT	LOAD	SAVE
PAGE		

e.g. 1 ENTER

COMMAND	NEXT	EDIT	LOAD	SAVE
	PAGE			

INCH	RENAME
METRIC	

VARIABLES can not be switched to INCH/METRIC. Whether the file types, tools and zero shifts are to be effective in metric or inch is determined by soft key.

Effect:

The file types program and cycles are stored with the dimensioning index I/M. Metric is preset for new files.

MACHINE mode

In main mode MACHINE the INCH/METRIC switching is effected in the first soft key line:

REFERENCE	REFERENCE	MDI	TEACH IN	INCH
AXES	CYCLE			METRIC

Effect:

The selection is effective for all functions in MACHINE mode. The selection is retained even after a hardware reset and it also applies after a switch into INFO mode.

AUTOMATIC mode

File types such as programs and cycles are already defined with respect to the dimensioning during the generation process. The chosen dimensioning method also applies for the execution.

INFO mode

The axis measurement format (INCH/METRIC) selected in INFO mode sets the priority for the axis display in machine mode.

MACHINE	SERVICE	МТВ	LINES	RESET
STATUS		SERVICE	SERVICE	DELETE

CC 100M	I/O	MESSAGE	OTHER	PIC/PLC
STATUS	STATUS	LIST	SELECTION	DISPLAY

CC 100M	EXTERNAL	MESSAGE	AXES	PIC/PLC
STATUS	STATUS	LIST	DISPLAY	DISPLAY

COMMAND	LAG	MACHINE	DISTANCE	INCH
POSITION		POSITION	DISPLAY	METRIC

- The desired dimensioning method is selected for the particular axis display (command/position, machine position, lag, distance to go).

- On switch-on the dimensioning method last active is reactivated.

DATA HANDLING

GENERAL

LOAD / SAVE

The CC100M has two serial data interfaces, the sockets of which are located on the CP/MEM board. The first interface, which is identified by the control as "Port No. 1", is connected to socket X11. The second interface, identified as "Port No. 2", is connected to socket X12. 1st PERIPHERAL V24/TTY Port No.1 50-9600 Bd V24 Port No.2 50-9600 Bd 2nd PERIPHERAL

Input and output of data is possible in main modes INFO and EDIT. Interface selection and parameterisation are made via soft keys.

In main mode "EDIT" the following types of data can be loaded and saved:

(soft keys:)

TOOLS	ZERO	VARIABLES	PROGRAMS	CYCLES
	SHIFTS			· · · · · · · · · · · · · · · · · · ·

In "INFO" mode it is possible load machine parameters,

M-functions, texts and graphics.

Programs, tools, zero shifts and variables can only be cleared.

O P E R A T I N G DATA HANDLING

LOAD

Operating procedure:

- Actuate soft keys as shown below:

TOOLS	ZERO	VARIABLES	PROGRAMS	CYCLES
	SHIFTS			

 NEXT PAGE	LOAD	SAVE

- Optional: Key in program number or name and press "ENTER".

COMMAND	NEXT PAGE	EDIT	LOAD	SAVE

ALL FILES	START	PORT NO	BAUDRATE	CONTROL
YES NO	~			YESNO

- Soft key "ALL FILES"

"YES" selected: All files on the data carrier are loaded.

"NO" selected: Only the specified number of successive files (number is requested) are loaded.

- Soft key "START": The loading operation is started; the control waits for data. After the initial actuation the soft key changes to "STOP" and can be used to stop the data transfer.
- Soft key "PORT NO": Enter port number 1 or 2. The corresponding interface (X11 or X12) will be activated.
- Soft key "BAUDRATE": Set baudrate. A list of the code numbers for the baudrates appears on the screen. The baudrate set on the control must be the same as the one set on the peripheral.
- Soft key "CONTROL YES/NO": With CONTROL YES the syntax is checked.

With CONTROL NO only the checksum is checked, if it exists.

If the program or cycle does not contain checksums the control will carry out a syntax check.

OPERATING BOSCH CC 100 M **DATA HANDLING** User Handbook Note Under SK "PROGRAMS" it is also possible to load cycles, tool compensations, zero shifts and variables; the same applies for SK "CYCLES". Cycles are loaded in succession, like the programs. When the last program or cycle has been loaded the load operation is stopped. If there are tool, zero shift and variable files on the data carrier loading is stopped after each file, if an EOT signal separates the files. If the subsequent files are to be loaded too SK "START" must be actuated for each one. Protection When loading data via serial interfaces programs are automatically protected against overwriting. If a program is loaded which is already stored in the memory the control will ask whether to - overwrite the existing program (input 1) - store the program under a new number (input 2) - abort the loading operation (SK "STOP") A program with overwrite protection can not be overwritten. Error message: "file protected". SAVE Operating procedure: - Select main mode EDIT - Actuate soft keys as shown below:

TOOLS	ZERO	VARIABLES	PROGRAMS	CYCLES
	SHIFTS			

NEXT PAGE	LOAD	•	SAVE

- Optional: Key in program or cycle name or number and actuate "ENTER".

ANOTHER	START	PORT NO	BAUDRATE	CHECKSUM
SELECTION				YES/NO

The screen displays the message "SELECTED FILE ONLY" (highlighted characters)

- Soft keys "START", "PORT NO" and "BAUDRATE" are operated as for loading.

- Soft key "CHECKSUM" switches the generating of a checksum, which is to be output, on and off.

PROGRAMS	START	FILE +	FILE +	FILE +
+ CYCLES		TOOLS	ZEROSHIFTS	VARIABLES

ste

- Soft key "PROGRAMS + CYCLES" determines whether only <u>either</u> programs <u>or</u> cycles are to be saved, depending on the selection in the first SK line, or whether programs <u>and</u> cycles are to be output. (Display with highlighted characters.) The page back button resets the display to "SELECTED FILE ONLY".

- Soft keys "FILE + TOOLS", "FILE + ZEROSHIFTS" and "FILE + VARIABLES". When one of these is selected the corresponding term will be displayed in highlighted characters.

If one of these soft keys is selected the parameters "from" and "to" must be defined. Unless this is done no page back or other selection is possible. The parameter ranges are as follows:

 tools
 1 - 48; input e.g.: 1,7,14,15,16, 23, 44

 zero shifts
 54 - 59; input e.g.: 54, 57, 58

 variables
 1 - 99, A - Z; input e.g. 7, 9,10, 25, 49,A,C,L,X

Only the numbers should be entered, not the associated letter codes. The sequence for the variables is numbers first, then letters.

Output without file selection:

TOOLS	ZERO SHIFTS	VARIABLES	PROGRAMS	CYCLES
	NEXT PAGE		LOAD	SAVE
PROGRAMS + CYCLES	START	PORT NO	BAUDRATE	FORMAT
		T =	 T =	
		YES NO	FORMAT DFS CC100	
Soft key "PROGI programs or cyc depending on th	RAMS + CYCLI les. Either prog e choice made	ES" offers the ch rams or cycles a in the first soft ke	oice of outputtin ire preselected, ey line.	g

omment During the output of programs and cycles the selection of the dimensioning unit "INCH" or "METRIC" is output in the program header.

elete

Main mode INFO

Operating procedure:

- Activate main mode "INFO"

- Continue with soft key operation

MACHINE	SERVICE	MTB	LINES	RESET+
STATUS		SERVICE	SERVICE	DELETE

DELETE	DELETE	DELETE	DELETE	CONTROL
TOOLS	ZEROSHIFTS	VARIABLES	PROGRAMS	RESET

The selected soft key is highlighted on the display. The delete operation can be aborted with the page back button.

Caution

When the "ENTER" key is pressed all programs will be deleted, even those with write protection.

Delete function in main mode EDIT

In main mode "EDIT" programs are deleted individually (or cycles, depending on the soft key selection), and only those without read/write protection can be deleted in this mode.

Operating procedure:

- Select main mode "EDIT"

- Continue with soft key operation:

TOOLS	ZERO	VARIABLES	PROGRAMS	CYCLES
	SHIFTS			

 NEXT PAGE	LOAD	SAVE

Select program or cycle by name or number.

COMMAND	NEXT PAGE	EDIT	LOAD	SAVE

COMMAND	PROTECTION	INCH	DELETE	RENAME
	ON OFF			

Note

If an attempt is made to delete a program or cycle with

read/write protection the message "file protected" will appear on the screen.

In "EDIT" mode it is not possible to delete tool data, variable data and zero shifts.

TOOLS, ZERO SHIFTS, VARIABLES

These types of data can be loaded and saved in "EDIT" mode; they can only be deleted in "INFO" mode.

Load

Main mode EDIT

Soft keys:

TOOLS	ZEROSHIFTS	VARIABLE	PROGRAMS	CYCLES

ACCESS	EDIT	SAVE
ON/OFF		

ACCESS	INCH	EDIT	LOAD	SAVE
ON/OFF	METRIC			

The soft key "INCH/METRIC" does not appear for variables.

	START	PORT NO	BAUDRATE	
L				

Note

Data can also be loaded under "PROGRAMS" or "CYCLES"

Write protection is then not effective. The selection of inch or metric made in this way is not stored on the data carrier and must be made at the control.

O P E R A T I N G DATA HANDLING

Save	TOOLS	ZEROSHIFTS	VARIABLES	PROGRAMS	CYCLES
	ACCESS ON/OFF		EDIT		SAVE
		START	PORT NO	BAUDRATE	FORMAT

CHECKSUM	FORMAT	
YES NO	DFS CC100	

The delete function in "INFO" mode works as described in chapter "Load and save programs and cycles".

Machine Parameters, Text Strings and Graphics

In "INFO" mode these types of data can only be loaded.

Operating procedure:

- Select "INFO" mode with

key.

- Continue with soft key operation:

SERVICE	МТВ	LINES	RESET
	SERVICE	SERVICE	DELETE

LOAD MACH.	LOGBOOK	SET	MODE	LOAD
PARAMETER		CLOCK		TEXT

START	PORT NO	BAUDRATE	ande anders eine Merriekensels

Note

During the loading operation the data previously in the memory is overwritten. Enter only the appropriate data under the selected type of data, i.e. do not select soft key "LOAD TEXT" if you have previously selected LOAD MACHINE PARAMETERS.

O P E R A T I N G DATA HANDLING

Logbook If a logbook exists the data can be output in "INFO" mode.

Operating procedure:

- Select main mode "INFO" with key.

- Continue with soft key operation:

MACHINE	SERVICE	МТВ	LINES	RESET
STATUS		SERVICE	SERVICE	DELETE

LOAD MACH.	LOGBOOK	SET	MODE	LOAD
PARAMETER		CLOCK		TEXT

ACTIVATE	LOGBOOK	CLEAR	SAVE
LOGBOOK	DISPLAY	LOGBOOK	LOGBOOK

START	PORT NO	BAUDRATE	

Note

If no logbook has been generated the soft key "LOGBOOK DISPLAY" will not be displayed.

3. PROGRAMMING

GENERAL

Program Production

Part programs can be produced by the following methods:

- directly at the control via	panel input in modes EDIT or MACHINE (TEACH IN) or
- at programming stations	For transmissions please note the instructions in sections: DATA INTERFACES (chapter 1) Data handling (chapter 2)

Memory Allocation

The following types of user data are stored in the control:

Memory areas	Contents
part program memory	part programs and cycles, with the relevant subprograms
technology table	tool geometry and tool wear data, cutting speeds
zero shift table	zero shifts G54 to G59
variable table	CPC varables VI-V99 and VA-VZ
machine parameter memory	machine specific data

.

Basic Conditions

Descriptions in the programming instructions relate to the control as used on a machine tool (milling machine) with a Cartesian axis configuration within a clockwise coordinate system. Unless otherwise stated the following G-functions are assumed to be active:

G17	plane XY
G27	no field limitation
G40/T00	no tool compensation
G53	no zero shift active
G62	in position function off
G90	absolute dimensions

The reset status or the status after switching to automatic mode is indicated by 'A'.

3 - 1

Up to 99 suprograms can be assigned to a program or cycle.

Main programs and their subprograms can call up cycles. From within cycles and their suprograms other cycles and subprograms can be called up, up to a 10-fold total nesting depth. •call-up source

PART PROGRAMS AND CYCLES

A program or a cycle describes a sequence of machining operations and is subdivided into blocks. The blocks contain preparatory functions, axis information, miscellaneous and auxiliary functions.

Block A block is made up of the block number and one or several words. Example: <u>N120</u> <u>G0</u> <u>X100</u> <u>Z100</u> <u>M3</u> <u>S1000</u>

block number words

The block length is variable. During external programming the words can be written in any order. The block number must be at the beginning of the block. No space characters required between blocks. But note the gap between the block number and the first word (see transmission protocol, p. 3-4).

Word A word consists of an address letter and a sequence of figures, which represent the address contents.

Only those figures which contain information need be written.

N10 G0	X5.100	Z0.500	М3	T01	or
N10 G0) X5.1	Z.5	МЗ	T01	

Blocks are built up from individual words which begin with an address letter.

Example: N <u>120</u> X <u>125</u> Z <u>160</u> address content

With DIN programming an address may only be programmend once in each block.

Block Numbers The first word of a program block is the block number. It is made up of the address letter "N" (ISO format) and a 1to 4-digit sequence of figures.

- sequence During external program production no block numbers need to be programmed. The control will store data in ascending order.

During **panel input** the control generates the block numbers automatically in the course of the input dialogue.

 steps
 Block numbers are programmed or generated in steps of 1.
 If additional blocks are entered via "INSERT" the control will mark these blocks with a "+".
 The jump addresses remain valid after insertions or deletions sine they are marked with symbolic "labels".

	The control can store 1 or several user programs. During the programming these programs can be marked as main programs, or subprograms (SBP), or cycles.
Program	A program is defined by the - HEADER in the first line and
	- PROGRAM END instruction in the last line.
	data type 'part program'
Header	PROGRAM1Name MRWED 4 program metric access soft key no. 1 number for "PROGRAMS" and name (4th from left)
	The header line is generated automatically by the control after call-up of the program or input of the program name.
Program end	M2 program end M30 program end - renewed execution with CYCLE START
Subprogram	Subprograms are of local character; i.e. they are always assigned to a specific program. Subprogram numbers may be used repeatedly as long as they are assigned to different programs.
	A subprogram (SBP) is defined by
	\$up to 2-digit subprogram number in first lineG99subprogram end in the last lineThe subprogram and the main program are stored in the same file.
Cycle	Cycles are of global character. In other words: Each cycle number may only be used once in the program memory, but can be called up from each program/subprogram or with a direct call-up.
	data type 'cycle'
Header	CYCLEn. metric RWED 5 cycle metric access soft key no. number for "CYCLES" and name
Cycle end	M2 cycle end During panel input the headers are generated by soft key selection.

Jump Instructions	Program jumps can be used for a more efficient usage of the individual program segments. The jump instructions relate to jump addresses (labels) which are to be previously defined. These symbolic addresses are retained even when program alterations are carried out by inserting or deleting blocks.	
	Programming of G24 P x x	(unconditional jump)
	or	
	G23 P x x	(conditional jump)
		P = jump address number
	effects branching t which is marked as \$ x x.	o a program line s a jump address:

Example	N10	sequence if
•	N11 \$ 2	signal OPITIONAL JUMP = high
	N12 X Y	5
	N13	N10 to N20 / N11 to N20 sequence if
	N20 G23 P2	signal OPTIONAL JUMP = low:
	N21 N	
	N22 Y	N10 to N25 / N11 to N25.
	N24 X	
	N25 G24 P2	

SBP Call-ups The calling up of subprograms must only be possible by programming

G22 P .. L.. unconditional SBP call-up or **G21 P... L..** conditional SBP call-up

- P = SBP number 1 to 99
- L = repetition 0 99

For this reason the subprogram call-ups G21/G22 in the main program must be separated from the subprograms themeselves by M2/M30.

One SBP can be called up repeatedly and from different places within the relevant main program.

Decisions Subprogram calls or jumps can be linked to a condition, which can be

- the logic state of interface contacts or

- the result of a mathematical comparison

(parametric functions)

The jumps or calls are carried out if the stated condition is fulfilled. They are not carried out (and the program is continued at the next line) if the condition is not fulfilled.

PARALLEL PROGRAMMING

DefinitionParallel programming allows the control to be used in EDIT
mode while an active program is being executed.
In edit mode tool data, zero shift tables, variables and part
programs can be entered, edited and output.
Active programs and cycles can not be edited in parallel operation.

PARALLEL PROGRAMMING

Functions available in Parallel Operation

Tables

TOOL, ZERO SHIFT and VARIABLE tables can be edited, entered and output. Contents of tables which need to be accessed by the active program can not be edited in parallel operation. A possibility does, however, exist to edit table contents during program execution. After the program has been completed the existing table is overwritten with the modifications (updated). The control generates a passive table for this purpose.

CYCLES	Cycles can not be edited in parallel operation. But they can be input and output via the serial interface.
PROGRAMS	Programs can be edited in parallel operation and can also be input from and output to external data carriers.
	The active program can not be edited. There is, however, the possibility of copying the active program in the memory before starting program execution. The copied program can then be edited.
Soft key TABLES	During AUTOMATIC execution of a program while in parallel operation the soft key TABLES appears. Under this soft key it is possible to look at the tables TOOLS, ZERO SHIFTS and VARIABLES without having to come out of main mode AUTOMATIC.

DRIP FEEDING

DEFINITION Long programs which do not fit into the program memory can be loaded via interface for direct execution.

DRIP FEEDING - SINGLE ACTIVATION

Single drip feeding operation is activated via soft key

DRIP FEEDING

IN AUTOMATIC mode (direct selection).

DRIP FEEDING - CONTINUOUSLY ACTIVE

If drip feeding is to be activated automatically when AUTOMATIC mode is selected the operator must switch to

ACTIVE ON POWER ON

(reverse video) in the 3rd soft key level (INFO mode).

DRIP FEEDING - USER INTERFACE

In AUTOMATIC mode the preset parameters for DRIP FEEDING will appear on the display once it is activated.

Example

POPT NO : 1	
POPT NO : 1	
BAUD RATE : 2400	
OFFSET: 12	
SIZE OF BUFFER : 512	
START BLOCK?	44 7
NEXT PROGRAMS CYCLES URIF	

The DRIP FEEDING parameters are preset in INFO mode. The parameters do not affect the program which is to be executed.

Main mode INFO

MACHINE	SERVICE	МТВ	LINES	RESET
STATUS		SERVICE	SERVICE	DELETE
				• ·

DRIP	DNC	
FEEDING		

ACTIVE ON	BUFFER	PORT NO.	BAUDRATE	BLOCK
POWER ON	SIZE			OFFSET

Meaning of the DRIP FEEDING parameters

ACTIVE ON POWER ON	If this parameter is active (reverse video) the control defaults to DRIP FEEDING mode when AUTOMATIC is selected.			
BUFFER SIZE	The BUFFER SIZE parameter determines the buffer size in 0.5 kBytes, which is to be kept free for DRIP FEEDING in the part program memory of the control. Input format: 512 bytes Min. buffer size: 1 (= 512 bytes) Max. buffer size:			
PORT NO.	Selection of the interface on t Port 1 - V.24/20 mA Port 2 - V.24	he CP/MEM (with handshake) (with or without handshake)		
BAUDRATE	Setting of the baudrate. The following baudrates are r	ecommended (- 1800 Bd): 8 = 1800Bd 9 = 2000Bd 10 = 2400Bd 11 = 3600Bd 12 = 4800Bd 13 = 7200Bd 14 = 9600Bd		

BLOCK This parameter is originally preset so that the program OFFSET execution begins after 12 program blocks have been loaded (min.). The setting "n" determines after how many loaded blocks the execution is to begin. Possibilities: n = -1execution begins when the buffer is full or when M30/M2 is transferred from the DRIP FEEDING program. n = 0 Execution begins when 12 program blocks are loaded. Execution begins when the 12 n > specified number (n) of program blocks are loaded. START POINT? Input of the block number at which DRIP FEEDING is to start (1 = beginning of the program).NC blocks before the start point are ignored. Note: The DRIP FEEDING parameters can only be changed in INFO mode. Port no. and baudrate are independent of the parameters as described in chapter "Data Handling".

DRIP FEEDING AND MAIN MEMORY

Part programs and cycles occupy a certain area in the part program memory; the remaining available storage capacity is used for DRIP FEEDING.

When the buffer size for DRIP FEEDING has been determined in INFO mode and DRIP FEEDING is activated in AUTOMATIC mode the control checks whether the selected buffer size does not exceed the available storage capacity. If it does an error message will be produced. If the buffer size is not defined the user can utilize the max. available storage capacity.

input:	available storage capacity	(see basis display	
	512	in AUTOMATIC)	

If the available storage capacity is not sufficient there are two possibilities:

- deletion of individual programs or cycles to increase the available storage capacity
- reduce the buffer size in INFO mode

PROGRAM EXECUTION WITH DRIP FEEDING AFTER CYCLE START

The DRIP FEEDING operation is started with Cycle Start.

During program execution only the active block is displayed on the screen.

DRY RUN	STEP	LIST	TABLE
RAPID	-		

By actuating SK LIST the 6 blocks following the active block can be listed.

Program execution is possible with the following options:

- step size in program
- rapid / dry run of the program
- starting the program at a set start point (block N)

Recommendations for achieving fast data input with drip feeding

When the control has "some time" (e.g. long traversing path, G4 active, or FEED HOLD active) it loads data into the buffer. It is therefore advantageous to choose the buffer to be as large as possible. The control is then able to "live" on data from the buffer for those program parts where the block cycle time is critical. In this case the loading of new blocks is inhibited until only the minimum number of blocks are in the buffer. The block cycle time will then be the same as when working from memory.
Drip feeding and checksum:
Drip feeding programs should be transferred to the control with checksum in order to increase the speed of the

with checksum in order to increase the speed of the transmission. Also the baudrate should not be below 1800.

Position and calculation of the checksum

(see program header in DFS format, page 1-22

Restrictions

- Jumps, subprograms and the setting of stop points are not permitted in DRIP FEEDING programs;
- Parallel programming is not possible since there are several functions active simultaneously during DRIP FEEDING:
 - automatic program execution
 - block processing
 - transfer function from external data carrier (LOAD, SAVE)

- The REENTRY function is not possible.
ADDRESSES

ADDRESS F

G1 F G2 F G3 F G5 F. <i>.</i>	F defines the path feedrate in mm/min.
G04 F	F takes effect as dwell in seconds.
G93 F	F takes effect as execution time for the programmed path section in seconds.
G94 F	F takes effect as feedrate in mm/min. G94 is active on switch-on.
	Programmable range: F0.001 to F 50 000
G95 F	F takes effect as feedrate in mm/rev. The programmed path feedrate is derived from the actual speed of the main spindle. G95 is used for tapping and finishing.

CONTROL RESET clears any programmed F-address.

ADDRESS T

T determines the tool number, which is to be output, and/or the tool length compensation, which is to be applied internally. T is programmed with 2 or 4 digits.

T tool number to be output to the PIC programmable range: 0 to 99 compensation group of the

technology memory to be applied programmable range: 0 up to max. 48

If T is programmed with only 2 digits these are always interpreted as the compensation group.

The operation of the tool length and tool radius compensation is described in detail under TOOL COMPENSATION, chapter 5.

P R O G R A M M I N G ADRESSES

ADDRESS M			
Definition	Output si	ignals can be generated by means of the program.	
Range of	The cont	rol itself allows all M-codes from M0 to M99 to be used. The user	
M-Functions	can utiliz	e all M-functions which have a machine function assigned to them.	
Internal	Listed be	low are a number of codes which have fixed internal functions:	
Functions	Code	Internal function	
	 M0	Program stop after execution of the block.	
		All other conditions unchanged; does not cause spindle stop.	
		New start with next block number via CYCLE START.	
	M2	Main program end, cycle end, programmed separately system ther switches into program selection level	1
		Irrespective of the start point selection a new program will start	
		at the beginning	
	M3	Spindle rotation, clockwise.	machine
		A direction of rotation must be active when spindle	specific
		speeds or gear ranges are programmed.	effect
	M4	Spindle rotation, counter-clockwise, otherwise as M3.	
	M5	Spindle stop, programmed separately,	1
		spindle speed and gear range remain stored internally.	:
	M6	Call-up of automatic tool change cycle (cycle 77))
	M13	Spindle CW coolant on	
	M14	Spindle CCW coolant on	
	M19	Orientation of main spindle to fixed position in degrees.	
		M19 S positioning to programmable position.	
		M19 is output at the interface; address S is not	
	M2 1	Call-up of MTB cycle 76. No output at interface.	
	M22	Call-up of MTB cycle 75. No output at interface.	
	M30	Program end.	
		Mode of operation and other conditions are retained.	
		Change of mode after reset.	
		Dependent on the start point selection a restarted	
		program after M30 will be executed from the selected start point on	wards.
	M40	Automatic gear range selection	
		(Active on switch-on, machine specific operation).	
	M41-	Selection of fixed gear ranges 1 to 4	
	M44	(machine specific operation).	
	M98	SINGLE BLOCK command is not allowed for as long as M98 is activ	/e.
		Programmed in a block of its own.	
	M99	SINGLE BLOCK is possible, i.e. M98 is cancelled.	
		M99 is active on switch-on.	
		Programmed in a block of its own	
		5 · · · · · · · · · · · · · · · · · · ·	

External effects and further M-functions are particular to each machine and details must be provided by the machine tool builder; for instance: coolant on/off, delivery and removal of workpieces.

ADDRESS S

Definition	Programmed on its own the S-address determines the spindle speed, or the position for spindle orientation.
G92 S	When programmed in conjunction with G92 the S-address limits the maximum speed of the main spindle.
M19S	The spindle is oriented onto the position programmed with S (degrees). If M 19 is programmed on its own the value defined by machine parameter 111 will apply as orientation point (range 00 - 359.999°).
S	Spindle speed in rpm. The direction of rotation (M3/M4) must have been defined.
	SPINDLE SPEEDS
Definition	Inputs are evaluated as follows:
	With G 97 S = spindle speed directly in rpm format 4.3
	The direction of rotation must be determined together with
	the programming of S or beforehand.
	Minimum and maximum speeds are predetermined for the
	particular machine (M-parameters).
ADDRESS M	GEAR RANGES
	Machines with a gearbox which can be controlled via the CNC can operate in two ways:
Fixed Selection	One particular gear range is programmed in the user program
M41-44	with M41 to 44, corresponding to gear ranges 1 to 4:
	The control assists with the change-over between gear ranges by the output of
	idling speeds, by the processing of signals relating to the gear ranges etc.
	It a speed is programmed which is not achievable within the selected gear range,
	the control outputs the max. of man, speed possible within that funge.
Automatic	When M40 is active the control itself selects the
Selection	appropriate gear range on the basis of the following criteria:
M40	- up to 4 gear ranges with min. and max. speed values can be controlled
	 output range for the speed: 1 to 9999 rpm (MTB can restrict the range for the particular machine)
	 when S is programmed the appropriate gear range is automatically selected, on the basis of the current program data
	- where gear ranges overlap the control selects the lower of any two possible gear ranges (higher motor speed).
G96 + M40	A new gear range is only selected for the following block if the required speed can not be achieved in the active gear range. Idling speed is output for as long as the activation of the correct gear range has not been acknowledged.

P R O G R A M M I N G ADRESSES

•

H-ADDRESS		Hxx Hxxxx
Definition	H-address = "FLYING OUTPUT" As opposed to the M-address, which is output before each traversing movement, the H-address is output simulaneously with the traversing movement. This simultaneous output prevents drops in the command value	ue.
Use	This function can used in programs for machining operations during which any momentary stopping of the axes would resu damage to the workpiece (for instance during laser cutting). This 4-digit auxiliary function permits additional control and switching functions for time-critical applications.	lt in
Programming	 The H-address should be regarded as an additional auxiliary function; it should not be programmed with other auxiliary functions in the same block. The programming format is up to 4-digit. Variables can be allocated to the H-address (V1 = 1212; H = V1). 	
Output	The H-address is output to the interface in BCD code. If the address has 4 digits the last two are output first.	
Note	H-addresses can also be used for the extension of certain functions (e.g. speed programming in dual spindle operation: $S1 = 1000$ rpm; $H = 500$ rpm).	

•

OPERATOR INSTRUCTION PROGRAMMING

Definition	The operator instruction programming facility allows the display of texts during the program execution. These texts can be purely informative or they can give instructions to the operator. The contents of the texts do not affect the program sequence or machine functions in any way.
Programming	The text is programmed in brackets and must be written in a separate block.
Usage	This facility can be used to provide documentation for the program. Since the display always shows the next block to be execution while the program is being actioned it is possible to put message up on the screen by programming M0 beforehand. If a program block is programmed in brackets, i.e. as an operator instruction, it will not be actioned. In this way blocks can be blanked out in a program.
Example :	 N5 N6 N7 M0 N8 (NOTE - SWITCH ON COOLANT N9 X Y N10 X Y N10 X Y The program sequence stops in block 7 (due to M0). The operator instruction will then be displayed.

TABLES

Tools	Up to 48 tool compensation stores are available. Each tool compensation store comprises the following:				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Example:	*****TOOL******************************				
	* = space character				
Zero Shifts	6 zero shifts are available (G54-G59). See under section "G-Functions" G53,G54-G59 for definition. Each zero shift comprises the following:				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	The dimension is defined as metric or inch via soft key.				
Example:	** <u>ZER</u> O*SHIFT************************************				
Variables	A maximum of 125 variables are available for the writing of variable programs (V1 V99 and VA VZ). Variables represent numbers of up to 7 digits.				
Example:	***VARIABLE************************************				
Header line:	When programming tool data, zero shifts, variables, programs, cycles and (M) parameters externally, identifying HEADERS as shown above must be provided. These must be written in a specific format which is explained on page 1-17.				

G-FUNCTIONS

	LINEAR INTERPOLATION IN	RAPID	G0	
Definition	The axes travel to the program interpolation. The speed is det	nmed position with linear ermined by machine paramete	r.	
Feedrate	No feedrate should be programmed (address F). The machine parameter values for rapid will become effective.			
Interaction	This mode remains modal until a different mode of motion is selected. G0 cancels modes G1, 2, 3 and 5.			
	Execution of the next block is are "IN POSITION". THE IN PO	not started until all axes SITION range is defined by ma	achine parameter.	
	Positioning with G0 is possible	when the main spindle is stop	ped.	
Programming	G0 X Y Z Programmable with or without	E axis addresses.		
Path	The traversing movement is lin for the individual axes are diffe The override potentiometer ca AUTOMATIC by machine para	ear even if the distances rent, or if the axes have differen n be deactivated for G0 and meter.	nt rapid speeds.	
Example	N1 G0 N2 X 100 Y 10 N3 G0 X500 Y 30 N4 M30 Resulting movement with diffe +Y 300 200 100 A0 100 200 300 400	0 (starting position A) 0 (end position B) rent distances in two axes:		
Speeds	The axis which has the longest	distance to cover traverses at	maximum speed.	

The speeds of other axes are regulated in such a way that all axes reach the programmed position simultaneously.

Note - G0 slope: Axis acceleration and deceleration during rapid traverse are controlled. by means of a command ramp. The constant acceleration parameters are programmed for the different axes via machine parameters (see Connections manual, Chapter 4). This does not apply to the 4th axis if it is defined as a Hirth axis.

.....

	LINEAR INTERPOLATION IN FEED	G1	A	(A = active on switch-on)	
Definition	The axes traverse to the programmed point in a straight line at the active feedrate (F-word).				
	The movement is coordinated in such a way that all involved				
	axes (up to 4 axes: X, Y, Z, E) reach the programmed point s	imul	taneo	usly.	
Feedrate	The programmed feedrate value (F) takes effect as the path foodrate; this means that if environ even are involved in				
	the movement the portion of each individual axis is smaller th	an F	:		
			•		
	The speed can be influenced via the feedrate override potent	iome	eter.		
	If X, Y, Z and a rotary axis (E) are to traverse together,				
	an angular velocity is calculated for E. It is therefore				
	advisable to use time programming G93 for movements invol	ving			
	both linear and rotary axes (see G2, G3, G5).				
Interactions	G1 cancels G0, 2, 3, 5 and is modal, as is the programmed				
	feedrate (main address F).				
Programming	G1 X Y Z E (F)				
•	G1 can be programmed with or without axis information				
	It must be programmed together with an F-word if no F-word is active yet.				
	Once a feedrate is programmed it remains effective until it				
	is overwritten by a new value.				
	(Servo Error or switching off cancels the modal feedrate).				
	The programming of "F0" is not admissible.				
Example	N1 G1 X50 Y30 F1000 (feedrate 1000 mm/r	nin)			
•	N2 X30 Y20				
	N3 M30				
	+Y ♣				
	30+ Å				
	20- Bo				
	10-				
	w				
	10 20 30 40 50 +X				

	CIRCULAR INTERPOLATION	G2, G3, G5		
Definition	The axes traverse to the programmed point at the active			
	feedrate on a circular or helical path.			
	The movement is coordinated in such a way that all involved			
	axes reach the programmed point simultaneously.			
	Circles can only lie in parallel with one of the planes			
	generated by two of the coordinate axes.			
Feedrate	There must already be a feedrate active, or a feedrate			
	must be programmed in the same block.			
	The following functions, are possible:			
	G64 / G65 feedrate applies to the contour / tool centre			
	G93 programming in time segments			
	G94 programming in mm/min			
	G95 programming in mm/rev			
	The achievable feedrate can be limited by the ratio between			
	the feedrate and the contour radius, as well as the			
	programmed distance. See E-address			
	The max feedrate is determined by machine parameter			
Interactions	G0/1/2/3/5 cancel each other.			
Entry into Circle	G5 X Y tangential entry, automatic c	alculation of the radius		
	G2/G3 X Y R any type of entry with progra	mming of the radius		
	G2/G3 X Y I J any type of entry with progra	mming of the centre of the circle		
Direction of	G2 G3			
Rotation	+Y \$ +Y \$			
		1		
		G3 \		
		· · · · · · · · · · · · · · · · · · ·		
	+X +	+X		
	/G2/	lg3/		
		•		
	-Y♥ -Y♥			
		•		

Any size of arc can be defined. Full circles can be programmed using I,J,K. The centre coordinates are always necessary for full circle programming.

Exit from the Circle The are no restrictions regarding the exit from a circular contour

CIRCULAR INTI	ERPOLATION WITH ANY TYPE OF ENTRY	G2/G3 with R
Programming	G2 X Y R (X/Y plane)	
Entry into the Arc	If the radius is defined during the programming any entry into the arc can be realized.	
Radius R	The radius is programmed by the R-address with sign. Maximum input value: 100 m. Negative sign : arc smaller than a semicircle. No sign: arc larger than a semicircle. (see examples)	
Definition of the Arc	Given the same starting and end points and radius 4 different arcs are possible.	
	These are distinguished by determining the direction of rotation and the sign of the radius as follows:	
Examples	G2 clockwise +Y	Programming: N1 G0 X0 Y0 N2 G2 X0 Y-2 (broken line or

20

≯ M

-R

-10

P

-30

30

N1 G0 X0 Y0 (point P1) N2 G2 X0 Y-20 R22 F1000 (broken line circle) or N2 G2 X0 Y-20 R-22 F1000 (continuous line circle) N3 M30

G3 counter-clockwise

M'-

Programming: N1 G0 X0 Y0 N2 G3 X0 Y-20 R22 F 1000 (broken line circle) **or** N2 G3 X0 Y-20 R-22 F1000 (continuous line circle) N3 M 30

No programming of full circles possible with R.

CIRCULAR INTERPOLATION WITH ANY TYPE OF ENTRY INTO THE CIRCLE

G2/G3 with I, J, K

Programming	G2 X Y	I J	(X/Y plane)		
	G2 X Z	IK	(X/Z plane)		
	G2 Y Z	JK	(Y/Z plane)		
Entry into the	If the position of the co	entre of the circle is a	defined with		
Arc	I, J, (K) any type of entry onto the circular contour can				
	be realized, as well as full circles.				
	NOTE: If I, J or $K = 0$ then this value need not be entered into the program.				
Parameters of th	e The position of the cer	ntre of the circle is do	etermined by I, J and K.		
Centre of the	I, J and K are modal in	i effect.			
Circle	X/Y,Z, as well as I, J ar	nd K are programme	d		
	in absolute or increme	ntal dimensions.			

	G90 absolute dimensions	G91 distances to existing position	
	X position of centre, absolute	distance in X-direction	<u></u> ,,
		(X _M - X _A)	
J	Y position of centre, absolute	distance in Y-direction	
		(Y _M - Y _A)	
К	Z position of centre, absolute	distance in Z-direction	
	3	(Z _M - Z _A)	

Example starting point = A, end point B, centre of circle M

P R O G R A M M I N G G - FUNCTIONS

CIRCULAR INTERPOLATION WITH TANGENTIAL ENTRY

Programming G5 X Y

Entry into theWhen G5 is programmed the control will calculate a tangential
entry into the circular contour. No radius is programmed.ArcOnly those contour transitions are considered tangential
which do not involve a reversal of direction. The control
calculates the size and the position of the arc as
illustrated in the following examples:

When several G5 movements follow one another the 1st entry tangent influences all subsequent contour elements with G5.

Different End Points

+Y 100- 70-	- 1-	A	E ₂	
¢	w	50	130	► + X

N1	G1	X0 Y70	F200
N2	X50)	
N3	G5	Y130	Y100
N4	M30)	

 N1
 G1
 X-15
 Y40
 F200

 N2
 G2
 X50
 Y70
 R-60

 N3
 G5
 X90
 Y120

 N4
 M30
 K
 K

Different Tangents

Restriction

G5 can not be programmed in MDI or as the first block in a part program, since it would not be possible to calculate a tangent. $T_n = tangent$ A = starting point of arc

 M_n = centre of circle

E = end point of arc

3 - 26

G5

	DWELL		G4
Definition	The execution of the the programmed ti	he subsequent blocks ime has elapsed.	s is not started until
Operation	G4 only becomes prgrammed and m	effective in the block nust be programmed	in which it is on its own.
	Modal conditions a	are retained.	
Programming Example	G4 F	F in seconds input range 0	.01 to 9 999 999.
	N12 G1 X10 Y10	0 F150	
	N13 G4	F2	2 sec.dwell
	N15 G4 N16 Z0	F 1.78	1.78 sec. dwell
	N17 M30		

G6

LINEAR INTERPROLATION IN RAPID WITH EXTENDED IN POSITION RANGE

Definition

In interpolation mode the control waits until an In Position range is reached before starting the interpolation for the next block. G6 corresponds to the G0 function, but with a larger In position range (as a rule). As opposed to the G0 IN-POS range, which is determined as a constant value in the machine parameters (see MP 49, 69, 89, 109) the IN-POS range of the G6 function is related to the max. rapid feedrate (see MP 35, 55, 75, 95):

IN-POS range = <u>max.rapid feedrate</u> 1000

The **smaller** the max. rapid feedrate determined by the machine parameters the more precise (smaller) is the IN-POS range.

After this range is reached the control stops for a short time before the interpolation for the next block is started. The length of this stop time is determined in a separate machine parameter (MP 23) and applies for all axes.

Reactivation of the "normal" IN-POS range by programming G0, G1, G2, G3 or G5.

Plane Selection	G-code	circular interpolation tool radius comp. positioning plane for standard boring cycles	tooll length comp. feed-in axis for standard boring cycles	
	G17	X/Y plane	Z-axis	
	G18	Z/X plane	Y-axis	
	G19	Y/Z plane	X-axis	
		3 - 29	i	

SETTING A POLE

G20

DefinitionThe pole and the associated plane G17/18/19 are determined by 2 axis addresses,
which are programmed together with G20. The pole relates to the active zero point.
The setting of the pole does not produce any axis movement.

Programming withContour points are defined by the radius and an angle. The data relates to a pole, Polar Coordinates which is to be defined, and a plane. Positions described in this way are converted within the control into command values for standard axes in a Cartesian system.

Terms	Polar plane	Plane defined by 2 cartesian axes within which the polar coordinates lie.			
	Pole	Centre of the polar coc Position of the pole: Without/before G20: After G20:	ordinate system. on the active program zero point on the point defined with G20		
	Radius D	Program address assig	ned to the vector length.		
	Angle A	Program address assigned to the vector angle. In mathematical terms the angle relates to the active reference plane			
	Reference axis for angle A	The axis in bold print v	written first in the plane selection.		
	_	G17 XY G18 ZX G19 YZ			

Operation

The interpolation modes G0, 1, 2, 3, 5 etc. are not affected by this function. P = pole

Effect with G91 Angle A absolute, vector length D incremental.

POLAR COORDINATES

G 20

Program	1:	
N1	F1000	S500 M3 T01
N2	G81	VI = 80 V2 = 30
N3	G20	X100 Y200
N4	X100	Y200
N5	A30	D200 (D_1)
N6	D400	D ₂
N7	D600	(D_3)
N8	D800	
N9	M30	

P = position of the pole

Example

Machining a bolt hole pattern with G81

Program	m:		
N1	F1000	S500	M3 T01
N2	G81	VI = 80	V2 = 30
N3	G20	X400	Y500
N4	X700	Y500	(A)
N5	A45	D300	в
N6	X400	Y800	C
N7	A135		D
N8	A180		E
N9	A225		Ð
N10	A270		G
N11	A315		H
N12	M30		_

CONDITIONAL SUBPROGRAM CALL-UP G21 Definition The subprogram call-up is dependent on the status of I/F signal "CONDITIONAL SUBPROGRAM CALL-UP" Any program label (marked with "\$") can be used. Operation The interface signal "CONDITIONAL SUBPROGRAM CALL-UP" must be present at least 3 blocks before the block in which G21 is programmed. Status of signal "CONDITIONAL SUBPROGRAM CALL-UP": High The subprogram is carried out. Low The subprogram is not carried out. (Next block is executed.) By using backwards jumps it is possible to produce endless program repetitions, for series production for instance. Subprogram nesting up to 10 programs deep is possible (nesting: one SBP calls up other subprograms). MP SBP5 SBP7 SBP8 SBP2 N28/\$2 N1 N19 \$5 N40, \$7 N56 1\$8 N8 N9 G22 P8 L3 G21 P5 N23 G22 P2 N32 G22 P7 L1 N44 N10 **N1** N24 N33 N45 N27 1G99 N39 ****G99 N55 N18 M30 G99 N75 VG 99 MP = main program SBP = subprogram Explanation of above example: All the subprograms are only carried out if signal "CONDITIONAL SUBPROGRAM CALL-UP" is high when block 8 is read in.

G21 P L		
P = subprogram number ranging from 0 to 99		
L = repetition factor (in addition to 1st execution)		
ranging from 1 to 99		
input of L is dispensable		
Example: G21 P10 L1		
SBP 10 is executed $(1 + 1) = 2$ times, if the signal is at high level.		
G21 must not be used if tool radius compensation is active.		
G21 must be programmed on its own.		

G22

SUBPROGRAM CALL-UP

Definition Programs which are marked as subprograms are called up with G22 Any program label (marked "\$") can be used.

 Operation
 Subprograms called up with G22 P... (L...) are carried out unconditionally.

 The subprograms of the CC 100 are of local character, in other words they are always assigned to a particular main program or cycle.

Programming Example: G22 P5 Subprogram 5 is carried out once.

Subprogram nesting up to 10 programs deep is possible (nesting: one SBP calls up other subprograms).

MP = main programSBP = subprogramExplanation of the above example:On its own the call-up of SBP 8 in block 44 will produce4 program runs (1.execution + 3 repetitions).The preceding call-up of SBP 7 in block 32, on its own,will produce 2 runs of SBP 7.

Total number ofMPSBP5SBP2SBP7SBP8program runs:111 + 1 = 22x(1 + 3) = 8

General Format G22 P ... L ...

- P = subprogram number ranging from 0 to 99
- L = repetition factor (in addition to first execution) ranging from 1 to 99 input of L is dispensable

G22 must be programmed on its own.

	CONDITIONAL J	UMP	G23
Definition	The jump is only o "OPTIONAL JUMF fulfilled, the subse	carried out if the interface s " is present. If this condition quent block will be execute	ignal on is not ed.
Operation	Any programmed Program labels are <u>The interface signa</u> <u>least three blocks</u> jump is programm	label can be used as jump e marked with \$. al "OPTIONAL JUMP" must before the block in which t ned.	address. <u>t be present at</u> <u>he</u>
Programming	G23 P G23 must always I G23 must not be u	P = 1 to 99 for the be programmed on its own used while tool radius comp	program label pensation is active.
Example	Drilling holes at different workpiece, if its id signal "OPTIONAl Signal = high Signal = low N1 G0 X800 N2 G23 P15 N3 G1 Z0 N4 Z100 N5 G0 X0 N6 X100 N7 \$15 $-$ N8 G0 Y400 N9 G1 Z-20 N10 Z100 N11 G0 X0 N12 M30	fferent positions, dependin entification triggers the I/F L JUMP". Blocks 10-12, 19-24, 16-1 Blocks 10 to 18 are exect Y500 Z100 F500 Y0 F400 Y0	g on the 8 are executed. .ted. optional jump dependent on I/F signal

	UNCONDITIONAL JUMP	G24
Definition	During the execution the program is not continued at the next block but at the program label defined in the jump ir The program label is marked with \$.	nstruction.
Operation	The jump is carried out unconditionally. By programming backwards jumps it is possible to produce endless program repetitions, for series production for inst	uce tance.
Programming	General format:	
	G24 P P for the program label	
	The programming range for P is 1 - 99.	
	A jump must not be programmed together with other inst	ructions in the same block.
Example	Backwards jump from the main program to the second b	lock.
	N9	main program 2
	N10 \$5 +	7
	N11 G0 X50 Y100 \$1000 M3	
	N12 G1 X52 Y98 F500	
	N13 G1 Y80	
	N14 G0 X140	
	: N16	
	N17 G0 X80 7120 \$1000 M3	
	N18 G1 X0 E300	
	N19 X78	
	N20 X76 Z118	
	N21 G23 P6 I ^{IF High}	IF Low
	N22 G24 P5	1
	N23 \$6	
	N24 M2	

.

Explanation of above program:

Program 2 is repeated continually for as long as input "OPTIONAL JUMP" is low. As soon as this signal goes high machining is concluded with blocks 23 and 24.

FIELD LIMITATION

	SETTING MINIMUM VALUES SETTING MAXIMUM VALUES	G25 G26 G27 A
Definition	The field limitation prevents the axes from be occur.	ing driven into areas where collisions might
	Unlike the limit switches these limitations mu	st be determined separately for each program.
	The axes can not position to any point with v - under those programmed with - above those programmed with	alues n G25 n G26
	The input of the axis values does not produce	e any axis movement.
	The limitation values relate to the active prog Any offset programmed with G92 X Y	ram zero point. is not considered.
Operation	The limitation function is modal for all machin It takes into account tool radius compensation	ning modes. on as well as tool wear.
	The field limitation does not become activate software limit switches are set and the axes h	d until the nave been referenced.
Programming	G25 X Y Z E The axes must already be positioned within the	he field of operation.
Cancelling	The limitations set with G25 and G26 are can G27 X Y Z without numerical values as with the software limit switches remain valid. +Y 400 G25 400 G25 Y G25 Y G25 Y G25 Y G25 Y G25 Y G25 -Y G25 -Y G25 -X G25 -X G25 -X G25 -X G25 -X G25 -X	celled by programming vell as by CONTROL RESET. G_{54} G_{54} G_{54} G_{55} G_{55}
	W 100 200 300 400 500 600	700 800 900 1000 +X
Example	N10 G0 X750 Y400 Z300 N11 G92 X0 Y0 N12 G25 X-550 Y-300 Z-280 N13 G26 X150 Y100 Z200 : part program	axes position above workpiece zero point clamping position is taken into account lower limit is determined upper limit is determined.
Note	N80 G27 X Y Z The traversing field limitation set in the machi can not be extended, but only be limited furth 3 - 36	limitation is cancelled ne parameters ner with G25/G26.

SCALING FACTOR SWITCHING

 Definition
 Modification of the scaling factor of the coordinate system.

 The contour lines of a workpiece are enlarged or reduced in the specified factor area, without having to change the programming of the actual contour lines.
 The scaling factor always relates to a particular plane (see next page); the two axes of a plane can not be modified separately.

G 36

P R O G R A M M I N G G - FUNCTIONS

Display	The defined scaling factors for the different axes can be displayed in main mode INFO under the CC 100M STATUS display.				
Operation	- G36 always relates to a particular plane. Example: The programming of the scaling factor for X automatically influences X and Y in plane G17.				
	 G36 is modal and can be reset with CONTROL RESET, G36 X1 (Y, Z, E) to factor 1. A change in plane (G17/18/19) also resets a defined scaling factor. This means that the scaling factor needs to be redefined after each plane selection. 				
	- G36 also operates in the E-axis, if this is defined as a linear axis, whatever working plane is selected.				
	 Any variables called up in the program are subject to modification according to the scaling factor. The scaled values are, however, not transferred into the variable table or tool table. 				
	- G36 does affect the contents of the zero shift table if it precedes G54-59 in the program. G36 does not affect any preceding zero shifts.				
	- If G36 is programmed in several blocks they overwrite each other. The block last prgrammed has highest priority and the programmed scaling factor remains effective until the next change in scaling factor. The scaling by means of the scaling factor is switched off by programming the scaling factor 1.				
Programing	 G36 can be programmed together with main addresses F, S, T, H, but not with any other G-codes or with M-codes 6, 19, 21, 22 in one block. 				
	- G36 is to be programmed with only one axis of the working plane; for working plane G17 this is either X or Y; axes Z and E can be programmed independently in the same block with a different scaling factor.				
Example	N1G0X0Y0Z0N2G17selection of X/Y plane, clearing all programmed scaling factorsN3G36X2scaling factor for X and Y-axis, 2-fold magnificationN4G0Y50traversing to Y100 mmN5G36X1switch off scalingN6M30KK				

.

PROGRAMMABLE MIRRORING

G38 switch on G39A switch off

Definition1 or 2 specified axis(es) is (are) mirrored within the selected plane.The axes are programmed together with G38.

Operation The programmed workpiece positions are interpreted with inverted sign in the relevant axis. The position values are mirrored around the active zero point. This is the zero point which resulted after any possible setting of the position stores with G92, presets or zero shifts.

Reference Points

M = machine zero point

W = workpiece zero point

A = clamping zero point (G92)

X' = axis values after zero shift

Y' = axis values after zero shift

X = X-axis values are mirrored Y = Y-axis values are mirrored

Programming	N10	G17	(G18/G19)	plane selection
	N11	G38	X or Y or Z	(max. 3 axes)
	N10 N11	G39 G39	X (Y) (Z)	to cancel all mirroring selective cancelling of mirroring in particular axes

The axis addresses are always programmed without axis values.

Note

When the values are mirrored for just one axis the control converts G41 into G42 and G3 into G2 etc. internally. See also examples II and IV. This is not the case when the values for 2 axes are mirrored. See example III.

TOOL RADIUS COMPENSATION

G40 A / G41 / G42

DefinitionWhen carrying out a part program with tool radius compensation
the tool is guided along an equidistant parallel to the programmed path.
Equidistant = path with a constant distance to the programmed contour.
The tool length is taken into account by the call-up of the T-address.

P R O G R A M M I N G G-FUNCTIONS

.

	ZERO SHIFT	G53 A cancel zero shift G54 to G59 activate zero shift
Definition	By using zero shifts programs can be carrie any modification. While a zero shift is active temporarily overwritten. They can be reacti	ed out in different places without e the machine parameters are vated simply by programming G53.
Operation	Up to 6 zero shifts can be stored in the zero For each zero shift up to 1 value each can l	o shift table. be stored for X, Y, Z and E.
	If G54 is then called up, for instance, the co coordinates which were stored under G54. the zero shift table must already have been	ontrol will shift the zero point to the machine In order to use a zero shift (for instance G54) loaded with the respective offset data.
Programming	G54on its own this doormovement (displG54XYZthe zero shift aleaposition program	pes not produce any axis ay changes to programmed position) ady applies to the amed in this block
Example:	$\begin{array}{c} \mathbf{Y} \\ 600 \\ 500 $	Corresponding zero shift table: $G54 \times 100 \times 100 \times 270$ $G55 \times 300 \times 100 \times 270$ $G56 \times 500 \times 100 \times 270$ $G57 \times 100 \times 450 \times 270$ $G58 \times 300 \times 4450 \times 270$ $G95 \times 500 \times 4450 \times 270$ This table can be loaded by manual input at the control, via parametric functions, via the serial interface, or via the BCD data bus.
Condition	- No circular interpolation (G2, G3, G5) mus an active zero shift. Operation must start c	st follow immediately after or continue with linear interpolation.
	- G36 modifies the contents of the zero shif in front of G54-59 in the program. G36 on	t table if it is written Iy affects subsequent zero shifts.
	- When G92 is cancelled any active zero sh	ifts G54-59 are also reset.

'IN POSITION' LOGIC ON	G61
'IN POSITION' LOGIC OFF	G62 A

- **Definition G61** In interpolation modes G1, 2, 3, 5 the control waits for each block until the 'In Position' window has been reached before it starts with the interpolation for the next block. The width of this window is determined by machine parameter. Once the window has been reached the control stops for a short time before interpolating the next block. The duration of this stop time is determined by a machine parameter.
- Definition G62 When the 'In Position' function is switched off the control starts with the interpolation of the next block while the last path section from the previous block is being actioned. This results in a "cutting of corners", but saves time.

Operation Functions G61/G62 are modal and cancel one another.

G62

G62 is effective on switch-on

Programming G61, G62 must be programmed at the latest in the block for which they are to be effective.

Influence of machine parameters

IN POS time - MP23

IN POS range - MP49, 69, 89, 109 (see Connections manual for CC100M)

Example	N10	G61			no movement
	N11	G1	Y500	F200	interpolation with IN POS
	or				
	N10	G62			'IN POS' function off
	N11	G1	Y500	F200	
	N50	G61	X200		interpolation with IN POS in this block
					3 - 43

· .

EEDRATE AND SPINDLE SPEED (S) 100% G63								
FEEDRATE AND SPINULE SPEED OVERRIDE VIA POT G66								
Definition	G66	The position of the relevant override potentiometers on)					
		the manual panel affects the commanded values.						
Definition	G63	Feedrate and spindle speed are set to 100% of the prog	grammed/					
		entered value, whatever the position of the potentiomet	ters.					
Operation		G66 is active on switch-on.						
		Both functions are modal and exclude one another.						
		Override ranges:						
		- feedrate 0 to 120% of the programmed value						
		- spindle speed 50 to 150% of the programmed value						
Programming		Can be programmed with other instructions in the same	e block.					
Application		The override potentiometers for feedrate and spindle						
		speed can be deactivated by means of programming.						
Note re.	G66	The potentiometers take effect even when the maximur	n					
		feedrate is programmed. If the potentiometer is set to						
		between 100% and 120% the maximum feedrate will be	exceeded.					

EFFECT OF FEEDRATE

G64 cutting path G65 A cutter centre path

Definition	The feedrate determined with F relates to the cutting path of the cutter or to the cutter centre path when machining circular contour sections.
Interactions	G64/65 are modal and exclude one another.
G65	The control keeps the feedrate along the cutter centre path constant. G65 is active on switch-on and is used for roughing.

Examples

G64

In the example the feedrate effective on the actual contour is lower than the programmed value.

The control keeps the feedrate along the cutting path constant. These calculations can only be carried out for arcs G2/3/5 if G41/G42 is active.

Since the speed can increase considerably on circular contours this function shoud only be used during finish milling.

The effective axis feedrate is higher than the programmed one in the above example.

P R O G R A M M I N G G-FUNCTIONS

	CONTOUR TRANSITIONS	G69 G68 A*	intersection arc
Definition	If tool radius compensation is active the control must create transitions for outside corners. These transitions can either be the intersections of the equidistants or automatically generated arcs. G68/69 are modal and cancel one another.		
Operation G68	Arc Only in conjunction with G41/42 with an angle alpha of betwee The arc produces a continuous transition, which usually is the technologically and puts less strain on the drives due to the s	en 0° and e best solu soft transiti	l 180º Ition Ion.
	ooo gene	erated auto	omatically
G69	Intersection Only in conjunction with G41/42 with an angle alpha < 90%. With angles of \geq 90° up to 180° the control will produce transitions as if G68 had been selected.		
Programming	G68/G69 without axis information. If G68/69 is used while path compensation is active the function must be programmed 3 blocks in advance.		
Function active on switch-on	Either G68 or G69 can be defined as active on switch-on by n	nachine pa	arameter.

*dependent unpon machine parameter

	REFERENCING		G74								
Definition	The axes programmed in the block traverse simultaneously onto the reference point(s) at the feedrate determined by m/c parameter.										
	Once the reference point has been reached the axis position values are set to machine specific values (machine parameters).										
Example X-axis			reference point cam zero pulse of measuring system (M par.PRESET X = 20)								
M	20 40 60 80 100) 120 140 160 X	machine coordinates machine zero point								
Interactions	G74 cancels zero shifts which were or G92. No tool compensations mi is carried out all modal conditions	e activated with G54 to G59 Jst be active during G74. W are temporarily suppressed) /hile G74 J.								
Programming	G74 X Y Z E										
	G74 is programmed in a separate block with just the relevant axis addresses without numerical values.										
Example G74	X and Z traverse to the reference p	oint.									
	N7 G74 X Z										
Note	Further details on interactions with	other functions can be fou	nd under								
	G25, G26 field limitation G53-59 zero shifts G92 setting position	stores.									

G75

MEASURING PROBE INPUT

DefinitionThe control drives the measuring axes in the direction of the programmed position with
linear interpolation (G1). While the axes are traversing the switching condition of the
measuring probe is being monitored.
As soon as the signal becomes 1 (probe touching surface to be

measured) the control responds as follows:

- it stores the current position values and

- cancels the distance to go and G75.

Once the G75 operation is completed the control automatically retracts the measuring axis to the position at which contact was made.

Interactions G75 is effective only in the block in which it is programmed and automatically sets linear interpolation G1. The control only responds to the closing of the probe contact, and not to the opening of this contact. If the end point programmed with G75 is reached without the probe contact closing the program is interrupted and the error message " probe not triggered" is output.

 Programming
 G75 X ... (and/or Y .../Z .../E .../F...)

 Example
 +Y A
 The probe is to be used to measure the distance from the two surfaces on the left hand side of the workpiece to the zero point.

the workpiece to the zero point. The axes have been driven to the starting position

₩ ₩									to the starting position in a machining program.
Ψ N1	10 G75	20 X70	30 F20	40 00	50	60	70 travei	80 rse to	+X wards workpiece until probe is triggered
N2	Мо						progr	amm	ed stop to read position value
N3	G0	X40)				repos	sition	for next measuring operation
N4	Y20								
N5	G75	X70)				traver	rse to	wards workpiece to measure
							distar	nce to	upper surface
N6	G0	X 0							
N7	M3								

Applications The following tasks represent some of the applications:

- part recognition
- checking workpiece accuracy
- setting reference point at surface of workpiece

- tool inspection

101

Note When working with the measuring probe the tool compensations must be switched off, otherwise the following error message will be displayed: "G-code not allowed with cut, or length comp." The feedrate should be kept moderate in order to avoid damage to the probe.

MACHINING	OF BORES
-----------	-----------------

G80 A Fixed Cycles Off G81-87 Fixed Cycles On

Usage	The programming of fixed cycles to machine bores is simplified
	with the cycles described below.

In the course of the programming the user calls up the relevant fixed cycle. Values are entered for the variables; the variables are illustrated in the fixed cycle graphics.

Conditions The fixed cycles can <u>not</u> be used while tool radius compensation is active; if necessary the tool radius compensation must be deactivated with G40.

Further conditions:

- F feedrate in mm/min
- S spindle speed
- M3/4 spindle rotation clockwise/counter-clockwise

Movements in the positioning plane are all performed in rapid with IN POS operation. The spindle is switched on with the first positioning movement. The cycles can be used with G90 or G91 for both axis directions of the feed-in axis.

OPERATION Fixed cycles G81 - G87 are executed in each traversing block once the programmed position has been reached. The selected

function is cancelled by programming G80, M2, M30 or by selecting another cycle.

Call-up of fixed cycles and input of variables:

Select main mode EDIT

TOOLS	ZERO SHIFTS	VARIABLES	PROGRAMS	CYCLES	e.g. 3 ENTER
		<u> </u>			
COMMAND	NEXT PAGE	EDIT	LOAD	SAVE	
·					
SEARCH		SCROLL		MODIFY]
GRAPHIC	T		T	INSERT	
	······································	· · · · · · · · · · · · · · · · · · ·			-
			BORING CYCLES	CYCLES	

The selection of the required fixed cycle graphic is made with the and keys. When the required cycle is reached (cycle name flashing) the selection is confirmed with OK. The control will then automatically transfer into the selected fixed cycle level.

The inputs for the different variables in a particular cycle can be confirmed with the keys TAB

The cursor will then automatically jump to the next variable.

Handling of cycles

(RAM cycles, boring cycles, contour cycles)

See CC100M connections manual.

SURVEY OF FIXED MACHINING CYCLES

G80 - 87

Machining sequence

Type of machining	CODE	Feed- in movement	At depth	Retract movement
drilling	G81	M3 feed	-	rapid M3 active
boring with dwell	G82	M3 feed	dwell	rapid/ feed M3 active
deep hole drilling with swarf removal	G83	M3 (posit. in rapid + feed-in strokes in feed)	-	swarf removal strokes in rapid M3 active
tapping with tap holder	G84	M3 (M4) feed	M4 (M3) dwell	feed M4(M3) active
boring with spindle orientation	G85	M3 feed	orient- ation, retract in pos- itioning axis	rapid active
reaming	G86	M3 feed	_	feed with stop for measuring M0 M5
thread milling	G87	M3 helical interpolation	retract in pos- itioning axis M5	rapid
cancelling fixed cycles	G80			

Note

When editing fixed cycles the control will display the appropriate graphic for the active plane.

FIXED MACHINING CYCLES

G80 - 87

Plane SelectionThe fixed cycles can be used in the 3 main planes.The selection of the interpolation plane determines the following:

Positioning plane	Feed-in axis, positioning level, tool length compensation, workpiece surface, working depth	Code	
<u>Х, Ү</u>	Z	G17	
Ζ, Χ	Y	G18	
Y, Z	x	G19	

The setting of a pole with G20 effectively also represents a plane selection.

G80 - 87

FIXED MACHINING CYCLES

ProgrammingFixed cycles simplify programming by their modal character.TechniqueProgramming is rationalized particularly well if the machining can be
described by a machining graphic which can be used repeatedly.
Only the different bore positions need then be programmed (see example).

Machining	The machining graphic contains the coordinates and
Graphic	data which remain constant.

The call-up of the machining graphic is preceded by the selection of the particular fixed cycle with the required feedrate and spindle speed etc.

Example Machining in	ı Z					
(G17)	+ (Y)				\$1	
	X ₁ X ₁ X ₉ Y ₉	$\begin{array}{ccc} & X_2 & Y_2 \\ & & + \\ & + \\ & + \\ & + \\ & + \\ & X_5 & Y_5 & X_6 & Y_6 \\ & X_{10} & Y_{10} & \end{array}$	$\begin{array}{c} x_{3} Y_{3} & x_{4} Y_{7} \\ \begin{array}{c} + \end{array} & \begin{array}{c} + \end{array} \\ \begin{array}{c} + \end{array} & \begin{array}{c} + \end{array} \\ \end{array} \\ \begin{array}{c} + \end{array} \\ \begin{array}{c} + \end{array} \\ \begin{array}{c} + \end{array} \\ \end{array} \\ \begin{array}{c} + \end{array} \\ \begin{array}{c} + \end{array} \\ \end{array} \\ \begin{array}{c} + \end{array} \\ \end{array} \\ \begin{array}{c} + \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	+) ≪8 ^γ 8	X ₁ X ₂ X ₃	Y ₁ Y ₂ Y ₃
	† 🕁	(+)	(+) $(+)$		х ₁₁ Х.,	Y ₁₁
				+>	X ₁₂ X ₁₃	Y ₁₃
Call-ups	: G0	м	S	т		
	TCH		0,	• • • •	•	tool change
	Z ₁	F ₁	S ₁	МЗ		preconditions for drilling
G81	G81 G22 P1 M5	V1 to	V4			call-up of machining graphic
G83	тсн Z ₂ G83	F ₂ V1 to	S ₂ V6			precond. for deep hole drilling
	G22 P1 M5					call-up of machining graphic
684	TCH Z ₃ 684	F ₃ V1 to	Տ ₃ V5			precond. for tapping
404	G22 P1 M5		••			call-up of machining graphic
			3 - 53			

1

	FIXED MACHINING CYCLES	G80 - G87
Variables V	The program variables V1 to V6 are used by the fixed machin The fixed cycles use program variables V1 to V6, i.e. the cont these parameters are modified by the call-up of a fixed cycle. a fixed cycle all the relevant parameters must be defined. The variables must be programmed in one line together with the G-code for the particular fixed cycle.	ing cycles. ents of When calling
Positions	Position values in the positioning plane relate to	
	the active zero point with G90	
	the previous position with G91	
	The data V1 to V6 for the feed-in axis are independent of G90/91 and are marked individually as	
	abs. = absolute values or	
	inc. = incremental values	
Spindle Rotation	Unless otherwise described for the particular cycle, the main spindle is switched on before the start of the movement in the positioning plane, and it is not stopped automatically after the execution of the cycle.	
Safety Consideration	All fixed cycles operate with METRIC dimensions internal If a fixed cycle is called up in an INCH program the variables	y.
	are converted into metric values. After the execution of the cycle the variables will be processed in the program as INCH values.	

BOSCHCC 100 M User Handbook

	DRILLING	(Z) G81
Definition	Drilling, centering	
	G0 > G1 (and vice versa)	
Input	change-over point V1 mm abs.	W (X
	depth of bore V2 mm abs.	rapid
Sequence	spindle on	G 81
	1 positioning axes drive to the centre of the in rapid; feed- in axis remains at traversing height	bore
	2 feed-in axis drives to V1 change-over to feed	
	3 feed-in axis drives to V2 in feed	
	4 retract to V1 in rapid	
	N9 T0101	tool selection
	N10 F500 S250 M3	preconditions
Г	N11 G81 V1 = 42 V2 = 7.5	call-up of cycle G81
		and definition of variables
	N12 X125 Y175 N13 X128 Y204	machining positions
	N19 G80	cancellation of cycle
	:	
	PROGRAM 3 +++++++++++	IT RUED MEMORY
	Pef. level	· · · ·
	Drilling G81	
	↓ Ŷ²	>
	— N+1 G81 V1=42 V2=7.5	

BOSCH CC 100 M User Handbook

3 - 56

BOSCHCC 100 M User Handbook

DEEP HOLE DRILLING

G83

Degression The degression factor determines the individual feed-in Factor depths for deep hole drilling. At each stage the previous feed-in depth is multiplied by the control with the degression factor in order to establish the next feed-in depth for the deep hole drilling cycle. The final depth is approached directly during the last feed-in movement. If the chosen degression factor or the remaining distance would produce a feed-in of less than V3 this is prevented by a corrected input for the feed-in. Example N4 T0101 tool selection N5 F500 S250 M3 conditions N6 G83 V1 = 42 V2 = 10 V3 = 4.5 V4 = 0.9 V5 = 15 V6 = 4 cycle call-up and definition of variables N7 X92 Y17 machining N8 X88 Y42 positions N19 G80 cancellation of cycle PROGRAM · ************** M RUED MENDER Ref. level -<u>^</u> V5 Deep hole Drilling 683 V1 \odot V3=min. depth Ŷ2 V4=decr. factor V6=safety dist. N+1GB3 V1=42 V2=-10 V3=4.5 V4=0.9 V5=15 V6=4 2 ÷

BOSCHCC 100 M User Handbook

G84

TAPPING

Definition	Tapping with central feed-in.		(Z)	·		
input	change-ov depth of bo (thread) rotation: feedrate dwell	er point pre M3/M4 M4/M3	V1 mm abs. V2 mm abs. V3 3 inward V3 4 outward V4 mm/rev V5 sec.		v1 v4 v5 v2	

Sequence

spindle on, single block suppressed

- 1 positioning axes traverse the centre of the bore in rapid; feed-in axis remains at traversing height
- 2 feed-in axis drives to V1; change-over to feed
- 3 feed-in axis drives to depth V2 at feedrate determined by V4
- 4 reversal of spindle rotation; dwell at bottom of bore
- 5 retract to V1 in feed
- 6 spindle stop single block possible again

Example

•	N9 T0101 N10 F500 S250 M3 - N11 G84 V1=40 V2=-10 V3=3 V4=10 V5=5 N12 X16 Y52 N13 X27 Y48	tool selection conditions call-up of cycle G84 and definit of variables machining positions
	: N19 G80	cancellation of cycle
	PPDGPAN 3 *********** M PUED	HENDFI
	$ \begin{array}{c} $	
	V3=3 or 4 for spindle M3 or M4 V4= feed ∕reu N+1 GB4 V1=40 V2=-10 V3=3 V4=10 V5=5	

The following functions are activated:

МЗ	spindle rotation clockwise
M4	spindle rotation counter-clockwise
M98	single block suppressed
M99	single block possible

Note

- Feed conditions active before the call-up of the cycle are stored and reactivated automatically once the cycle has been completed.

- While G84 is active the reentry functions are not active.

- Feedrate 100% is set automatically; single block is suppressed automatically (M98).

BOSCHCC 100 M User Handbook

Definition	BORING Boring a rough bore with a boring tool. Oriented spindle stop at the bottom of the bore with eccentric retract.	G85
Input	change-over pointV1 mm abs.depth of boreV2 mm abs.transverse movementV3 mm inc.at bottom of boreV3 mm inc.	
Sequence	 spindle on 1 positioning axes drive to the centre of the bore in rapid; feed-in axis remains at traversing height 2 feed-in axis drives to V1; change-over to feed 3 feed-in axis drives to depth V2 in feed 4 oriented spindle stop, M19 at the bottom of the bore, angle = 0° 5 transverse movement of 	G 85 (G 85 (Feed () () () () () () () () () ()
	abscissa axis by distance V3 (negative axis direction) 6 eccentric retract of the feed-in axis to V1	
Condition	If cycle G85 is to be used an encoder is re allow spindle orientation (M19); otherwise message is displayed.	equired to an error

Example

The following functions are activated:

- M3 spindle rotation clockwise
- F feedrate active before call-up
- M19 spindle stop with orientation, remains active after execution of cycle

REAMING G86 Definition After the 1st CYCLE START the reaming bit is sunk into the workpiece for a short trial feed-in and then retracted to allow measuring. From the second CYCLE START onwards the tool is driven to the full depth. Input change-over point V1 abs. (Z) machining depth V2 abs. Ist feed-in depth V3 inc. ٧3 retract height for V4 abs. measuring ٧4 V1 Sequence spindle on 1 positioning axes drive to the centre of the bore in rapid; V2 feed-in axis remains at (X) traversing height 2 feed-in axis drives to V1: change-over to feed 3 feed-in axis drives down by V3 to first feedin depth in feed 4 in feed to change-over point V1 C 5 in rapid to retract height ≫ T V4; spindle continues to rotate; (4) program stop, M0 is active (8) diameter of the bore can be measured, and the spindle speed corrected After 2nd CYCLE START: 6 in rapid to V1 7 in feed to bottom of bore V2 8 in feed to change-over point

Example : N9 T0101 tool selection N10 F500 S250 conditions M3 G86 V1 = 40 V2 = 10 V3 = 15 V4 = 42 call-up of cycle G86 N11 and definition of variables N12 X97 Y102 machining positions N13 X86 Y113 N19 G80 cancellation of cycle PROGRAM 3 ********** M RUED MEI/IORY MØ -0 Ref. level 🎍 ¥З ↓ Ï Reaming 686 Ŷ4 ¥1 -∱ V2 N+1 G86 V1=40 V2=10 V3=15 V4=42 ÷ ->

The following functions are activated:

F = feedrate active call-up

S = old, possibly corrected spindle speed

МЗ

G0, which remains active after the execution of the cycle

PROGRAMMING **G-FUNCTIONS**

THREAD MILLING

Definition

Input

A thread is cut by the helical motion of the tool.

change-over point	V1
machining depth	V2
thread diameter	V3
thread pitch/rev.	V4
right/left-hand	
thread:	V5
	V5

abs.

=2 right = 3 left

abs.

abs.

Sequence

spindle on

- 1 positioning axes drive to centre of bore in rapid; feed-in axis remains at traversing height
- 2 feed-in axis drives to V1; change-over to feed
- 3 helical interpolation in feed down to the bottom of the thread
- 4 tool positioned to centre of bore

5 retract in rapid to V1

G87

Example

: N10 F500 S250 M3 T1212 conditions N11 G87 V1=42 V2=34.5 V3=10 V4=0.35 V5=2 call-up for cycle G87 and definition of variables N12 X44 Y24 N13 X32 Y26 • N19 G80 cancellation of cycle N20 PROGRAM 3 *********** M RUED MEMORY Ref. level 0 ♦ Į Ŗ ٧4 Thread milling - 687 -Ϋ́1 o Helical motion ∱ ¥2 V5=2 : G2 V5=3 : G3 • ¥3 • ጌ € N+1 G87 V1=42 V2=34.5 V3=10 V4=0.35 V5=2 ← >

1990

	DIMENSIONING	G9 G9	0 A A 1 II	IBSOLUT NCREME	E DIMEI NTAL DI	MENSI
Definition	Positions on workpiece contours can be define G90 absolute dimensions, i.e. all dimensiona to the active program zero point or	ed with: Il values i	relate			
	G91 incremental dimensions, i.e. all dimension previous positions. It is advisable to use to be machined repeatedly in different p	onal value G91 for blaces.	es relate contour	to the res s which ne	pective ed	
Operation	G90/91are modal and exclude one another.					
	They can be programmed with or without axis	informati	ion.			
	The axis displays are not influenced by these f When G92 is cancelled G90 becomes active.	unctions.				
Example G90		pro	ogram		poi	nts in
		NI	. G90)	dra	wing
P7 →	P8 P11 P12 P9 P10 P13	N2 N3 N4 N6 P14 N2 N1 N1	G G G G G G G G G G G C C C C C C C C C C C C C	X120 Y20 X115 X80 5 Y25	Y60 F300 Y15	P1 P2 P3 P4 P5 P6 P7 P8 P9
P6	P5 P4 P3 50 60 70 80 90 100 110 120 130 140 150 15	N] N] 0 +X N] N]	11 X80 12 Y60 13 X11 14 G5 15 G5 16 M2) 10 X120 X160	Y50	P10 P11 P12 P13 P14
Example G91	all pieces of axis information					
	relate to the coordinates of			0 1000		D 1
P7	P8 P11 P12 P9 P10 P1 P13	P14	2 G9 3 G1 4 G5 5 G1 5 X-2 7 X-2 8 Y3 9 X3 10 Y-1 11 20 12 Y1 13 X30	Y -40 X -5 X -35 25 Y 10 25 5 0	F300 Y-5	P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

	SETTING POSITION STORES G92
Definition G92 X Y Z E	G92 is used to assign a new value to the position at which the axis stands, and to display this value. There is no axis movement involved.
G92	By programming G92 without axis values the machine coordinates are reactivated.
Example	M 0 100 200 300 400 500 600 700 800 machine coordinates -X +X G92 (X Y Z E)
	-300 -200 -100 0 W 100 200 300 400 500 after G92 (X Y Z E); programming: G92 X-300
G92 S	Setting of upper spindle speed limit.

Operation

Values can be set for up to 4 axes.

G92 can be used in MDI or in automatic.

G92 is active only in the block in which it is programmed.

To cancel G92 no other functions must be programmed in the same block as G92.

Any values within the input range can be used.

The travel limits determined by the hardware and software limit switches are not affected.

-When G92 is cancelled G90 is activated.

Note:

Since the feedrate is derived from the actual spindle speed

- no axis movements are possible when there is a fault in the main spindle servo loop. - Spindle speed output in BCD is not permitted.
- With G95 active no S-word is output via the BCD bus.

	SPINDLE SPEE	D DIRECT	G97 A			
Definition	The speed of the main spindle is determined with S directly in rpm. The spindle speed does not influence any axis movements. G97 is active on switch-on.					
Programming	G97	no change in the spindle speed				
	G97 S	new spindle speed S is activated				
	Overriding the programmed spindle speed:					
	G66 ove	rriding is possible via the potentiometer on th	ne manual panel			
	G63 the	override potentiometer is not effective				
	Effect of gear range selection:					
	M40 auto M41-44 dire	omatic recognition and output ot programming of the gear range				
	see also SPI GE/ M-F	NDLE SPEEDS chapter 3 ADRESS AR RANGES UNCTIONS	S			

M40

Automatic gear range selection and speed ranges for the individual gear ranges:

Selected gear ranges when different speeds are programmed:

A: gear range II B: gear range III C: gear range IV

With speeds at which two gear ranges overlap the lower gear range (higher motor speed and higher torque) will be output.

	SUBPRO	GRAM END	G99				
Definition	G99 desig G99 is the which the subprogra The next p	inates the end instruction to call-up was r am was called program bloc	d of a subprogram. o jump back within the program from nade to the position at which the d up. k will then be executed.				
Programming	G99 without any other instructions.						
Example	N1 .		beginning of main program 5				
	N3 G22	2 P15	call-up of subprogram 15				
	N20 G22	2 P12	call-up of subprogram 12				
	N37 G22 N38 . N39	2 P20	call-up of subprogram 20				
	N40 M2		main program end				
			(there must be M2/M30 between the main program and the associated subprograms!)				
	N41 \$15	j	beginning of subprogram 15				
	N79 G99	•	end of subprogram 15				
	N80 \$12		beginning of subprogram 12				
	N116 G99	•	end of subprogram 12				
	N117 \$20		beginning of subprogram 20				
	N208 G9		end of subprogram 20				

NoteThe program from which the call-up is made can be a main
program, a subprogram or a cycle.
Maximum nesting depth is 10 (see under G21, G22).

THREE-DIGIT G-CODES

G800 to G869

DefinitionThe control operates with 3-digit G-codes.The functional content of these codes must be defined by
the machine tool builder or the user himself.

ProgrammingThe machining sequence is programmed as a cycle.Both the standard instructions as well as the
parametric functions can be used to program these cycles.

Application examples:

Machine specific operations such as

delivery and removal of workpieces

measuring, spot checks

tool inspection

punching/nibbling cycles

control of auxiliary machinery

Simplification of programming by the use of cycles for

the firm's own particular methods for the machining of bores, of standard parts, of part families, for calculations, for the adaptation of the CC 100 to special machines.

Cycle Numbers and Call-up	Programming	Call-up		
	cycle	G-function		
	1	G 801		
	•	•		
	69	G 869		

Example

A machining cycle written under cycle 45 is called up by G845.

CONTOUR CYCLES

G890 to G898

These 3-digit G-codes calculate positions which might not be provided on the drawing in all 3 main planes.

The control automatically makes the correct allocation of entered abscissa and ordinate values to the relevant axes, dependent on the plane selection.

Axis Allocation		G17	G18	G19
	abscissa A	X	Z	Y
	ordinate 0	Y	х	Z

Execution Cycles G890 and G891 are pure calculating cycles. The results obtained by calling them up can then be used in the course of the part program.

Cycles G892 to G898 process the values by executing the contour.

Call-up of	Contour Cycle	s in a Program				
Operating	Sequence			Main mode EDIT	\checkmark	
	TOOLS	ZERO SHIFTS	VARIABLES	PROGRAMS	CYCLES	
				>	program call,	e. g. 9 ENTE
	COMMAND	NEXT PAGE	EDIT	LOAD	SAVE	
	SEARCH GRAPHIC		SCROLL		MODIFY	
						_
	· · · · · ·			BORING CYCLES	CONTOUR CYCLES	
	CYCLE	3 **:	************* 	M RWED ME	MORY	
	$ \chi $		joining	joining	77	
	X	X		////+	1///	
	Intersect. 2 circles	Intersect. Line/circ.	2 points	1 point + 2 angles	Chanfer	
	177	$\overline{\lambda}$				
		1/				
	point on circle	tangent circles	point on line	Intersect. line/line		
		←──		\rightarrow	ок	

.

The required cycle is to be selected with the _____ or the _____ key and confirmed with _ok _.

Once the variables have been defined and the cycle input confirmed with <u>ENTER</u> the contour cycle will be stored in the program.

INTERSECTION LINE/CIRCLE

G891

CALCULATION OF THE END POINT OF AN ARC G895

 Definition
 Calculation of the end point of an arc, of which only one coordinate is known.

 The cycle calculates the position and initiates the traversing
 movement if COND. SBP CALL-UP is high.

Abscissa

Input	G895					
	starting point	(1) =	last programmed pos	ition .		
	end point	2	V90 = A or 0-value V91 = 1: V90 represents abscissa V91 = 2: V90 represents ordinate			
	centre of circle		V92 = A			
		3	V93 = 0			
			V94 = $+$ radius	(+) larger/equal 180°		
				- smaller 180°		
			V95 = direction of	= 2 : G2		
			rotation	= 3 : G3		
Programming	G895 V90 = V91 = V92 = V93 = V94 = V95 =					
Results	results end point (2) V 90 = abscissa V91 = ordinate					
	The missing coon	calculated.				

TRANSITION POINT ARC/ARC tangential

G896

DefinitionThe control calculates the transition point of two consecutive
arcs with tangential transition and a reversal of the direction of rotation.The cycle calculates the positions and initiates the traversing movement.

Input

CALCULATION OF THE END POINT OF A STRAIGHT LINE G897

Definition Calculation of the end point of a straight line, of which only one coordinate is known.

The cycle calculates the positions and initiates the traversing movement.

	starting point	(1) =	last programmed position	
	angle		V92 = <u>+</u> 180	
	end point	2	V90 = A or 0-value V91 = 1: V90 represents abscissa value V91 = 2: V90 represents ordinate value	
Programming	G897 V90=	. V91 =	V92 =	
Results	The unknown coordinate of the end point is calculated, after which the contents of the variables will be as follows:			
			V90 = abscissa value	
			V91 = ordinate value	
P R O G R A M M I N G CONTOUR CYCLES

Programming G898 V90 = . . . V91 = . . . V92 = . . . V93 = . . . V94 = . . .

Results The position of the intermediate point P2 is calculated and the axes drive to this position; the values are stored in the following variables:

V95 = abscissa value V96 = ordinate value 3 - 86

	Function	Programmed under cycle, main mode	Call-up via
User	froch are grown able	4 . 00	<u> </u>
cycles	ireely programmable	1-09	Gann
MTB cycles	priority routine	74	interface signal fast input on SERVO card
	MTB cycle	75 "	M22
	MTB cycle	76 "	M21
	MTB cycle	77 "	M6
	allocation of functions for keys F1 to F10 of customer keypad	78 "	customer keys
	referencing cycle	79 "	soft key selection

SURVEY OF FIRMLY ALLOCATED CYCLES

Cycles 1 - 69 are available for use by the enduser, unless predetermined by the MTB. These cycles can be used to program recurring machining tasks. A cycle with the number nn is called up with G8nn. Input variables can be written together with the 3-digit G-code, for instance:

G824 V1 = . . . V10 = . . . V55 = . . . (call-up for cycle 24)

Cycles 70 - 73 are routines which are used internally by the control and which have fixed functions. They are not available for use by the enduser.

	V 15 = ATG VX
Range	The following functions are available:
	load instructions for numerical values, 125 variables V1 to V99, VA to VZ,
	basic arithmetic functions, trigonometric functions, copy instructions,
	logic operations, branching, access to NC data.
	The user can write his own cycles with parametric functions. CPC = Customer parametric Cycle
	A CPC represents the solution of a problem in principle.
	Values such as spindle speed, dimensions, tool no. etc. are kept variable.
	Once the parametric program has been produced the only actions necessary for the execution are to load values for the variables and call up the program.
Applications	Production of customer's own cycles for:
	automatic measuring cycles with calibration of the probe, measuring of the workpiece, and automatic tool wear compensation
	production counters, random sample counters
	scale factors for similar parts,
	variable programs of all types
Programming	During panel input the CPC key is pressed before the input of a computing function. This automatically activates the secondary function (inscribed at the top) of the dual function keys.
	During external programming the mnemonic codes used by the control when printing out parametric instructions must be used to write the program.
	Example: load variable 5 with the content of variable $2 + value 10^{-1}$
To store	V 5 CPC E V 2 CPC G 1 0 Enter
To execute	V 5 CPC E V 2 CPC G 1 O START
External programming	N12 V5 = V2 + 10 (Note Only whole numbers are accepted)
	One program line can contain several computing functions. They will be executed in the same sequence in which they were written.
	Example: V17 = V2 * V3 V25 = SIN V17 V26 = COS V17
Note	 The programming in each line must be either all conventional or all parametric. Parametric functions must always be programmed without space characters, e.g. ATG VX, in order to avoid syntax errors.

•

Program Planning	Before starting to produce programs it is advisable to do some general program planning. This should take the following points into consideration:
	- Is a program to be used completely independently?
	 Or is the program to be used in conjunction with other program modules? If so, with which ones?
	- Is the program to be produced as a main program, a subprogram or a cycle?
	- Which other programs must/can be stored in the memory at the same time?
	- Which variables will be used?
Aims	Simplification of the continuing program administration.
	- Rationalized program production
	- Problem-free combination of programs
	- Multiple use of program modules
FORMS	The following forms help with program planning:
	- Memory Allocation
	- General Progam Planning
	- Variables
	- Program Description
Memory Allocation	This form shows which programs, cycles, subprograms etc. are stored in the control together.
Program Planing	This form shows at a glance which variables are used by which program, and which are still available to be used.
Variables	This form can be used when testing programs, by tracking the meaning and the contents of the variables.
Program Description	This is an aid for the program user , and it should consist of at least a top sheet with
	- a sketch of inputs/possibly the sequence
	- required storage capacity, short functional description

MEMORY ALLOCATION

	name	no.	function, sequence	required storage capacity
program				
assigned subprograms (local)				
liocaly				
				<u> </u>
			-	required
	name	no.	function, sequence	storange capacity
program				<u></u>
assigned subprograms (local)				
			·····	
		<u></u>		
	name	no.	function, sequence	required storage capacity
cycle				
(giobai)				
			<u> </u>	
				,

123456789 123456789 123456789 123456789 VARIABLES V Cycle function PROGRAM / CYCLE function l SBP

PROGRAM PLANNING

PARAMETRIC FUNCTIONS

4 - 4

100005000

.

BOSCH CC 100 M

User Handbook

VARIABLES (global)				L = C = Ca	 loaded value constant calculated value (temporary)
function	V	value	function	V	value
	0			0	n – name od mate – dalf y Bell Alfred Hange in ander som men men må del af stor gen – som –
	1			1	
	2			2	
	3			3	
	4			4	
	5			5	
	6			6	
	7			7	
	8			8	
	9			9	
	0			0	· · · · · · · · · · · · · · · · · · ·
	2			2	
	3			3	
	4				
	C C C C C C C C C C C C C C C C C C C			5	
				/	
	8			8	
	9			Э	71 <u></u>
	0			0	
	2			2	
	4				
	5			5	
				6	
	8			8	· .
	9			9	
				1	
				2	
	3			3	
	4			4	
	5			5	
	e e				
	7			7	
	8			8	
	9			9	
			4 - 5		

,

	LOAD FU	NCTIONS	
	Load V _i	directly with numerical value	V1 = 9316
	Load V _i	with content of a variable (copy)	V1 = V2 or $V1 = V2 + V15V1 = V2 - 4$
	Load V _i	with content of an NC address	V1 = X
Definition	The variat	bles to the left of the equal sign are loaded from es written on the right.	
Programming	$V_i = 931$	$6 V_i = V_2 \qquad V_i = X$	source data results
	i from 1 to	99 and from A to Z	
	Several of	these functions can be written into the same line.	
Example	N1 V12	2=1.6 V3=V5 V4=Z	
Execution	When N1 is carried out the programmed variables are loaded one after the other.		
	The seque	ence in which the variables are written determines of execution.	
	NC addres	ss values which can be loaded:	
	address	loaded value corresponds to:	
	XYZE	absolute positions in the active type of dimension	n
	ADR	in the machine coordinates or relating to the	
	IJK	zero point set with G92	
	т	T is loaded with 4-digits	
		T <u>cc</u> <u>oo</u> last output tool last effective compensation	
	F	feedrate in the active type of dimension as defined by G94 / 95 / 96	
	S	spindle speed or cutting speed as defined by G96 / 97 4 - 6	
		4-0	

.

ARITHMETIC FUNCTIONS

	Addition			V1 = V2 + V3 V1 = V2 + 157	*)
	Subtraction			V1 = V2 - V3	*\
				$\mathbf{v} = \mathbf{v}_2 \cdot \mathbf{i}_2$	-)
	Multiplication			V1 = V2∗V3 V1 = V2∗157	*)
	Division			V1 = V2/V3	,
				V1 = V2/157	*)
	Square root			V1 = SQR V2	**)
Definition	Arithmetic function direct numerical	ons, using the cont values.	ents of variables or		
Programming	VN = VM + VP	V1 = VN	* 12 *) VJ =	SQRV1 **)	
Example	Finding the square roots of a quadratic equation in a program line.				
	X _{1/2} =	$-\frac{P}{2} \pm \sqrt{\frac{P}{2}}$	$\left(\frac{1}{2}\right)^2 - q$	with $P = V1$ q = V2	
	V4 = V1 / 2	V3 = V4 * V4	V3 = V3 - V2		
	V3 = SQR V3	V5 = V4 * -1	VX = V5 - V3	VY = V5 + V3	
	VX and VY will co the program line.	ontain the solutions	after the execution of	F	
Sequence	The sequence in the sequence in t	which the functions which they are exec	s are written determin cuted.	es	
Note	*) For arithmetic values can be integer numbe	and trigonometric entered directly wi ers or max. 3-digit r	functions the numeric th max. 3-digit, positiv negative integer numb	cal ve ers.	
	**) CPC computi programmed	ng functions (SQR, without any space	COS, SIN, ATG) shouch a characters only with v	uld be /ariables;	

numerical values are not permitted.

	INCREMENT / DECREMENT			
	Increment value	INC V1		
	Decrement value	DEC V1		
Definition	The content of a variable is increment Any digits after the decimal points are	ed or decremented by 1. deleted.		
Programming	INC VN DEC VM			
Example	N1 V1 = 12 V4 = 1.7 V5 = -1.3 N13 INC V1 INC V4 DEC V5			
	After the execution of N13 the content $V1 = 13$ $V4 = 2$ $V5 = -2$	ts of the variables are as follows:		
Integer Number	A real number can be converted into t by performing the INCREMENT and the INCREMENT	he corresponding integer number nen the DECREMENT function.		
	REGISTERING TIME	TIM V1		
Definition	The time elapsed since the start of the	program is loaded into the variable (seconds).		
Programming	TIM VN N from 1 to 99 and from A to Z.			
Example	N1 $\$5$ - N2 G91 N3 G1 X1 F250 N4 TIM V1 N5 V2 = 50 N6 V3 = V2 - V1 BGT P5	registering time for G1-function storing value in V1, time limit 50 seconds; checking condition and branching; the program sequence is not completed until the time limit of 50 seconds is reached; other- wise a jump is made into SBP 5.		

.

TRIGONOMETRIC FUNCTIONS

	Sine	VN = SIN V1
	Cosine	VN = COS V1
	Arc tangent	VN = ATG V1
Definitions	The sine or cosine value of an angle (in degrees) is formed (S The corresponding angle (in degrees) is formed from the tang	3IN/COS). gent (ATG).
Programming	VN = SIN V1 V0 = COS V2 VP = ATG V3	
Example	N1 V10 = 30 VX = COS V10 VY = SIN V10	
Operation	The sine or cosine of any angle can be formed. Angle values are to be entered via variables.	

The direct input of numerical values is not permitted.

4 - 9

	TOOLS		
	LOAD TOOL STORE	COR = V1 R = V2 L = V3 **)	
Definitions	The tool store is loaded.		
Programming	N1 VN = 15 N2 COR = VN R = VP DR = VN from 1 to max. 48.	VR L = VQ S = VS	
	After the execution of N2 tool 15 wi	I be loaded with the data from VP to VS.	
	COPY TOOL DATA	COR = V1 V2 = RR V3 = L **)	
Definition	Variables are copied from the tool	store.	
Programming	COR = VN VP = R VR = DR V VN from 1 to max. 48.	Q = L VS = S	
Operation	Values are only copied, i.e. the tool	data do not affect the machined path.	
Example	N1 V12 = 15 V13 = 15.0 V 14 N2 COR = V12 R = V13 L = V	k = 75 /14	
	After the execution tool 15 is loaded $R = 15.0$ L = 75.0	ł with	
Example	N1 V4 = 25 N2 COR = V4 V1 = R V2 = 1	. V3 = DR *)	
	After the execution of N2 the content	nts of the variables will be as follows:	
	V1 = radius $V2 = length$ $V3 = ta$	ool wear of tool 25.	
Note	*) The input of the tool wear (DR) of The DR value/ modification is en	epends on the radius (R); limit: 10% of radius. tered as an incremental value.	
	**) The COR instruction should be	programmed in a single line together with the var	iables.

.

•

ZERO SHIFTS

.

	Load zero shift G54 to G59	TRF = V1 X = V2 Y = V3
	Copy zero shift G54 to G59	TRF = G54 V1 = X V2 = Y
	Copy active zero shift G92	TRF = G92 V1 = X V2 = Y
	Copy active pole	$TRF = G20 \ V1 = X \ V2 = Y$
	(polar coordinates)	
	Copy active scaling factor switching G36	TRF = G36 V1 = X V2 = Z
Definitions	The zero shift table is loaded or values are copied from the z	ero shift table.
	The values of the zero shifts and the values of the pole positi	on are copied.
	The values of the active scaling factor are copied into V1 for	the active
		ne thhu axis.
Programming	Load zero shift G54 to G59	
	N2 TRF = VN $X = VP Y = VQ Z = VR E = VS$.	
	Copy zero shift G54 to G59	
	N2 TRF = G54 VP = X VQ = Y VR = Z VS = E	
	Copy pole (the coordinates relating to the active G20	
	zero point of the active pole are copied)	
	N2 TRF = G20 V1 = X V2 = Y V3 = Z V4 = E	
	Copy zero shift G92 (current difference between commande	ed
	position and machine position)	
	N2 TRF = G92 V1 = X V2 = Y V3 = Z V4 = E	
Francis	Na Via 54 Vio 400 Vio 600 Via 450 Vio 70	
Example	NI VI = 54 V2 = 100 V3 = 200 V4 = 150 V5 = 70 N2 TRF = V1 X = V2 Y = V3 7 = V4 F = V5	
	N3 M2	
	After the execution of N2 the zero shift corresponding to G54	is defined as follows:
	X workpiece zero point at coordinate 100	
	Y workpiece zero point at coordinate 200	
	Z workpiece zero point at coordinate 150	

E workpiece zero point at coordinate 70

UNCONDITIONAL BRANCHING

	Jump into subprogram	indirect jump direct jump	BSR V1 BSR P5
	Jump to label	indirect jump direct jump	BRA V1 BRA P5
Definitions	Depending on the results of calulations a fre subprogram can be called up, or a jump car Both instructions can also be carried out wit	ely selectable 1 be performed. hout condition.	
	The jump target can therefore either be P5: direct jump address label 5 (\$5) or subprogra V1: indirect jump address label no. = content of V1 or subprogram no. = content of V) am 5 (\$5) /1	
Programming a jump indirectly	N1 VN = M N2 BSR VN	allocation of value to varia call-up of subprogram no (content of VN)	able . M
Programming a jump directly	N2 BSR P5	call-up of subprogram 5	
Indirect jump to label	N2 BRA V1		
Note on multiple branching	Several branching directions BSR can be pro- NC block. The first subprogram call-up the ca for which are fulfilled will be carried out. Subs the next block number will be executed.	ogrammed in one onditions sequently	

CONDITIONAL BRANCHING

In addition to being dependent on signals program branching can be tied to the following conditions:

- mathematical comparisons
- modal effect of various G/M-functions
- whether or not mirror image is active

SETTING CONDITION REGISTER

TST V1

The basis of all types of branching described in the following text is the status of the

CONDITION REGISTER (CR).

After mathematical operations or after 'TST" the control will load the result into the internal condition register with the values of the variables.

TST must be used before the branching, if the variable on which the branching is to depend is not yet in the CR.

Programming N10 TST VN

Branching operations are only carried out correctly if the result from the preceding operation contains the conditions for the particular branching.

If, for instance, a multiplication is carried out in line 5 and no further instruction follows, which would set the condition registers, the result of this multiplication would still take effect in block 12 of the example on the next page.

General format for programming conditional jumps:

If the jump condition is not fulfilled, the subsequent block will be executed.

CONDITIONAL BRANCHING / CONDITION REGISTER (CR)

Automatic	The condition register is loaded automatically by operations such			
Loading	as the basic arithmetic functions.			
	After the	e operation it will indicate what	the result of the	
	comput	tation is compared to zero:		
	E	EQ = equal zero		
	١	NE = not equal zero		
	C	GT = greater than zero		
	L	T = less than zero		
	L	E = less/equal zero		
	G	GE = greater/equal zero		
Loading via TST	Not all operations load the condition register automatically. Example: A value is copied into V15 from the tool table.			
		If a branching is to depen V15 after the copying the set with TST 15 before the	d on the value contained in condition register must be decision is defined.	
Programming			· · · · · · · · · · · · · · · · · · ·	
	N12 B	LE P27	jump to label 27, if condition	
	•		"BLE" is fulfilled; otherwise	
	•		continue at block 13	
	N20 \$2	27	jump target	
	or			
	N10 V	12 = V11 - V10	calculation of required jump address	
	N11 T	ST V15	set condition register	
	N12 B	LE V12	jump to address 28 (content of V12) if condition regarding V15 is fulfilled	
	N31 \$2	28	jump target	

CONDITIONAL BRANCHING AFTER MATHEMATICAL COMPARISON

The jump address can be defined by one of two means:

- indicated, as content of a variable V or

- directly, by specifying a label with P.

Conditional branching does not automatically set the condition register.

1	BEQ Branch if EQual to zero	BEQ V5 BEQ P1
/ (All digits before and after the decimal point must be 0	
I	BNE Branch if Not Equal to zero	BNE V5 BNE P1
	The jump condition is fulfilled if at	
I	east one digit before or after the	
C	decimal point is not equal to zero.	
i	BGT Branch if Greater Than zero	BGT V5 BGT P1
٦	The condition is fulfilled if the	
r	esult is a positive number of at	
ļ	east one increment.	
E	BLT Branch if Less Than zero	BLT V5 BLT P1
٦	he condition is fulfilled if the	
r	esult is a negative number of at	
l	east one increment.	
E	3GE Branch if Greater than or Equal to zero	BGE V5 BGE P1
T r	The condition is fufilled if the esult is $= 0$ or positive.	
E	BLE Branch if Less than or Equal to zero	BLE V5 BLE P1
T r	the condition is fulfilled if the esult is $= 0$ or negative.	
11	several jump instructions are programmed in one	block the user

must check the corresponding jump addresses.

Note:

Example JUMP AFTER COMPARISON WITH A VARIABLE VALUE

The X-axis is to traverse to the value calculated for V7.

Condition The traversing movement is to be carried out if the value in V7 exceeds 10 (content of V5).

If the value is greater the program is to be abandoned by making a jump onto the program end.

N1	G1 X100	F500	
N12	V5 = 10		load value for comparison
N13	V7 = V3 / V2		calculate V7 from variable sources
N14	V4 = V7 - V5		determine whether jump condition is fulfilled
N15	BGT P2		define jump condition and jump target
N16	X = V7		carry out movement in X, since content of V7 does not exceed 10
Noo	\$2 ~		corresponding jump target
N20	M2		

Note

If the jump condition in block 15 is defined as "BGT", the movement will be carried out for V7 values of up to 10.000.

A V7 content of 10.001 will produce program stop.

The jump condition "**BGE**" in block 15 would produce a program stop for a content of 10.000 and above.

The jump condition "**BEQ**" in block 15 would only produce a program stop if V7 was exactly 10.000.

	BRANCHING CONDITION: NC INSTRUCTION			
Definition	Branching can be made dependent on the active state of certain modal conditions.			
	The tests described below will set the condition register if the relevant condition is fulfilled.	(CR) = 0,		
	After the test branching can take place, dependent on the st of the condition register.	atus		
G-FUNCTIONS	Test whether a particular G-function is active as a modal function	TST G1		
	When testing for G1 the $CR = 0$ if G1 is active; the $CR = 1$ if G	1 is not active.		
Programming	N12 TST Gn			
	Range of G-functions (n) for which the test can be carried out:			
	G0, 1, 2, 3, 17, 18, 19, 39, 53-59, 62, 65, 66, 90, 93, 94, 95, 97	,		
Example	N10 TST G17 BEQ P1	ng plane G17 is active; 1		
	N11 ISI G18 BEQ P2			
	N19 \$1			
	N30 G99			
M-FUNCTIONS	Test whether a particular M-function is active as a modal function	TST M41		
Programming	N12 TST Mn			
	Admissible range for n: 3, 4, 5, 19, 41 - 44			
MIRROR IMAGE	Test whether mirror image function is active for one or several axes	TST QX		
INCH/METRIC	The whether measuring system is defined as inch or metric	TST QM		
Programming	N12 TST Qn Admissible for n: X, Y, Z, E, M, M = metric			

	AXIS INFORMATION		X = V1
Definition	NC addresses are loaded from variables.		
Operation	During subsequent program exe carry out the instructions as with	cution the contro DIN programmir	l will ng.
Programming	N10 $X = V1 Y = V15$		
	Admissible DIN addresses		
	axis traverse		X Y Z E I J K
	output M-functions/aux. function T must be loaded with 4 digits, possibly with internal effect	S	A D R = VN M S T = V1
	determine feedrate		F = V1
	select/set G-functions 2 or 3-digit address		G = V1
Example	N1F500N2 $V10 = 50$ $V11 = 27$ $V12$ N3 $V1 = 60$ N4 $V2 = V12/V1$ V5 $V3 = V2 + V11$ N6 $V2 = V13/V1$ N7 $V2 = V2/V1$ N8 $V3 = V2 + V3$ N9 $A = V3$ $D = V10$ N10M2	= 3 V13 = 15	
Execution	Axes traversing to a position which is defined by the following values:		
		value	
	radius V10	50	
	angle V11 degrees	27	
	V12 minutes	3	
	V13 seconds	15	
	Axes X and Y traverse to the follo	wing positions:	

X = 44.529 Y = 22.742

.

.

	POSITIONING (Traverse axes with external command	POS
	Linear axes can be traversed with an eractive execution of a program. The POS be written into the part program at the The interface signal DRIVES ON goes axis(es) (servo loop is open). The curred displayed. An external command can be found the interface signal DRIVES ON the servo loop closes. The active part be resumed.	external command during (axis) function must appropriate place. "low" for the particular ent position is then be applied. is switched back on program will then
Example	N1 G1 X50 Y20 Z10 F500	all servo lops are closed; traverse to axis positions
	N2 X100	
	N3 M55	interface signal DRIVES ON for
		Y and $Z = "low" (via M-function, for instance):$
	N4 POS Y	Y and Z axis are traversed with
	N5 POS Z	external command (servo loon open):
		interface signal DBIVES ON for
		X and $Z = "bight" (serve loop closed):$
	N6 X10 X10 715	traverse to axis positions
		traverse to axis positions
	•	
	•	
	•	
	N15 M2	
Note:	Each POS function only applies to one axes are involved the POS functions m in separate blocks.	e axis; if several lust be programmed
	The POS function can only be applied it is defined as a linear axis.	for the E-axis if

.

2

.

	STV - FUNCTION (SET VARIABLE FUNCTION)		
Definition	During the course of a program execution it is possible to enter values into the variables table by MDI, via the serial interface or via the PLC. The updated variable values become active within the current program through programming of the STV function.		
	The STV function stops the program execution and interrupts the block preparation process. The updated value from the variable table is transferred into the working store. With the interface signal "STV" the program sequence is resumed. The new variable value will be processed by the program.		
Operation	- STV is not modal.		
	- The complete variable table is updated with STV.		
Programming	The STV function must be programmed immediately prior to the variable which is to be changed.		
	variable definition in table		
	variable allocation		
	processing		
	STV (program stop)		
	updating of variable in table		
	A18 D1 at I/F (program start)		
	variable allocation		
	processing		

Example	Variables for a fixed machining cycle are loaded into the NC by the PLC via the STV function.			
	N15 V70 = 50 V75 = 115	loading current variables via MDI directly into the variable table or in program by means of load instruction		
	N19 G0 X = V70 Z = V75	traversing movement		
	N20 F500 S250 M3	machining parameters		
	N21 G81 V1 = 35 V2 = 109	1st boring operation		
	N22 STV	- NC to interface A18 Data 0 (part program stops)		
	N23 X = V70 Z = V75	interface to NC: data transfer Axx Dxx V70 Axx Dxx V75 Axx Dxx V76 AXX Dxx V76 A18 Data 1 - end of data transfer; program continues next boring position defined by STV; 2nd boring operation		
Output	BCD output bus: A18 Data 0			
Input	BCD input bus: A18 Data 1			
Note	The function is applicable to the comp table (V1 to V99 and VA to VZ).	lete variable		

CPC SAMPLE PROGRAMS: 1. Ellipse

Path calculation for an ellipse (centre of ellipse = coordinates 0/0).			
The ratio betweer	een the to radii is to be 0.4. The program is stored as cycle 65.		
called up with G865. The ratio should be definable by one s			
•••			
N1	jump addrress (label 1)		
N2,3	calculation of X-coordinate		
N4-6	calculation of Y-coordinate		
N7	positioning to X/Y coordinates		
N8,9	feed-in in Z (Ist positioning only)		
N10	increment angle until final value is reach	ned	
V1	starting angle alpha	0	
V2	incrementing angle in alpha	2	
V3	radius b	10	
V4	value for condition		
V5	radius a (larger radius)	25	
V8	final angle	360	
V6	cosine> X-component		
V7	sine> Y-component		
V10	milling depth in Z	-0.5	
	Path calculation The ratio betweer called up with G8 N1 N2,3 N4-6 N7 N8,9 N10 V1 V2 V3 V4 V5 V3 V4 V5 V8 V6 V7 V10	Path calculation for an ellipse (centre of ellipse = coordThe ratio between the to radii is to be 0.4. The program is so called up with G865. The ratio should be definable by one soN1jump addrress (label 1)N2,3calculation of X-coordinateN4-6calculation of Y-coordinateN7positioning to X/Y coordinatesN8,9feed-in in Z (lst positioning only)N10increment angle until final value is reactV1starting angle alphaV2incrementing angle in alphaV3radius bV4value for conditionV5radius a (larger radius)V8final angleV6cosine> X-componentV10milling depth in Z	

Advantages The resulting program is considerably shorter than a conventional program, which would describe an ellipse as a contour made up of at least 10 arcs. It is also fully flexible with regard to the used radii and the ratio between them (b/a).

Programming

Call-up and Example

N1 G0 Z20

N2	G865 V1 = 1	V2 = 8	V3 = 10	V5 = 30	V8 = 359	V10 = 12

- N3 Z20
- N4 M30

Note:

Careful selection of the V2 value (incremental angle) makes it possible to achieve an optimum combination of accuracy and speed. Angle values relate to the circle with radius a. The corresponding Y-coordinate is modified by radius b (V3)! The program will work in a counter-clockwise direction. CPC SAMPLE PROGRAMS:

2. Row of Holes

START

no. of

\$2

holes 0?

traverse to drilling

position and drill ÷.

number of holes - 1

> no. of holes 0?

> > no

new drilling position

X+ ΔX / Y+ ΔY

no

copy input variables

into working

variables

yes

yes

\$1

fixed cycle off (G80)

END

Definition of the variables

X = V90 Y = V91 $\Delta X = V92$ $\Delta Y = V93$ number of holes = V94

V40 = V90N1V41 = V91N2 N3 V44 = V94N4 BEQ PI F500 S250 M3 N5 G81 V1=20 V2=0 N6

Program construction

(solution)

N7

N8 G0 X = V40 Y = V41N9

N10 DEC V44

\$2

N11 BEQ P1

N12 V40 = V40 + V92 N13 V41 = V41 + V93 N14 BRA P2 N15 \$1 N16 G80

N17 M2

Sequence

4 - 23

CPC SAMPLE PROGRAMS: 3. Bolt Hole Circle

The following requirements need to be provided for:

- variable X/Y position
- variable number of holes
- -variable angle related hole distribution

Definition of the Variables

Sequence

5. TECHNOLOGY

.

PROGRAMMING

INTERNAL PROCESSING OF TOOL TECHNOLOGY DATA

When the relevant machining functions are called up the control automatically provides tool compensation according to the tool data in the technology store:

Tool Geometry G40 to G42 tool radius T tool length

> The compensations for tool length and tool radius and their cancellation are programmed with separate instructions. Once called up the compensations remain active as modal functions. The relevant compensation group must be defined.

Tool radius compensation can be further defined by

G68/69 behaviour at outside corners.

All compensation data can be input via the keyboard after selection of TOOLS by soft key.

Parametric functions can be used to make allocations to tool compensation table data, and compensation data can be copied and applied.

Feedrate The programmed feedrate (F-word) is interpreted in different ways:

G94/95feedrate in mm per minute or per revolutionG96/97cutting speed / spindle speed

The feedrate applies as follows:

with G64along the programmed contour (cutting point path)with G65along the tool centre path

Cutting Speed With G97 the control forms the spindle speed directly from the active S-word.

The programmer determines the cutting speed by programming the appropriate spindle speed.

- With G96 the control calculates and outputs the required spindle speed depending on the S-address (cutting speed), as defined in the technology store, and the used tool radius
- Gear Ranges
 M41-44
 direct selection in the program

 M40
 selection made automatically by the control at the beginning of the block

TOOL COMPENSATION

Definition The control can convert a part-related program into a tool path.

When a tool compensation is programmed the control will automatically take into account the following tool-related characteristics, which are stored in the technology store:

Tools	L	length	mm
	R	radius	mm
	DR	radius wear	mm
	S	cutting speed	m/sec
		number of compensation groups	max. 48

Without ToolThe control can carry out a program without any modificationCompensationif the machine and the required machining do not require any
adjustment. The block processing time is short.
Geometry, spindle speed, output signals, and feedrate take
effect as programmed.

External ToolThis also applies to programs through which the cutter centreCompensationpath is described by external calculations.

Any demands regarding values, which are to be determined indirectly, such as constant cutting speed, usage of the optimum spindle speed, must be realized through specific values for M and S for the particular program run.

See also chapter 1 INTERFACES for the transmission conditions.

CompensationThe tool length compensation is called up via T.Call-upThe radius compensation is called up with G41/42.

CancellingBoth tool length and radius compensation are cancelled with T00.the ToolG40 cancels the radius compensation alone.Compensation

	TOOL LENGTH COMPENSATION			ADDRESS T	
	The tool length is t The effect of T is re Tool length compe	s taken into account when the T-word is called up. restricted to the tool length compensation. pensation can be used in all machining modes.			
General Format		- tool number, physi - compensation grou	cal, for output up for internal computa	tions	
Allocation	Compensation gro	oup and output tool i	number can be freely c	ombined in the call-up for T.	
Examples	T can be program	be programmed with 2 or 4 digits.			
	Τ 00	tool length comper cancelled; no outp	usation and path compo ut	ensation are	
	T 12	compensation ground no output of number	up 12 is selected; er		
	T 02	tool number 2 is ou tool length comper	tput; isation remains unchar	nged	
	T 0812	compensation grout tool number 12 is c	up 8 is selected; putput		
	T 1212	compensation grout the same number is	ip 12 is selected; s output		
Effect	The first two digit	ts behind the T (Tx)	always effect the to	ol compensation call-up.	
	The 3rd and 4 th d if they are program is incorporated act the tool length com	igits specify the tool nmed. The tool lengt cording to the sign ir npensation applies.	number and are output h L, which is stored in t nto the values for the av	t at the interface, he tool table, kis, in which	
	The compensation - immediately for the for the path once	n value takes effect he axis display the relevant axis is p	programmed.		
Examples	T + Z programm	ed separately	T and Z program	mmed together	
	N2 T08 corre for Z- N3 Z50 phasi	cted display axis ng in of tool	N2 T08 Z50immediat the comp movemen	e phasing in of ensation in Z-axis It + corrected axis	
	lengtl	h compensation	display		
Note	When a tool numb are displayed in au	er is programmed wi tomatic mode to she 5 - 3	th 4 digits the last two ow the active tool numb	per.	

	TOOL LENGTH C	OMPENSATION	ADDRESS T		
Call-up	The tool length compensation is phased in and out during a movement in a linear mode. The feed-in axis is to be programmed on its own.				
Allocation	Plane tool length is compensated for in				
	G17 (X/Y) G18 (Z/X) G19 (Y/Z)	Z Y X			
	There are basically two situations in which the tool length compensation is used:				
	Programming without consideration of the tool length.				
	In this instance the effective length of the tool needs to be stored in the tool table.				
	The compensation between spindle ne	on value corresponds to the distance nose and the tip of the tool.			
Example:	G1 Z-50 F100 T08				
complete tool length	te Content of tool length $8 = 100$ agth The Z-axis will position to $-50 + 100 = 50$				
	Programming with reference to a zero tool				
	When using this or applied. If a new to ^L act. ^{- L} orig.	iginal tool, tool compensati ol is any shorter or longer, is entered into the compensi	on value $L = 0$ is the difference sation store.		
Example:	G1 Z50 F100 T08				
difference	Tool length taken into account by the program: $= 100$ mm.				
in tool lengths	Actual length of tool $8 = 90$ mm. Tool length compensation in Z-axis				
iongino -	Plane G17 (X/Y).				
	Z will position to 40.				
	drill to	o short drill too long			
	comp	ensation compensation	n		
	+Z L-10 80 † P≃≯つ	L+10			
	70				
	60				
	50				
	20		$\begin{array}{cccc} & & & \\ \hline \\ \hline$		

drilling depth 2 = "-" compensation

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 +X 3 = "+" compensation

10

ŧ

12 - B

	TOOL RADIUS COMPENSATION	G40 / 41 / 42		
Definition	The radius compensation converts the contour related part program into a cutter centre path (equidistant). The equidistant runs parallel to the programmed contour at a distance which corresponds to the active cutter radius. The side at which the equidistant runs with respect to the programmed path is determined with G41/G42.			
Treatment of	The control calculates			
Comero	 - intersections at inside corners and - auxiliary arcs at outside corners (G68) or also - intersections at outside corners (G69) Whether C68 as C60 is only on switch as is 			
	determined by M-parameter.			
Feedrates F	Feedrate values modal and, when relating to the machining of the part contour, apply			
,	- to the cutting point (G64) or - to the cutter centre path (G65)			
Cutting Speed	The cutting speed can be determined indirectly by			
	- the determination of a fixed spindle speed for a given tool ra	dius (G97 + S-word).		
	Alternatively, automatic and direct definition is possible via			
	- G96 with the S-word in the technology store.			
Cutter Radius				
R positive	R is stored in the tool table and represents the cutter radius relevant for the program execution.			
R = 0	R can be set to 0 if, for instance due to extreme speed requirements, the part is programmed by describing the tool of The program is then executed without any path compensation	centre path. n.		
Tool Wear DR	Additive, small compensation for the nominal tool radius, which, for instance, takes into account the regrinding of the tool.			
	If DR is programmed without sign this corresponds to an increase in the effective tool radius.			
	Detailed description of the functioning of the TOOL COMPENSATION in the relevant chapter.			

~

	STARTING POINT, I	BEGINNING OF CO	NTOUR			
Starting Point	In many cases it is not possible to drive directly onto the contour from the tool change point; usually it is necessary to position to an intermediary position (starting point).					
	The choice of a suitable starting point helps to avoid damage to the contour. The compensations are phased in during the movement onto this point.					
	If possible the starting to the contour, but at there will be no revers the first contour point	g point should allow a least it should be po sal of the direction of t (free-cutting).	a tanger sitioned any axi	ntial appr I so that s at	oach	
Beginning of Contour	A linear workpiece edge should be chosen, otherwise an intermediary linear movement (of at least 3 increments) must be made.					
Compensation Call-up	Compensation call-up G1, G61). The block f G41, G42) should also	o must be made while ollowing directly afte o be linear.	e in a lin r a call-ı	ear mode up (G40,	e (G0,	
Sample Contour without Compensation Call-up	P1 P4	P2 + 1 2 3 4 P3	N1 N2 N3 N4 N5 N6 N7	G1 X0 X20 G2 G1 X0 M2	Z10 Y0 F200 Y-20 X10 Y0	F100 R10
	Call-up of a compens which the compensat	ation with positioning ion is active:) of the a	axis (es) i	'n	

Example:	positioning in Z for call-up of T	(XY plane)	
	position in XY for G41, G42	(XY plane)	

Phasing in the Radius Compensation When a radius compensation is called up the control phases in the relevant value in a linear traversing movement. The equidistant starts vertically above the beginning of the first path section for which the compensation is to apply. ÷

51	ENTRY INTO CONTOUR FROM DI	FFERENT STARTING POINTS	
		\$2 ·	
₫ Ţ	+		
53			
<u></u>	programmed path	forbidden area	
	cutter centre path	eeee auxiliary movement generated by the control	
S1 - S4	The compensation value is phased in P1 in a linear movement. The contou points and there is no damage to the	n from the starting point to r is fully machined at all contour.	
S1	Cleanest contour entry through tangential approach movement.		
S2	Good contour entry; starting point can also be used as end point.		
S3	Lowest possible starting point without collision, considering contour section $4 > 1$.		
S4	Free-cutting at \bigcirc due to a change i	n direction!	

Example with S2 as starting and end point incl. tool compensation

CONTOUR TRANSITIONS WITH G68 (AUXILIARY ARC)

The following examples show how the tool compensation works on corners, by the generation of auxiliary arcs (outside corners) and the calculation of the angle bisector (inside corners).

Transitions between linear path sections

Transitions between circular path sections

Discontinuous transitions

1

1

t = tangential u = discontinuous

.... arc generated automatically by the control

CONTOUR TRANSITIONS WITH G69 (INTERSECTION)

... movement generated automatically by the control

T E C H N O L O G Y PROGRAMMING

EXAMPLES G41 on outside Contour programming with tool radius compensation to the left contour of the workpiece and phasing out of the compensation at the end of the machining. The tool radius compensation value was stored in the technology table as the R-value. (in this example for T1 : R = 2.5 DR = 0.05 L = 250.0 S = 25.0) programmed path (workpiece contour) corrected path (cutter centre path) **N1** G0 X125 Y90 G1 F200 N2 PO N3 G41 X125 Y60 T01 +Y Y50 **N4** 80 X105 Y40 N5 70 X90 N6 60 **N7** G5 X75 Y25 G1 Y 20 N8 50 X25 PZ P N9 40 N10 Y60 P/ 30 N11 X45 Y80 PE P12 X70 N12 20 N13 G3 X100 R15 10 G1 X125 Y60 N14 N15 Y50 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 +X G40 Y20 N16 N17 M2

G42 on inside contour

Contour programming with cutter path compensation to the right of the workpiece and phasing out of the compensation at the end of the machining. (in this example for T3 : R = 3.25 DR = 0.06 L = 175.0 S = 17.5)

The tool radius compensation value was stored in the technology table as the R-value.

N1	G0	X95	Y50
N2	G42	T03	F300
N3	G1	X115	Y50
N4	G5	X130	Y35
N5	G1	Y20	
N6	X55		
N7	Y30		
N8	G1	Y20	
N9	G5	X25	Y45
N10	G1	Y70	
N11	X40		
N12	G3	X70	R15
N13	G1	X100	Y80
N14	X140		
N15	Y60		
N16	X115		
N17	Y50		
N18	G40	Y35	
N19	M2		

· · ·

	END POINT, CANCELLING THE COMPENSATION
End Point	The return from the contour to the tool change point is usually not made directly, but via an intermediary position (end point).
	The choice of a suitable end point helps to avoid damage to the contour, and the tool length compensation can be phased out between the end point and tool change point.
	The end point should, if possible, allow a tangential exit from the contour with active radius compensation. It should be positioned so that there will be no free-cutting due to a change in direction when driving away from the contour.
End of Contour	The last section of the contour should be linear. Otherwise a short linear positioning movement (of at least 3 increments) must be inserted past the end of the contour.
Cancelling the Compensation	The cancellation must be made while in a linear mode (G0, G1, G61). In cases where the tool radius is relatively large in comparison to the contour radius the block following immediately after the cancellation (G40) must also describe a linear movement.
	With regard to the choice of the end points the same applies as for the choice of the starting point, in principle (see contour entry). The optimum exit movement is the direct extension of the last contour section (in analogy to starting point 1). Starting and end point are different in this case. A joint starting and end point (such as S2) is also possible.
	Referencing is not possible until tool radius compensation has been cancelled
Cancelling Compensation for Inside	Even when working within a restricted space the radius compensation must be cancelled in conjunction with a positioning movement, which must at least equal the tool radius.
Contours	To keep the required space to a minimum one of two methods should be used: - continue in the direct extension of the last movement, or - move to a position which lies on the same side on which the radius compensation was active, i.e. the right side with G42.
•	The recommended programming sequence is as follows (G17/G41 active):
	 last contour machining (for instance with G2) tangential exit from the contour in G1 (program X/Y only) retract Z-axis with G1 (program Z on its own) G40 with X/Y movement as an extension of the last movement (program only X/Y) T00 with Z-movement (program Z on its own) program end

SPECIAL CASES - TOOL COMPENSATION

CHANGE OF COMPENSATION

There should preferably be no compensation values active when selecting a new tool.

Any active compensation can only be changed for a new block within the contour description. The interpolation mode in the block in which the change is programmed and in the following block must be linear.

The new compensation value will not be activated until a positioning instruction is carried out in the axis(es) which the compensation applies to.

Example: G41 X5 Y7 T02 (XY plane)

The new compensation value is phased in gradually to become fully effective at the end of the first block in which the relevant axes carry out a movement.

SWITCHING BETWEEN G41 and G42

Switching from G41 to G42 and vice versa should preferably take place without radius compensation being active.

If radius compensation is active switching between G41 and G42 is only possible during linear interpolation.

The control will generate an adjusting movement which must be taken into account during the programming!

For instance: Section P0 - -> P1 can be extended to P1', and similarly P2 - -> P3 can be started at P2', in order to achieve a smooth change-over movement.

In some cases it might be necessary to cancel compensations via G40, program intermediary positions, and make a new compensation call-up with G41/G42. The minimum length of path sections with which a compensation can be called up or cancelled is 3 increments.

TECHNOLOGY PROGRAMMING

Example 1

Example 2

Tangential entry into and exit from contour

Direct entry into and exit from contour

Tool compensations for length and radius (G17 active). The max. possible tool diameter corresponds to the width of the keyway - 1 inc.

The compensations are phased in and out above the workpiece, which makes this procedure suitable for very limited spaces.

When activating or cancelling a compensation only the axis(es) involved in the radius compensation should be moved.

In the program below the tool table contains the following for T10 : R = 8.0 DR = 0 L = 0 S = 0

Progra	im CO	75	M3	TIO	
191 877	Ch2	×70	VIO	110	
INZ.	G42	X/U	110		
N3	Gl	Y30	F200		
N4	Z-2	F50			
N5	G2	X90	Y50	R-20	F250
N6	G2	X90	Y10	190	J30
N7	Gl	X30			
N8	G2	X30	Y50	130	J30
N9	Gl	X90			
N10	G5	X90	Y11		
N11	Gl	Z5	F2000)	M5
N12	Y50				
N13	G40	X81	Y60		
N14	Z100				
NI 5	M30				

To cancel the compensation (G40) a movement is required from 7 to 8 in Y positive, or in Y and X positive direction. Recommended exit via end point such as E, E', E" etc.; exit via end point such as N not recommended. Contour might be disturbed.

SUPPRESSION OF CONTOUR ELEMENTS

Not all programmed contour elements can be machined because of the radius of the used tool.

Programmed contour

Execution with G68

1. All contour elements are machined.

2. One element is suppressed, since tool radius is larger than contour element.

Note:

If more than one contour element can not be machined due to the geometrical data the control will interrupt the machining and output an error message.

Cancelling Compensation on Inside Corners Programmed contour

Cancelling compensation with different end points

1. All programmed contour elements are machined correctly.

2. One contour element is damaged.

E = end point programmed in conjunction with G40 for the cancellation of the radius compensation

5 - 14

OUTSIDE CORNERS

execution with G68

execution with G69

angle alpha larger than 90° and smaller than 180°

programmed contour

steps tool radius larger than contour radius

identical execution with G68/69

execution with G69

6. A P P E N D I X

.

.

A P P E N D I X PROGRAMMING KEY

PROGRAMMING KEY

G-CODES	Code		Functions	Group
	0	XY7E	Positioning in ranid with	
	1	XYZE	linear internolation at programmed feedrate	2
	2	xxB	Circular interpolation, clockwise, 2 axes	
	3	xxR	Circular interpolation, counter-clockwise, 2 axes	a -
	4	F	Dwell in seconds	
				_
	6	XYZE	Linear interpolation with tangential entry, 2 axes Linear interpolation in rapid with extended IN POS range	a a
	17		Plane selection X/Y	ь
	18		Plane selection Z/X	ь
	19		Plane selection Y/Z	ь
	20	XY	Setting pole for polar coordinates	
	21	P	Subprogram call-up depending on #/F signal	
	22	PL.	Subprogram call-up, unconditional	
	23	PL	Jump to program label depending on I/F signal	с
	24	P	Jump to program label, unconditional	c
	25	XYZE	Field limitation, setting minimum values	d
	26	XYZE	Field limitation, setting maximum values	d
	27	XYZE	Cancelling field limitation	đ
			•	
	36	-	Scale factor switching	e
	38	XX	Switch on programmable mirroring	e
	39	ж	Switch off programmable mirroring	e
	40		Cancelling tool radius compensation	c
	41	xx	Tool radius compensation to the left of the path	- c
	42	xx	Tool radius compensation to the right of the path	c
	53		Cancel zero shift	f
	54 to		Switch on zero shift	f
	59	XYZE		
	61	XYZE	'In Position' function on	9
	62	XYZE	'In Position' function off	9
	83		Constrate and spindle around exite 100%	L
	64		Facture and spindle speed set to 100%	n :
	04 65		Feedbale applies to contour on circular contours	1
	0.5 ee		Feedbale applies for foor certife pairs	
	00		reeulare/spinole speed can be modified via pol.	п
	68		Auxiliary arc on outside corners	i
	69		Intersection on outside corners	i
	74 76		neterencing	
	/3		measuring probe	
	80		Cancel fixed cycles G81 to G89	k
	81	٧	Drilling, centering	ĸ
	82	v	Boring with dwell	ĸ
	83	V	Deep hole drilling with positioning movements in rapid	ĸ
	84	v	Tapping with dwell	k
	85	V	Boring with dwell/oriented spindle stop	ĸ
	86	v	Reaming	k
	87	v	Thread milling	ĸ
	90	XYZE	Input in absolute dimensions	I.
	91	XYZE	Input in incremental dimensions	ł
	92	XYZE	Setting position stores	c ,
	02	5	Setting top limit for spindle speed	a
	83	3	I me programming	
	94	F	Feedrate direct in mm/min	m
	95	F	Feedrate in mm/rev	m
	0 #	9	Automatic calculation of cutting speed	n
	97	3 S	Automatic calculation of culting speed Direct spindle speed monoming	 ก
		-	ence deurge shaar hudistruim.ñ	
	99		Subprogram end	
	800to		Customer cycles: call-up via G-functions	
	869		with corresponding numbers	

Group identifications a to n: Functions of the same group exclude one another.

G-CODES

3-digit

Code	Function	Group
	Contour Cycles	
890 V	intersection circle/circle	0
981 V	intersection line/circle	0
892 V	rounding corners (3 points)	0
893 V	rounding corners (2 angles)	0
894 V	chamfering	0
895 V	calculation of end point of arc	0
896 V	transition point arc/arc tangential	0
897 V	end point of straight line	o
898 V	intersection line/line	0

Machine specific G-codes (cycles)

Code Call-up	Function			
		 	 	-

.

M-CODES	system specific functions
Code	Internal effect
MO	program stop after execution of the block
M2	main program end, cycle end
M3 / M13	main spindle on CW / coolant on
M4 / M14	main spindle on CCW / coolant on
M5	main spindle stop / coolant off
M6	call-up of the automatic
	tool change cycle (cycle 77)
M19	orientation of main spindle to fixed position
M19(S)	orientation of main spindle to programmable
	position (degrees)
M21	call-up of MTB cycle 76
M22	call-up of MTB cycle 75
M30	program end with return to beginning
2	(continuation with Cycle Start)
M40	automatic gear range selection
M41-44	selection of fixed gear range 1 to 4
M98	SINGLE BLOCK command is not accepted
M99	SINGLE BLOCK command is possible,
	i.e. the effect of M 98 is cancelled

MACHINE SPECIFIC M-FUNCTIONS

Code	Function	

A P P E N D I X PROGRAMMING KEY

Parametric Functions

Instruction	Function	CR set	Time
V1 = n	load a numerical value	X	
X = V _n , m = V _n m = XYZEIJKADGFRST	execution instruction		
$V_n = X, V_n = p$ p = XYZEIJKADFRST	transfer active data		
V1 = V2 + V3 (V1 = V1 + 10)	addition	x	
V1 = V2 - V3 (V1 = V2 - 12)	subtraction	х	
V1 = V2 * V3 (V1 = V2 * 10)	multiplication	х	
V1 = V2/V3 (V1 = V2/2)	division	х	
V1 = V2	сору	x	
V1 = SQR V2	square root	х	
INC V1	increment value, delete digits after decimal point	x	
DEC V1	decrement value, delete digits after decimal point	x	
V1 = SIN V2 (degrees) V1 = COS V2 (degrees) V1 (degrees) = ATG V2	sine $(360^{\circ} \le V2 \le 360^{\circ})$ cosine (-360° $\le V2 \le 360^{\circ})$ arc tangent	x x x	
BSR V1 (BSR P5)	jump to subprogram (label 5) with no. V1		
BRA V1 (BRA P5)	jump to label no. V1 (label 5)		
BEQ V1 (BEQ P5)	jump to label no. V1, (label 5) if CR = 0		
BNE V1 (BNE P5)	jump to label no. V1, (label 5) if CR=0		•
BGT V1 (BGT P5)	jump to label no. V1, (label 5) if CR > 0		
BLT V1 (BLT P5)	jump to label no. V1, (label 5) if CR < 0		
BGE V1 (BGE P5)	jump to label no. V1, (label 5) if CR<u>></u>0		
BLE V1 (BLE P5)	jump to label no. V1,		

A P P E N D I X PROGRAMMING KEY

Instruction	Function	CR set	Time
$\overline{COR} = V1 R = V2 L = V3$ DR = V4 S = V5 (COR = T1)	load tool no. V1 with values		
COR = T10 V1 = R V2 = L (COR = T10)	copy values from tool no. 10		
TRF = V1 X = V2 Y = V3 Z = V4 E = V5 (TRF = G54)	load zero shift no. V1 with values		
TRF = G54 V1 = X V2 = Y V3 = Z V4 = E (TRF = G54)	copy values from the G54 table		
TRF = G20 $V1 = X$ $V2 = Y.$.	copy active pole		
TST V1	compare V1 with 0. set CR accordingly	x	
TST G1, TST G _n	CR = 0 if G01 active	x	
n = 0-3,17-19,36,39,53-59,62,63, 65,66,90,93,94,95,97	$CR = 0$ if G_n active	x	
TST M41, TST M _n	CR = 0 if M41 active	x	
n = 3, 4, 5, 13, 41 - 44	$CR = 0$ if M_n active	x	
TST QX, TST Q _n	CR = 0 if X-axis mirrored	x	
n = X,Y,Z,E	CR = 0 if _n -axis mirrored	x	
TST QM	CR = 0 if metric dimensions	×	
TIM V1	record time from program start in seconds		· · ·
POS X (Y, Z, E)	axes traverse with external command		
STV	updating variables		
	1	I	l

Axis Information

-

Format: +/- 7 digit:	s, for instance 1.234	1567 or 123456.	.7	
	 X - X-axis Y - Y-axis Z - Z-axis E - E-axis I - centre of c J - centre of c J - centre of c K - centre of c R - radius D - vector lenge A - angle (polarized) 	sircle (X-directio sircle (Y-directio sircle (Z-directio gth (polar coord ar coord.)	on) on) on) t.)	(mm/inch) (mm/inch) (mm/inch) (mm/inch/degrees) (mm/inch) (mm/inch) (mm/inch) (mm/inch) (mm/inch) (degrees)
M-functions / Auxiliary Functions	M (099)	M-function	(M0, 2,3,4,5,6,13,14,19 41,42,43,44,98,99 hav predetermined interna	9,21,22,40, ve a al effect)
	F (0.001	(099) tool r (048) comp length comp feedrate (mm time (sec)	number (output as loca pensation group (activa ensation) n/min) or (mm/rev)	ation number) ates tool
	S (09999)	spindle spee	d (rpm)	
Subprograms and	\$ (0 99)	jump addres	s or beginning of subp	rogram
Jumps	P (099)	SBP number	/ label number (used i	n call-up)
	L (099)	number of St	3P repetitions (used in	call-up)
Special	()	texts and cor	nments	
Characters	N (19999)	block numbe	r	
	V (199 and AZ)	CPC variable	S	
Control Characters	STX -	Start of Text	(beginning of a data bl	ock such as a part program)
	ETX -	End of Text (end of a data block, su	ich as a tool table)
	EOT -	End of Transi data blocks)	mission (end of the trai	nsmission of one or several
	CRLF -	Record Sepa 6 - 6	rator (separates two re	cords, such as 2 NC blocks).

A P P E N D I X PROGRAMMING KEY

ASCII - Set of Characters

m m	ASCI	Parity Bit	7-Bit Code	ASCII Character	Parity Rit	7-Bit Code	Meaning of the Character
A01000.010NUL0000.000Nut10000.010Start of headerC11000.010STX10000.010end of testE11000.010STX00000.010end of testF11000.010ECU10000.010end with marketionG01000.011ACK00000.010end with marketionG11001.010ECU10000.000bette attransmistorG11001.001BEL10000.000bette attransmistorI11001.001ECU00000.000bette attransmistorI11001.001FFI00001.001bette attransmistorN01001.101CCL00001.001entite attransmistorN01001.0101CCL00001.001catel.et seapeR11001.000CCL00001.001catel.et seapeR11001.000CCL00001.001catel.et seapeR11001.000CCL00001.001catel.et seapeR11001.000CCL00001.001catel.et seapeR11001.000CCL00001.001catel.et seapeR11001.000CCL00001.000catel.et seapeR11001.000CCL00001.000catel.et seapeR <td< td=""><td>0110100101</td><td>La</td><td></td><td>Unarboior</td><td>0</td><td></td><td></td></td<>	0110100101	La		Unarboior	0		
B 0 1000010 SCH 1 0000011 atta of text D 1 1000100 ETX 0 0000011 end of text D 1 1000101 ECT 1 0000101 end of text F 1 1000101 ECT 1 0000101 end of text F 1 1000101 EC 0 0000100 end of text I 1001000 EC 0 000100 end of text J 1 1001010 FF 0 000100 end ext M 0 1001110 GF 0 0001000 etats etats G 1001100 CE 1 000100 etats etats etats G 1001100 DE 1 000100 etats etats etats G 1001100 DE 1 000100 etats etats etats G 1001000 SE 0 000100 etats etats G 10010100	Α	0	1000 001	NUL	0	0000 000	0
C 1 1000111 21X 1 0000111 and of last E 1 1000100 ET 1 000010 and of last E 1 1000100 ET 1 000011 and of last E 1 1000100 ET 1 000011 and of last H 0 1001000 ET 0 000011 and of last J 1 1001010 HT 0 000101 increase J 1 10010101 HT 0 000101 increase L 1 10010101 FF 0 000101 and of last L 1 10010101 FF 0 0001101 and of last N 0 10010101 CR 1 001101 and of last P 0 10010001 DE 1 001001 CC R 1 1000001 DE 1 001001 CC R 1 1000001 DC 0 001010 control 2 V 0 1001010 DC 0 001010 control 2 V 0 10010101 DC	8	0	1000 010	SOH	t	0000 001	start of header
D D		1	1000 011	SIX	1	0000 010	start of text
P 1 1000 110 ENQ 0 0000 101 endownlog dependent G 0 1000 011 ER 1 0000 111 endownlog dependent I 1 1001 001 BE 1 0001 001 back space J 1 1001 001 FF 0 0001 001 inter feed J 1 1001 101 FF 0 0001 001 min feed L 1 1001 101 FF 0 0001 101 with a transmission N 0 1001 101 CR 1 0001 101 with a transmission Q 1001 001 01 DCL 0 0001 001 control 2 R 1 1010 001 DCL 0 001 001 00 control 2 T 1 1010 0101 DCL 0 001 000 00 control 2 Z 0 1010 0101 CAL 1 001 0101 and antowidig antowidig	F	1	1000 101	EIA	1	0000 013	end of transmission
G 1 1001100 EGR 0 000110 ball I 1001000 BS 1 001000 ball I 10010101 HT 0 000100 ball K 0 1001010 HT 0 000100 ball K 0 1001101 FF 0 000100 caruage relun M 0 1001101 FF 0 0001100 caruage relun O 1001000 DLE 1 001000 data is excape R 1 1010001 DLE 1 001000 data is excape S 0 101001 DC4 0 001010 ccrot ata is excape S 0 101001 DC4 0 001010 ccrot ata is excape S 0 101010 DC4 0 001010 ccrot ata is excape S 0 101010 DC4 0 001010 ccrot ata is excape	F	1	1000 110	ENQ	0	0000 101	enquiry
H0100000BEL10000111beliJ11001001HT00001001backspaceJ11001010HT00010101backspaceJ110010101HT0001101backspaceL11001100VT1001101form leadN01001111CR1001101form leadN01001111CR1001101form leadP01010000SI00010101disk in sequeR11010000SI00010101CCR11010010DC100010010CCT11010101DC100010101expectV01010111MAK10010101expectV01010101CR10010101expectZ01010101CR1001001expectZ01010101CR1001001expectZ0011001CR10010101expectZ0011001CR1001010expectZ0011001CR10010101expectZ0011001CR10010101expectZ0011001CR10010101expectZ1011000CR0011011expect<	G	0	1000 111	ACK	0	0000 110	positive acknowledgement
11100101FS1000100Marina InbulatorK0100101FF0000103InsteadM01001101FF00001101entrastM01001101FF00001101entrast011001101FF00001101entrast011001101S010011101entrast011010001S01001100entrast01010001DLE1010000data in sezace1101001DC20001010DC111010101DC20010100DC111010101DC20010100DC111010101DC20010100entrast11010111SNN1010100entrast11010111SNN1010100entrast1101001FS1011000entrast1011001SS0011101entrast1011001SS0011101entrast1011001SS0011101entrast21011001SS00111011011001SS001110120011011SN001100120011011SN0011001300110111SN0011011 <tr< td=""><td>н</td><td>0</td><td>1001 000</td><td>BEL</td><td>1</td><td>0000 111</td><td>bell</td></tr<>	н	0	1001 000	BEL	1	0000 111	bell
J 1 1001010 IT 0 000100 Increased K 0 100101 IF 0 000101 Increased L 1 1001100 VT 1 001101 Increased N 0 1001110 CR 1 001101 Increased N 0 1001111 SC 1 001101 Increased P 0 1010000 SI 0 0010101 Increased R 1 1010000 SI 0 0010101 Car R 1 1010101 DC1 0 0010101 Car T 1 1010101 DC1 0 0010101 Car T 1 1010101 DC1 0 0010101 Car V 0 1010111 NAK 1 001010 control X 1 1010100 EN 1 01100 control X 1 1011100 EN 1 01100 control X 1 1011000 EN 1 01100 control X 1 1011000 EN 1 0110 </td <td>T</td> <td>1</td> <td>1001 001</td> <td>BS</td> <td>1</td> <td>0001 000</td> <td>back space</td>	T	1	1001 001	BS	1	0001 000	back space
N D 100 101 D D 000 1010 Imite labelator M 0 100 1101 FF 0 000 1001 imite labelator M 0 100 1101 FF 0 000 1001 imite labelator O 1 100 1101 FF 0 000 1001 imite labelator O 1 100 1101 FF 0 000 1001 imite labelator O 1 100 1100 CI 0 000 1001 CI 0 C 1 1010 000 CI 0 001 0010 CI 0 S 0 1010 101 DC2 0 001 0101 central 2 U 0 1010 101 DC4 0 001 0101 registration advancedge W 1 1010 101 DC4 0 001 0101 registration advancedge Y 0 1011 0101 CAN 0 001 0100 central 4 Y 0 1011 0101 CAN 0 001 0101 escale (cet advancedge Y 0 1011 0101 FS 1 001 1001 escale (cet advancedge Y 0 0110 0101 FS	J	1	1001 010	HT	0	0001 001	horizontal tabulator
L I I I I I I I I I I I I I I I I I I I	ĸ	0	1001 011		0	0001 010	line feed
N 0 1001110 CR 1 0001101 carrange return 0 1 1001111 SD 1 0001111 whith c.t 0 1 1001000 SL 0 0001111 whith c.t 0 1 1010000 DCL 1 0010000 DCC 8 0 1010101 DC2 0 0010101 Control 0 1 1010101 DC4 0 0010101 centrol 4 V 0 1010101 DC4 0 0011011 return V 0 1010101 DC4 0 0011011 return V 0 1010101 EXR 1 0011010 return Y 0 10110101 EXR 1 00110101 return Y 0 10110101 EXR 1 00110101 return Y 0 0110001 FS 1 00110101 return	L. M.	0	1001 100	FE	1	0001 011	form feed
0 1 1001111 SO 1 0001101 1011 data 0 1010000 DLE 1 0010000 data init escape 0 1010101 DLE 1 0010000 data init escape 1 1010100 DC2 0 0010010 Control 2 1 1010100 DC4 0 0010100 control 2 1 1010100 DC4 0 0010110 control 2 V 0 1010101 NAK 1 0010101 control 4 V 0 1010101 NAK 1 0010110 and of frameniacin block V 0 1011001 EB 1 0010101 subset Z 0 1011000 ESC 0 0011101 subset 2 1 0110010 GS 0 0011101 subset 2 1 0110010 SS 1 0011101 subset	N	0	1001 110	CR	1	0001 101	carriade return
P 0 1010000 Si 0 0011000 ethin R 1 1010010 DC1 0 001000 DC3 R 1 101010 DC1 0 001001 DC3 T 1 101010 DC2 0 001010 DC3 T 1 101010 DC3 0 001010 DC3 V 0 101010 NAK 1 001010 agate extnowledge W 1 101101 DAK 1 001010 agate extnowledge W 1 1011010 CAN 0 0010101 agate extnowledge W 1 1011010 CAN 0 0010101 agate extnowledge Y 0 0110100 CAN 0 0010101 agate extnowledge Y 0 0110100 CAN 0 0010101 agate extnowledge Y 0 01101001 CAN 0 0011010 agate extnowledge Y 0 01100001 SC 0	0	1	1001 111	so	1	0001 110	shift out
C 1 1010 001 CLC 1 0010 001 control 2 S 0 1010 011 CC2 0 0010 010 control 2 S 0 1010 101 CC2 0 0010 101 control 4 V 0 1010 101 CC4 0 0010 101 restroit 4 V 0 1010 101 CA 1 0010 100 restroit 4 V 0 1010 101 CA 1 0010 100 restroit 4 X 1 1010 101 CA 0 0011 001 restroit 4 X 1 1011 000 ETB 0 0011 001 endel faministani block Z 0 0110 000 ESC 0 0011 101 endel faministani block Z 1 0110 001 SS 0 0011 101 endel faministani block Z 1 0110 010 SS 0 0011 101 endel faministani block Z 1	P	0	1010 000	SI	0	0001 111	shift in
R 1 1010010 CC1 0 0010 00 CCan T 1 1010100 CC2 0 0010 100 Cortol 2 T 1 1010110 CC3 1 0010 100 cortol 4 V 0 1010111 NK 1 0010 101 negative achonologies W 1 1010101 CAN 0 0010 101 equity achonologies Y 0 1011001 CAN 0 0010 101 equity achonologies Y 0 1011001 CAN 0 0010 011 equity achonologies Y 0 1011001 FS 0 0011010 achonologies SUB 0 0011010 SS 0 0011110 block separator 1 0110001 FS 1 0011000 achonologies achonologies 3 0 0110100 SS 1 0011111 usparator 5 0 0110100 SS 0 0100101 achonologies 6 01101010	Q	1	1010 001	DLE	1	0010 000	data link escape
S 0 1010101 DC2 0 0010 011 DC off U 0 1010101 DC3 1 0010 011 DC off U 0 10101101 DC4 0 0010 101 general estandandege W 1 1011000 ETB 0 0011001 encel encel Y 0 1011001 EM 1 0011001 encel encel Z 0 1011000 ESC 0 0011001 encel encel 0 0 011000 ESC 0 0011001 esparator 2 1 0110010 SS 0 0011011 esparator 2 1 0110010 SS 0 001111 unit separator 3 0 0110101 SS 0 001011 unit separator 4 1 0110101 SS 0 0100101 esparator 5 0 0110101 S 0 0100101 esparator 6 0 0	R	1	1010 010	DC1	0	0010 001	DC on
1 1000100 DCA 0 0001001 DC orthol 4 V 0 10101010 NAK 1 0001010 negative extensivedage W 1 10101111 SYN 1 0001010 ended framenisation block X 1 10110100 ETB 0 001100 ended framenisation block X 1 1011000 ETB 0 001100 ended framenisation block Z 0 1011000 ESC 0 0011001 ended framenisation block 2 1 0110000 ESC 0 0011101 ended framenisation block 2 1 0110001 FS 1 0011101 ended framenisation block 2 1 0110010 ESC 0 0011101 ended framenisation block 3 0 0110101 SS 0 0011101 ended framenisation 5 0 01010101 SS 1 0101000 space 6 0 0110101 S 0 0100001 space <	S	0	1010 011	DC2	0	0010 010	control 2
0 0 1001010 NAK 1 0001011 negative acknowledge W 1 101100 ETB 0 0010111 synchro Y 0 101100 ETB 0 0010111 end of transmission block Y 0 101100 ETB 0 0010100 cancet Z 0 1011000 ESC 0 0011011 escape (code switching) 0 0 010001 FS 1 0011001 escape (code switching) 2 1 011001 SS 0 0011101 escape (code switching) 2 1 011001 FS 1 010000 specarator 3 0 0110101 SS 0 011110 unt separator 4 1 011001 SS 0 0110010 space 5 0 0110101 SS 0 0100101 space 6 0 0110010 S 0 0100101 7 1 0110000 S 0 0100101 6 1 0100010 S 0 0100101 6 1 0100010 S 0 <td>F 14</td> <td>1</td> <td>1010 100</td> <td>DC3</td> <td>1</td> <td>0010 011</td> <td>DC off</td>	F 14	1	1010 100	DC3	1	0010 011	DC off
W 1 1010 111 BYN 1 0010 110 agnothing balanced ba	v	0	1010 101	NAK	•	0010 100	COBIROL 4
X 1 1011000 ETB 0 0010110 end of transmission block: Y 0 1011001 CAN 0 001100 canel SUB 1 001100 subslitute 0 001101 subslitute 0 0 010000 ESC 0 001101 secape (code switching) 1 1 010001 FS 1 001101 secape (code switching) 2 1 010010 GS 0 001111 useparator 3 0 011010 BS 1 010000 space 4 1 011010 SP 1 010000 space 6 0 011010 SP 1 010001 space 6 0 011010 \$P 1 010001 space space 7 1 011000 \$P 1 010001 space	w	1	1010 111	SYN	1	0010 101	synchro
Y 0 1011001 CN 0 0011000 encl Z 0 1011010 EM 1 0011001 encl 0 0 0110000 ESC 0 0011011 subsituie 1 1 0110001 FS 1 0011011 encle 2 1 0110010 GS 0 0011101 lie separator 3 0 0110101 GS 0 0011111 block separator 3 0 0110101 SP 1 010000 space 5 0 0110101 SP 1 010000 space 6 0 0110101 SP 1 010000 space 7 1 011001 S 0 010010 space 8 1 011000 \$ 0 010010 space 6 1 1100010 \$ 0 010010 space 6 1 1100010 \$ 0 010010 space 6 1 1100011 \$ 0 010101 6 1 1100010 \$ 0 010101 6	x	1	1011 000	ETB	0	0010 111	end of transmission block
2 0 011010 EM 1 001101 subdituing (m) subditui	Y	0	1011 001	CAN	0	0011 000	cancel
SUB 1 0011010 subsituite 0 0 0110000 ESC 0 011100 file separator 1 1 011001 GS 0 011110 bick separator 2 1 010010 GS 0 011111 bick separator 3 0 0110110 BSC 0 011111 bick separator 4 1 0101010 SP 1 0001111 bick separator 6 0 0101101 SP 1 010000 separator 7 1 0110100 4 0 0100101 separator 8 1 0110100 4 0 0100101 separator 9 0 1100010 4 0 0100101 separator 9 1 100001 4 0 0100101 separator 9 0 1100101 1 0100101 separator separator <tr< td=""><td>Z</td><td>0</td><td>1011 010</td><td>EM</td><td>1</td><td>0011 001</td><td>end of medium (paper)</td></tr<>	Z	0	1011 010	EM	1	0011 001	end of medium (paper)
0 0 0110000 ESC 0 0011011 escape (code switching) 1 1 0110010 FS 1 0011010 file separator 2 1 0110011 BS 0 0011101 group separator 3 0 0110101 SP 1 0100000 separator 5 0 0110101 SP 1 0100000 separator 6 0 0110101 SP 1 0100000 separator 6 0 0110100 SP 0 0100001 separator 6 0 0110101 SP 0 0100001 separator 6 0 0110101 S 0 010001 separator 7 1 0110001 S 0 010001 separator 7 1 0110001 S 0 010001 separator 7 1 0110001 S 0 0100101 separator 7 1 0100011 S 0 <				SUB	1	0011 010	substitute
1 010000 FS 1 0011100 file separator 2 1 0110010 GS 0 0011110 block separator 3 0 0110010 BS 0 0011110 block separator 4 1 0110100 US 1 010000 space 6 0 0110101 SP 1 010000 space 6 0 0110101 SP 1 010001 space 7 1 0111001 S 0 010001 space space 8 1 0100010 * 1 010001 space	0	0	0110 000	ESC	0	0011 011	escape (code switching)
2 1 0110110 63 0 0011101 group separator 3 0 01101011 85 0 0011111 unit separator 4 1 0110101 SP 1 0100 000 space 5 0 0110101 SP 1 0100 000 space 6 0 0110101 SP 1 0100 001 7 1 0110 010 4 1 0100 001 8 1 0111001 S 0 0100 101 8 1 0100 001 S 0 0100 101 9 0 0110 010 S 0 0100 101 1 1100 001 S 0 0100 111 c 0 1100 010 1 0 0100 111 c 0 1100 100 1 0 0100 111 c 0 1100 100 1 0 0100 101 f 0 1100 100 - 1 0100 101 f 1 100 100 - 1 0101 101 f 1 100 101 - 1 0101 101 f 1 1010 100 -<	1	1	0110 001	FS	1	0011 100	file separator
4 1 011010 UG 0 001111 unit separator 5 0 011010 SP 1 0100000 space 6 0 011011 SP 1 0100000 space 6 0 011011 1 0 0100001 space 7 1 011000 4 1 0100001 8 1 0100100 4 1 0100101 9 0 0111001 & 1 0100100 a 1 1000010 & 1 0100101 a 1 100010 & 0 0100100 c 0 100010 (0 0101000 d 1 100010 (0 0101000 g 1 100010 - 1 010100 g 1 100101 - 0 010110 g 1 1010101 - 0 010110 g 1 1010101 - <	2	1	0110 010	GS	0	0011 101	group separator
5 0 0110 101 SP 1 0100 000 space 6 0 0110 110 1 0 0100 000 space 6 1 0110 001 4 1 0100 001 space 8 1 0111 000 4 1 0100 011 8 1 0110 001 8 0 0100 110 a 1 1100 001 8 1 0100 110 a 1 1100 001 8 1 0100 110 c 0 1100 010 1 0100 100 1 0100 100 6 0 1100 100 1 0101 000 1 0101 000 1 0101 000 1 1010 100 . 1 0101 010 1 0101 010 1 0101 010 1 1010 100 . 1 0101 011 . 1 0101 011 1 1010 100 . 0 01011 100 0	4	1	0110 100	us	1	0011 111	unit separator
8 0 0100 110 1 0 0100 001 7 1 0110 111 - 0 0100 011 8 1 0110 001 \$ 0 0100 100 9 0 0110 001 \$ 0 0100 100 1 1100 010 \$ 0 0100 110 5 0 0100 100 1 0 0100 110 c 0 1100 010 ' 0 0100 000 c 0 1100 101 ' 1 0100 100 c 0 1100 101 ' 1 0101 000 c 0 1100 101 ' 1 0101 100 f 0 1100 101 ' 0 0101 100 j 0 1101 000 . 0 0101 100 j 0 1101 010 . 0 0101 110 j 0 1101 101 . 0 0111 110 j 0 1101 100 . 0 01111 101 j	5	0	0110 101	SP	1	0100 000	space
7 1 0100111 ' 0 0100010 8 1 011000 * 1 0100010 9 0 0110001 8 1 010010 a 1 1100001 8 1 010010 a 1 1100010 0 010011 c 0 1100010 0 01000 c 0 1100010 1 010000 e 0 110010 1 010100 e 0 110010 1 010100 g 1 110010 1 010101 g 1 1100100 1 010110 g 1 1101000 1 0101010 j 0 1101010 2 0 0101110 k 1 1101010 1 0111100 0 j 0 1101010 2 0 0111100 k 1 1101010 2 0 0111100 g 0 110	6	0	0110 110	I	0	0100 001	•
8 1 0111000 * 1 0100 011 9 0 0111001 \$ 0 0100 100 a 1 1100 001 \$ 1 0100 110 b 1 1100 010 * 0 0100 111 c 0 1100 010 * 100 000 d 1 100 010 * 100 000 e 0 100 100 * 100 000 e 0 100 101 > 1 010 001 g 1 100 100 * 1 010 100 g 1 100 100 . 1 010 101 j 0 101 000 . 1 0101 010 j 0 101 0100 . 0 0101 111 k 1 101 0100 . 0 0101 011 j 0 1101 100 . 0 0111 011 n 1101 010 . 0 0111 011 n 1101 0110 . 0	7	1	0110 111	•	0	0100 010	
9 0 0111 001 \$ 0 0100 100 % 1 0100 011 % 1 0100 101 b 1 100 001 % 0 0100 101 b 1 100 000 % 0 0100 111 c 0 100 001 % 0 0100 111 c 0 1100 000 (0 0100 001 e 0 1100 101 ' 1 0101 001 g 1 100 010 * 1 0101 001 g 1 100 010 * 1 0101 010 g 1 100 011 * 0 0101 101 j 0 101 001 . 0 0101 101 j 0 101 0100 . 0 0111 101 j 0 1010 101 . 1 0101 011 j 0 0 0 0 0 <td>8</td> <td>1</td> <td>0111 000</td> <td>+</td> <td>1</td> <td>0100 011</td> <td></td>	8	1	0111 000	+	1	0100 011	
3e 1 0100 101 a 1 100 001 a 1 0100 111 b 1 1100 010 a 0 0100 111 c 0 1100 100 a 0 0100 101 d 1 100 100 a 0 0101 000 d 1 100 100 a 1 0101 001 g 1 100 100 a 0 0101 101 g 1 101 001 a 0 0101 011 g 0 1101 010 a 0 0111 011 g 1 101 011 a 1 0111 011 g 0 110 010 a 0 0111 011 g 0 110 010 a 0 0111 011 <th< td=""><td>9</td><td>0</td><td>0111 001</td><td>\$</td><td>0</td><td>0100 100</td><td></td></th<>	9	0	0111 001	\$	0	0100 100	
a 1 1100 001 a 1 0100 110 bb 1 1100 010 ' 0 0101 100 c 0 1100 101) 1 0100 100 e 0 1100 101) 1 0101 000 e 0 1100 110 * 1 0101 001 g 1 1100 110 * 1 0101 001 g 1 1100 110 * 1 0101 011 h 1 1100 100 . 0 0101 101 g 1 1101 010 . 0 0101 101 k 1 1101 010 . 0 0111 101 k 1 1101 100 . 0 0111 101 m 1 1101 101 . 0 0111 101 g 0 1101 010 . 0 0111 101 g 0 1100 011 ? 0 0111 101 g 0 1100 011 ? 0 01111 101 <tr< td=""><td>-</td><td></td><td>1100 001</td><td>%</td><td>1</td><td>0100 101</td><td></td></tr<>	-		1100 001	%	1	0100 101	
c 0 1100 011 ' 1100 000 d 1 1100 100 { 0 0101 000 e 0 1100 101) 1 0101 001 f 0 1100 100 * 1 0101 001 g 1 1100 111 + 0 0101 011 j 0 1100 100 , 1 0101 010 j 0 1101 000 , 1 0101 101 j 0 1101 001 - 0 0101 101 j 0 1101 010 . 0 0101 101 k 1 1101 010 . 0 0101 111 m 1 1101 101 ; 1 0111 011 m 1 1101 101 ; 1 0111 011 m 1 1101 101 ? 0 0111 111 r 0 1101 101 ? 0 0111 111 r 0 1101 011 ? 0 01111 111 r	a b	1	1100.001	α	0	0100 110	
d 1 1100 100 { 0 1100 100 e 0 1100 101 > 1 0101 000 f 0 1100 110 * 1 0101 000 g 1 1100 111 + 0 0101 000 g 1 1100 011 + 0 0101 000 j 0 1101 000 . 1 0101 100 j 0 1101 001 - 0 0101 100 j 0 1101 001 . 0 0101 100 k 1 1101 010 . 0 0101 100 k 1 1101 101 . 0 0111 100 m 1 1101 101 : 1 0111 101 m 1 1101 100 <	с с	0	1100 011		0	1100 000	
e 0 1100 101 1 0101 001 f 0 1000 110 * 1 0101 001 g 1 1000 111 + 0 0101 011 h 1 1000 111 + 0 0101 011 h 1 1100 001 - 0 0101 000 j 0 1101 001 - 0 0101 100 j 0 1101 011 / 1 0101 100 k 1 1101 011 / 1 0101 110 k 1 1101 100 : 0 0101 101 m 1 1101 100 : 0 0111 011 m 1 1101 100 : 0 0111 101 m 1 1100 000 > 1 0111 110 g 1 1100 001 ? 0 0111 011 r 0 1110 001 ? 0 0111 011 r 0 1110 001 ? 0 01011 011 r	d	1	1100 100	(o	0101 000	
f 0 1100110 * 1 0101010 g 1 100111 + 0 0101010 h 1 110000 . 1 0101100 j 0 1101000 . 1 0101100 j 0 1101010 . 0 0101111 k 1 1101011 / 1 0101111 k 1 1101011 / 1 0101111 k 1 1101011 / 1 0101111 k 1 110110 . 0 011101 m 1 110110 . 0 011101 m 1 1101011 . 0 0111100 q 0 110000 > 1 0111101 q 0 1110001 ? 0 0111111 r 0 1110001 ? 0 0111101 q 0 111001 ? 0 1011101 v 1	e	0	1100 101)	1	0101 001	
g 1 1100 111 + 0 0101 011 h 1 1101 000 - 0 0101 100 j 0 1101 001 - 0 0101 111 j 0 1101 010 - 0 0101 101 k 1 1101 010 / 1 0101 101 k 1 1101 100 : 0 0111 011 m 1 1101 101 : 0 0111 011 m 1 1101 100 : 0 0111 011 m 1 1101 101 : 1 0111 011 m 1 1101 101 : 0 0111 100 m 1 1101 111 = 1 0111 111 r 0 1110 010 ? 0 0111 111 r 0 1110 010 ? 0 1011 101 v 1 1110 100 ? 1 1011 101 v 1 1110 101 ? 0 1011 111 v	t	0	1100 110	*	1	0101 010	
h 1 101 000 , 1 0101 100 j 0 1101 001 - 0 0101 101 j 0 1101 010 . 0 0101 111 k 1 1101 011 / 1 0101 111 k 1 1101 100 : 0 0111 010 m 1 1101 101 ; 1 0111 010 m 1 1101 101 ; 1 0111 010 m 1 1101 100 <	9	1	1100 111	+	0	0101 011	
j 0 1101 001 - 0 0101 101 j 0 1101 010 . 0 0101 110 k 1 1101 011 / 1 0101 111 l 0 1101 100 : 0 0111 010 m 1 1101 101 ; 1 0111 100 n 1 1101 101 ; 1 0111 100 n 1 1101 101 ; 1 0111 100 n 1 1101 101 = 1 0111 100 n 1 1100 001 > 1 0111 111 r 0 1110 001 @ 1 1000 000 s 1 1110 010 @ 1 1000 000 s 1 1110 011 [1 1011 101 v 1 1110 010 ^ 0 1011 101 v 1 1110 110 ^ 1 1011 101 v 1 1110 011 - 0 10111 101	h	1	1101 000	,	1	0101 100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	j	0	1101 001	•	0	0101 101	
1 0 1101 001 : 0 0111 010 m 1 1101 101 ; 1 0111 011 n 1 1101 101 ; 1 0111 011 n 1 1101 101 ; 1 0111 011 n 1 1101 110 0 0111 100 0 0 1101 111 = 1 0111 110 q 0 1110 000 > 1 1000 000 s 1 1110 001 @ 1 1000 000 s 1 1110 011 [1 1010 000 s 1 1110 011 [1 1011 101 v 1 1110 101 1 1011 101 v 1 1111 1001 1 1111 101 v 1 1111 1001 1 <td< td=""><td>1 F</td><td>1</td><td>1101 010</td><td>1</td><td>1</td><td>0101 110</td><td></td></td<>	1 F	1	1101 010	1	1	0101 110	
m 1 1101101 ; 1 0111011 n 1 1101110 < 0 011100 0 0 1101111 = 1 0111100 q 0 110000 > 1 0111110 q 0 1110000 > 1 0111110 q 0 1110001 @ 1 1000000 s 1 1110011 [1 1000000 s 1 1110011 [1 101101 u 0 111010 $^{\circ}$ 0 101110 v 1 1110101 1 101110 w 0 1110111 - 0 1011111 x 0 1110101 1 1011111 x 0 1111010 1 1011111 y 1 1111001 1 1111100 y 1 1111001 1 11111100 y 1 11111001 1 11111100 <	1	0	1101 100	;	0	0111 010	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m	1	1101 101	;	1	0111 011	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n	1	1101 110	<	0	0111 100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1101 111		1	0111 101	
q 0 1110001 ? 0 0111111 r 0 1110010 @ 1 1000000 s 1 1110011 [1 1011011 t 0 1110100 \backslash 0 1011100 u 1 1110101] 1 1011100 v 1 1110110 $^{-}$ 0 1011111 x 0 1110100 { 0 1011111 x 0 1111000 { 0 1111111 y 1 1111001 j 0 11111100 p 0 11111100 j 0 11111100 y 1 1111010 j 0 11111110 p 0 11111100 j 0 11111110 y	P	1	1110 000	>	1	0111 110	
r 0 1110 010 @ 1 1000 000 s 1 1110 011 [1 1011 011 t 0 1110 100 \ 0 1011 100 u 1 1110 101] 1 1011 101 v 1 1110 110 ^ 1 1011 110 w 0 1110 111 - 0 1011 111 x 0 1111 000 { 0 1111 011 y 1 1111 001 i 1 1111 100 z 1 1111 010 { 0 1111 110 DEI 1 1111 111 0 0 1111 111	9	0	1110 001	7	0	0111 111	
s i i110 initial i i i01 initial t 0 1110 ino \ 0 1011 ino u 1 1110 ino i 1011 ino v 1 1110 ino ^ 1 1011 ino w 0 1110 ino ^ 1 1011 ino x 0 1110 ino ^ 0 1011 ino y 1 1111 000 { 0 1111 ino z 1 1111 001 i 1 1111 ino DEI 1 1111 ino _ DEI 1	r	1	1110 010	e I	•	1000 000	
u 1 110 101 1 1011 100 v 1 1110 110 1 1011 110 w 0 1110 111 - 0 1011 111 x 0 1111 000 { 0 1111 011 y 1 1111 001 1 1111 100 z 1 1111 010 } 0 1111 101 DEI 1 1111 111 0 0 1111 111	a t	0	1110 100	L N	0	1011 100	
v 1 1110110 1 1011110 w 0 1110111 - 0 1011111 x 0 1111000 { 0 1111011 y 1 1111001 1 1111100 z 1 1111010 } 0 1111100 DEI 1 1111110 DEI 1 1111111	u u	- 1	1110 101	1	- 1	1011 101	
w 0 1110111 - 0 1011111 x 0 1111000 { 0 1111011 y 1 1111001 1 1111100 z 1 1111010 } 0 1111101 DEL 1 1111111 0 0 1111111	v	1	1110 110	^	1	1011 110	
x 0 1111 000 { 0 1111 011 y 1 1111 001 j 1 1111 100 z 1 1111 010 } 0 1111 101 period 0 1111 110 PEI 1 1111 111	w	0	1110 111	-	0	1011 111	
y 1 1111001 1 1 1111100 z 1 1111010 } 0 1111101 ~ 0 1111110 DEI 1 1111111	×	0	1111 000	{	0	1111 011	
z 1 1111010 } 0 1111101 ~ 0 1111110 DE 1 1111111	У	1	1111 001	1	1	1111 100	
DEI 1 1111111	2	1	1111 010	}	0	1111 101	
				DE	U 1	1111 111	

OUTPUT OF ERROR MESSAGES

Definition	The CC 100 M will transmit errors recognized internally to the interface controller. The error messages are output in coded form, one digit to indicate the error message group (0-2) and two further digits to indicate the error number (01 - 88).		
Example	<u>039</u>	E axis must be programmed alone	
		- error number 39 - Text: E axis must be programmed alone	
		- error message group 0	
Soft key operation	1. EDIT	Incorrect program blocks are automatically	
for error display		displayed with error numbers and descriptions.	
	2. MACHINE	Incorrect entries in MDI are displayed	
		automatically with error numbers and descriptions.	
	3. AUTOMATIC	Incorrect program blocks, which are not recognized until RUN operation, cause program stop and a general error signal. To obtain information about the type of error you need to switch into INFO mode; there the error number and the description will be displayed	

.

Error message group 0:

A14 D0

Data	Meaning
1	syntax error
2	syntax error
3	
4	system error H-Size overflow
5	system error N-H-Size overflow
6	system error L-H-Size overflow
7	system error R-Size overflow
8	system error D-Size overflow
9	
10	repetition (L) without subroutine call
11	cutter comp. programmed without tool
12	this G code must be alone in block
13	this G/M code is not allowed with TEACH IN or MDI
14	max. 3 axes or A, D allowed
15	R or I, J, K not allowed
16	max. 2 axes out X, Y, Z allowed
17	TIM, COR, or TRF must be alone in block
18	max. 4 axes with value allowed
19	max. 4 without value allowed
20	max. 2 axes out of X, Y, Z, E or A, D allowed
21	enter Dwell time (F)
22	unadmissible G number
23	enter S without sign.
24	value too large
25	with D, F, or R, zero not allowed
26	repetition of address not allowed
27	max. 2 coordinates out of I, J, K allowed
28	no radius programmed with polar coordinates
29	max. 2 axes with polar coordinates (A, D)
30	max. 3 axes R or I, J, K
31	enter jump target (P)
32	jump target (P) allowed with G21/22/23/24
33	G code required with P or L
34	axis without value not allowed
35	only integer value
36	this M code must be alone in block
37	test not allowed
38	unadmissible tool number
39	E axis must be programmed alone
40	input range 1 to 127
41	with G 96, S value not allowed
42	with G 92, S value not allowed
43	max. 4 axes or A, D allowed
44	axis value not allowed
45	max. 2 digits with \$,P,L or M

Error message group 0:

		50
- A	14	00

Data	Meaning
46	only 2 or 4 digits with T
47	too many digits
48	max. 1 axis with value allowed
49	max. 4 digits with S
50	sign. not allowed
51	input range 0.001 to 5
52	enter value
53	Y(es) or N(o) required
54	
55	input range 0 to 999
56	input range 1 to 720
57	input range 0 to 4
58	input range 0 to 20000
59	input range 0 to 50000
60	input range 0 to 90000
61	input range 1 to 1000
62	input range -9999 to 9999
63	input range 0 to 100
64	input range 0 to 3
65	input range 0 to 359.999
66	input range 0 to 5
67	input range 1 to 100
68	E not allowed
69	F not allowed with G0
70	only X, Y, Z allowed
71	only P, L allowed
72	only X, Y, Z, E allowed
73	only X, Y, Z, E or M, T allowed
74	only X, Y, Z, E or F, S, M allowed
75	only X,Y, Z, E or S allowed
76	input range -100 to 100
77	DR value = -10 % to +10 % of R (1 mm or 0.05 i max)
78	input range 1 to 50000
7 9	with TEACH IN or MDI P, L not allowed
80	M 19 must be programmed alone or with S
81	incorrect input of variables
82	incorrect variable number
83	input range12 to 48
84	input range 256 to 32767
85	M 06 must be programmed alone or with tool number
86	input range -10000 to 1 or to 10000
87	input range 0 to 9999
88	address modification must be alone in block
89	message has to start with "("

Error message group 1:

A14 D1

Data	Meaning
1	no previous movement before G5
2	full circle programming not allowed
3	radius value null or missing
4	negative root
5	G code not allowed in automatic mode
6	bad polar radius programmed
7	G95 and M5 or S value $= 0$
8	
9	G5 not allowed following G0
10	
11	incorrect circle defintion
12	centre coordinates incorrect
13	programmed radius was rounded
14	tool radius too large (1)
15	tool radius too large (2)
16	tool radius too large (3)
17	tool radius too large (5)
18	no intersection possible parallel lines
19	no intersection possible line / circle
20	no intersecition possible circle / circle
21	tool radius too large (4)
22	the circles are not tangent
23	M 30 or M 2 required
24	jump target not found
25	max. 10 subroutine levels
26	cycle does not exist
27	G99 and no subroutine acitve
28	M2 or M30 seen with cutter comp. active
2 9	G code not allowed with cutter comp. active
30	Highest spindle speed exeeded
31	1. gear range defined incorrectly
32	M3 or M4 missing
33	gear range unadmissible
34	G99 with subroutine or M2 with cycle
35	no feed programmed with G75/94/95/93
36	
37	
38	
39	input missing
40	rotary axis with circular interpolation
41	incorrect position programmed with E axis
42	cycle end is M2
43	subroutine end is G99
44	preset not allowed with active zero shift

The control will display the messages in clear text.

Error message group 1:

A14 D1

Data	Meaning
45	cycle unadmissible with cutter comp.
46	unadmissible value for G code
47	G code unadmissible with mirror function
48	G code unadmissible with cutter comp.
4 9	
50	
51	
52	one movement missing for cutter comp.
53	
54	block modified or not executed due to cutter comp.
55	max. 2 axes out of X, Y, Z, E or A, D allowed
56	V95 must be 0 or 1
57	transfer not possible
58	reentry not allowed with G84
59	probe not triggered
60	unadmissible jump target
61	double definition of axis (polar)
62	max. 1 axis with G2/3/5 and polar programming
63	max. 3 axes with G2/3/5
64	G0/1/5 and radius or I, J, K not allowed
65	G2/3 with radius and I, J, K not allowed
66	no new cutter comp. with G2/3/5
67	G21/23 with cutter comp. not allowed
68	cutter comp. not allowed without tool number
69	G40/41/42 not allowed with G2/3/5
70	no G2/3/5 following a zero shift
71	
72	G96 not allowed with S value
73	spind. speed calcul. not possible, tool radius $= 0$
74	G92 not allowed with G41/42/T
75	G code not allowed with cut. or length comp.
76	new plane not allowed with cutter comp.
77	V95 must equal 2 or 3
78	division by zero
79	coordinates do not comply with active plane
80	no tool active
81	unadmissible tool number
82	unadmissible G number
83	V91 must equal 1 or 2
84	this zero shift is already active
85	DR value = -10 % to +10 % of R (1 mm or 0.05 i max.)
86	spindle orientation not possible
87	calculation not possible
88	angle range -180 to +180 deg.

The control will display the messages in clear text.

,

.

Error message group 2:

A14 D2

Data	Meaning
1	99 programs exist
2	memory full
3	memory too small for jump target table
4	check sum error
5	undefined jump target
6	parity memory
7	duplication of jump target
8	69 CYCLES exist
9	memory too small to copy
10	file protected
11	
12	unadmissible file
13	file already exists
14	device not ready
15	parity error
16	incorrect data format
17	incorrect baud rate
18	timeout period expired
19	no corresponding file type
20	TEACH IN
21	movement not allowed with E, 2 blocks created
22	memory error, switch off
23	reference cycle does not exist
24	interruption, abort with clear block
25	inch / metric selection incorrect
26	no corresponding cycle
27	undefined key
28	reference not allowed with length comp.
29	movement not allowed, 2 blocks created
30	
31	warning sent by PLC
32	too many characters for one block
33	bad value for tool table size
34	size of memory changed, memory cleared
35	no machine reference, send axes to reference
36	
37	
38	
39	circle calculation not possible
40	limit

Data	Meaning
41	emergency stop
42	servo error
43	measuring system: marker missing
44	measuring system: not connected
45	measuring system: pulse is lost
46	measuring system: no feedback
47	bad axes parameters
48	gearbox not OK
49	interpolator stop error
50	axis error
51	code:
52	T (s)
53	/mn
54	/rev
55	conflict between hardware and software, NC stopped

SUBJECT INDEX

Α

Access levels	2 - 3
Addition	4 - 7
Addresses	3 - 14
Arc tangent	4 - 9
Arithemetic functions	4 - 7
ASCII character set	6 - 10
 ASCII control characters 	1-7 6-3
Automatic	2 - 9

.

В

Battery	1 - 5
BEQ / BGE / BGT / BLE / BLT / BNE	4 -15
Block number	3 - 3
Block selection	2 - 4
Boring	3 - 61
 Boring cycles 	3 - 49
• BRA	4 - 12
Branching conditinal	4 - 13
Branching unconditional	4 - 12
• BSR	4 - 12
Buffer battery	1 - 5

-

С

Calculation cycles	3 - 76	
 Calculation end point - straight line 	3 - 85	
 Calculation end point - arc 	3 - 83	
 Cancelling compensation 	3 - 41	5 - 11
Chamfering	3 - 81	
Change compensation	5 - 12	
Checksum	1 - 22	
Circular interpolation	3 - 22	
• Commands	2 - 3	
Component parts	1 - 2	
 Conditional jump 	3 - 34	4 - 13
Conditional subroutine call	3 - 31	
Condition register	4 - 13	
Contour cycles	3 - 76	
Contour transitions	3 - 46	5 - 8
Control signals	1 - 6	
Control characters	6 - 3	
Copy tool data	4 - 10	
• COR	⁻ 4 - 10	
Corner rounding	3 - 81	
• Cosine	4 - 9	
CPC programming	4 - 1	
● CP/MEM	1 - 5	
Cursor function	2 - 4	
Cutter centre path	3 - 45	
Cutting path	3 - 45	
Cutting speed	5 - 1	
 Cutting speed calculation 	3 - 72	
Cycles	2 - 21	3 - 2
Cycles, MTB fixed	3 - 87	

SUBJECT INDEX

D

.

Data interfaces	1 - 5	2 - 20	
• Data interfaces V.24	1 - 6		
• Data interfaces 20 mA	1 - 6		
Data lines	1 - 9		
Decrement	4 - 8		
Deep hole drilling	3 - 51		
Delete	2 - 4	2 - 14	2 - 23
DFS hearder	1 - 19		
Dimensional units	2 - 3	2 - 5	2 - 15
Dimensioning	3 - 67		
Division	4 - 7		
• Drilling	3 - 55		
Drip feeding			
Dwell time	3 - 27		

Ε

.

į.

• Edit	2 - 3	
• Editor	2 - 4	
Effect of feedrate	3 - 45	
 End point calculations 	3 - 83	3 - 85
Entry into contour	5 - 7	
Error messages - display	2 - 2	
Error message listing	6 - 9	
Error messages - output	6 - 8	
External VDU monitor	1 - 5	

F

• F-address	3 - 14		
 Feed, linear interpolation 	3 - 21		
Feedrates	3 - 70	5 - 1	
Feedrate 100%	3 - 44		
Field limitation	3 - 36		
File header	6 - 3		
Fixed cycles	3 - 49,	3 - 75,	3 - 87
Fixed MTB cycles	3 - 87		
Fixed machining cycles	3 - 49		
• Forms	4 - 3		

G

G-functions	3 - 20
G-code, three digit	3 - 75
Gear ranges	3 - 16

Н

• Header

1 - 16

I/J

• I-address	3 - 22
Increment	4 - 8
Information	2 - 13
Inch/metric switching	2 - 18
In position logic	3 - 43
• Insert	2 - 4
● Interface V.24	1 - 5
Interface 20 mA	1 - 5
 Interpolation in feed 	3 - 21
 Interpolation in rapid 	3 - 20
Intersection circle / circle	3 - 78
Intersection line / circle	3 - 79
Intersection line / line	3 - 86

J-address	3 - 22		
• Joining	3 - 80		
 Jump after comparison 	4 - 16		
Jump conditional	3 - 34	4 - 13	
Jump instructions	3 - 5	3 - 32	4 - 12
 Jump unconditional 	3 - 35	4 - 12	

Κ

K-address	3 - 24
Keys, programmable	3 - 87

L

L-address	3 - 32
Linear interpolation in feed	3 - 21
 Linear interpolation in rapid 	3 - 20
 Linear interpolation in rapid with 	
extended in position range	3 - 28
Load functions	4 - 6
Load tool store	4 - 10

Μ

.

M-address	3 - 15	
Machine	2 - 5	
 Machine status display 	2 - 14	
Main modes	2 - 1	
 Manual machine operation 	2 - 5	
Manual panel	1 - 4	
Measuring probe input	3 - 48	
Memory	2 - 3	
Memory allocation	3 - 2	
Messages	6 - 9	
Minicass operation	1 - 15	
Mirroring	3 - 39	
Modify	2 - 4	2 - 6
MTB cycles	3 - 87	
MTB service	2 - 13	
Multiplication	4 - 7	

.

N/O

N-address	3 - 3
 Operating panel 	1 - 3
 Operating panel connection 	1 - 5
 Operating program 	1 - 5
 Operator instruction programming 	3 - 18
Outside corners	5 - 15

P/Q

P-address	3 - 31	4 - 12	4 - 15
• Panel	1 - 3		
Part programs	2 - 20	3 - 2	
Plane selection	3 - 28		
Polar coordinates	3 - 30		
Position stores	3 - 68		
Priority routine	3 - 87		
 Program header in DFS format 	1 - 19		
Programming code	6 - 1		
Programming key	6 - 1		
Program planning	4 - 2		
Program production	3 - 1		
Program transfer	2 - 20		
Programs	2 - 21	3 - 2	

R

R-address	3 - 23		
 Radius compensation 	3 - 41	5 - 2	5 - 5
 Rapid, linear interpolation 	3 - 20		
Reaming	3 - 63		
Reentry	2 - 10		
Reference axes	2 - 5	3 - 47	
Reference cycle	2 - 5	3 - 87	
Registering time	4 - 8		
• Reset	2 - 13		
Reset conditions	2 - 2		
Rounding corners	3 - 79		

.

S

S-address	3 - 16
Setting a pole	3 - 30
 Setting condition register 	4 - 13
 Setting position stores 	3 - 68
• Sine	4 - 9
Spindle speed	3 - 72
Spindle speed 100%	3 - 44
Square root	4 - 7
Start conditions	2 - 2
Status display	2 - 13
 Subdivision of VDU display 	2 - 2
Subroutine call	3 - 5 3 - 33
 Subroutine call, conditional 	3 - 32
Subroutine end	3 - 74
Subtraction	4 - 7
 Suppression of contour elements 	5 - 14

.

_

_

• T-address	3 - 14	5 - 4		
 Tangential entry 	3 - 26			
Tapping	3 - 59			
• Teach In	2 - 7			
• Terminal V.24	1 - 5			
• Terminal 20 mA	1 - 5			
Thread milling	3 - 65			
Three digit G-codes	3 - 75			
• TIM	4 - 8			
● TRF	4 - 11			
• Time programming	3 - 27	3 - 70	4 - 8	
 Time registering 	4 - 8			
 Tool compensation 	3 - 41	5 - 1		
 Tool data transmission 	2 - 25	3 - 19		
• Tool length com.	5 - 3			
• Tools	3 - 19	4 - 10	5 - 1	
Tool store loading	4 - 10			
 Tool technology 	.5 - 1			
 Transition point arc/arc 	3 - 84			
Trigonometric functions	. 4 - 9			
U				
Unconditional branching	4 - 12			
 Unconditional jump 	3 - 35			
 User programmable keys 	3 - 87			
v				
• Variables	2 - 12	2 - 25	3-19 5-	1
Variable transmission	2 - 25	3 - 1 9		
VDU monitor	2 - 2			
• V.24 interface	1 - 5			

SUBJECTINDEX

.

	W/X/Y/Z				
	• X-address	3 - 3			
	• Y-address	3 - 3			
·	• Z-address	3 - 3			
	• Zero shifts	2 - 25	3 - 19	3 - 42	4 - 11
	• Zero too!	4	0	U 12	