User Handbook

Version

CC 100 M

User Handbook

1070073 401-104 (89.04) GB
(S32)

Reg. Nr. 16149-03
(c) 1989
by Robert Bosch GmbH,
All rights reserved, including applications for protective rights.
Reproduction or handing over to third parties are subject to our written permission.

1 DESCRIPTION
 Page

Component parts

General 1-1
Survey of modules 1-2
Operating panel 1-3
Manual panel 1-4
CP/MEM module 1-5
interfaces
Data interfaces, general 1-6
Data format 1-7
V. 24 cable 1-8
20 mA cable 1-9
20 mA terminal 1-10
Peripherals
Cassette unit DCR terminal 1-11
Mini cassette unit 1-14
Program Header

- External program production 1-16
General header format 1-17
Program header - example 1-18
Program header in DFS format 1-19
Position, calculation, input and output of the checksum 1-22
2 OPERATING
Main Modes
Survey 2-1
Subdivision of VDU display; reset conditions 2-2
Edit
General 2-3
Program editor and cycles 2-4
Machine
Manual machine operation 2-5
MDI 2-6
Teach In 2-7
Automatic
Operating procedure before program/cycle start 2-9
Interruption/re-entry 2-10
Operating procedure after cycle start 2-11
Accessing tables 2-12
Information Page
General, machine status 2-13
Axes display, PIC/PLC display 2-15
Inch/metric switching 2-18
Data Handling
General, load/save 2-20
Load programs/cycles 2-21
Save programs/cycles 2-22
Delete programs/cycles 2-23
Load tools, zero shifts, variables 2-25
Save tools, zero shifts, variables 2-26
Load machine parameters, texts, graphics 2-26
Output logbook data 2-27
3 PROGRAMMING
General
Program production, memory allocation 3-1
Memory allocation - programs/cycles 3-2
Part programs and cycles 3-3
Subprograms 3-4
Jump instructions 3-5
Subprogram call-ups 3-5
Parallel programming 3-7
Drip feeding 3-9
Addresses
F-address, T-address 3-14
M-address 3-15
S-address, gear ranges 3-16
H-address 3-17
Operator instruction programming 3-18
Tables
Tools, zero shifts, variables 3-19
G-Functions
Linear interpolation in rapid Go 3-20
Linear interpolation in feed G1 3-21
Circular interpolation G2, G3, G5 3-22
Dwell G4 3-27
Linear interpolation in rapid with extended in position range G6 3-28
Plane selection G17/18/19 3-29
Setting a pole G20 3-30
Conditional subprogram call-up G21 3-32
Subprogram call-up G22 3-33
Conditional jump G23 3-34
Page
Unconditional jump G24 3-35
Field limitation G25/26/27 3-36
Scale factor switching G36 3-37
Programmable mirroring G38/39 3-39
Tool radius compensation G40/41/42 3-41
Zero shift G53, G54-G59 3-42
In position logic ON/OFF G61/G62 3-43
Feedrate and spindle speed G63/G66 3-44
Effect of feedrate G64/G65 3-45
Contour transitions G68/G69 3-46
Referencing G74 3-47
Measuring probe input G75 3-48
Machining of bores G80, G81-G87 3-49
Survey of fixed machining cycle 3-51
Fixed machining cycles G80-G87 3-52
Drilling G81 3-55
Boring/end facing G82 3-56
Deep hole drilling 3-57
Tapping 3-59
Boring G85 3-61
Reaming G86 3-63
Thread milling G87 3-65
Dimensioning G90/G91 3-67
Setting position stores G92 3-68
Feedrates G93/ G94 3-70
Automatic calculation of cutting speed G96 3-72
Spindle speed, direct G97 3-73
Subprogram end G99 3-74
Three-digit G-codes G800 - G869 3-75
General G890 - G898 3-76
Intersection circle/circle G890 3-78
Intersection line/circle G891 3-79
Rounding corners (3 points) G892 3-80
Rounding corners (2 angles) G893 3-81
Chamfering G894 3-82
Calculate end point of an arc G895 3-83
Transition point arc/arc tangential G896 3-84
Calculate end point of a straight line G897 3-85
Intersection of two straight lines G898 3-86
Survey of firmly allocated cycles 3-87
4 PARAMETRIC FUNCTIONS Page
General
Range, programming 4-1
Program planning, aims, use of forms 4-2
Memory allocation form 4-3
Program planning form 4-4
Variable (global) form 4-5
Load function 4-6
Arithmetic functions 4-7
Trigonometric functions 4-9
Tools
Load tool store 4-10
Copy tool data 4-10
Load/copy zero shifts 4-11
Unconditional branching 4-12
Conditional branching, setting condition register 4-13
Conditional branching/condition register (CR) 4-13
Conditional branching after mathematical comparison 4-15
Branching condition: NC instruction 4-17
Axis information 4-18
Positioning POS 4-19
STV function 4-20
CPC programming examples
Ellipse 4-22
Row of holes 4-23
Bolt hole circle 4-24
5 TECHNOLOGY
Internal processing of tool technology data 5-1
Tool compensation, general 5-2
Tool length compensation T-address 5-3
Tool radius compensation G40/41/42 5-5
Starting point, beginning of contour 5-6
Entry into contour from different starting points 5-7
Contour transitions with G68 (auxiliary arcs) 5-8
Contour transitions with G69 (intersections) 5-9
Examples for G41/42 5-10
End point, cancelling the compensation 5-11
Special Cases - Tool Compensation
Change of compensation, switching between G41/G42 5-12
Examples 5-13
Suppression of contour elements 5-14
Cancelling compensation at inside corners 5-14
Outside corners 5-15
6 APPENDIX Page
Programming Code
G-codes, 2-digit 6-1
G-codes, 3-digit 6-2
M-codes 6-3
Parametric functions 6-4
Axis information, auxiliary functions, subprograms and jumps, special characters, control characters 6-6
ASCII character set 6-7
Qutput of Error Messages
Definition, operating 6-8
Error message group 0 6-9
Error message group 1 6-11
Error message group 2 6-13
SUBJECT INDEX

CC 100 M

Full CNC continuous path control for up to 4 numerically controlled axes plus controlled main spindle.

Programming based on DIN 66025, extended by graphic and arithmetic functions.

This manual is intended for the use by the enduser of the control.

Component parts of the control, operating elements, maintenance, working with the data interface are described in chapter 1.

Reset conditions, the reference system, operation of the operating panel and the manual panel, and the technology stores are described in chapter 2.

Chapter 3 describes the conventional programming to DIN, 3-digit G-codes and contour cycles.

Parametric functions, user graphic, operation of the tool compensation and special applications are described in chapters 4-7.

COMPONENT PARTS

Operating Panel
graphic screen, $10^{\prime \prime}$, green
soft keys
main mode
input keyboard

Manual Panel

handwheel, jog buttons, override switches customer keyboard
reentry / display distance to go
start / stop / emergency stop button

Logic Modules:
CP/MEM module:
connections for 2 serial data $1 / 0$ devices, operating panel, external VDU, battery and software module
Module PS 75:
Displays for

- Ready (green)
- 24 V (green),
- internal voltage
levels ok (green)
reset button connections for:
- ready 2
-24V
SERVO module:
connections for
5 incremental measuring systems, analogue outputs
time-critical signals
PIC module or
PLC connection

OPERATING PANEL

Operating panel in main mode AUTOMATIC

IUAL PANEL

Override potentiometers:
The feedrate value is set on the potentiometer in \%.
The button deactivates the potentiometer (sets value to 100% when the potentiometer is set between 80 and 120%).

The potentiometers can be used in MACHINE and AUTOMATIC modes.

Customer keys:

Effective in MACHINE mode;
Depression of one of the keys in the top two rows triggers an MDI
function, which is stored in memory.

Bottom row for direct switching of PLC input signals.

INTERFACES

INTERFACES, general

The user can connect up to 2 external data terminals at the CP/MEM.
$20 \mathrm{~mA} \quad 1$ device of this type can be connected to X 11 (see page 1-5).

This interface is particularly suitable for use where long distances are involved and/or where there is a high level of interference in the surroundings.

With this type of interface one side is active (serves as source of current), the other must be made passive. This is achieved by specific pin allocations in the connections (see page 1-10, 1-11).
V. 241 device of this type can be connected to X 11 or X 12.

This interface allows higher transfer speeds than the TTY interface but is more susceptible to interference.

Control Signals

DTR
Data Terminal Ready: Status of readyness to receive data is output (output signal).

DSR Data Set Ready: Status of permission to send is recognized (input signal).

Note: \quad Switch off handshake by means of a bridge, Pins 4 and 6 at the control side.

Data Lines

TX Data output at the device sending the data.

RX Receipt of data at the receiving device.

Make sure not to confuse the plugs when connecting the devices!
Only connect one device per interface ($\mathrm{V} .24 / 20 \mathrm{~mA}$) !

DATA FORMAT

1 start bit, 7 data bits, 1 stop bit, "even" parity bit
(1 start bit, 7 data bits, 2 stop bits, "even" parity bit for 110 Bd)

Control

Characters
(ASCII)
DC1 Tape reader ON or input START.
DC2 Punch ON or output START. Output comes from the controlling device. It starts the transmission.

DC3 Tape reader OFF or input STOP.
DC4 Punch OFF or output STOP. Output comes from the controlling device. It interrupts (stops) the transmission.

STX Start of text.
ETX End of text.
EOT End of transmission.

Sub-miniature D-type connector
25-pole
socket on device
plug on cable

Plug: side for soldering

1-7

V. 24 CABLE

Note: X12 interface does not use handshake signals.

20 mA CABLE

Cable lengths:	CC active CC passive	max. 15 m max. 100 m
	Baudrates: max. 4800 Bd with handshake max. 300 Bd without handshake	
Signal levels:	high low	
	max. external voltage drop 2 V	

CC active

Pin Allocation

20 mA TERMINAL

CC passive
The peripheral device serves as source of current.
Max. admissible voltage drop in the control 2 V .
The supply to the driving device can be up to 24 V .

Pin Allocation

PERIPHERALS

OPERATING ELEMENTS

$\stackrel{(0)}{0}$	$\begin{gathered} \mathrm{Q}^{\circ} \mathrm{O} \\ \mathrm{O} \end{gathered}$
$\begin{gathered} 0 \\ 0.0 \end{gathered}$	$\begin{gathered} \text { (0) } \\ \mathrm{O}+0 \mathrm{O} \end{gathered}$
$\begin{gathered} 0 \\ 0<0 \end{gathered}$	$\begin{gathered} 0 \\ 0.0 \end{gathered}$
$\stackrel{0}{0}$	

- Read (DCR \longrightarrow parallel)
- fast rewind
- Search forwards

WRITE

endmarker is generated

WRITE II
(CC100 M \longrightarrow DCR)
insert cassette

endmarker is generated

DCR Rear Panel

Settings:

1. CODE: BIN
2. BAUDRATE:
$C(=4800 \mathrm{Bd})$
3. PARITY: EVEN
4. STOP BIT: 1 (as in control)
5. Connector for use with CC 100 M is SERIAL
6. Cable used: 046266

Explanations:

NETZ EIN/AUS - MAINS ON/OFF
Schalterst. - switch position
Vor Öffnen des Gehäuses Netzstecker ziehen!

- Unplug mains cable before opening the housing!

MINI CASSETTE UNIT

estorage capacity:
20 KB each side
-data format and baudrate
set on back
-automatic self-diagnosis
after switch-on with
"Ready" indicator
-serial interface with
V24 or 20 mA

OPERATING ELEMENTS

Rear Panel of MINI CASS

Settings:

1. code: BIN
2. MODE: 4
3. BAUDRATE: 7 (= 1200 Baud)
4. cable used: $\quad 20 \mathrm{~mA}-2.5 \mathrm{~m}$ part no. 046266

Data carrier:

Digital mini-cassette LDB 400 part no. 910749

Control	Mode	Number of data bits	Parity bit	Start bit	Stop bit	Operating buttons active	Binary data
micro $5 / 8$ CC 100/200/300	4	7	even	1	1	yes	no

PROGRAM HEADER

EXTERNAL PROGRAM PRODUCTION

The following text explains the methods by which part programs and part program type subprograms (or cycles) are produced.

Such programs are constructed from program language elements to DIN 66025 and can be produced by one of the following methods:

1. via keyboard input, using the program editor in the NC
2. via the manual panel with 'Teach In', in the NC
3. via a programming unit onto a data carrier (paper tape, for instance), outside the NC
4. by computer, outside the NC

Programs produced outside the NC must conform to the NC machine code and the NC syntax.
In addition programs which are input from a data carrier (tape or digital cassette) or via an interface (V24/20 mA) must have a leader (header) and a trailer. Leader and trailer, the beginning of the individual program lines, as well as the program identifications of the header lines of data blocks must be provided in the correct format

Note:
When data needs to be transmitted the external data carrier must be activated before the control.

CC100-PROGRAM HEADER (general format)

Program header with 1 and 2-digit program numbers

Program header with program numbers of over 2 digits

Note:
The control characters listed below are generated as follows:
$\mathrm{DC} 2=\mathrm{CTRL} \mathrm{R}$ (device control 2)
STX $=$ CTRL B (start of text)
ETX $=$ CTRL C (end of text)
EOT $=$ CTRL D (end of transmission)
DC4 $=$ CTRL T (device control 4)
*) CR LF must be in columns 63 and 64 respectively.

Program Header - Original Print-out

Data is output by the control in this format, and the same format must be used when programming data externally (see also previous page).

Zero Shift

Variable

Cycle

Identification

Letters

The access level is identified as follows:

RWED read, write execute, delete permitted

RE read, execute permitted

E execute permitted (cycles only)

Dimensioning:
$M=$ metric $\quad I=$ inch

PROGRAM HEADER IN DFS FORMAT

The CC 100 program header in DFS format has been designed on the basis of the header format of the cc 200/300, in order to create uniformity in this area for the future. Specific types of files can be loaded and output.

The uniform DFS program header has the following (basic) format:

At the positions indicated by an asterisk it is possible to insert one, several or no space character (s).

Different

 possibilities(DFS, Pxx)
(DFS, PxX, . suffix)
(DFS, Pxx, name . suffix)
(DFS, Pxx, . suffix, RWED)
(DFS, Pxx, name . suffix, RWED)

Explanations

- DFS

Identification of the program header in DFS format (defined storage).

- File type

Specific letters identify the file type:
$\mathrm{P}=$ program
$\mathrm{C}=$ cycle
$\mathrm{E}=$ text
$\mathrm{K}=$ compensation table (K0)
$\mathrm{V}=$ zero shift table (V0)
$\mathrm{X}=$ variables (X0)
$L=$ machine parameters

File number

- Program numbers can contain up to 9 digits, cycle numbers up to 2 digits.

File name

The file name can contain up to 15 characters, which can be letters as well as numbers.
Tables are transferred without name. The file type to be transferred is simply identified as XO , V0 or K0.

- Suffix

The suffix consists of one letter and determines the dimensioning method ($1=$ inch $/ \mathrm{M}=$ metric).
It is separated from the file name by a decimal point.

Access level

The access level is defined by a 2-character code.
2-char.: RE (read, execute)
4-char.: RWED (read, write, execute, delete)

Note Input of file name, suffix and access level is not compulsory. They are purely optional
If no file name is programmed the suffix can be ommitted. The control will then automatically assume the dimensioning to be metric (= suffix M).
If a file name is stated in the program header the suffix must be entered too.

Examples of DFS program header for different file types

(DFS, P12)	- transfer of a single program, program number 12
(DFS, P10,.M)	- transfer of a metric program, program number 10
(DFS, C 4,TOOL CHANGE . I)	- transfer of the tool change cycle in inch format
(DFS, P1, TEST RAPID.M,RWED)	- transfer of program P1 with
	metric dimensions under access level RWED
(DFS, X0)	- transfer of the variable table
(DFS, K0)	$"$

Examples:

```
(IFS,P I,TEST RAPID.M,RUED)
{IFS,C 79,.fin,RUED)
(IFS,RO)
{IFS,X U)
MbFs,! 0;
```


OPERATING SEQUENCES FOR OUTPUT AND INPUT

The files to be output are determined via soft key and marked on the screen in reverse video:
\(\left.\left.$$
\begin{array}{ll}\text { SELECTED FILE ONLY } & \begin{array}{c}\text { - Output if specific file had } \\
\text { previously been selected. }\end{array} \\
\text { PROGRAMS OR CYCLES } & \begin{array}{l}\text { - Output if no specific file } \\
\text { had previously been selected. } \\
\text { Whether programs or cycles } \\
\text { are output depends on the }\end{array}
$$

file type active at the time.\end{array}\right\} $$
\begin{array}{ll}\text { PROGRAMS AND CYCLES } & \text { - Selection via soft key. }\end{array}
$$\right\}\)| - Output of a specific file, |
| :--- |
| FILE + TOOLS |

Files to be loaded can be transferred several at a time in any sequence.

If loading via interface is selected in main mode MEMORY a specific number of files can be selected by soft key operation:

| ALL FILES |
| :--- | :--- | :--- | :--- | :--- |
| YES NO |\quad START \quad PORT NO | BAUDRATE |
| :--- | | CONTROL |
| :--- |
| YES NO |

How many? (1...99)

- The DFS program header is output without checksum.
- In each program block the checksum is inserted directly before the CR LF control character.

Position, calculation, input/output of the checksum

1) Position of the checksum

At the end of the data and before CR LF, a space, the character ":" and then the checksum value (a 2-digit number)are written.
e.g. $\mathrm{N}-11-\mathrm{-G} 1 \mathrm{CR} L F$ becomes

N-11-- G1-:nn CR LF

- = space
$\mathrm{nn}=$ 2-digit number for the checksum

2) How to calculate the checksum

Every character between the LF of the previous line and the ":" is included into the checksum calculation. The ASCII value of each character is added up and multiples of 256 are removed until 255 or less remain, and this remainder is converted into a hexadecimal number.

CODE	ASCII VALUE
N	78
-	32
1	49
1	49
-	32
-	32
-	32
G	71
1	49
-	32
456-256=200 = C8	
The block will now read: N -	

3) Input/output of the checksum

INPUT SK "CONTROL YES" active - control checks syntax

SK "CONTROL NO" active - control checks the checksum, if it exists, otherwise it checks the syntax

OUTPUT SK "CHECKSUM YES/NO" is called up via SK "FORMAT".
SK "CHECKSUM YES" active - programs are stored with checksum

SK "CHECKSUM NO" active - programs are stored without checksum

MAIN MODES

SURVEY The operation of the control is subdivided into the following main modes, which are directly selectable by pushbuttons:

The active main mode is displayed continuously in the top right corner of the screen.
To come out of the current main mode altogether:
Use the page back button to revert through the levels until the 1st soft key level is reached, then select new mode. Exception: For change-over MEMORY/EDIT to AUTOMATIC no paging back required.

To come out of the current main mode temporarily:
Select a different main mode directly. The old main mode is retained in the background (display flashes) and can be reactivated by pressing the relevant mode key once more.

Subdivision of VDU Display

[^0]
EDIT

Access to Data

Access Levels

Dimensioning

Commands

Data Interfaces

Copy

In this main mode all user data can be handled (see EDITOR).

Selectable data blocks:

- tool table
- zero shift table
- variable table
- programs
- cycles

The menue for part programs and cycles can be paged forwards with soft key "NEXT PAGE".

Unauthorized accessing of the data can be prevented via softkey operation. Execution is always permitted.

The access levels are expressed as follows:

- RWED read, write, execute and delete are possible
- RE only reading and executing are possible
- E only executing is possible (cycles only)

The dimensions can be selected by soft key to be in metric or inch.

Display in index and in "active datablock" line:

- M metric
-I inch

Under this SK the following functions are available in 2 levels:

- resequence block numbers
- transfer program to a cycle
- rename a file
- inch/metric

See chapter on "Data Handling"

Programs stored in the memory can be duplicated with SK function "COPY". The user must enter a new file name and the control will select the file number.
arrow
edit line cursor

Selection via SK "PROGRAMS" or "CYCLES", program name or number SK "EDIT"

The position of the arrow indicates which line is being worked with. This block is repeated in the edit line which contains a cursor (bright rectangle)

Cursor Functions

Block
Selection

Search

Functions

Delete - individual character to the left of the cursor

Line - content of the line to the right of the cursor is deleted
Delete

Modity

- First delete individual character,
- then key in new character(s)

Insert

Switch-over between MODIFY/INSERT

Scrolling blocks up/down by simultaneous actuation of

Moving cursor sideways

The cursor is placed to the right of the position at which a letter is to be inserted/modified.

A characteristic string (sequence of letters, numbers and characters) from the required line is entered, i.e. G41.

or

ENTER

MODIFY
SHIFT

ENTER

- enter new character(s)

MACHINE

呮
 MANUAL MACHINE OPERATION

The manual panel is always activated in MACHINE mode.

Recording of elements of a sample contour (see p. 2-7)

MDI

After SK selection of MDI one block can be executed after the relevant data has been entered. The execution is initiated with the start button.
Under the SK HELP the permanently stored drilling and milling cycles can be selected, parameterized and executed, as well as the user-definable cycles.

REFERENCE AXES	REFERENCE CYCLE	MDI	TEACH IN	INCH METRIC

MTB-specific soft keys (cycles)

Note: \quad-It is not possible to return to previous SK levels while a block/cycle is being executed.

- G41/G42 are not permitted.
- MTB cycle PRIOTITY ROUTINE can not be called up.
- Axes which have been driven onto the software limit switches can only be moved by means of the JOG
buttons

in reverse direction.

When working in manual mode the type of traversing movement needs to be defined:

- With the jog buttons the axes can be traversed individually in incremental steps (of 1, 10, 100, 1000 or 10,000 increments). The max. feedrate corresponds to the limit determined by the machine parameter for manual feed ($1-120,000 \mathrm{~mm} / \mathrm{min}$).
- The electronic handwheel can be activated for individual axes.
- Change-over between feed and rapid.

TEACH IN

Definition By tracking the outline of a sample contour with the machine the specific contour features are recorded by key actuation (soft key RECORD).
During this procedure the control stores the position values of all axes.
A circular movement is generated by positioning to three points of the circle (soft key CIRCLE COMPUTE).

MDI function As in MDI mode blocks can be keyed in. The data is transferred into memory with SK "RECORD".

Operating

Main mode MACHINE \square

REFERENCE AXES	REFERENCE CYCLE	MDI	TEACH IN	NCH METRIC

RECORD	\rightarrow	CIRCLE COMPUTE	\rightarrow	CLEAR BLOCK

Function Keys

- Storing positions of moved axes
- Storing entered blocks
- Storing positions of blocks generated internally

- Automatic calculation of circles
- The CC 100 calculates circle data from 3 scanned points (SK 'RECORD POINT 1', 'RECORD POINT 2' and 'RECORD POINT 3')
- Circular interpolation G2/G3 is also modal in TEACH IN mode. If a linear movement is to follow GO/G1 must be programmend:
Key in G0/G1 before the linear movement and transfer into memory with SK RECORD.

- Clearing blocks which have not yet been stored from the edit line.

TEACH IN

Calculation of The control calculates the radius R from the 3 recorded axis positions and Circles with generates the circular contour.

Parameter R

The current axis position is the lst point for the calculation of the circle.

The display will show the last axis position with the calculated radius.

Display G2/3 X... Y... R...
The block is stored with soft key RECORD.
Note - The CC 100 automatically generates a program with the name "TEACH IN". If a program with this name is already stored in the memory, this program has the newly entered TEACH IN functions added to it.
If several independent programs are to be generated via TEACH IN, the old program must first be renamed in EDIT mode with SK RENAME.

- Switching of the dimensioning unit $\operatorname{INCH} / \mathrm{METRIC}$ during TEACH IN operation is not permitted.
Should it be attempted an error message will be displayed:
"inch/metric selection incorrect".

AUTOMATIC

\square
Execution of programs and/or cycles from memory.
PROGRAM / CYCLE - Selection

The stored cycles and programs are listed in ascending numerical order. The selection is made by entering the name or the number.

OPERATING PROCEDURE BEFORE START OF PROGRAM/CYCLE NORMAL step: no

Selection of:
DRY RUN - test without movement
RAPID - test in rapid
NORMAL - execution as per program
active mode displayed in the prompt line.
selection of step size (1-9):
1 : single block
2 : double block

9 : ninefold block
(= stop every 9 blocks)

| COLL TEST
 ON/OFF | WITH STOP
 YES/NO | LENGTHCOMP
 ON/OFF | CUT. COMP
 ON/OFF | CPC
 TEST |
| :--- | :--- | :--- | :--- | :--- | :--- |

AUTOMATIC

INTERRUPTION / RE-ENTRY during program execution

Possibility of external intervention by the operator with tool compensation active / not active, after at least one block has been executed completely:
a) Cycle stop

b) Press

c) Manual intervention
movement away from contour for measuring purposes, for instance
d) Tool change with

- replacement by identical tool
- replacement by a different tool

Tool Change

e) Drive to suitable position S to start re-entry

g)

Note: \quad - G92 must not be active (see chapter 3)

- If main mode AUTOMATIC is selected between exit and reentry the reentry operation is abandoned and the basic display for main mode AUTOMATIC is displayed. Continuation is possible via reselection of the program and CYCLE START.

OPERATING PROCEDURE AFTER CYCLE START

After selection of block or a jump target the previous SK line will appear once more. The breakpoint should then be set.

TABLES

DRY RUN RAPID	STEP	SELECT BREAKPOINT	BREAKPOINT	TABLE

TOOLS	ZERO SHIFTS	VARIABLES		

Zero shifts and variables can be checked, tools can be checked and edited.

TOOLS

TOOLS	ZERO SHIFTS	VARIABLES		

Tool data appears in the edit line.

TOOL	\downarrow	SCROLL		
NUMBER	\downarrow			

Tool data can be selected directly via their number (+ ENTER) or by cursor control. The cursor is positioned on the DR value (wear). The wear value compensation value can now be updated by an incremental input. Conclude with ENTER (see p. 4-1).

ZERO SHIFTS

TOOLS	ZERO SHIFTS	VARIABLES		

Zero shift data appears in the edit line.

ZERO SHIFT NUMBER	\quad	SCROLL		

Direct selection via number (+ ENTER) or by cursor control (+ SCROLL).

VARIABLES

TOOLS	ZERO SHIFTS	VARIABLES		

VARIABLE NUMBER	\downarrow	SCROLL	\uparrow	

Operating and function as for zero shifts.

INFO

The INFO mode is subdivided into two separate sections:
-the machine tool builder section, protected by the MTB code
othe user section.
Within the user section additional information is made available to the operator.

	SERVICE			RESET

CC 100M - Display of the set modal functions, potentimeters,
STATUS zero shifts, scale factors, SW limit switches
I/O - Status of the CNC-PIC interface
STATUS

MESSAGE - Display of the last 10 error texts with
LIST error number and error location (program, block)
selection

CC 100M	EXTERNAL	MESSAGE	AXES	PIC/PLC
STATUS	STATUS	LST	DISPLAY	DISPLAY

TABLE	LIST			

TABLE	LIST	PAGE +	PAGE -	

Display of machine status conditions, defined by MTB.
(Seperate DNC description in preparation)

AXES

 DISPLAY| COMMAND
 POSITION | LAG | MACHINE
 POSITION | DISTANCE
 TO GO | INCH
 METRIC |
| :--- | :--- | :--- | :--- | :--- |

COMMAND - The programmed position is displayed.
POSITION
LAG - The lag, (also called following error), is displayed.

MACHINE - The actual position is displayed as long as there
POSITION are neither zero shifts nor G92 active. The MACHINE POSITION results from the COMMAND POSITION minus the lag.

DISTANCE	- The difference between the programmed command position and the actual position, i.e.the TO GO
distance to go, is displayed.	

PIC/PLC The PIC program is displayed and the following soft keys DISPLAY are offered:

SEARCH	\uparrow	\uparrow	TABLES	TRIGGER

SEARCH With this soft key

- addresses
- instructions (command + operator)
- commands (CMD)
- operators
can be searched for and displayed, entered either with the full number or part of the number or without the number.

If a string is not found the message STRING NOT FOUND appears in the edit line. If an instruction, a command etc. is not found the NC gives the message NOT FOUND in the edit line.

SOFT KEYS - The program display can be scrolled up and
 down line by line (no repeat function)

TABLES - makes the following soft keys available:

soft keys
INPUT
OUTPUT
TEMP.STORE
soft keys

TRIGGER - makes the following soft keys available:

- These soft keys are used to select the corresponding data or clear them from the screen. Selected data is marked by highlighting of the corresponding soft key. Data used in the NC-PLC interface are highlighted in the display. Several or all sets of data can be selected simultaneosiy.
- The selected data displayed on the screen can be scrolled up or down line by line (no repeat function).

LOW	$-\square$	HIGH	\square	TRIGGER OFF

soft keys - The trigger function responds to a low signal or a high signal.
LOW, HIGH
soft keys - The trigger function responds to a rising or falling edge.

If one of these soft keys is actuated the following soft keys appear:

The selected trigger condition is displayed in the highlighted line at the top of the screen.

The highlighted line at the top of the screen contains the following information:

STATUS - waiting for
(signal has not occurred yet)

- triggered
(signal has occurred)

SIGNAL TYPE as selected by soft key

- low level
- high level
- rising edge
- falling edge

INSTRUCTION - instruction marked by the cursor in the displayed program

ADDRESS -address of the displayed instruction

While the trigger function is switched on it is possible to page through the program. Soft key TRIGGER OFF switches the trigger function off. The purpose of the trigger function is the monitoring of signals which occur intermittently; it is an important aid for fault finding.

LINES SERVICE SOFTKEY LINE FOR DNC OPERATION

Lines service

DIMENSIONING - SWITCHING BETWEEN INCH/METRIC

MEMORY mode

TOOLS	ZERO SHIFTS	VARIABLES	PROGRAMS	CYCLES

ACCESS ON/OFF		EDIT		SAVE

ACCESS ON/OFF	INCH METRIC	EDIT	LOAD	SAVE

TOOLS	ZERO	VARIABLES	PROGRAMS	CYCLES

| | NEXT
 PAGE | LOAD | SAVE |
| :--- | :--- | :--- | :--- | :--- |

e.g. 1 ENTER

COMMAND	NEXT PAGE	EDIT	LOAD	SAVE

		INCH METRIC		RENAME

VARIABLES can not be switched to INCH/METRIC. Whether the file types, tools and zero shifts are to be effective in metric or inch is determined by soft key.

Effect: \quad The file types program and cycles are stored with the dimensioning index I / M. Metric is preset for new files.

MACHINE mode

In main mode MACHINE the INCH/METRIC switching is effected in the first soft key line:

REFERENCE AXES	REFERENCE CYCLE	MDI	TEACH IN	INCH METRIC

Effect: The selection is effective for all functions in MACHINE mode.
The selection is retained even after a hardware reset and it also applies after a switch into INFO mode.

AUTOMATIC mode

File types such as programs and cycles are already defined with respect to the dimensioning during the generation process. The chosen dimensioning method also applies for the execution.

INFO mode

The axis measurement format (INCH/METRIC) selected in INFO mode sets the priority for the axis display in machine mode.

MACHINE STATUS	SERVICE	MTB SERVICE	UNES	RESET		
SERVICE					\quad	DELETE
:---						

CC 100 M	I/O	MESSAGE	OTHER	PIC/PLC
STATUS	STATUS	LIST	SELECTION	DISPLAY

CC 100M	EXTERNAL	MESSAGE	AXES	PIC/PLC
STATUS	STATUS	LIST	DISPLAY	DISPLAY

COMMAND POSITION	LAG	MACHINE POSITION	DISTANCE DISPLAY	INCH METRIC

- The desired dimensioning method is selected for the particular axis display (command/position, machine position, lag, distance to go).
- On switch-on the dimensioning method last active is reactivated.

DATA HANDLING

GENERAL

LOAD / SAVE

The CC100M has two serial data interfaces, the sockets of which are located on the CP/MEM board.
The first interface, which is identified by the control as "Port No. ${ }^{1}$ ", is connected to socket X11. The second interface, identified as "Port No. 2 ", is connected to socket X12.

Input and output of data is possible in main modes INFO and EDIT. Interface selection and parameterisation are made via soft keys.

In main mode "EDIT" the following types of data can be loaded and saved:
(soft keys:)

TOOLS	ZERO SHIFTS	VARIABLES	PROGRAMS	CYCLES

In "INFO" mode it is possible load machine parameters,
M-functions, texts and graphics.
Programs, tools, zero shifts and variables can only be cleared.

LOAD Operating procedure:

- Select main mode EDIT

- Actuate soft keys as shown below:

TOOLS	ZERO SHIFTS	VARIABLES	PROGRAMS	CYCLES

	NEXT PAGE		LOAD	SAVE

- Optional: Key in program number or name and press "ENTER".

COMMAND	NEXT PAGE	EDIT	LOAD	SAVE

ALL FILES	START	PORT NO	BAUDRATE	CONTROL
				YES

- Soft key "ALL FILES"
"YES" selected: All files on the data carrier are loaded.
"NO" selected: Only the specified number of successive files (number is requested) are loaded.
- Soft key "START": The loading operation is started; the control waits for data. After the initial actuation the soft key changes to "STOP" and can be used to stop the data transfer.
- Soft key "PORT NO": Enter port number 1 or 2. The corresponding interface (X_{11} or X_{12}) will be activated.
- Soft key "BAUDRATE": Set baudrate. A list of the code numbers for the baudrates appears on the screen. The baudrate set on the control must be the same as the one set on the peripheral.
- Soft key "CONTROL YES/NO":

With CONTROL YES the syntax is checked.

With CONTROL NO only the checksum is checked, if it exists.

If the program or cycle does not contain checksums the control will carry out a syntax check.

Note Under SK "PROGRAMS" it is also possible to load cycles, tool compensations, zero shifts and variables; the same applies for SK "CYCLES". Cycles are loaded in succession, like the programs.
When the last program or cycle has been loaded the load operation is stopped. If there are tool, zero shift and variable files on the data carrier loading is stopped after each file, if an EOT signal separates the files. If the subsequent files are to be loaded too SK "START" must be actuated for each one.

Protection When loading data via serial interfaces programs are automatically protected against overwriting. If a program is loaded which is already stored in the memory the control will ask whether to

- overwrite the existing program (input 1)
- store the program under a new number (input 2)
- abort the loading operation (SK "STOP")

A program with overwrite protection can not be overwritten.
Error message: "file protected".

SAVE
Operating procedure:

- Select main mode EDIT

- Actuate soft keys as shown below:

TOOLS	ZERO SHIFTS	VARIABLES	PROGRAMS	CYCLES

	NEXT PAGE	LOAD

- Optional: Key in program or cycle name or number and actuate "ENTER".

ANOTHER SELECTION	START	PORT NO	BAUDRATE	CHECKSUM

The screen displays the message "SELECTED FILE ONLY" (highlighted characters)

- Soft keys "START", "PORT NO" and "BAUDRATE" are operated as for loading.
- Soft key "CHECKSUM" switches the generating of a checksum, which is to be output, on and off.

PROGRAMS + CYCLES	START	FILE + TOOLS	FILE +	ZEROSHIFTS +
VARIABLES				

- Soft key "PROGRAMS + CYCLES" determines whether only either programs or cycles are to be saved, depending on the selection in the first SK line, or whether programs and cycles are to be output. (Display with highlighted characters.)
The page back button resets the display to "SELECTED FILE ONLY".
- Soft keys "FILE + TOOLS", "FILE + ZEROSHIFTS" and "FILE + VARIABLES". When one of these is selected the corresponding term will be displayed in highlighted characters.

If one of these soft keys is selected the parameters "from" and "to" must be defined. Unless this is done no page back or other selection is possible.
The parameter ranges are as follows:

tools	$1-48$; input e.g.: $1,7,14,15,16,23,44$
zero shifts	$54-59$; input e.g.: $54,57,58$
variables	$1-99, A-Z$; input e.g. $7,9,10,25,49, A, C, L, X$

Only the numbers should be entered, not the associated letter codes. The sequence for the variables is numbers first, then letters.

Output without fiie seiection:

TOOLS	ZERO SHIFTS	VARIABLES	PROGRAMS	CYCLES

	NEXT PAGE		LOAD	SAVE

PROGRAMS + CYCLES	START	PORT NO	BAUDRATE	FORMAT

		CHECKSUM YES NO	FORMAT DFS CC100	

Soft key "PROGRAMS + CYCLES" offers the choice of outputting programs or cycles. Either programs or cycles are preselected, depending on the choice made in the first soft key line.
omment During the output of programs and cycles the selection of the dimensioning unit "INCH" or "METRIC" is output in the program header.
elete
Main mode INFO

Operating procedure:

- Activate main mode "INFO"
- Continue with soft key operation

MACHINE STATUS	SERVICE	MTB SERVICE	LINES SERVICE	RESET + DELETE

DELETE TOOLS	DELETE	DELETE	DELETE	CONTROL
ZEROSHIFTS	VARIABLES	PROGRAMS	RESET	

The selected soft key is highlighted on the display.
The delete operation can be aborted with the page back button.

Caution When the "ENTER" key is pressed all programs will be deleted, even those with write protection.

Delete function in main mode EDIT

In main mode "EDIT" programs are deleted individually (or cycles, depending on the soft key selection), and only those without read/write protection can be deleted in this mode.

Operating procedure:

- Select main mode "EDIT"
- Continue with soft key operation:

TOOLS	ZERO SHIFTS	VARIABLES	PROGRAMS	CYCLES

	NEXT PAGE		LOAD	SAVE

Select program or cycle by name or number.

COMMAND	NEXT PAGE	EDIT	LOAD	SAVE

COMMAND	PROTECTION ON OFF	INCH	DELETE	RENAME

Note If an attempt is made to delete a program or cycle with read/write protection the message "file protected" will appear on the screen.

In "EDIT" mode it is not possible to delete tool data, variable data and zero shifts.

TOOLS, ZERO SHIFTS, VARIABLES

These types of data can be loaded and saved in "EDIT" mode; they can only be deleted in "INFO" mode.

Load
Main mode EDIT ζ
Soft keys:

TOOLS	ZEROSHIFTS	VARIABLE	PROGRAMS	CYCLES

ACCESS ON/OFF		EDIT		SAVE

ACCESS ON/OFF	INCH METRIC	EDIT	LOAD	SAVE

The soft key "INCH/METRIC" does not appear for variables.

	START	PORT NO	BAUDRATE	

Note
Data can also be loaded under "PROGRAMS" or "CYCLES"
Write protection is then not effective. The selection of inch or metric made in this way is not stored on the data carrier and must be made at the control.

TOOLS	ZEROSHIFTS	VARIABLES	PROGRAMS	CYCLES

ACCESS ON/OFF		EDIT		SAVE

	START	PORT NO	BAUDRATE	FORMAT

		CHECKSUM YES NO	FORMAT DFS CC100	

The delete function in "INFO" mode works as described in chapter "Load and save programs and cycles".

Machine Parameters, Text Strings and Graphics

In "INFO" mode these types of data can only be loaded.

Operating procedure:

- Select "INFO" mode with
 key.
- Continue with soft key operation:

	SERVICE	MTB SERVICE	LINES SERVICE	RESET DELETE

LOAD MACH. PARAMETER	LOGBOOK	SET CLOCK	MODE	LOAD TEXT

	START	PORT NO	BAUDRATE	

Note During the loading operation the data previously in the memory is overwritten. Enter only the appropriate data under the selected type of data, i.e. do not select soft key "LOAD TEXT" if you have previously selected LOAD MACHINE PARAMETERS.

Logbook If a logbook exists the data can be output in "INFO" mode.
Operating procedure:

- Select main mode "INFO" with
 key.
- Continue with soft key operation:

MACHINE STATUS	SERVICE	MTB SERVICE	LINES SERVICE	RESET DELETE

LOAD MACH. PARAMETER	LOGBOOK	SET CLOCK	MODE	LOAD TEXT

ACTIVATE LOGBOOK	LOGBOOK DISPLAY	CLEAR LOGBOOK	SAVE LOGBOOK

	START	PORT NO	BAUDRATE	

If no logbook has been generated the soft key "LOGBOOK DISPLAY" will not be displayed.

GENERAL

Program Production

Part programs can be produced by the following methods:

- directly at the control via	panel input in modes EDIT or MACHINE (TEACH IN) or
- at programming stations	For transmissions please note the instructions in sections: DATA INTERFACES (chapter 1) Data handling (chapter 2)

Memory Allocation

The following types of user data are stored in the control:

Memory areas	Contents
part program memory	part programs and cycles, with the relevant subprograms
technology table	tool geometry and tool wear data, cutting speeds
zero s hift table	
variable table	zero shifts G54 to G59 CPC varables VI-V99 and VA-VZ
machine parameter memory	machine specific data

Basic Conditions

Descriptions in the programming instructions relate to the control as used on a machine tool (milling machine) with a Cartesian axis configuration within a clockwise coordinate system. Unless otherwise stated the following G-functions are assumed to be active:

G17	plane XY
G27	no field limitation
G40/T00	no tool compensation
G53	no zero shift active
G62	in position function off
G90	absolute dimensions

The reset status or the status after switching to automatic mode is indicated by ' A '.

Up to 99 suprograms can be assigned to a program or cycle.
Main programs and their subprograms can call up cycles.
From within cycles and their suprograms other cycles and subprograms can be called up, up to a 10 -fold total nesting depth.
-call-up source

PART PROGRAMS AND CYCLES

A program or a cycle describes a sequence of machining operations and is subdivided into blocks. The blocks contain preparatory functions, axis information, miscellaneous and auxiliary functions.

Block A block is made up of the block number and one or several words.

The block length is variable. During external programming the words can be written in any order. The block number must be at the beginning of the block. No space characters required between blocks. But note the gap between the block number and the first word (see transmission protocol, p. 3-4).

Word A word consists of an address letter and a sequence of figures, which represent the address contents.

Only those figures which contain information need be written.

N10 G0	X5.100	Z0.500	M3 T01 or
N10 G0	X5.1	Z.5	M3 T01

Blocks are built up from individual words which begin with an address letter.

With DIN programming an address may only be programmend once in each block.
Block Numbers The first word of a program block is the block number. It is made up of the address letter " N " (ISO format) and a 1to 4 -digit sequence of figures.

During external program production no block numbers need to be programmed. The control will store data in ascending order.

During panel input the control generates the block numbers automatically in the course of the input dialogue.

- steps Block numbers are programmed or generated in steps of 1. If additional blocks are entered via "INSERT" the control will mark these blocks with a "+". The jump addresses remain valid after insertions or deletions sine they are marked with symbolic "labels".

The control can store 1 or several user programs. During the programming these programs can be marked as main programs, or subprograms (SBP), or cycles.

Program \begin{tabular}{l}

A program is defined by the
- HEADER

-PROGRAM END

Header the first line and
\end{tabular}

instruction in the last line.

The header line is generated automatically by the control after call-up of the program or input of the program name.

Program end	M2	program end
	M30	
	program end - renewed execution with CYCLE START	

Subprogram Subprograms are of local character; i.e. they are always assigned to a specific program. Subprogram numbers may be used repeatedly as long as they are assigend to different programs.

A subprogram (SBP) is defined by

$\$.$.	up to 2 -digit subprogram number in first line
G99	subprogram end in the last line

Cycle Cycles are of global character.
In other words: Each cycle number may only be used once in the program memory, but can be called up from each program/subprogram or with a direct call-up.

Header
$\begin{array}{ll}\text { Cycle end } & \text { M2 cycle end } \\ & \text { During panel input the headers are generated by soft key selection. }\end{array}$

```
Jump Program jumps can be used for a more efficient usage of
Instructions
the individual program segments.
The jump instructions relate to jump addresses (labels)
which are to be previously defined. These symbolic addresses
are retained even when program alterations are carried out
by inserting or deleting blocks.
Programming of
    G24 P x x (unconditional jump)
or
    G23P\timesx (conditional jump)
        P = jump address number
```

effects branching to a program line
which is marked as a jump address:
$\$ \mathbf{x x}$.

N10		sequence if
N11	\$ 2	signal OPITIONAL JUMP = high:
N12	X...... Y...	
N13		N10 to N20 / N11 to N20
		sequence if
N20	G23 P2	signal OPTIONAL JUMP = low:
N21	N...	
N22	Y...	N10 to N25 / N11 to N25.
-		
N24	X...	
N25	G24 P2	

SBP Call-ups The calling up of subprograms must only be possible by programming

G22 P .. L.. unconditional SBP call-up or
G21 P... L.. conditional SBP call-up

$$
\begin{aligned}
& P=\text { SBP number } 1 \text { to } 99 \\
& L=\text { repetition } 0 \ldots .99
\end{aligned}
$$

For this reason the subprogram call-ups G21/G22 in the main program must be separated from the subprograms themeselves by M2/M30.

One SBP can be called up repeatedly and from different places within the relevant main program.

Example

Decisions Subprogram calls or jumps can be linked to a condition, which can be

- the logic state of interface contacts or
- the result of a mathematical comparison (parametric functions)

The jumps or calls are carried out if the stated condition is fulfilled.
They are not carried out (and the program is continued at the next line) if the condition is not fulfilled.

PARALLEL PROGRAMMING

Definition Parallel programming allows the control to be used in EDIT mode while an active program is being executed.
In edit mode tool data, zero shift tables, variables and part programs can be entered, edited and output.
Active programs and cycles can not be edited in parallel operation.

PARALLEL PROGRAMMING

| editing, input and
 output in
 EDIT mode | simultaneously |
| :--- | :--- | | AUTOMATIC |
| :--- |
| execution of |
| part programs |

Functions available in Parallel Operation

Tables TOOL, ZERO SHIFT and VARIABLE tables can be edited, entered and output. Contents of tables which need to be accessed by the active program can not be edited in parallel operation.
A possibility does, however, exist to edit table contents during program execution. After the program has been completed the existing table is overwritten with the modifications (updated). The control generates a passive table for this purpose.

CYCLES Cycles can not be edited in parallel operation. But they

 can be input and output via the serial interface.PROGRAMS Programs can be edited in parallel operation and can also be input from and output to external data carriers.

The active program can not be edited.
There is, however, the possibility of copying the active program in the memory before starting program execution. The copied program can then be edited.

During AUTOMATIC execution of a program while in parallel operation the soft key TABLES appears. Under this soft key it is possible to look at the tables TOOLS, ZERO SHIFTS and VARIABLES without having to come out of main mode AUTOMATIC.

DRIP FEEDING

DEFINITION Long programs which do not fit into the program memory can be loaded via interface for direct execution.

DRIP FEEDING - SINGLE ACTIVATION

Single drip feeding operation is activated via soft key

DRIP

FEEDING

IN AUTOMATIC mode (direct selection).

DRIP FEEDING - CONTINUOUSLY ACTIVE

If drip feeding is to be activated automatically when AUTOMATIC mode is selected the operator must switch to

ACTIVE ON

 POWER ON(reverse video) in the 3rd soft key level (INFO mode).

DRIP FEEDING - USER INTERFACE

In AUTOMATIC mode the preset parameters for DRIP FEEDING
will appear on the display once it is activated.
Example

The DRIP FEEDING parameters are preset in INFO mode.
The parameters do not affect the program which is to be executed.

Main mode INFO

MACHINE STATUS	SERVICE	MTB SERVICE	LINES	RESET
SERVICE	DELETE			

	DRIP FEEDING		DNC	

ACTIVE ON POWER ON	BUFFER SIZE	PORT NO.	BAUDRATE	BLOCK OFFSET

Meaning of the DRIP FEEDING parameters

ACTIVE ON
 POWER ON

BUFFER
SIZE

If this parameter is active (reverse video) the control
defaults to DRIP FEEDING mode when AUTOMATIC is selected.

The BUFFER SIZE parameter determines the buffer size in 0.5 kBytes, which is to be kept free for DRIP FEEDING in the part program memory of the control.
Input format: 512 bytes
Min. buffer size: 1 ($=512$ bytes)
Max. buffer size: \leq max. available memory capacity (see
Drip Feeding and main memory)

PORT NO.
Selection of the interface on the CP/MEM
Port 1 - V. $24 / 20 \mathrm{~mA}$
(with handshake)
Port 2 - V. 24
(with or without handshake)

BAUDRATE Setting of the baudrate.
The following baudrates are recommended (-1800 Bd):
$8=1800 \mathrm{Bd}$
$9=2000 \mathrm{Bd}$
$10=2400 \mathrm{Bd}$
$11=3600 \mathrm{Bd}$
$12=4800 \mathrm{Bd}$
$13=7200 \mathrm{Bd}$
$14=9600 \mathrm{Bd}$

$\begin{aligned} & \text { BLOCK } \\ & \text { OFFSET } \end{aligned}$	This parameter is originally preset so that the program execution begins after 12 program blocks have been loaded (min.).
	The setting " n " determines after how many loaded blocks the execution is to begin.
	Possibilities: $n=-1$ execution begins when the buffer is full or when M30/M2 is transferred from the DRIP FEEDING program.
	$\begin{array}{ll} n=0 & \text { Execution begins when } 12 \text { program } \\ \text { blocks are loaded. } \end{array}$
	$n>12$ Execution begins when the specified number (n) of program blocks are loaded.
START POINT?	Input of the block number at which DRIP FEEDING is to start (1 = beginning of the program). NC blocks before the start point are ignored.
Note:	The DRIP FEEDING parameters can only be changed in INFO mode. Port no. and baudrate are independent of the parameters as described in chapter "Data Handling".

DRIP FEEDING AND MAIN MEMORY

Part programs and cycles occupy a certain area in the part program memory; the remaining available storage capacity is used for DRIP FEEDING.

When the buffer size for DRIP FEEDING has been determined in INFO mode and DRIP FEEDING is activated in AUTOMATIC mode the control checks whether the selected buffer size does not exceed the available storage capacity. If it does an error message will be produced. If the buffer size is not defined the user can utilize the max. available storage capacity.

input: \quad available storage capacity	(see basis display 512
in AUTOMATIC)	

If the available storage capacity is not sufficient there are two possibilities:

- deletion of individual programs or cycles to increase the available storage capacity
- reduce the buffer size in INFO mode

PROGRAM EXECUTION WITH DRIP FEEDING AFTER CYCLE START

The DRIP FEEDING operation is started with Cycle Start.
During program execution only the active block is displayed on the screen.

DRY RUN RAPID	STEP	LIST		TABLE

By actuating SK LST the 6 blocks following the active block can be listed.

Program execution is possible with the following options:

- step size in program
- rapid / dry run of the program
- starting the program at a set start point (block N)

BOSCHCC 100 M
General

Recommendations for achieving fast data input with drip feeding

- When the control has "some time" (e.g. long traversing path, G4 active, or FEED HOLD active) it loads data into the buffer. It is therefore advantageous to choose the buffer to be as large as possible. The control is then able to "live" on data from the buffer for those program parts where the block cycle time is critical. In this case the loading of new blocks is inhibited until only the minimum number of blocks are in the buffer. The block cycle time will then be the same as when working from memory.
- Drip feeding and checksum:

Drip feeding programs should be transferred to the control with checksum in order to increase the speed of the transmission. Also the baudrate should not be below 1800.

Position and calculation of the checksum

(see program header in DFS format, page 1-22
Restrictions - Jumps, subprograms and the setting of stop points are not permitted in DRIP FEEDING programs;

- Parallel programming is not possible since there are several functions active simultaneously during DRIP FEEDING:
- automatic program execution
- block processing
- transfer function from external data carrier (LOAD, SAVE)
-The REENTRY function is not possible.

ADDRESSES

ADDRESS F

G1 F. . F defines the path feedrate in $\mathrm{mm} / \mathrm{min}$.
G2 F. .
G3 F. .
G5 F. .
G04 F. . F takes effect as dwell in seconds.

G93 F. . F takes effect as execution time for the programmed path section in seconds.

G94 F . . \quad F takes effect as feedrate in $\mathrm{mm} / \mathrm{min}$. G94 is active on switch-on.

Programmable range: F 0.001 to F 50000
G95 F . . F takes effect as feedrate in $\mathrm{mm} / \mathrm{rev}$.
The programmed path feedrate is derived from the actual speed of the main spindle. G95 is used for tapping and finishing.

CONTROL RESET clears any programmed F -address.

ADDRESS T

T determines the tool number, which is to be output, and/or the tool length compensation, which is to be applied internally. \mathbf{T} is programmed with 2 or 4 digits.

tool number to be output
to the PIC
programmable range: 0 to 99
compensation group of the
technology memory to be applied
programmable range: 0 up to max. 48
If T is programmed with only 2 digits these are always interpreted as the compensation group.

The operation of the tool length and tool radius compensation is described in detail under TOOL COMPENSATION, chapter 5.

ADDRESS M

Definition

Range of	The control itself allows all M-codes from M0 to M99 to be used. The user
M-Functions	can utilize all M-functions which have a machine function assigned to them.

Internal Listed below are a number of codes which have fixed internal functions:
Functions
Output signals can be generated by means of the program.

The control itself allows all M-codes from M0 to M99 to be used. The user can utilize all M -functions which have a machine function assigned to them.

External effects and further M-functions are particular to each machine and details must be provided by the machine tool builder; for instance: coolant on/off, delivery and removal of workpieces.

ADDRESS S

Definition	Programmed on its own the S-address determines the spindle speed, or the position for spindle orientation.
G92 S . .	When programmed in conjunction with G92 the S-address limits the maximum speed of the main spindle.
M19 S . .	The spindle is oriented onto the position programmed with S (degrees). If M 19 is programmed on its own the value defined by machine parameter 111 will apply as orientation point (range $00-359.999^{\circ}$).
S	Spindle speed in rpm. The direction of rotation (M3/M4) must have been defined.
SPINDLE SPEEDS	

Machines with a gearbox which can be controlled via the CNC can operate in two ways:

Fixed Selection One particular gear range is programmed in the user program

M41-44

Automatic
Selection
M40
with M41 to 44, corresponding to gear ranges 1 to 4:
The control assists with the change-over between gear ranges by the output of idling speeds, by the processing of signals relating to the gear ranges etc. If a speed is programmed which is not achievable within the selected gear range, the control outputs the max. or min. speed possible within that range.

When M40 is active the control itself selects the appropriate gear range on the basis of the following criteria:

- up to 4 gear ranges with min. and max. speed values can be controlled
- output range for the speed:

1 to 9999 rpm (MTB can restrict the range for the particular machine)

- when S is programmed the appropriate gear range is automatically selected, on the basis of the current program data
- where gear ranges overiap the control selects the lower of any two possible gear ranges (higher motor speed).

G96 + M40 A new gear range is only selected for the following block if the required speed can not be achieved in the active gear range. Idling speed is output for as long as the activation of the correct gear range has not been acknowledged.

H-ADDRESS	
	Hxxxx
Definition	H-address = "FLYING OUTPUT"
	As opposed to the M -address, which is output before each traversing movement, the H -address is output simulaneously with the traversing movement.
	This simultaneous output prevents drops in the command value.
Use	This function can used in programs for machining operations during which any momentary stopping of the axes would result in damage to the workpiece (for instance during laser cutting).
	This 4-digit auxiliary function permits additional control and switching functions for time-critical applications.
Programming	- The H -address should be regarded as an additional auxiliary function; it should not be programmed with other auxiliary functions in the same block.
	- The programming format is up to 4-digit.
	- Variables can be allocated to the H -address $\left(V_{1}=1212 ; H=V 1\right)$
Output	The H -address is output to the interface in BCD code. If the address has 4 digits the last two are output first.
Note	H -addresses can also be used for the extension of certain functions (e.g. speed programming in dual spindle operation: $\mathrm{S} 1=1000 \mathrm{rpm} ; \mathrm{H}=500 \mathrm{rpm}) .$

OPERATOR INSTRUCTION PROGRAMMING

Definition The operator instruction programming facility allows the display of texts during the program execution.
These texts can be purely informative or they can give instructions to the operator.
The contents of the texts do not affect the program sequence or machine functions in any way.

Programming The text is programmed in brackets and must be written in a separate block.

Usage This facility can be used to provide documentation for the program. Since the display always shows the next block to be execution while the program is being actioned it is possible to put message up on the screen by programming M0 beforehand.

If a program block is programmed in brackets, i.e. as an operator instruction, it will not be actioned. In this way blocks can be blanked out in a program.

Example:

N10X... Y...

The program sequence stops in block 7 (due to M0). The operator instruction will then be displayed.

TABLES

Tools \quad Up to 48 tool compensation stores are available.	
	Each tool compensation store comprises the following:

$T 1 \quad \mathrm{R}=\mathrm{unu} . \mathrm{uuu}$
no. tool radius
(mm or inch)
$\frac{\mathrm{DR}=\mathrm{u} . \mathrm{uuu}}{\prod_{\text {tool wear }}}$
max. 10% of
radius, max.

tool length
1 mm , increm. input

Input dimension defined as metric or inch via soft key.

Example:	*****TOOL**1**************				
	T1	$\mathrm{R}=16.0$	$\mathrm{DR}=0.9$	$\mathrm{L}=25.0$	$S=10.0$
	* = space character				

Zero Shifts

6 zero shifts are available (G54-G59). See under section "G-Functions" G53,G54-G59 for definition.
Each zero shift comprises the following:

zero shift offset
The dimension is defined as metric or inch via soft key.

Example:
ZERO*SHIFT***********************************2***************
G54 $\mathrm{X}=10.0 \quad \mathrm{Y}=20.0 \quad \mathrm{Z}=30.0 \quad \mathrm{E}=40.0$
Variables A maximum of 125 variables are available for the writing of variable programs (V1 . .V99 and VA ... VZ).
Variables represent numbers of up to 7 digits.

$$
V 1=116.0 \quad V 2=8.0 \quad V 3=0.6 \quad V 4=-1.0
$$

Header
line: When programming tool data, zero shifts, variables, programs, cycles and (M) parameters externally, identifying HEADERS as shown above must be provided. These must be written in a specific format which is explained on page 1-17.

G-FUNCTIONS

LINEAR INTERPOLATION IN RAPID

Definition	The axes travel to the programmed position with linear interpolation. The speed is determined by machine parameter.
Feedrate	No feedrate should be programmed (address F). The machine parameter values for rapid will become effective.
Interaction	This mode remains modal until a different mode of motion is selected. Go cancels modes G1, 2, 3 and 5.
	Execution of the next block is not started until all axes are "IN POSITION". THE IN POSITION range is defined by machine parameter.

Positioning with G0 is possible when the main spindle is stopped.

Programming
 G0 X..... Y Z....... E......

Programmable with or without axis addresses.

Path The traversing movement is linear even if the distances for the individual axes are different, or if the axes have different rapid speeds. The override potentiometer can be deactivated for G0 and AUTOMATIC by machine parameter.

Example N1 G0

N2		X 100	Y 100 (starting position A)
N3	G0	X500	Y 300 (end position B)
N4	M30		

Resulting movement with different distances in two axes:

Speeds The axis which has the longest distance to cover traverses at maximum speed. The speeds of other axes are regulated in such a way that all axes reach the programmed position simultaneously.
Note - G0 slope: Axis acceleration and deceleration during rapid traverse are controlled.
by means of a command ramp. The constant acceleration parameters are programmed for the different axes via machine parameters (see Connections manual, Chapter 4).
This does not apply to the 4th axis if it is defined as a Hirth axis.

LINEAR INTERPOLATION IN FEED

G1 A $\quad(A=$ active on
switch-on)

Definition	The axes traverse to the programmed point in a straight line at the active feedrate (F -word). The movement is coordinated in such a way that all involved axes (up to 4 axes: X, Y, Z, E) reach the programmed point simultaneously.
Feedrate	The programmed feedrate value (F) takes effect as the path feedrate; this means that if several axes are involved in the movement the portion of each individual axis is smaller than F.
	The speed can be influenced via the feedrate override potentiometer. If X, Y, Z and a rotary axis (E) are to traverse together, an anqular velocity is calculated for E. It is therefore advisable to use time programming G93 for movements involving both linear and rotary axes (see G2, G3, G5).
Interactions	G1 cancels G0, 2, 3, 5 and is modal, as is the programmed feedrate (main address F).
Programming	G1 X.... Y.... Z... E.... (F...)

G1 can be programmed with or without axis information.
It must be programmed together with an F-word if no F-word is active yet.
Once a feedrate is programmed it remains effective until it is overwritten by a new value.
(Servo Error or switching off cancels the modal feedrate).
The programming of "FO" is not admissible.

Example	N1	G1	X50	Y30	F1000	(feedrate $1000 \mathrm{~mm} / \mathrm{min}$)
	N2		X30	Y20		
	N3	M30				
	+Y					
	30 20					
	10		20	40	50	

CIRCULAR INTERPOLATION

Definition The axes traverse to the programmed point at the active feedrate on a circular or helical path.
The movement is coordinated in such a way that all involved axes reach the programmed point simultaneously.
Circles can only lie in parallel with one of the planes generated by two of the coordinate axes.
Feedrate There must already be a feedrate active, or a feedrate must be programmed in the same block.

The following functions, are possible:

G64 / G65 feedrate applies to the contour / tool centre
G93 programming in time segments
G94 programming in $\mathrm{mm} / \mathrm{min}$
G95 programming in $\mathrm{mm} / \mathrm{rev}$

The achievable feedrate can be limited by the ratio between the feedrate and the contour radius, as well as the programmed distance. See F-address.
The max. feedrate is determined by machine parameter.

Interactions

Entry into
Circle

Direction of Rotation

Go/1/2/3/5 cancel each other.

G5 $X \ldots Y$ tangential entry, automatic calculation of the radius

G2/G3X.. Y... R... any type of entry with programming of the radius

G2/G3 X. . Y... I... J... any type of entry with programming of the centre of the circle

G2

Any size of arc can be defined. Full circles can be programmed using I,J,K. The centre coordinates are always necessary for full circle programming.
Exit from the The are no restrictions regarding the exit from a circular contour

CIRCULAR INTERPOLATION WITH ANY TYPE OF ENTRY into the circle
Programming $\mathbf{G 2} \mathbf{X} \ldots \quad$ Y..... \quad R.... (X / Y plane)

Entry into the If the radius is defined during the programming any entry

Arc

Radius $\mathbf{R} \quad$ The radius is programmed by the R -address with sign. Maximum input value: 100 m .
Negative sign: arc smaller than a semicircle.
No sign: arc larger than a semicircle.
(see examples)

Definition of the Arc

Examples

G2 clockwise

G3 counter-clockwise

Programming:
N1 G0 X0 Y0 (point P1)
N2 G2 X0 Y-20 R22 F1000
(broken line circle)
or
N2 G2 X0 Y-20 R-22 F1000
(continuous line circle)
N3 M30

Programming:
N1 G0 X0 Y0
N2 G3 X0 Y-20 R22 F 1000
(broken line circle)
or
N2 G3 X0 Y-20 R-22 F1000
(continuous line circle)
N3 M 30

CIRCULAR INTERPOLATION WITH ANY TYPE OF ENTRY
G2/G3 with I, J, K into the circle

Programming	G2 X. ... Y	1....J	(X / Y plane)
	G2 X.... \mathbf{Z}	I.....K	(X / Z plane)
	G2 Y.... Z	J....K	(Y / Z plane)

Entry into the If the position of the centre of the circle is defined with
Arc $\quad \mathrm{I}, \mathrm{J},(\mathrm{K})$ any type of entry onto the circular contour can be realized, as well as full circles.
NOTE: If I, J or $K=0$ then this value need not be entered into the program.

Parameters of the The position of the centre of the circle is determined by I, J and K .
Centre of the
I, J and K are modal in effect.
Circle $\quad X Y, Z$, as well as I, J and K are programmed in absolute or incremental dimensions.

CIRCULAR INTERPOLATION

G2/G3

Examples

G90
Starting point X40 Y60.
Radius: $\mathbf{4 0} \mathrm{mm}$.

A = starting point
$B=$ end point
$M=$ centre of circle

G2

Calculations:

Programming with R
N1 G1 X40 Y60 F1000
N2 G2 X80 Y20 R40
N3 M30
Programming with I, J
N1 G1 X40 Y60 F1000
N2 G2 X80 Y20 180 J60 (B) N3 M30

G3
Full circle with a radius of 50 mm

A and B are identical for a full circle.
The circle must be subdivided into 2 parts when programming with R.

Programming with \mathbf{R}
N1 G0 X30 Y100
(A)

N2 G3 X80 Y150 R50
(A)

N3 X30 Y100 R-50
(B)

N4 M30

Full circle programming with I, J
N1 G1 X30 Y100
N2 G3 X30 Y100 180 J100 (B)
N3 M30

Programming G5 X.... Y....

Entry into the Arc

When G5 is programmed the control will calculate a tangential entry into the circular contour. No radius is programmed. Only those contour transitions are considered tangential which do not involve a reversal of direction. The control calculates the size and the position of the arc as illustrated in the following examples:

When several G5 movements follow one another the 1 st entry tangent influences all subsequent contour elements with G5.

Different End Points

N1 G1 X0 Y70 F200
N2 $\times 50$
N3 G5 X110 Y 10
N4 M30

N1 G1 X0 Y70 F200
N2 X50
N3 G5 Y130 Y100
N4 M30

$\begin{array}{llll}\text { N1 G1 X-15 } & \text { Y40 } & \text { F200 } \\ \text { N2 G2 X50 } & \text { Y70 } & \text { R-60 } \\ \text { N3 G5 X90 } & \text { Y120 } \\ \text { N4 M30 } & \end{array}$

Different Tangents

Restriction G5 can not be programmed in MDI or as the first block in a part program, since it would not be possible to calculate a tangent.
$T_{n}=$ tangent $\quad A=$ starting point of arc
$M_{n}=$ centre of circle
$E=$ end point of arc

Definition The execution of the subsequent blocks is not started until the programmed time has elapsed.

Operation G4 only becomes effective in the block in which it is prgrammed and must be programmed on its own.

Modal conditions are retained.
Programming G4 F.... Fin seconds

Example

N12 G1 X10 Y100	F150	
N13 G4	F2	2 sec.dwell
N14 Z-60		
N15 G4	F1.78	1.78 sec. dwell
N16 Z0		
N17 M30		

LINEAR INTERPROLATION IN RAPID WITH

Definition In interpolation mode the control waits until an in Position range is reached before starting the interpolation for the next block.
G6 corresponds to the G0 function, but with a larger In position range (as a rule).
As opposed to the GO IN-POS range, which is determined as a constant value in the machine parameters
(see MP 49, 69, 89, 109) the IN-POS range of the G6 function
is related to the max. rapid feedrate (see MP $35,55,75,95$):
N -POS range $=$ max.rapid feedrate
1000
The smaller the max. rapid feedrate determined by the machine parameters the more precise (smaller) is the IN-POS range.

After this range is reached the control stops for a short time before the interpolation for the next block is started. The length of this stop time is determined in a separate machine parameter (MP 23) and applies for all axes.

Reactivation of the "normal" IN-POS range by programming G0, G1, G2, G3 or G5.

PLANE SELECTION

Definition
These G-codes are used to determine the working plane. They also influence the operation of functions G2, G3 and G5, of the tool radius compensation and of the

G17, 18, 19 are modal functions and cancel each other. The definition of a pole with G20 also effectively

Interactions tool length compensation. makes a plane selection. +

G17 A X/Y plane
G18 Z/X plane
G19 Y / Z plane

A change in the working plane must be programmed before the first circular movement (G2, G3).

A change in the working plane must not be programmed while tool radius or tool length compensation (G41,G42,Txx) is active.

Plane Selection

	circular interpolation tool radius comp. positioning plane for standard boring cycles	tooll length comp. feed-in axis for standard boring cycles
G-code	X/Y plane	Z-axis Z/X plane Y/Z plane
G17	$3-29$	Y-axis
G19		X-axis

SETTING A POLE

G20

Definition The pole and the associated plane G17/18/19 are determined by 2 axis addresses, which are programmed together with G 20 . The pole relates to the active zero point. The setting of the pole does not produce any axis movement.

Programming withContour points are defined by the radius and an angle. The data relates to a pole, Polar Coordinateswhich is to be defined, and a plane. Positions described in this way are converted within the control into command values for standard axes in a Cartesian system.

Terms Polar plane Plane defined by 2 cartesian axes within which

Pole \quad Centre of the polar coordinate system.
Position of the pole:
Without/before G20: on the active program zero point After G20: on the point defined with G20

Radius D Program address assigned to the vector length.
Angle A Program address assigned to the vector angle. In mathematical terms the angie reiates to the active reference piane..

Reference axis The axis in bold print written first in the plane selection. for angle A the polar coordinates lie.

G17 XY G18 ZX G19 YZ

Operation The interpolation modes G0, 1, 2, 3, 5 etc. are not affected by this function.

[^1]Effect with G91 Angle A absolute, vector length D incremental.

POLAR COORDINATES

Example

Machining a row of holes with G81

$P=$ position of the pole

Machining a bolt hole pattern with G81

G 20

Program:

| N1 | F1000 | S500 M3 T01 |
| :--- | :--- | :--- | :--- |
| N2 | G81 | $\mathrm{VI}=80 \mathrm{~V} 2=30$ |

N3	G20	X100
Y200		
N4	X100	Y200
N5	A30	D200

N6	D400
N7	D600
N8	D800
N9	M30

Programm:

N1	F1000	S500	M3 T01	
N2	G81	$V I=80$	V2 $=30$	
N3	G20	X400	Y500	
N4	X700	Y500		A.
N5	A45	D300	B	
N6	X400	Y800	C.	
N7	A135			D
N8	A180			E.
N9	A225			F
N10	A270			G.
N11	A315			H.
N12	M30			

CONDITIONAL SUBPROGRAM CALL-UP

Definition The subprogram call-up is dependent on the status of $1 / \mathrm{F}$ signal "CONDITIONAL SUBPROGRAM CALL-UP"
Any program label (marked with " $\$$ ") can be used.
Operation
The interface signal "CONDITIONAL SUBPROGRAM CALL-UP" must be present at least 3 blocks before the block in which G 21 is programmed.

Status of signal "CONDITIONAL SUBPROGRAM CALL-UP":
High The subprogram is carried out.
Low The subprogram is not carried out.
(Next block is executed.)
By using backwards jumps it is possible to produce endless program repetitions,
for series production for instance.

Subprogram nesting up to 10 programs deep is possible (nesting: one SBP calls up other subprograms).

MP = main program
SBP = subprogram
Explanation of above example:
All the subprograms are only carried out if signal "CONDITIONAL
SUBPROGRAM CALL-UP" is high when block 8 is read in.

General Format
G21 P... L...
$P=$ subprogram number ranging from 0 to 99
$L=$ repetition factor (in addition to 1 st execution)
ranging from 1 to 99
input of L is dispensable
Programming
Example: G21 P10 L1
SBP 10 is executed $(1+1)=2$ times, if the signal is at high level.
G21 must not be used if tool radius compensation is active.
G21 must be programmed on its own.

Definition

Operation

Programming
Example: G22 P5 Subprogram 5 is carried out once.

Subprogram nesting up to 10 programs deep is possible (nesting: one SBP calls up other subprograms).
$\begin{array}{lllll}\text { MP } & \text { SBP5 } & \text { SBP2 } & \text { SBP7 } & \text { SBP8 }\end{array}$

MP = main program SBP = subprogram

Explanation of the above example:
On its own the call-up of SBP 8 in block 44 will produce
4 program runs (1.execution +3 repetitions).
The preceding call-up of SBP 7 in block 32, on its own,
will produce 2 runs of SBP 7.

Total number of MP SBP5 SBP2 SBP7 SBP8
program runs: $1 \quad 1 \quad 1 \quad 1+1=22 \times(1+3)=8$

General Format G22 P... L...
$\mathbf{P}=$ subprogram number ranging from 0 to 99
$L=$ repetition factor (in addition to first execution)
ranging from 1 to 99 input of L is dispensable
G22 must be programmed on its own.

UNCONDITIONAL JUMP

Definition	During the execution the program is not continued at the next block but at the program label defined in the jump instruction. The program label is marked with $\$$.
Operation \quadThe jump is carried out unconditionally. By programming backwards jumps it is possible to produce endless program repetitions, for series production for instance.	

Programming General format:

G24 P.. \quad for the program label
The programming range for P is $1-99$.
A jump must not be programmed together with other instructions in the same block.

Example Backwards jump from the main program to the second block.

N9
N10 \$5
N11 G0 X50 Y100 S1000 M3
N12 G1 X52 Y98 F500
N13 G1 Y80
N14 G0 X140
:
N16
N17 G0 X80 Z120 S1000 M3
N18 G1 X0 F300
N19 X78
N20 X76 Z118
N21 G23 P6
N22 G24 P5
N23 \$6
N24 M2

Explanation of above program:

Program 2 is repeated continually for as long as input "OPTIONAL JUMP" is low.
As soon as this signal goes high machining is concluded with blocks 23 and 24 .

FIELD LIMITATION

Programming

Definition

Operation
Operation

Cancelling

$\begin{array}{ll}\text { SETTING MINIMUM VALUES } & \text { G25 } \\ \text { SETTING MAXIMUM VALUES } & \text { G26 } \\ \text { CANCELLING LIMITATION } & \text { G27 A }\end{array}$

The field limitation prevents the axes from being driven into areas where collisions might occur.
Unlike the limit switches these limitations must be determined separately for each program.
The axes can not position to any point with values

- under those programmed with G25
- above those programmed with G26

The input of the axis values does not produce any axis movement.
The limitation values relate to the active program zero point.
Any offset programmed with $G 92 \mathrm{X}$. . Y Y . . is not considered.
The limitation function is modal for all machining modes.
It takes into account tool radius compensation as well as tool wear.
The field limitation does not become activated until the software limit switches are set and the axes have been referenced.

G25 X... Y... Z... E...
The axes must already be positioned within the field of operation.
The limitations set with G25 and G26 are cancelled by programming
G27 X Y Z without numerical values as well as by CONTROL RESET.
The software limit switches remain valid.

: part program
N80 G27 X Y $\quad \mathbf{Z}$ limitation is cancelled
Note
The traversing field limitation set in the machine parameters can not be extended, but only be limited further with G25/G26.

$$
3-36
$$

SCALING FACTOR SWITCHING
G 36
Definition Modification of the scaling factor of the coordinate system.
The contour lines of a workpiece are enlarged or reduced in the specified factor area, without having to change the programming of the actual contour lines.
The scaling factor always relates to a particular plane (see next page); the two axes of a plane can not be modified separately.

```
I+Y
```


scaling factor plane G17 $+\mathrm{X}$

Modification
range of scaling factor

Format \quad X. $. x 00 \times(5$ digits behind decimal point)
Scaling factor data is accepted in decimal format, for instance:

X0.2 $=5$-fold reduction (corresponds to reciprocal value of 5)
X5.0 $=5$-fold enlargement

Display \quad The defined scaling factors for the different axes can be displayed in main mode INFO under the CC 100M STATUS display.

Operation \quad - G36 always relates to a particular plane.
Example: The programming of the scaling factor for X automatically influences X and Y in plane G17.

- G36 is modal and can be reset with CONTROL RESET, G36 X1 (Y, Z, E) to factor 1.
A change in plane ($\mathrm{G} 17 / 18 / 19$) also resets a defined scaling factor. This means that the scaling factor needs to be redefined after each plane selection.
- G36 also operates in the E-axis, if this is defined as a linear axis, whatever working plane is selected.
- Any variables called up in the program are subject to modification according to the scaling factor. The scaled values are, however, not transferred into the variable table or tool table.
- G36 does affect the contents of the zero shift table if it precedes G54-59 in the program.
G36 does not affect any preceding zero shifts.
- If G36 is programmed in several blocks they overwrite each other. The block last prgrammed has highest priority and the programmed scaling factor remains effective until the next change in scaling factor. The scaling by means of the scaling factor is switched off by programming the scaling factor 1.

Programing - G36 can be programmed together with main addresses F, S, T, H, but not with any other G-codes or with M-codes $6,19,21,22$ in one block.

- G36 is to be programmed with only one axis of the working plane; for working plane G 17 this is either X or Y ; axes Z and E can be programmed independently in the same block with a different scaling factor.

Example

N1	G0	X0 Yo Z0		
N2	G17			selection of X / Y plane, clearing all programmed scaling factors
N3	G36	X2		scaling factor for X and Y-axis, 2-fold magnification
N4	G0	Y50		traversing to $Y 100 \mathrm{~mm}$
N5	G36	X1	switch off scaling	
N6	M30			

PROGRAMMABLE MIRRORING

G38 switch on
G39A switch off

Definition $\quad 1$ or 2 specified axis(es) is (are) mirrored within the selected plane.
The axes are programmed together with G38.
Operation The programmed workpiece positions are interpreted with inverted sign in the relevant axis. The position values are mirrored around the active zero point. This is the zero point which resulted after any possible setting of the position stores with G92, presets or zero shifts.

Reference Points

$\mathrm{M}=$ machine zero point
W = workpiece zero point
A = clamping zero point (G92)
$X^{\prime}=$ axis values after zero shift
$Y^{\prime}=$ axis values after zero shift
$X=X$-axis values are mirrored
$\mathbf{Y}=\mathrm{Y}$-axis values are mirrored
\(\left.$$
\begin{array}{lll}\text { N10 } & \text { G17 } & \text { (G18/G19) } \\
\text { N11 } & \text { G38 } X \text { or Y or Z }\end{array}
$$ \begin{array}{l}plane selection

(max. 3 axes)\end{array}\right]\)| N10 | G39 |
| :--- | :--- |\quad| to cancel all mirroring |
| :--- |
| N11 | G39 $\times M$ (Z) | selective cancelling of mirroring in |
| :--- |
| particular axes |

The axis addresses are always programmed without axis values.

[^2]See example III.

Definition When carrying out a part program with tool radius compensation the tool is guided along an equidistant parallel to the programmed path. Equidistant = path with a constant distance to the programmed contour. The tool length is taken into account by the call-up of the T-address.

Interactions

Programming

During the phasing in of the compensation, T must either already be active or be programmed
feedrate, compensation group call-up and cancellation with a positioning movement in the involved axes (XY for G17), which is suitable for phasing in/out the compensation.
For detailed description see TOOL RADIUS COMPENSATION, Chapter 5.
$\begin{aligned} & \text { Note: }- \text { A block with axis address without traversing movement, because } \\ & \text { the axes have already positioned, is not allowed with } G 41 / 42 .\end{aligned}$
Safety - During the exit from the contour a reversal of direction of the cutter movement Consideration must be prevented. The angle under which the cutter moves away must therefore always be smaller than 90 .

ZERO SHIFT
G53 A cancel zero shift G54 to G59 activate zero shift

Definition By using zero shifts programs can be carried out in different places without any modification. While a zero shift is active the machine parameters are temporarily overwritten. They can be reactivated simply by programming G53.

Operation Up to 6 zero shifts can be stored in the zero shift table.
For each zero shift up to 1 value each can be stored for X, Y, Z and E.

If G54 is then called up, for instance, the control will shift the zero point to the machine coordinates which were stored under G54. In order to use a zero shift (for instance G54) the zero shift table must already have been loaded with the respective offset data.

Programming

G54
or
G54 X.. Y.. Z.. the zero shift aleady applies to the position programmed in this block

Example:

Condition - No circular interpolation (G2, G3, G5) must follow immediately after an active zero shift. Operation must start or continue with linear interpolation.

- G36 modifies the contents of the zero shift table if it is written in front of G54-59 in the program. G36 only affects subsequent zero shifts.
- When G92 is cancelled any active zero shifts G54-59 are also reset.

'IN POSITION' LOGIC ON

G61 'IN POSITION' LOGIC OFF

G62 A

Definition G61

Definition G62
When the 'In Position' function is switched off the control starts with the interpolation of the next block while the last path section from the previous block is being actioned. This results in a "cutting of corners", but saves time.

Operation Functions G61/G62 are modal and cancel one another.

G62 G62 is effective on switch-on

Programming G61, G62 must be programmed at the latest in the block for which they are to be effective.

Influence of machine parameters
IN POS time - MP23

IN POS range - MP49, 69, 89, 109
(see Connections manual for CC100M)

Example	N10	G61		F200	no movement interpolation with IN POS
	N11	G1	Y500		
	or				
	N10	G62			'IN POS' function off
	N11	G1	Y500	F200	
	:				
	N50	G61	X200		interpolation with IN POS in this block

FEEDRATE AND SPINDLE SPEED (S) 100%	G63
FEEDRATE AND SPINDLE SPEED OVERRIDE VIA POT	G66 A

Definition	G66	The position of the relevant override potentiometers on the manual panel affects the commanded values.
Definition	G63	Feedrate and spindle speed are set to 100% of the programmed/ entered value, whatever the position of the potentiometers.
Operation		G66 is active on switch-on.
		Both functions are modal and exclude one another.
		Override ranges:
		- feedrate 0 to 120% of the programmed value
		- spindle speed 50 to 150% of the programmed value
Programming		Can be programmed with other instructions in the same block.
Application		The override potentiometers for feedrate and spindle speed can be deactivated by means of programming.
Note re.	G66	The potentiometers take effect even when the maximum feedrate is programmed. If the potentiometer is set to between 100% and 120% the maximum feedrate will be exceeded

EFFECT OF FEEDRATE

G64 cutting path
G65 A cutter centre path

Definition

Interactions

G65

The feedrate determined with F relates to the cutting path of the cutter or to the cutter centre path when machining circular contour sections.

G64/65 are modal and exclude one another.

The control keeps the feedrate along the cutter centre path constant.
G65 is active on switch-on and is used for roughing.

Examples

$F_{\text {prog }} \quad=$	programmed feedrate
$F_{M} \quad=$	feedrate along cutter
	centre path
F_{S}	$=$ feedrate along the
	cutting path
	$F_{S}=F_{\text {prog }}$

In the example the feedrate effective on the actual contour is lower than the programmed value.

The control keeps the feedrate along the cutting path constant.
These calculations can only be carried out for arcs G2/3/5 if G41/G42 is active.

Since the speed can increase considerably on circular contours this function shoud only be used during finish milling.

The effective axis feedrate is higher than the programmed one in the above example.

CONTOUR TRANSITIONS

Definition If tool radius compensation is active the control must create transitions for outside corners. These transitions can either be the intersections of the equidistants or automatically generated arcs. G68/69 are modal and cancel one another.

Operation G68

Arc
Only in conjunction with G41/42 with an angle alpha of between 0° and 180° The arc produces a continuous transition, which usually is the best solution technologically and puts less strain on the drives due to the soft transition.

ooo generated automatically
-ee programmed points

Intersection

Only in conjunction with G41/42 with an angle alpha $<90 \%$.

With angles of $\geq 90^{\circ}$ up to 180° the control will produce transitions as if G68 had been selected.
 G69 is most suitable for contours which require extremely fast block sequences.

Programming G68/G69 without axis information. If G68/69 is used while path compensation is active the function must be programmed 3 blocks in advance.

Function active Either G68 or G69 can be defined as active on switch-on by machine parameter. on switch-on
*dependent unpon machine parameter

REFERENCING

G74

Definition The axes programmed in the block traverse simultaneously onto
the reference point(s) at the feedrate determined by m / c parameter.
Once the reference point has been reached the axis position
values are set to machine specific values (machine parameters).

Interactions G74 cancels zero shifts which were activated with G54 to G59 or G92. No tool compensations must be active during G74. While G74 is carried out all modal conditions are temporarily suppressed.

Programming \quad G74 $X Y Z E$
G74 is programmed in a separate block with just the relevant axis addresses without numerical values.

Example G74 X and Z traverse to the reference point.

N7 G74 X Z

Note Further details on interactions with other functions can be found under

G25, G26	field limitation
G53-59	zero shifts
G92	setting position stores.

MACHINING OF BORES

G80 A Fixed Cycles Off
G81-87 Fixed Cycles On

Usage | The programming of fixed cycles to machine bores is simplified |
| :--- |
| with the cycles described below. |

In the course of the programming the user calls up the
relevant fixed cycle. Values are entered for the variables;
the variables are illustrated in the fixed cycle graphics.

Conditions \quad\begin{tabular}{l}
The fixed cycles can not be used while tool radius compensation

is active; if necessary the tool radius compensation must be

deactivated with G40.

Further conditions:

-F feedrate in mm/min

$-S \quad$ spindle speed

- M3/4 spindle rotation clockwise/counter-clockwise
\end{tabular}

Movements in the positioning plane are all performed in rapid with IN POS operation. The spindle is switched on with the first positioning movement.
The cycles can be used with G90 or G91 for both axis directions of the feed-in axis.
OPERATION Fixed cycles G81-G87 are executed in each traversing block once the programmed position has been reached. The selected function is cancelled by programming G80, M2, M30 or by selecting another cycle.

Call-up of fixed cycles and input of variables:
Select main mode EDIT \checkmark

The selection of the required fixed cycle graphic is made with the \square and \square keys. When the required cycle is reached (cycle name flashing) the selection is confirmed with OK. The control will then automatically transfer into the selected fixed cycle level.

The inputs for the different variables in a particular cycle can be confirmed with the keys TAB \square
The cursor will then automatically jump to the next variable.

Handling of cycles

(RAM cycles, boring cycles, contour cycles)
See CC100M connections manual.

SURVEY OF
FIXED MACHINING CYCLES
G80-87

Machining sequence

Type of machining	CODE	Feed- in movement	At depth	Retract movement
drilling	G81	$\begin{aligned} & \text { M3 } \\ & \text { feed } \end{aligned}$	-	rapid M3 active
boring with dwell	G82	$\begin{aligned} & \text { M3 } \\ & \text { feed } \end{aligned}$	dwell	rapid/ feed M3 active
deep hole drilling with swarf removal	G83	M3 (posit. in rapid +feed-in strokes in feed)		swarf removal strokes in rapid M3 active
tapping with tap holder	G84	M3 (M4) feed	M4 (M3) dwell	feed M4(M3) active
boring with spindle orientation	G85	M3 feed	orientation, retract in positioning axis	rapid active
reaming	G86	$\begin{aligned} & \text { M3 } \\ & \text { feed } \end{aligned}$	-	feed with stop for measuring MO M5
thread milling	G87	M3 helical interpolation	retract in pos- itioning axis M5	rapid
cancelling fixed cycles	G80			

When editing fixed cycles the control will display the appropriate graphic for the active plane.

FIXED MACHINING CYCLES

Plane Selection The fixed cycles can be used in the 3 main planes.

The selection of the interpolation plane determines the following:

Positioning plane	Feed-in axis, positioning level, tool length compensation, workpiece surface, working depth	Code
X, Y	Z	G 17
Z, X	Y	G 18
Y, Z	X	G 19

The setting of a pole with G20 effectively also represents a plane selection.

FIXED MACHINING CYCLES

Programming

 TechniqueFixed cycles simplify programming by their modal character.
Programming is rationalized particularly well if the machining can be described by a machining graphic which can be used repeatedly.
Only the different bore positions need then be programmed (see example).

The machining graphic contains the coordinates and data which remain constant.

The call-up of the machining graphic is preceded by the selection of the particular fixed cycle with the required feedrate and spindle speed etc.

Example

Machining in \mathbf{Z}
(G17)

Call-ups :

G81

G83

G84

G0	M \ldots	$S \ldots$	$T \ldots$
TCH			
Z_{1}	F_{1}	S_{1}	M3
G81	V1 to	V4	
G22	P_{1}		
M5			

tool change
preconditions for drilling
call-up of machining graphic

TCH

Z_{2}		$\mathrm{~F}_{2}$	$\mathrm{~S}_{2}$	precond. for deep hole drilling
G83		V 1 to	V 6	
G22	P 1			
M5				
TCH call-up of machining graphic				
Z_{3}		$\mathrm{~F}_{3}$	$\mathrm{~S}_{3}$	precond. for tapping
G84		V_{1} to	V 5	
G22	P 1			

FIXED MACHINING CYCLES

G80-G87

Variables V \quadThe program variables V1 to V6 are used by the fixed machining cycles. The fixed cycles use program variables V1 to V 6 , i.e. the contents of these parameters are modified by the call-up of a fixed cycle. When calling a fixed cycle all the relevant parameters must be defined. The variables must be programmed in one line together with the G-code for the particular fixed cycle.	
Positions	Position values in the positioning plane relate to

the active zero point with G90
the previous position with G91

The data V1 to V6 for the feed-in axis are independent of G90/91 and are marked individually as
abs. = absolute values or
inc. = incremental values

Spindle Unless otherwise described for the particular cycle,
Rotation the main spindle is switched on before the start of the movement in the positioning plane, and it is not stopped automatically after the execution of the cycle.

Safety
 Consideration

All fixed cycles operate with METRIC dimensions internally. If a fixed cycle is called up in an INCH program the variables are converted into metric values. After the execution of the cycle the variables will be processed in the program as INCH values.

:

DEEP HOLE DRILLING

G83

Definition Deep hole drilling in several feed-in movements with retract movements to remove swarf.

Input

Sequence
spindle on
1 positioning axes drive to the centre of the bore in rapid; feed-in axis remains at traversing height

2 feed-in axis drives to V 1 ; change-over to feed

3 feed-in axis drives to
depth 1 (V5*1) in feed
4 in rapid to V 1
5 back to depth $1+\mathrm{V} 6$
6 in feed to depth 2

$$
\text { V5* }(1+\mathrm{V} 4)
$$

7 in rapid to V 1
8 back to depth $2+\mathrm{V} 6$
9 in feed to depth 3

$$
V 5^{*}\left(1+\mathrm{V} 4+\mathrm{V} 4^{2}\right)
$$

ect.

Degression
Factor

The degression factor determines the individual feed-in depths for deep hole drilling. At each stage the previous feed-in depth is multiplied by the control with the degression factor in order to establish the next feed-in depth for the deep hole drilling cycle. The final depth is approached directly during the last feed-in movement.
If the chosen degression factor or the remaining distance would produce a feed-in of less than V3 this is prevented by a corrected input for the feed-in.

TAPPING

Definition
Tapping with central feed-in.

Input

change-over point depth of bore		V1 mmabs.
(thread)		V2 mm abs.
rotation:	M3/M4	V3 3 inward
	M4/M3	V3 4 outward
feedrate		V4 mm/rev
dwell		V 5 sec .

Sequence
spindle on, single block suppressed

1 positioning axes traverse the centre of the bore in rapid; feed-in axis remains at traversing height

2 feed-in axis drives to V1; change-over to feed

3 feed-in axis drives to depth V2 at feedrate determined by V4

4 reversal of spindle rotation; dwell at bottom of bore

5 retract to V 1 in feed

6 spindle stop
single block possible again

Example

The following functions are activated:

M3	spindle rotation clockwise
M4	spindle rotation counter-clockwise
M98	single block suppressed
M99	single block possible

Note - Feed conditions active before the call-up of the cycle are stored and reactivated automatically once the cycle has been completed.

- While G84 is active the reentry functions are not active.

- Feedrate 100% is set automatically; single block is suppressed automatically (M98).

	BORING Boring a rough bore with a boring tool. Oriented spindle stop at the bottom of the bore with eccentric retract.	
Definition	change-over point depth of bore transverse movement at bottom of bore	V2 mmabs. V3 mm inc.
(Z)		

Sequence spindle on
1 positioning axes drive to the centre of the bore in rapid; feed-in axis remains at traversing height

2 feed-in axis drives to V_{1};
change-over to feed
3 feed-in axis drives to depth V2 in feed

4 oriented spindle stop, M19
at the bottom of the bore, angle $=0^{\circ}$

5 transverse movement of abscissa axis by distance V3 (negative axis direction)

6 eccentric retract of the
feed-in axis to V1
Condition If cycle G85 is to be used an encoder is required to allow spindle orientation (M19); otherwise an error message is displayed.

PROGRAMMING
G-FUNCTIONS

Example

The following functions are activated:

M3 spindle rotation clockwise
F feedrate active before call-up
M19 spindle stop with orientation, remains active after execution of cycle

Definition

Sequence
spindle on
1 positioning axes drive to the centre of the bore in rapid; feed-in axis remains at traversing height

2 feed-in axis drives to V 1 : change-over to feed

3 feed-in axis drives down by V3 to first feedin depth in feed

4 in feed to change-over point V 1
5 in rapid to retract height V4; spindle continues to rotate;
program stop, Mo is active
diameter of the bore can be measured, and the spindle speed corrected

After 2nd CYCLE START:
6 in rapid to V 1
7 in feed to bottom of bore V2
8 in feed to change-over point

change-over point	V1 abs.
machining depth	V2 abs.
Ist feed-in depth	V3 inc.
retract height for	
measuring	V4 abs.

Input

4 abs.

After the 1st CYCLE START the reaming bit is sunk into the workpiece for a short trial feed-in and then retracted to allow measuring.

From the second CYCLE START onwards the tool is driven to the full depth.

The following functions are activated:
$F=$ feedrate active call-up
$S=$ old, possibly corrected spindle speed
M3
G0, which remains active after the execution of the cycle

Definition A thread is cut by the helical motion of the tool.

Input

Sequence

spindle on

1 positioning axes drive to centre of bore in rapid; feed-in axis remains at traversing height

2 feed-in axis drives to V_{1};
change-over to feed
3 helical interpolation in feed down to the bottom of the thread

4 tool positioned to centre of bore
5 retract in rapid to V 1

Example

DIMENSIONING

G90 A ABSOLUTE DIMENSIONS G91 INCREMENTAL DIMENSIONS

Definition

Operation

Example G90

Example G91 all pieces of axis information relate to the coordinates of point P1

N1	G90	X120	Y60	P1
N2	G91			
N3	G1	Y-40	F300	P2
N4	G5	X-5	Y-5	P3
N5	G1	X-35		P4
N6	X-25	Y10		P5
N7	X-25			P6
N8	Y35			P7
N9	X30			P8
N10	Y-10			P9
N11	20			P10
N12	Y10			P11
N13	X30			P12
N14	G5	X10	Y-10	P13
N15	X40			P14
N16	G90			
N17	M2			

SETTING POSITION STORES

G92

Definition G92 is used to assign a new value to the position at which
G92 X Y Z E the axis stands, and to display this value. There is no axis movement involved.

G92 By programming G92 without axis values the machine coordinates are reactivated.
Example

G92 S
Setting of upper spindle speed limit.
Operation Values can be set for up to 4 axes.
G92 can be used in MDI or in automatic.
G92 is active only in the block in which it is programmed.
To cancel G92 no other functions must be programmed in the same block as G92.
Any values within the input range can be used.
The travel limits determined by the hardware and software limit switches are not affected.

BOSCHCC100M
User Handbook

- active tool radius compensation G41/42
active tool length compensations adress T
- active field limitation G25/26
(G92 resets any field limitation)

In addition the following points must be taken into consideration:

- G92 does not take any active zero shift into account; when G92 is cancelled G54-G59 are reset as well.
- If while G92 S.. is effective a spindle speed in excess of the limit is programmed elsewhere in the program the set max. value will be output with automatic gear range selection.
- When G92 is cancelled (G92 without axis or spindle values) G1 is automatically activated.
- G92 (without axis addresses) sets G27, cancelling any field limitation.
- When a field limitation is set with G25, G26 any zero shift with G92 X . . Y . . is ignored .

When G92 is cancelled G90 is activated.

FEEDRATES

G94 A feedrate direct
G93 time programming

G94 Direct specification of feedrate F in $\mathbf{m m} / \mathrm{min}$.
This type of feedrate output is acitve on switch-on.
Axis movement is possible with the spindle at standstill.

G94
Programming G94 F... $=$ feedrate in $\mathrm{mm} / \mathrm{min}$

With or without axis information. Feedrate F programmed with G94 is modal.

G93 Specification of the execution time for a path section.

The corresponding feedrate is calculated by the control.

Possible Complex movements involving more than one axis.
applications Simultaneous movement of linear axes and rotary axes.
Polygon contours for which block preparation time is of importance.
G93
Programming
G93 F... F = execution time in seconds

With or without axis information. The execution time F programmed with G93 only applies for the block in which it is programmed.
execution of path section

Operation G93/G94/G95 exclude one another.
\qquad

FEEDRATE MM/REV

Definition Programmed feedrates relate to the speed of the main spindle. The axis movements are derived from the actual spindle speed and are therefore synchronised with the spindle.
The spindle speed determines the axis feedrate.

Programming Example

G95 F 1.67
Feedrate $1.67 \mathrm{~mm} / \mathrm{rev}$ applies.
Feedrates of linear axes $=\mathrm{mm} / \mathrm{rev}$.
Feedrate of rotary axis = degrees/rev.

Resultant
$F_{R}=$ feedrate in $\mathrm{mm} / \mathrm{min}$
Feedrate F_{R}

Example: $\quad F=2 \mathrm{~mm} / \mathrm{rev}$. and $\mathrm{S}=500 \mathrm{rpm}$ produce a resultant feedrate of $1000 \mathrm{~mm} / \mathrm{min}$.

Axis movements in feed only if the main spindle is running!

Note: \quad - Since the feedrate is derived from the actual spindle speed no axis movements are possible when there is a fault in the main spindle servo loop.

- Spindle speed output in BCD is not permitted.
- With G95 active no S-word is output via the BCD bus.

AUTOM. CALCULATION OF CUTTING SPEED IN M/MIN

G96

Definition The control calculates the spindle speed from the data for cutting speed and tool radius stored in the technology store of the programmed tool.

Operation With M3 or M4 active, the spindle speed is activated after the programming of a T-word. G96 and G97 cancel one another.

Programming On its own or together with other instructions.
Spindle speed $\quad n=\frac{S}{2 . \pi . R} \quad$ formula for calculating the spindle speed
R $=$ tool radius (in tool table)
S = cutting speed

Example: A cutter radius of 20 mm plus a required cutting speed of approx. $25 \mathrm{~m} / \mathrm{min}$ will result in the output of 200 rpm for the spindle speed.

Usage Before the call-up fo G96 a starting speed can be selected (with G97). G96 must be cancelled before M5 (G97).

Note It is important for the calculations that the tool radius is defined in mm in the tool table.
The cutting speed is specified in $\mathrm{mm} / \mathrm{min}$.
The tool wear compensation (DR-value in tool table) is not taken into account in the spindle speed calculation.

M40 Automatic gear range selection and speed ranges for the individual gear ranges:

Selected gear ranges when different speeds are programmed:
A: gear range II
B: gear range III
C: gear range IV
With speeds at which two gear ranges overlap the lower gear range (higher motor speed and higher torque) will be output.

	SUBPROGRAM	G99
Definition	G99 designates th G99 is the instruct which the call-up subprogram was The next program	of a subprogram. jump back within the program from ade to the position at which the up. will then be executed.
Programming	G99 without any	structions.
Example	beginning of main program 5	
	N1	
	N2.	
	N3 G22 P15	call-up of subprogram 15
	N20 G22 \quad P12	call-up of subprogram 12
	N37 G22 P20	call-up of subprogram 20
	N38.	
	N39 .	
	N40 M2	main program end
		(there must be M2/M30 between the main program and the associated subprograms!)
	N41 \$15	beginning of subprogram 15
	N78 . .	
	N79 G99	end of subprogram 15
	$\begin{array}{ll} \text { N80 } & \$ 12 \\ \text { N115. . } \\ \text { N116 } & \text { G99 } \end{array}$	beginning of subprogram 12
		end of subprogram 12
	$\begin{aligned} & \text { N117 } \$ 20 \\ & \text { N207 . . } \\ & \text { N208 G99 } \end{aligned}$	beginning of subprogram 20
		end of subprogram 20
Note	The program from which the call-up is made can be a main program, a subprogram or a cycle.	
	Maximum nesting depth is 10 (see under G21, G22).	

THREE-DIGIT G-CODES

Definition The control operates with 3-digit G-codes.
The functional content of these codes must be defined by the machine tool builder or the user himself.

Programming The machining sequence is programmed as a cycle. Both the standard instructions as well as the parametric functions can be used to program these cycles.

Application examples:

> Machine specific operations such as
> delivery and removal of workpieces
> measuring, spot checks
> tool inspection
> punching/nibbling cycles control of auxiliary machinery

Simplification of programming by the use of cycles for
the firm's own particular methods for the machining of bores, of standard parts, of part families, for calculations, for the adaptation of the CC 100 to special machines.

Cycle Numbers and Call-up	Programming	Call-up
	cycle	G-function
	1	G 801
	.	.
	69	.
		G 869

Example A machining cycle written under cycle 45 is called up by G845.

BOSCHCC 100 M
User Handbook

CONTOURCYCLES

G890 to G898

These 3 -digit G-codes calculate positions which might not be provided on the drawing in all 3 main planes.

The control automatically makes the correct allocation of entered abscissa and ordinate values to the relevant axes, dependent on the plane selection.

Axis
Allocation

	G 17	G 18	G 19
abscissa A	X	Z	Y
ordinate 0	Y	X	Z

Execution Cycles G890 and G891 are pure calculating cycles. The results obtained by calling them up can then be used in the course of the part program.

Cycles G892 to G898 process the values by executing the contour.

Call-up of Contour Cycles in a Program

Operating Sequence
Main mode EDIT

TOOLS
ZERO
SHIFTS

PROGRAMS
CYCLES
$->$ program call, e. g. 9 ENTER

COMMAND	NEXT PAGE	EDIT	LOAD	SAVE

SEARCH GRAPHIC	\longrightarrow	SCROLL	\rightarrow	MODIFY INSERT

			BORING CYCLES	CONTOUR CYCLES

The required cycle is to be selected with the \square or the \longrightarrow key and confirmed with Ok .

Once the variables have been defined and the cycle input confirmed with ENTER the contour cycle will be stored in the program.

INTERSECTION CIRCLE/CIRCLE
 G890

Definition

아
This is a pure calculating cycle and will not produce any axis movement.

Abscissa (A)
Input
G890

$$
\left.\begin{array}{rl|l}
\text { V90 } & =\mathrm{A} & \text { lst } \\
\text { V91 } & =0
\end{array}\right\} \begin{aligned}
& \text { centre } \\
& \text { V92 }
\end{aligned}=\text { 1st radius }
$$

G17	G18	G19
X	Z	Y
Y	X	Z
X	Z	Y
Y	X	Z

Results After the call-up the contents of the variables are as follows:

intersection P1	V90 $=$ abscissa	V91 $=$ ordinate
intersection P2	V93 $=$ abscissa	V94 $=$ ordinate

Position of the intersections, looking from the first to the second centre of the circle:

P 1 lies to the right of the connecting line
P2 lies to the left of the connecting line

Example The calculated points $\mathrm{P} 1 / \mathrm{P} 2$ could be used as follows:

N1 G0 X60 Y85
N2 G890 V90 $=75$ V91 $=90$ V $92=5$ V $93=82$ V94 $=100$ V95 $=8.5$ cycle call-up
N3 G1 F750
N4 $\mathrm{X}=\mathrm{V} 90 \quad \mathrm{Y}=\mathrm{V} 91 \quad$ allocation of variables
N5 G2
N6 $\mathrm{X}=\mathrm{V} 93 \quad \mathrm{Y}=\mathrm{V} 94 \quad \mathrm{R}=\mathrm{V} 95 \quad$ allocation of variables
N7 M30

INTERSECTION LINE/CIRCLE

G891

Definition
This is a pure calculating cycle and it will not produce any axis movement.

Input
G891

G17	G18	G19
X	Z	Y
Y	X	Z
X	Z	Y
Y	X	Z
X	Z	Y
Y	X	Z

Results \quad After the call-up the calculated values will be stored in variables as follows:

intersection P1	V90 $=$ abscissa	V91 $=$ ordinate
intersection P2	V93 $=$ abscissa	V94 $=$ ordinate

Application
The calculated points P1/P2 can be used as follows:

N1	G0 X 0	Yo			cycle call-up
N2	$\begin{aligned} & \text { G891 V90=40 V91 }=30 \text { V } 92=15 \text { V } 93=15 \\ & \text { V94 }=30 \text { V } 95=100 \text { V } 96=45 \end{aligned}$				
N3	G1 F750				
N4	$\mathrm{X}=\mathrm{V} 90$	$\mathrm{Y}=\mathrm{V} 91$			allocation of variables
N5	G2				
N6	$\mathrm{X}=\mathrm{V} 93$	$\mathrm{Y}=\mathrm{V} 94$	$\mathrm{R}=\mathrm{V} 92$		allocation of variables
N7	M3				

ROUNDING CORNERS (2 ANGLES)

G893

Definition

Calculation of positions to round corners with known angle values.
The cycle calculates the positions and initiates the traversing movement.

Abscissa

End Point of Machining

The end point of the machining is determined by the input for V95. When several contour cycles are linked together, the previous contour cycle must not be machined up to the end point.
Programming G893 V90 $=\ldots \quad$ V91 $=\ldots$ V92 $=\ldots \quad$ V93 $=\ldots \quad$ V94 $=\ldots$ V95 $=\ldots$

Results
1st transition point P1
2nd transition point P2

$$
\begin{array}{ll}
\text { V96 }=\text { abscissa } & \text { V97 }=\text { ordinate } \\
\text { V98 }=\text { abscissa } & \text { V99 }=\text { ordinate }
\end{array}
$$

CHAMFERING

G894

Definition Calculation of positions to apply chamfers to straight contour elements.
The cycle calculates the positions and initiates the traversing movement.

CALCULATION OF THE END POINT OF AN ARC
 G895

Definition Calculation of the end point of an arc, of which only one coordinate is known.
The cycle calculates the position and initiates the traversing movement if COND. SBP CALL-UP is high.

Input
starting point (1) = last programmed position
end point
(2) $\mathrm{V}_{90}=\mathrm{A}$ or 0 -value

V91 = 1: V90 represents abscissa
V91 $=2$: V90 represents ordinate
centre of circle
V92 $=A$
(3) $\quad \mathrm{V} 93=0$

V94 $= \pm$ radius $\quad(+)$ larger/equal 180°

- smaller 180°

V95 $=$ direction of $=2:$ G2
rotation $=3$: G3
Programming $\quad \mathrm{G} 895 \mathrm{~V} 90=\ldots \mathrm{V} 91=\ldots \quad \mathrm{V} 92=\ldots \mathrm{V} 93=\ldots \quad \mathrm{V} 94=\ldots \quad \mathrm{V} 95=\ldots$
Results
end point (2) $\vee 90=$ abscissa $\mathrm{V} 91=$ ordinate
The missing coordinate value of the end point is calculated.

TRANSITION POINT ARC/ARC tangential

G896

Definition The control calculates the transition point of two consecutive arcs with tangential transition and a reversal of the direction of rotation.

The cycle calculates the positions and initiates the traversing movement.

Input
starting point (1) = last programmed position

1st centre of circle
$\mathrm{V} 90=\mathrm{A}$
$\mathrm{V} 91=0$
2nd centre of circle
$\mathrm{V} 94=\mathrm{A}$
V95 $=0$
end point
(2) $\quad \mathrm{V} 92=\mathrm{A}$
$\mathrm{V} 93=0$
direction of ratation

V96 $=2$ corresponds to G2/G3
V96 $=3$ corresponds to G3/G2

Results . Transition point P1 V97 $=$ abscissa $\mathrm{V} 98=$ ordinate

Definition Calculation of the end point of a straight line, of which only one coordinate is known.
The cycle calculates the positions and initiates the traversing movement.

Programming G897 V90 $=\ldots$ V91 $=\ldots$ V92 $=\ldots$
Results The unknown coordinate of the end point is calculated, after which the contents of the variables will be as follows:

$$
\begin{aligned}
& \text { V90 }=\text { abscissa value } \\
& \text { V91 }=\text { ordinate value }
\end{aligned}
$$

INTERSECTION OF TWO STRAIGHT LINES

Definition
Calculation of the intersection of two straight lines from the entered angle values.
The cycle calculates the positions and initiates the traversing movement.

Input	starting point end point angles	= last programmed position	
		$\mathrm{V} 90=\mathrm{abscissa}$	V91 $=$ ordinate
		V92 $=$ alpha	V93 beta
		- input range -180° to $+180^{\circ}$	
		- sign determines direction of rotation	
		- the abscissa is the reference axis	
		V94 $=0$: mac	
		= 1: mach	end point

End Point of The end point of the machining is determined by the input for V94. When several contour cycles are linked together the previous contour cycle must not be machined up to the end point.

Programming $\quad \mathrm{G} 898 \mathrm{~V} 90=\ldots$ V91 $=\ldots$ V $92=\ldots$ V $93=\ldots$ V $94=\ldots$
Results The position of the intermediate point P2 is calculated and the axes drive to this position; the values are stored in the following variables:

$$
\begin{array}{r}
\text { V95 }=\text { abscissa value } \\
\text { V96 }=\text { ordinate value } \\
3-86
\end{array}
$$

SURVEY OF FIRMLY ALLOCATED CYCLES

	Function	Programmed under cycle, main mode	Call-up via
User cycles	freely programmable	1-69	G8nn
MTB cycles	priority routine	74	interface signal fast input on SERVO card
	MTB cycle	75	M22
	MTB cycle	76	M21
	MTB cycle	77	M6
	allocation of functions for keys F1 to F10 of customer keypad	78	customer keys
	referencing cycle	79	soft key selection

Cycles 1-69 are available for use by the enduser, uniess predetermined by the MTB.
These cycles can be used to program recurring machining tasks.
A cycle with the number nn is called up with G8nn. Input variables can be written together with the 3 -digit G -code, for instance:

$$
\text { G824 V1 } \left.=\ldots . V_{10}=\ldots . \quad \text { V55 }=\ldots \text { (call-up for cycle } 24\right)
$$

Cycles $70-73$ are routines which are used internally by the control and which have fixed functions. They are not available for use by the enduser.

4. PARAMETRIC FUNCTIONS

V 15 = ATG VX

Range \quad| The following functions are available: |
| :--- |
| load instructions for numerical values, 125 variables V1 to V99, VA to VZ, |
| basic arithmetic functions, trigonometric functions, copy instructions, |
| logic operations, branching, access to NC data. |

The user can write his own cycles with parametric functions.
CPC = Customer parametric Cycle
A CPC represents the solution of a problem in principle.
Values such as spindle speed, dimensions, tool no. etc. are kept variable.

Once the parametric program has been produced the only actions necessary for the execution are to load values for the variables and call up the program.

Applications Production of customer's own cycles for:
automatic measuring cycles with calibration of the probe, measuring of the workpiece, and automatic tool wear compensation production counters, random sample counters
scale factors for similar parts,
variable programs of all types
Programming During panel input the CPC key is pressed before the input of a computing function. This automatically activates the secondary function (inscribed at the top) of the dual function keys.

During external programming the mnemonic codes used by the control when printing out parametric instructions must be used to writc the program.

Example: load variable 5 with the content of variable $2+$ value 10 .

To store

To execute

External programming

Enter

N12 V5 $=\mathrm{V} 2+10 \quad$ (Note Only whole numbers are accepted)

One program line can contain several computing functions. They will be executed in the same sequence in which they were written.

Example: \quad V17 $=$ V2 * V3 \quad V25 $=\operatorname{SIN}$ V17 \quad V26 $=$ COS V17

Note

- The programming in each line must be either all conventional or all parametric.
- Parametric functions must always be programmed without space characters, e.g. ATG VX, in order to avoid syntax errors.

Program
Planning

Before starting to produce programs it is advisable to do some general program
planning. This should take the following points into consideration:

- Is a program to be used completely independently?
- Or is the program to be used in conjunction with other program modules?
If so, with which ones?
- Is the program to be produced as a main program, a subprogram or a cycle?
- Which other programs must/can be stored in the memory at the same time?
- Which variables will be used?

Aims	Simplification of the continuing program administration.
- Rationalized program production	
- Problem-free combination of programs	
FORMS	- Muitipie use of program moduies
	The following forms help with program planning:
	- Memory Allocation
	-General Progam Planning
	- Variables
	- Program Description

Memory Allocation	This form shows which programs, cycles, subprograms etc. are stored in the control together.
Program This form shows at a glance which variables are used by which program, and which are still available to be used. Variables This form can be used when testing programs, by tracking the meaning and the contents of the variables. Program This is an aid for the program user, and it should consist of at least a top sheet with Description -a sketch of inputs/possibly the sequence - required storage capacity, short functional description	

MEMORY ALLOCATION

name no. function, sequence \quad| required |
| :--- |
| storage capacity |

program	
assigned subprograms (local)	

name
\qquad
program
assigned subprograms (local)
\qquad
\qquad
\qquad
\qquad
name
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
cycle
(global)
no. function, sequence
no. function, sequence
\qquad
no. function, sequence
\qquad
\qquad
\qquad
\qquad _
\qquad
storage capacity
\qquad
\qquad
\qquad
\qquad
\qquad
required
storange capacity
\qquad
\qquad
\qquad
\qquad
\qquad
required
storage capacity
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PROGRAM PLANNING

VARIABLES (global)	$\mathrm{L}=$ loaded value
$\mathrm{C}=$ constant	
$\mathrm{Ca}=$ calculated value	
	(temporary)

function	v	value	function	V	value
	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$			$\begin{array}{\|l\|} \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ \hline \end{array}$	
	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$			$\begin{array}{\|l} \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \end{array}$	
	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$			$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	
	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$		4-5	0 1 1 2 3 4 5 6 7 7 8 9	

LOAD FUNCTIONS

Load $\mathbf{V}_{\mathbf{i}}$ directly with numerical value	$\mathbf{V 1}=9316$
Load $\mathbf{V}_{\mathbf{i}}$ with content of a variable (copy)	$\mathbf{V} \mathbf{1}=\mathbf{V} \mathbf{2}$ or $\mathbf{V} \mathbf{1}=\mathbf{V} \mathbf{2}+\mathbf{V} 15$
	$\mathbf{V} 1=\mathrm{V} 2-4$
Load $\mathbf{V}_{\mathbf{i}}$ with content of an NC address	$\mathrm{V}_{1}=\mathbf{x}$

Definition
The variables to the left of the equal sign are loaded from the sources written on the right.

Severai of these functions can be written into the same line.
Example $\quad \mathrm{N} 1 \quad \mathrm{~V} 12=1.6 \mathrm{~V} 3=\mathrm{V} 5 \quad \mathrm{~V} 4=\mathrm{Z}$

Execution When N 1 is carried out the programmed variables are loaded one after the other.
The sequence in which the variables are written determines the order of execution.

NC address values which can be loaded:

address	loaded value corresponds to:
XYZE	absolute positions in the active type of dimension
A D R	in the machine coordinates or relating to the
I J K	zero point set with G92
T	T is loaded with 4-digits
T cc oo last output tool	

INCREMENT / DECREMENT

Increment value
INC V1

Decrement value

DEC V1

Definition	The content of a variable is incremented or decremented by 1. Any digits after the decimal points are deleted.
Programming	INC VN DEC VM
Example	N1 V1 $=12 \quad \mathrm{~V} 4=1.7 \quad \mathrm{~V} 5=-1.3$
-	
-	
N13 INC V1 INC V4 DEC V5	
	After the execution of N13 the contents of the variables are as follows:

Integer Number A real number can be converted into the corresponding integer number

 by performing the INCREMENT and then the DECREMENT function.
REGISTERING TIME

TIM V1

Definition The time elapsed since the start of the program is loaded into the variable (seconds).
Programming TIM VN
N from 1 to 99 and from A to Z .
Example

N M2

registering time for G 1 -function storing value in V 1 , time limit 50 seconds; checking condition and branching; the program sequence is not completed until the time limit of 50 seconds is reached; otherwise a jump is made into SBP 5.

TRIGONOMETRIC FUNCTIONS

Sine	$\mathrm{VN}=\operatorname{SiN} \mathrm{V}_{1}$
Cosine	$\mathrm{VN}=\mathbf{C O S} \mathrm{V}_{1}$
Arc tangent	$\mathrm{VN}=\mathbf{A T G} \mathrm{V}_{1}$

Definitions The sine or cosine value of an angle (in degrees) is formed (SIN/COS).
The corresponding angle (in degrees) is formed from the tangent (ATG).

Programming $\quad \mathrm{VN}=\operatorname{SIN} \mathrm{V} 1 \mathrm{~V} 0=\operatorname{COS} \mathrm{V} 2 \mathrm{VP}=$ ATG V 3

Example $\quad \mathrm{N} 1 \quad \mathrm{~V} 10=30 \mathrm{VX}=\mathrm{COS} \mathrm{V} 10 \mathrm{VY}=\operatorname{SIN} \mathrm{V} 10$

Operation The sine or cosine of any angle can be formed.
Angle values are to be entered via variables.
The direct input of numerical values is not permitted.

TOOLS

LOAD TOOL STORE

$$
\left.C O R=V 1 R=V 2 L=V 3^{* *}\right)
$$

Definitions The tool store is loaded.
Programming $\quad \mathrm{N} 1 \quad \mathrm{VN}=15$
$\mathrm{N} 2 \quad \mathrm{COR}=\mathrm{VN} \quad \mathrm{R}=\mathrm{VP} \quad \mathrm{DR}=\mathrm{VR} \mathrm{L}=\mathrm{VQ} \mathrm{S}=\mathrm{VS}$
VN from 1 to max. 48.

After the execution of N 2 tool 15 will be loaded with the data from VP to VS.

COPY TOOL DATA

$$
\left.C O R=V 1 \text { V2 }=\text { RR V3 }=L^{* *}\right)
$$

Definition Variables are copied from the tool store.

Programming $\quad C O R=V N \quad V P=R \quad V R=D R \quad V Q=L \quad V S=S$
VN from 1 to max. 48.

Operation . Values are only copied, i.e. the tool data do not affect the machined path.
Example
N1 $\quad \mathrm{V} 12=15 \quad \mathrm{~V} 13=15.0 \quad \mathrm{~V} 14=75$
$\mathrm{N} 2 \quad \mathrm{COR}=\mathrm{V} 12 \mathrm{R}=\mathrm{V} 13 \mathrm{~L}=\mathrm{V} 14$

After the execution tool 15 is loaded with
$\mathrm{R}=15.0 \mathrm{~L}=75.0$

Example
N1 \quad V4 $=25$
$\mathrm{N} 2 \quad \mathrm{COR}=\mathrm{V} 4 \quad \mathrm{~V} 1=\mathrm{R} \quad \mathrm{V} 2=\mathrm{L} \quad \mathrm{V} 3=\mathrm{DR} *)$
After the execution of N 2 the contents of the variables will be as follows:
$\mathrm{V} 1=$ radius $\mathrm{V} 2=$ length $\mathrm{V} 3=$ tool wear of tool 25.
Note *) The input of the tool wear (DR) depends on the radius (R); limit: 10% of radius. The DR value/ modification is entered as an incremental value.
**) The COR instruction should be programmed in a single line together with the variables.

ZERO SHIFTS

Load zero shift G54 to G59
Copy zero shift G54 to G59
Copy active zero shift G92
Copy active pole
(polar coordinates)
Copy active scaling factor switching G36

TRF = V1 $\quad \mathrm{X}=\mathrm{V} \mathbf{2} \quad \mathrm{Y}=\mathrm{V} \mathbf{3}$
TRF $=\mathbf{G} 54 \mathrm{~V}_{1}=\mathbf{X V} \mathbf{V}=\mathbf{Y}$
TRF $=\mathbf{G} 92 \mathrm{~V}_{1}=\mathbf{X V} \mathbf{V}=\mathbf{Y}$
$\mathbf{T R F}=\mathbf{G} 20 \mathbf{V} 1=\mathbf{X} \mathbf{V} \mathbf{=} \mathbf{Y}$
$\mathbf{T R F}=\mathbf{G} 36 \mathbf{V 1}_{1}=\mathbf{X V} \mathbf{2}=\mathbf{Z}$

Definitions The zero shift table is loaded or values are copied from the zero shift table.
The values of the zero shifts and the values of the pole position are copied. The values of the active scaling factor are copied into V 1 for the active plane, and into V2 for a possible change in scaling factor in the third axis.

Programming Load zero shift G54 to G59
$\mathrm{N} 2 \quad \mathrm{TRF}=\mathrm{VN} \quad \mathrm{X}=\mathrm{VP} \quad \mathrm{Y}=\mathrm{VQ} \quad \mathrm{Z}=\mathrm{VR} \quad \mathrm{E}=\mathrm{VS}$

Copy zero shift G54 to G59

$\mathrm{N} 2 \quad \mathrm{TRF}=\mathrm{G} 54 \quad \mathrm{VP}=\mathrm{X} \quad \mathrm{VQ}=\mathrm{Y} \quad \mathrm{VR}=\mathrm{Z} \quad \mathrm{VS}=\mathrm{E}$

Copy pole (the coordinates relating to the active G20 zero point of the active pole are copied)
$\mathrm{N} 2 \quad \mathrm{TRF}=\mathrm{G} 20 \quad \mathrm{~V} 1=\mathrm{X} \quad \mathrm{V} 2=\mathrm{Y} \quad \mathrm{V} 3=\mathrm{Z} \quad \mathrm{V} 4=\mathrm{E}$

Copy zero shift G92 (current difference between commanded
position and machine position)
$\mathrm{N} 2 \quad \mathrm{TRF}=\mathrm{G} 92 \mathrm{~V} 1=\mathrm{X} \quad \mathrm{V} 2=\mathrm{Y} \quad \mathrm{V} 3=\mathrm{Z} \quad \mathrm{V} 4=\mathrm{E}$
$\mathrm{N}_{1} \quad \mathrm{~V} 1=54 \quad \mathrm{~V} 2=100 \quad \mathrm{~V} 3=200 \quad \mathrm{~V} 4=150 \quad \mathrm{~V} 5=70$
$\mathrm{N} 2 \quad \mathrm{TRF}=\mathrm{V} 1 \quad \mathrm{X}=\mathrm{V} 2 \quad \mathrm{Y}=\mathrm{V} 3 \quad \mathrm{Z}=\mathrm{V} 4 \quad \mathrm{E}=\mathrm{V} 5$
N3 M2

After the execution of N2 the zero shift corresponding to G54 is defined as follows:
X workpiece zero point at coordinate 100
Y workpiece zero point at coordinate 200
Z workpiece zero point at coordinate 150
E workpiece zero point at coordinate 70

UNCONDITIONAL BRANCHING

Jump into subprogram	indirect jump direct jump	BSR V1 BSR P5
Jump to label	indirect jump	BRA V1
	direct jump	BRA P5

Definitions Depending on the results of calulations a freely selectable subprogram can be called up, or a jump can be performed.
Both instructions can also be carried out without condition.

The jump target can therefore either be
P5: direct jump address label 5 (\$5)
or subprogram 5 (\$5)
V1: indirect jump address
label no. $=$ content of V1 or
subprogram no. $=$ content of V 1

| Programming
 a jump | N1 VN = M
 indirectly | N2 BSR VN |
| :--- | :--- | :--- |\quad| allocation of value to variable |
| :--- |
| call-up of subprogram no. M |
| (content of VN) |

Note on Several branching directions BSR can be programmed in one multiple NC block. The first subprogram call-up the conditions for which are fulfilled will be carried out. Subsequently the next block number will be executed.

CONDITIONAL BRANCHING

In addition to being dependent on signals program branching can be tied to the following conditions:

- mathematical comparisons
- modal effect of various G / M-functions
- whether or not mirror image is active

SETTING CONDITION REGISTER

The basis of all types of branching described in the following text is the status of the

CONDITION REGISTER (CR).

After mathematical operations or after "TST" the control will load the result into the internal condition register with the values of the variables.

TST must be used before the branching, if the variable on which the branching is to depend is not yet in the CR.

Programming N10 TST VN

Branching operations are only carried out correctly if the result from the preceding operation contains the conditions for the particular branching.

If, for instance, a multiplication is carried out in line 5 and no further instruction follows, which would set the condition registers, the result of this multiplication would still take effect in block 12 of the example on the next page.

General format for programming conditional jumps:

branch if
less or equal to 0 to label $n n n$

If the jump condition is not fulfilled, the subsequent block will be executed.

CONDITIONAL BRANCHING AFTER MATHEMATICAL COMPARISON

The jump address can be defined by one of two means:

- indicated, as content of \mathbf{a} variable \mathbf{V} or
- directly, by specifying a label with P.

Conditional branching does not automatically set the condition register.

BEQ Branch if EQual to zero
 BEQ V5

BEQ P1

All digits before and after the decimal point must be 0

BNE Branch if Not Equal to zero
BNE V5
BNE P1
The jump condition is fulfilled if at least one digit before or after the decimal point is not equal to zero.

BGT Branch if Greater Than zero
BGT V5
BGT P1
The condition is fulfilled if the result is a positive number of at least one increment.

BLT Branch if Less Than zero	BLT V5
	BLT P1

The condition is fulfilled if the result is a negative number of at least one increment.
BGE Branch if Greater than or
Equal to zero
BGE V5
BGE P1

The condition is fufilled if the result is $=0$ or positive.

BLE Branch if Less than or Equal to zero

BLE V5
BLE P1

The condition is fuffilled if the result is $=0$ or negative.

Note: If several jump instructions are programmed in one block the user must check the corresponding jump addresses.

Example JUMP AFTER COMPARISON WITH A VARIABLE VALUE

The X -axis is to traverse to the value calculated for V 7 .
Condition The traversing movement is to be carried out if the value in V7 exceeds 10 (content of V5).

If the value is greater the program is to be abandoned by making a jump onto the program end.

Note If the jump condition in block 15 is defined as "BGT", the movement will be carried out for V7 values of up to 10.000 .

A V7 content of 10.001 will produce program stop.
The jump condition "BGE" in block 15 would produce a program stop for a content of 10.000 and above.

The jump condition "BEQ" in block 15 would only produce a program stop if V 7 was exactly 10.000 .

	BRANCHING CONDITION: NC INSTRUCTION
Definition	Branching can be made dependent on the active state of certain modal conditions.
	The tests described below will set the condition register $(C R)=0$, if the relevant condition is fulfilled.
	After the test branching can take place, dependent on the status of the condition register.
G-FUNCTIONS	Test whether a particular G-function is TST G1 active as a modal function
	When testing for G 1 the $\mathrm{CR}=0$ if G 1 is active; the $\mathrm{CR}=1$ if G 1 is not active.
Programming	N12 TST Gn
	Range of G-functions (n) for which the test can be carried out:
	G0, 1, 2, 3, 17, 18, 19, 39, 53-59, 62, 65, 66, 90, 93, 94, 95, 97
Example	N10 TST G17 BEQ P1 check whether working plane G17 is active; if not, jump to label $\$ 1$
	N11 TST G18 BEQ P2
	N12 TST G19 BEQ P3
	N19 $\$ 1$
	N30 G99
M-FUNCTIONS	Test whether a particular M-function is active as a modal function TST M41
Programming	N12 TST M n
	Admissible range for $\mathrm{n}: 3,4,5,19,41-44$
MIRROR IMAGE	Test whether mirror image function is active for one or several axes
INCH/METRIC	The whether measuring system is defined as inch or metric
Programming	N12 TST Qn
	Admissible for n : $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{E}, \mathrm{M}, \mathrm{M}=$ metric

POSITIONING
POS
(Traverse axes with external command)
Linear axes can be traversed with an external command during the execution of a program. The POS (axis) function must be written into the part program at the appropriate place. The interface signal DRIVES ON goes "low" for the particular axis(es) (servo loop is open). The current position is displayed. An external command can then be applied. Once the interface signal DRIVES ON is switched back on the servo loop closes. The active part program will then be resumed.
\(\left.$$
\begin{array}{llll}\text { N1 G1 X50 Y20 Z10 F500 } & \begin{array}{l}\text { all servo lops are closed; } \\
\text { traverse to axis positions }\end{array} \\
\text { N2 X100 } & & \begin{array}{l}\text { interface signal DRIVES ON for } \\
\text { N3 M55 }\end{array} & \begin{array}{l}\text { Y and } Z=\text { "low" (via M-function, for instance); } \\
\text { N4 POS Y } Z \text { axis are traversed with }\end{array} \\
\text { N5 POS Z } & & \begin{array}{l}\text { external command (servo loop open): } \\
\text { interface signal DRIVES ON for } \\
\text { Y and } Z=\text { "high" (servo loop closed); }\end{array}
$$

N6 X10 Y10 Z15 \&

traverse to axis positions\end{array}\right]\)| . |
| :--- |

Note: \quad Each POS function only applies to one axis; if several axes are involved the POS functions must be programmed in separate blocks.

The POS function can only be applied for the E -axis if it is defined as a linear axis.

STV - FUNCTION (SET VARIABLE FUNCTION)

Definition During the course of a program execution it is possible to enter values into the variables table by MDI, via the serial interface or via the PLC. The updated variable values become active within the current program through programming of the STV function.

The STV function stops the program execution and interrupts the block preparation process. The updated value from the variable table is transferred into the working store. With the interface signal "STV" the program sequence is resumed. The new variable value will be processed by the program.

Operation - STV is not modal.

- The complete variable table is updated with STV.

Programming
The STV function must be programmed immediately prior to the variable which is to be changed.

Example \quad Variables for a fixed machining cycle are loaded into the NC by the PLC via the STV function.

N15 V70 $=50 \quad$ V75 $=115$	loading current variables via MDI directly into the variable
.	table or in program by means of load instruction

N19 G0 X = V70 Z = V75 traversing movement
N20 F500 S250 M3 machining parameters

N21 G81 V1 $=35 \mathrm{~V} 2=109 \quad$ 1st boring operation
N22 STV
NC to interface A18 Data 0 (part program stops)

interface to NC: data transfer Axx Dxx V70
Axx Dxx V75
Axx Dxx V76

A18 Data 1 - end of data transfer; program continues

N23 X = V70 Z = V75 next boring position defined
by STV; 2nd boring operation
Output BCD output bus: A18 Data 0
Input \quad BCD input bus: A18 Data 1
Note The function is applicable to the complete variable table (V1 to V99 and VA to VZ).

CPC SAMPLE PROGRAMS: 1. Ellipse

Task	Path calculation for an ellipse (centre of ellipse = coordinates The ratio between the to radii is to be 0.4 . The program is stored called up with G 865 . The ratio should be definable by one single var		
Sequence	N1	jump addrress (label 1)	
	N2,3	calculation of X -coordinate	
	N4-6	calculation of Y-coordinate	
	N7	positioning to X / Y coordinat	
	N8,9	feed-in in Z (lst positioning	
	N10	increment angle until final valu	
Used	V1	starting angle alpha	0
Parameters	V2	incrementing angle in alpha	2
	V3	radius b	10
	V4	value for condition	
	V5	radius a (larger radius)	25
	V8	final angle	360
	V6	cosine --> X-component	
	V7	sine --> Y-component	
	V10	milling depth in Z	-0.5

Advantages The resulting program is considerably shorter than a conventional program, which would describe an ellipse as a contour made up of at least 10 arcs. It is also fully flexible with regard to the used radii and the ratio between them (b/a).

Programming

Cycle 65	
N1	\$1
N2	$V_{6}=\cos V_{1}$
N3	$\mathrm{V} 6=\mathrm{V} 6$ * V5
N4	$V 7=S I N V 1$
N5	$\mathrm{V} 7=\mathrm{V} 7$ * V 5
N6	$V 7=V 7$ * V3
N7	$\mathrm{X}=\mathrm{V} 6 \quad \mathrm{Y}=\mathrm{V} 7$
N8	G1
N9	$\mathrm{Z}=\mathrm{V} 10$
N10	$\mathrm{V} 1=\mathrm{V} 1+\mathrm{V} 2$
N11	$\mathrm{V} 4=\mathrm{V} 8-\mathrm{V} 1$
N12	BGE P1
N13	G0
N14	M2

Call-up and Example

N1	G0 $\quad \mathrm{Z} 20$					
N2	G 865	$\mathrm{~V} 1=1$	$\mathrm{~V} 2=8$	$\mathrm{~V} 3=10$	$\mathrm{~V} 5=30$	$\mathrm{~V} 8=359 \quad \mathrm{~V} 10=12$
N3	$\mathrm{Z20}$					
N4	M30					

Note: \quad Careful selection of the V2 value (incremental angle) makes it possible to achieve an optimum combination of accuracy and speed. Angle values relate to the circle with radius a. The corresponding Y-coordinate is modified by radius $b(V 3)$! The program will work in a counter-clockwise direction.

$$
4-22
$$

CPC SAMPLE PROGRAMS:

2. Row of Holes

Definition of the variables

$X=V 90$
$Y=V 91$
$\Delta X=V 92$
$\Delta Y=V 93$
number of holes $=$ V94

Program construction
(solution)

N 1	$\mathrm{~V} 40=\mathrm{V} 90$
N 2	$\mathrm{~V} 41=\mathrm{V} 91$
N 3	$\mathrm{~V} 44=\mathrm{V} 94$

N4	BEQ P1	
N5	$F 500 \quad$ S250	M3
N6	$G 8 I \quad V I=20$	$V 2=0$
N7	$\$ 2$	
N8	G0	
N9	$X=V 40 Y=V 41$	

N10 DEC V44

N11 BEQ Pl
$\mathrm{N} 12 \quad \mathrm{~V} 40=\mathrm{V} 40+\mathrm{V} 92$
N13 $\mathrm{V} 41=\mathrm{V} 41+\mathrm{V} 93$
N14 BRA P2
N15 \$1
N16 G80

N17 M2

CPC SAMPLE PROGRAMS:

3. Bolt Hole Circle

The following requirements need to be provided for:

- variable X/Y position
- variable number of holes
-variable angle related hole distribution

Definition of the Variables

V33 calculated angle value
V35 calculated number of holes
V80 sine value for Y
V81 cosine value for X
V82 bolt hole circle radius
V83 Y-position
V84 X-position
V85 calculated increase in angle

V90 position of centre of circle in X
V91 position of centre of circle in Y
V92 bolt hole circle diameter
V93 starting angle
V94 incrementing angle
V95 number of holes
V96 hole distribution
1 = calculated angle
$0=$ defined angle (V94)
V97 angle for hole distribution

Sequence

Program Construction

(solution)
N1 F750
N2 V85 = V94

N3 TST V96

N4 BEQ P3

N5 $\quad \mathrm{V} 85=\mathrm{V} 97 / \mathrm{V} 95$

N6 \$3

N7 V33 = V93
N8 V35 = V95

N9 BEQ PI
N10 V82 = V92/2
N11 \$2

N12 V80 = SINV33 V81 = COSV33
N13 V83 $=\mathrm{V} 82 \times \mathrm{V} 80 \quad \mathrm{~V} 84=\mathrm{V} 82 \times \mathrm{V} 81$
N14 V84 = V84 + V90 V83 = V83 +V91

N15 $X=V 84 \quad Y=V 83$

N16 V35 = V35-1

N17 BEQ Pl

N18 V33 = V33 + V85
N19 BRA P2
N20 \$1
N2I G80

N22 M2

PROGRAMMING

INTERNAL PROCESSING OF TOOL TECHNOLOGY DATA

When the relevant machining functions are called up the control automatically provides tool compensation according to the tool data in the technology store:

Tool Geometry G40 to G42 tool radius T tool length

The compensations for tool length and tool radius and their cancellation are programmed with separate instructions. Once called up the compensations remain active as modal functions. The relevant compensation group must be defined.

Tool radius compensation can be further defined by

G68/69 behaviour at outside corners.

All compensation data can be input via the keyboard after selection of TOOLS by soft key.

Parametric functions can be used to make allocations to tool compensation table data, and compensation data can be copied and applied.

Feedrate \quad The programmed feedrate (F-word) is interpreted in different ways:

G94/95 feedrate in mm per minute or per revolution
G96/97 cutting speed / spindle speed

The feedrate applies as follows:
with G64 along the programmed contour (cutting point path)
with G65 along the tool centre path

Cutting Speed With G97 the control forms the spindle speed directly from the active S-word.

The programmer determines the cutting speed by programming the appropriate spindle speed.
With G96 the control calculates and outputs the required spindle speed depending on the S-address (cutting speed), as defined in the technology store, and the used tool radius

M41-44 direct selection in the program
M40 selection made automatically by the control at the beginning of the block

TOOL COMPENSATION

Definition

Tools

Without Tool

 Compensation
Compensation

the Tool
Compensation

External Tool
 Compensation
 This also applies to programs through which the cutter centre path is described by external calculations.

The control can carry out a program without any modification if the machine and the required machining do not require any adjustment. The block processing time is short. Geometry, spindle speed, output signals, and feedrate take effect as programmed.

Any demands regarding values, which are to be determined indirectly, such as constant cutting speed, usage of the optimum spindle speed, must be realized through specific values for M and S for the particular program run.

See also chapter 1 INTERFACES for the transmission conditions.

The tool length compensation is called up via T.
Call-up The radius compensation is called up with G41/42.

Cancelling Both tool length and radius compensation are cancelled with T00.
G40 cancels the radius compensation alone.
The control can convert a part-related program into a tool path.

When a tool compensation is programmed the control will automatically take into account the following tool-related characteristics, which are stored in the technology store:

L	length	mm
$\overline{\mathrm{R}}$	radius	mm
DR	radius wear	mm
S	cutting speed	$\mathrm{m} / \mathrm{sec}$
	number of compensation groups	max .48

TOOL LENGTH COMPENSATION

The tool length is taken into account when the T-word is called up.
The effect of T is restricted to the tool length compensation.
Tool length compensation can be used in all machining modes.
General
Format

Allocation	Compensation group and output tool number can be freely combined in the call-up for T.
Examples	T can be programmed with 2 or 4 digits.
	T 00 tool length compensation and path compensation are cancelled; no output
	T12 compensation group 12 is selected; no output of number
	$\begin{array}{ll} \text { T.. } 02 & \text { tool number } 2 \text { is output; } \\ \text { tool length compensation remains unchanged } \end{array}$
	T 0812compensation group 8 is selected; tool number 12 is output
	$\begin{aligned} & \text { T } 1212 \quad \begin{array}{l} \text { compensation group } 12 \text { is selected; } \\ \text { the same number is output } \end{array} \end{aligned}$
Effect	The first two digits behind the T ($\mathrm{Txx}^{\text {) }}$ always effect the tool compensation call-up.
	The 3 rd and 4 th digits specify the tool number and are output at the interface, if they are programmed. The tool length L, which is stored in the tool table, is incorporated according to the sign into the values for the axis, in which the tool length compensation applies.

The compensation value takes effect

- immediately for the axis display
- for the path once the relevant axis is programmed.

T + Z programmed separately

N2	T08	corrected display for Z-axis
N3	Z50	phasing in of tool length compensation

N2 T08 Z50immediate phasing in of the compensation in Z-axis movement + corrected axis display

Note
When a tool number is programmed with 4 digits the last two are displayed in automatic mode to show the active tool number.

TOOL LENGTH COMPENSATION

ADDRESS T

Call-up

Allocation

Example: complete tool length

Example: difference in tool lengths

The tool length compensation is phased in and out during a movement in a linear mode. The feed-in axis is to be programmed on its own.

Plane		tool length is compensated for in
G17	$(\mathrm{X} / \mathrm{Y})$	Z
G18	$(\mathrm{Z} / \mathrm{X})$	Y
G19	$\mathrm{Y} / \mathrm{Z})$	X

There are basically two situations in which the tool length compensation is used:

Programming without consideration of the tool length.

In this instance the effective length of the tool needs to be stored in the tool table.

The compensation value corresponds to the distance
between spindle nose and the tip of the tool.

G1 Z-50 F100 T08
Content of tool length $8=100$
The Z-axis will position to $-50+100=50$

Programming with reference to a zero tool

When using this original tool, tool compensation value $L=0$ is applied. If a new tool is any shorter or longer, the difference
$L_{\text {act. }}-L_{\text {orig. }} \quad$ is entered into the compensation store.

G1 Z50 F100 T08
Tool length taken into account by the program: $=100 \mathrm{~mm}$.
Actual length of tool $8=90 \mathrm{~mm}$.
Tool length compensation in Z -axis.
Plane G17 (XY).
Z will position to 40 .

	TOOL RADIUS COMPENSATION		
Definition \quadThe radius compensation converts the contour related part program into a cutter centre path (equidistant). The equidistant runs parallel to the programmed contour at a distance which corresponds to the active cutter radius. The side at which the equidistant runs with respect to the programmed path is determined with G41/G42.		\quad	The control calculates
:---			

STARTING POINT, BEGINNING OF CONTOUR

Starting Point

Beginning of Contour

Compensation Call-up

Sample
Contour
without
Compensation
Call-up

Phasing in the Radius Compensation

In many cases it is not possible to drive directly onto the contour from the tool change point; usually it is necessary to position to an intermediary position (starting point).

The choice of a suitable starting point helps to avoid damage to the contour. The compensations are phased in during the movement onto this point.

If possible the starting point should allow a tangential approach to the contour, but at least it should be positioned so that there will be no reversal of the direction of any axis at the first contour point (free-cutting).

A linear workpiece edge should be chosen, otherwise an intermediary linear movement (of at least 3 increments) must be made.

Compensation call-up must be made while in a linear mode (G0, G1, G61). The block following directly after a call-up (G40, G41, G42) should also be linear.

Call-up of a compensation with positioning of the axis (es) in which the compensation is active:

Example: positioning in Z for call-up of $T \quad$ (XY plane). position in XY for G41, G42
(XY plane)

When a radius compensation is called up the control phases in the relevant value in a linear traversing movement. The equidistant starts vertically above the beginning of the first path section for which the compensation is to apply.

S2 Good contour entry; starting point can also be used as end point.

Si-S4

S1

S3
S4

The compensation vaiue is phased in from the starting point to P1 in a linear movement. The contour is fully machined at all points and there is no damage to the contour.

Cleanest contour entry through tangential approach movement.

Lowest possible starting point without collision, considering contour section(4)-> (1)
Free-cutting at $@$ due to a change in direction!

Example with S2 as starting and end point incl. tool compensation

N1	G0	Z-10	T01	
N2	G1	X-20	Y20	F200
N3	G41	X0	Y0	S500
M3				
N4	X20			
N5	G2	Y-20	R10	
N6	G1	X10		
N7	X0	Y0		
N8	G40	X-20	Y20	
N9	Z300	T00		
N10	M2			

CONTOUR TRANSITIONS WITH G68 (AUXILIARY ARC)

The following examples show how the tool compensation works on corners, by the generation of auxiliary arcs (outside corners) and the calculation of the angle bisector (inside corners).

Transitions between linear path sections

Transitions between circular path sections

Discontinuous transitions

t $=$ tangential
$\mathbf{u}=$ discontinuous

. . . . arc generated automatically by the control

CONTOUR TRANSITIONS WITH G69 (INTERSECTION)

Programming
angular variation 0 to 90°

angular variation 0 to 90°

angular variation 90 to 180°

... movement generated automatically by the control

EXAMPLES

G41 on outside Contour programming with tool radius compensation to the left contour of the workpiece and phasing out of the compensation at the end of the machining.

The tool radius compensation value was stored in the technology table as the R-value. (in this example for $\mathrm{T} 1: \mathrm{R}=2.5 \mathrm{DR}=0.05 \mathrm{~L}=250.0 \mathrm{~S}=25.0$)

__ programmed path (workpiece contour)

----.-- corrected path (cutter centre path)

G42 on inside Contour programming with cutter path compensation to the right of the
contour
workpiece and phasing out of the compensation at the end of the machining.
(in this example for $\mathrm{T} 3: \mathrm{R}=3.25 \mathrm{DR}=0.06 \mathrm{~L}=175.0 \mathrm{~S}=17.5$)
The tool radius compensation value was stored in the technology table as the R-value.

End of Contour	The last section of the contour should be linear. Otherwise a short linear positioning movement (of at least 3 increments) must be inserted past the end of the contour.
Cancelling	The cancellation must be made while in a linear mode (G0, G1, G61). In cases where the tool radius is relatively large in
the	Gompensation comparison to the contour radius the block following immediateiy atter the canceilation (G40) must aiso describe a linear movement.

With regard to the choice of the end points the same applies as for the choice of the starting point, in principle (see contour entry). The optimum exit movement is the direct extension of the last contour section (in analogy to starting point 1).
Starting and end point are different in this case.
A joint starting and end point (such as S 2) is also possible.

Referencing is not possible until tool radius compensation has been cancelled

Cancelling Compensation for Inside	Even when working within a restricted space the radius compensation must be cancelled in conjunction with a positioning movement, which must at least equal the tool radius.
Contours	To keep the required space to a minimum one of two methods should be used: - continue in the direct extension of the last movement, or - move to a position which lies on the same side on which the radius compensation was active, i.e. the right side with G42.

The recommended programming sequence is as follows (G17/G41 active):

- last contour machining (for instance with G2)
- tangential exit from the contour in G1 (program X / Y only)
- retract Z-axis with G1 (program Z on its own)
- G40 with X/Y movement as an extension of the last movement (program only X/Y)
- T00 with Z-movement (program Z on its own)
- program end

SPECIALCASES - TOOLCOMPENSATION

CHANGE OF COMPENSATION

There should preferably be no compensation values active when selecting a new tool.

Any active compensation can only be changed for a new block within the contour description. The interpolation mode in the block in which the change is programmed and in the following block must be linear.

The new compensation value will not be activated until a positioning instruction is carried out in the axis(es) which the compensation applies to.

Example: G41 X5 Y7 T02 (XY plane)

The new compensation value is phased in gradually to become fully effective at the end of the first block in which the relevant axes carry out a movement.

SWITCHING BETWEEN G41 and G42

Switching from G41 to G42 and vice versa should preferably take piace without radius compensation being active.

If radius compensation is active switching between G 41 and G 42 is only possible during linear interpolation.
The control will generate an adjusting movement which must be taken into account during the programming!

For instance: Section P0 --> P1 can be extended to P1', and similarly P2 --> P3 can be started at $\mathbf{P 2}^{\prime}$, in order to achieve a smooth change-over movement.

In some cases it might be necessary to cancel compensations via G40, program intermediary positions, and make a new compensation call-up with G41/G42. The minimum length of path sections with which a compensation can be called up or cancelled is 3 increments.

Example 1 Direct entry into and exit from contour

Tool radius compensation is used (G17 active).
The contour entry and exit movements overiap.
Contents of tool table for T03: $\mathrm{R}=3.25 \mathrm{DR}=0.06 \mathrm{~L}=175.0 \mathrm{~S}=1.75$

The compensations are phased in and out above the workpiece, which makes this procedure suitable for very limited spaces.

When activating or cancelling a compensation only the axis(es) involved in the radius compensation should be moved.

In the program below the tool table contains the following for $\mathrm{T} 10: \mathrm{R}=8.0 \mathrm{DR}=0 \mathrm{~L}=0 \mathrm{~S}=0$

Program					
N1	G0	Z5	M3	T10	
N2	G42	X70	Y10		
N3	G1	Y30	F200		
N4	Z-2	F50			
N5	G2	X90	Y50	R-20	F250
N6	G2	X90	Y10	I90	J30
N7	G1	X30			
N8	G2	X30	Y50	I30	J30
N9	G1	X90			
N10	G5	X90	Y11		
N11	G1	Z5	F2000	M5	
N12	Y50				
N13	G40	X81	Y60		
N14	Z100				
N15	M30				

To cancel the compensation (G40) a movement is required from 7 to 8 in Y positive, or in Y and X positive direction.
Recommended exit via end point such as E, E', E' etc.; exit via end point such as N not recommended. Contour might be disturbed.

SUPPRESSION

OF CONTOUR
ELEMENTS Not all programmed contour elements can be machined because of the radius of the used tool.

Programmed contour Execution with G68

1. All contour elements are machined.

2. One element is suppressed, since tool radius is larger than contour element.

Note: If more than one contour element can not be machined due to the geometrical data the control will interrupt the machining and output an error message.

Cancelling
 Compensation on Inside
 Corners

Cancelling compensation with different end points

1. All programmed contour elements are machined correctly.

2. One contour element is damaged.

$E=$ end point programmed in conjunction with G40 for the cancellation of the radius compensation

OUTSIDE CORNERS

angular variation alpha
between 0 and 90°

angle alpha larger than 90°
and smaller than 180°
programmed contour

steps
tool radius larger than contour radius

execution with G68

execution with G69

identical execution with G68/69

execution with G68:ン,

execution with G69

6. APPENDIX

G-CODES
Cod:
0
x $x \mathbf{x}$
XYZE
Linear interpotation in rapid with extended IN POS range
Plane selection X / N
Plane selection Z / X
Plane selection Y / Z

P Subprogram call-up depending on $1 / F$ signa:
PL. Subprogram call-up, unconditional
PL Jump to program label depending on I/F signal
P Jump to program label, uncondittonal

XYZE Field limitation, selting minmum values
XYZE Field limitation, setting maximum values
XYZE Cancelling fieid limitation

- Scale factor switching
xx Switch on programmable mirroring
xx Switch off programmable mirroring

Cancelling tood radius compensation
xx Tool radius compensation to the left of the path
$x \times$ Tool radius compensation to the right of the path

Cancel zero shift
Switch on zero shift

$$
X Y Z E
$$

XYZE
'In Position' function on
'In Position' function off

Feedrate and spindle speed set to 100%
Feedrate applies to contour on circular contours
Feedrate applies for tool centre path
Feedrate/spindle speed can be modified via pot. h

Auxiliary arc on outside comers I
Intersection on outside corners

Referencing
Measuring probe
Cancel fixed cycies G81 to G89
Drilling, centering
V Boring with dwell
V Deep hole drilling with positioning movements in rapid
Tapping with dwell
Boring with dwell/oriented spindle stop
Reaming
Thread milling
Input in absolute dimensions
Input in incremental dimensions
Setting position stores
-
Time programming

Feedrate direct in $\mathrm{mm} / \mathrm{min}$
Feedrate in mm/rev
m

Automatic calculation of cutting speed n n
Direct spindle speed programming
Subprogram end
Customer cycles: call-up via G-functions
with corresponding numbers
Group identifications a to n : Functions of the same group exclude one another.

$$
6-1
$$

G-CODES
Code Function Group 890 V Contour Cycles 981 V intersection circle/circle 892 V intersection line/circle 0 893 V rounding corners (3 points) 894 V rounding corners (2 angles) 895 V chamfering 896 V calculation of end point of arc 897 transition point arc/arc tangential 0 898 end point of straight line 0

Machine specific G-codes (cycles)

Code Call-up	Function

M-CODES	system specific functions
Code	Internal effect
M0	program stop after execution of the block
M2	main program end, cycle end
M3 / M13	main spindle on CW / coolant on
M4/ M14	main spindle on CCW / coolant on
M5	main spindle stop / coolant off
M6	call-up of the automatic tool change cycle (cycle 77)
M19	orientation of main spindle to fixed position
M19(S. .)	orientation of main spindle to programmable position (degrees)
M21	call-up of MTB cycle 76
M22	call-up of MTB cycle 75
M30	program end with return to beginning (continuation with Cycle Start)
M40	automatic gear range selection
M41-44	selection of fixed gear range 1 to 4
M98	SINGLE BLOCK command is not accepted
M999	SINGLE BLOCK command is possibie, i.e. the effect of M98 is cancelled

MACHINE SPECIFIC M-FUNCTIONS

	Function

Parametric Functions

Instruction	Function	CR set	Time
$\mathrm{V} 1=\mathrm{n}$	load a numerical value	X	
$\begin{aligned} & \mathrm{X}=\mathrm{V}_{\mathrm{n}}, \mathrm{~m}=\mathrm{V}_{\mathrm{n}} \\ & \mathrm{~m}=\mathrm{XYZEIJKADGFRST} \end{aligned}$	execution instruction		
$\begin{aligned} & V_{n}=X, V_{n}=p \\ & p=X Y Z E I J K A D F R S T \end{aligned}$	transfer active data		
$V_{1}=V_{2}+V_{3}\left(V_{1}=V_{1}+10\right)$	addition	X	
$\mathrm{V} 1=\mathrm{V} 2-\mathrm{V} 3(\mathrm{~V} 1=\mathrm{V} 2-12)$	subtraction	X	
$\mathrm{V} 1=\mathrm{V} 2 * \mathrm{~V} 3(\mathrm{~V} 1=\mathrm{V} 2 * 10)$	multiplication	X	
$\mathrm{V} 1=\mathrm{V} 2 / \mathrm{V} 3 \quad(\mathrm{~V} 1=\mathrm{V} 2 / 2)$	division	X	
$\mathrm{V} 1=\mathrm{V} 2$	copy	X	
$\mathrm{V} 1=\mathrm{SQR} \mathrm{V} 2$	square root	X	
INC V1	increment value, delete digits after decimal point	X	
DEC V1	decrement value, delete digits after decimal point	X	
$\mathrm{V} 1=\mathrm{SIN} \mathrm{V2}$ (degrees)	sine ($360^{\circ} \leq \mathrm{V} 2 \leq 360^{\circ}$)	X	
$\mathrm{V} 1=\mathrm{COS} \mathrm{V} 2$ (degrees)	cosine ($-360^{\circ} \leq \mathrm{V} 2 \leq 360^{\circ}$)	X	
V1 (degrees) $=$ ATG V2	arc tangent	X	
BSR V1 (BSR P5)	jump to subprogram (label 5) with no. V1		
BRA V1 (BRA P5)	jump to label no. V1 (label 5)		
BEQ V1 (BEQ P5)	jump to label no. V1, (label 5) if $\mathbf{C R}=\mathbf{0}$		
BNE V1 (BNE P5)	jump to label no. V_{1}, (label 5) if $\mathbf{C R}=\mathbf{0}$		
BGT V1 (BGT P5)	jump to label no. V1, (label 5) if $\mathbf{C R}>0$		
BLT V1 (BLT P5)	jump to label no. V1, (label 5) if $\mathbf{C R}<0$		
BGE V1 (BGE P5)	jump to label no. V1, (label 5) if $\mathbf{C R} \geq 0$		
BLE V1 (BLE P5)	jump to label no. V1, (label 5) if CR ≤ 0		

Note: $\mathrm{CR}=$ condition register; time $=$ execution time in ms

Instruction	Function	CR set	Time
$\begin{aligned} & C O R=V_{1} R=V_{2} \quad L=V_{3} \\ & D R=V_{4} S=V 5(C O R=T 1) \end{aligned}$	load tool no. V1 with values		
$\begin{aligned} & C O R=T 10 \quad V 1=R \quad V 2=L . \\ & (C O R=T 10) \end{aligned}$	copy values from tool no. 10		
$\begin{aligned} & \text { TRF }=V_{1} \quad X=V 2 \quad Y=V 3 \\ & Z=V_{4} \quad E=V 5 \quad(T R F=G 54) \end{aligned}$	load zero shift no. V1 with values		
$\begin{aligned} & \text { TRF }=\mathrm{G} 54 \quad \mathrm{~V} 1=X \quad V 2=Y \\ & \mathrm{~V} 3=Z \quad \mathrm{~V} 4=\mathrm{E}(\mathrm{TRF}=\mathrm{G} 54) \end{aligned}$	copy values from the G54 table		
TRF $=\mathrm{G} 20 \quad \mathrm{~V} 1=\mathrm{X} \quad \mathrm{V} 2=\mathrm{Y}$.	copy active pole		
TST V1	compare V1 with 0 . set CR accordingly	X	
$\begin{aligned} & \text { TST G1, TST G }{ }_{n} \\ & n=0-3,17-19,36,39,53-59,62,63, \\ & 65,66,90,93,94,95,97 \end{aligned}$	$C R=0$ if G 01 active $C R=0$ if G_{n} active	x x	
TST M41, TST M_{n}	$\mathrm{CR}=0$ if M41 active	x	
$n=3,4,5,13,41-44$	$C R=0$ if M_{n} active	X	
TST QX, TST Q_{n}	$\mathrm{CR}=0$ if X -axis mirrored	X	
$n=X, Y, Z, E$	$\mathrm{CR}=0$ if ${ }_{\mathrm{n}}$-axis mirrored	X	
TST QM	$\mathrm{CR}=0$ if metric dimensions	x	
TIM V1	record time from program start in seconds		
POS $X(Y, Z, E)$	axes traverse with external command		
STV	updating variables		

Axis Information

Format: $\quad+/-7$ digits, for instance 1.234567 or 123456.7

		\mathbf{X} - X-ax		(mm/inch)
		\mathbf{Y} - Y-axis		(mm/inch)
		\mathbf{Z} - Z-ax		(mm/inch)
		E - E-ax		(mm/inch/degrees)
		I - cen	cle (X-direction)	(mm/inch)
		J - cen	cle (Y-direction)	(mm/inch)
		K - cen	cle (Z-direction)	(mm/inch)
		R - radi		(mm/inch)
		D - vec	(polar coord.)	(mm/inch)
		A - ang	coord.)	(degrees)
M-functions	/	M (0. .99)	M-function (M0	,21,22,40,
Auxiliary				
Functions				effect)

Txx $\times x$	(0. .99) tool number (output as location number)
	(0. . 48) compensation group (activates tool length compensation)
$\begin{array}{r} F(0.001 \ldots \\ 120000) \end{array}$	feedrate ($\mathrm{mm} / \mathrm{min}$) or ($\mathrm{mm} / \mathrm{rev}$) time (sec)
S (0. .9999)	spindle speed (rpm)

Subprograms and	\$ (0. . . 99)	jump address or beginning of subprogram
Jumps	P (0. . .99)	SBP number / label number (used in call-up)
	L (0. . .99)	number of SBP repetitions (used in call-up)
Special Characters	(.......)	texts and comments
	N (1. . .9999)	block number
	$\begin{aligned} & \text { V (1. . . } 99 \text { and } \\ & \text { A. . .Z) } \end{aligned}$	CPC variables
Control Characters	STX -	Start of Text (beginning of a data block such as a part program)
	ETX -	End of Text (end of a data block, such as a tool table)
	EOT -	End of Transmission (end of the transmission of one or several data blocks)
	CR LF -	Record Separator (separates two records, such as 2 NC blocks). $6-6$

ASCII - Set of Characters

ASCla	Parity	7-Blt Code	ASCll	Parity	7-Bit Code	Meaning of the Character
Character	Bit		Character	Bit		
A	0	1000001	NUL	0	0000000	0
8	0	1000010	SOH	1	0000001	start of header
C	1	1000011	STX	1	0000010	start of text
D	0	1000100	ETX	0	0000011	end of text
E	1	1000101	EOT	1	0000100	end of transmission
F	1	1000110	ENG	0	0000101	enquiry
G	0	1000111	ACK	0	0000110	positive acknowledgement
H	0	1001000	bel	1	0000111	bell
1	1	1001001	BS	1	0001000	back space
J	1	1001010	HT	0	0001001	horizontal tabuiator
K	0	1001011	LF	0	0001010	line feed
L	1	1001100	VT	1	0001011	vertical tabuiator
M	0	1001101	fF	0	0001100	form feed
N	0	1001110	CR	1	0001101	carriage return
0	1	1001111	so	1	0001110	shitt out
P	0	1010000	St	0	0001111	shitt in
0	1	1010001	DLE	1	0010000	data link escape
R	1	1010010	DCi	0	0010001	DCon
s	0	1010011	DC2	0	0010010	control 2
T	1	1010100	DC3	1	0010011	DC off
U	0	1010101	DC4	0	0010100	controf 4
v	0	1010110	NAK	1	0010101	negative acknowiedge
w	1	1010111	SYN	1	-010 110	synchro
x	t	1011000	Eti	0	0010111	and of transmission block
Y	0	1011001	CAN	0	0011000	cancel
z	0	1011010	EM	1	0011001	end of medium (paper)
			Sư	i	OOİ 0	subsiliuie
0	0	0110000	ESC	0	-0011011	-scape (code switching)
1	1	0110001	FS	1	0011100	file separator
2	1	0110010	Gs	0	0011101	group separator
3	0	0110011	ES	0	$\infty 011110$	block separator
4	1	0110100	us	1	0011 :11	unit separator
5	0	0110101	SP	1	0100000	space
6	0	0110110	!	0	0100001	
7	1	0110111	.	0	0100010	
8	1	0111000	*	1	0100011	
9	0	0111001	\$	0	0100100	-
			\%	1	0100101	
a	1	1100001	\&	1	0100110	
b	1	1100010	-	0	0100111	
c	0	1100011	-		1100000	
${ }^{\text {d }}$	1	1100100	1	0	0101000	
-	0	1100101)	1	0101001	
1	0	1100110	*	1	0101010	
g	1	1100111	+	0	0101011	
h	1	1101000	,	1	0101100	
j	0	1101001	-	0	0101101	
j	0	1101010	.	0	0101110	
k	1	1101011	1	1	0101111	
1	0	1101100	:	\bigcirc	0111010	
m	1	1101101	;	1	0111011	
n	1	1101110	<	0	0111100	
0	0	1101111	$=$	1	0111101	
P	1	1110000	>	1	0111110	
9	0	1110001	?	0	0111111	
r	0	1110010	@	1	1000000	
s	1	:110091	[1	1011011	
t	0	1110100	1	0	1011100	
u	1	1110101	1	1	1011101	
v	1	1110110	\cdots	1	1011110	
w	0	1110111	-	0	1011111	
x	0	1111000	I	0	1111011	
y	1	1111009	1	1	1111100	
z	1	1111010	\}	0	1111101	
			\sim	0	1111110	
			DEL	1	1111111	

OUTPUTOFERRORMESSAGES

Definition

Example

Soft key operation for error display

The CC 100 M will transmit errors recognized internally to the interface controller. The error messages are output in coded form, one digit to indicate the error message group (0-2) and two further digits to indicate the error number ($01-88$).

E axis must be programmed alone
error number 39 - Text: E axis must be programmed alone
error message group 0

1. EDIT

Incorrect program blocks are automatically displayed with error numbers and descriptions.
2. MACHINE Incorrect entries in MDI are displayed automatically with error numbers and descriptions.
3. AUTOMATIC Incorrect program blocks, which are not recognized until RUN operation, cause program stop and a general error signal. To obtain information about the type of error you need to switch into INFO mode; there the error number and the description will be displayed.
Error message group 0: A14 Do

Data	Meaning
1	syntax error
2	syntax error
3	
4	system error H-Size overflow
5	system error N -H-Size overflow
6	system error L-H-Size overflow
7	system error R-Size overflow
8	system error D-Size overflow

repetition (L) without subroutine call cutter comp. programmed without tool this G code must be alone in block this G / M code is not allowed with TEACH IN or MDI max. 3 axes or A, D allowed R or I, J, K not allowed max. 2 axes out X, Y, Z allowed TIM, COR, or TRF must be alone in block max. 4 axes with value allowed max. 4 without value ailowed max. 2 axes out of X, Y, Z, E or A, D allowed enter Dwell time (F) unadmissible G number enter S without sign. value too large
with D, F, or R, zero not allowed repetition of address not allowed max. 2 coordinates out of I, J, K allowed no radius programmed with polar coordinates max. 2 axes with polar coordinates (A, D) max. 3 axes R or I, J, K enter jump target (P) jump target (P) allowed with G21/22/23/24 G code required with P or L axis without value not allowed only integer value this M code must be alone in block test not allowed unadmissible tool number E axis must be programmed alone input range 1 to 127 with $G 96, S$ value not allowed with $G 92, S$ value not allowed max. 4 axes or A, D allowed axis value not allowed max. 2 digits with $\$, P, L$ or M

Error message group 0:
A14 Do

Data Meaning
$46 \quad$ only 2 or 4 digits with T
47 too many digits
48
49
max. 1 axis with value allowed
max. 4 digits with S
50 sign. not allowed
51 input range 0.001 to 5
52
enter value
$\mathrm{Y}(\mathrm{es})$ or $\mathrm{N}(\mathrm{o})$ required
54
55
input range 0 to 999
56
input range 1 to 720
57
input range 0 to 4
input range 0 to 20000
input range 0 to 50000
input range 0 to 90000
input range 1 to 1000
input range -9999 to 9999
input range 0 to 100
input range 0 to 3
input range 0 to 359.999
input range 0 to 5
input range 1 to 100
E not allowed
F not allowed with Go
only X, Y, Z allowed
only P, L allowed
only X, Y, Z, E allowed
only X, Y, Z, E or M, T allowed
only X, Y, Z, E or F, S, M allowed
only X,Y, Z, E or S allowed
input range -100 to 100
$D R$ value $=-10 \%$ to $+10 \%$ of $R(1 \mathrm{~mm}$ or 0.05 i max)
input range 1 to 50000
with TEACH IN or MDI P, L not allowed
M 19 must be programmed alone or with S
incorrect input of variables
incorrect variable number
input range12 to 48
input range 256 to 32767
M 06 must be programmed alone or with tool number
input range -10000 to 1 or to 10000
input range 0 to 9999
87 input range to 9999
88 address modification must be alone in block
89 message has to start with "("
Data Meaning
$32 \quad$ M3 or M4 missing

35

36

37

38
39 input missing

42
43
44

5 G code not allowed in automatic mode
6 bad polar radius programmed
$7 \quad$ G95 and M5 or S value $=0$

11 incorrect circle defintion
12 centre coordinates incorrect
18 no intersection possible parallel lines
19 no intersection possible line / circle
20 no intersecition possible circle / circle
21 tool radius too large (4)
22 the circles are not tangent
23 M 30 or M 2 required
24 jump target not found
25 max. 10 subroutine levels
26 cycle does not exist
27 G99 and no subroutine acitve
28 M2 or M30 seen with cutter comp. active
29 G code not allowed with cutter comp. active
$30 \quad$ Highest spindle speed exeeded
31 1. gear range defined incorrectly
33 gear range unadmissible
34 G99 with subroutine or M2 with cycle

40 rotary axis with circular interpolation
41 incorrect position programmed with E axis

Meaning

no previous movement before G5
full circle programming not allowed
radius value null or missing
negative root

G5 not allowed following Go
programmed radius was rounded
tool radius too large (1)
tool radius too large (2)
tool radius too large (3)
tool radius too large (5)
no intersection possible parallel lines
no intersection possible line / circie
no intersecition possible circle / circle
tool radius too large (4)
the circles are not tangent
M 30 or M 2 required
jump target not found
max. 10 subroutine levels
cycle does not exist
G99 and no subroutine acitve
M2 or M30 seen with cutter comp. active
G code not allowed with cutter comp. active
Highest spindle speed exeeded

1. gear range defined incorrectly

M3 or M4 missing
gear range unadmissible
G99 with subroutine or M2 with cycle
no feed programmed with G75/94/95/93

cycle end is M2

subroutine end is G99
preset not allowed with active zero shift

The control will display the messages in clear text.

Error message group 1:

Data Meaning

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
cycle unadmissible with cutter comp.
unadmissible value for G code
G code unadmissible with mirror function
G code unadmissible with cutter comp.
one movement missing for cutter comp.
block modified or not executed due to cutter comp. max. 2 axes out of X, Y, Z, E or A, D allowed
V95 must be 0 or 1
transfer not possible
reentry not allowed with G84
probe not triggered unadmissible jump target double definition of axis (polar) max. 1 axis with G2/3/5 and polar programming max. 3 axes with G2/3/5

GO/1/5 and radius or I, J, K not allowed G2/3 with radius and I, J, K not allowed no new cutter comp. with G2/3/5 G21/23 with cutter comp. not allowed cutter comp. not allowed without tool number G40/41/42 not allowed with G2/3/5 no G2/3/5 following a zero shift

G96 not allowed with S value spind. speed calcul. not possible, tool radius $=0$ G92 not allowed with G41/42/T G code not allowed with cut. or length comp. new plane not allowed with cutter comp. V95 must equal 2 or 3 division by zero coordinates do not comply with active plane no tool active unadmissible tool number unadmissible G number V91 must equal 1 or 2 this zero shift is already active DR value $=-10 \%$ to $+10 \%$ of R (1 mm or 0.05 i max.) spindie orientation not possible calculation not possible angle range -180 to +180 deg.

The control will display the messages in clear text.

Error message group 2:	
Data	Meaning
1	99 programs exist
2	memory full
3	memory too small for jump target table
4	check sum error
5	undefined jump target
6	parity memory
7	duplication of jump target
8	69 CYCLES exist
9	memory too small to copy
10	file protected
11	
12	unadmissible file
13	file already exists
14	device not ready
15	parity error
16	incorrect data format
17	incorrect baud rate
18	timeout period expired
19	no corresponding file type
20	TEACH IN
21	movement not allowed with E, 2 blocks created
22	memory error, switch off
23	reference cycle does not exist
24	interruption, abort with clear block
25	inch / metric selection incorrect
26	no corresponding cycle
27	undefined key
28	reference not allowed with length comp.
29	movement not allowed, 2 blocks created
30	
31	warning sent by PLC
32	too many characters for one block
33	bad value for tool table size
34	size of memory changed, memory cleared
35	no machine reference, send axes to reference
36	
37	
38	
39	circle calculation not possible
40	limit

Data	Meaning
41	emergency stop
42	servo error
43	measuring system: marker missing
44	measuring system: not connected
45	measuring system: pulse is iost
46	measuring system: no feedback
47	bad axes parameters
48	gearbox not OK
49	interpolator stop error
50	axis error
51	code:
52	$T(s)$
53	lmn
54	lrev
55	conflict between hardware and software, NC stopped

A

- Access levels 2-3
- Addition 4-7
- Addresses 3-14
- Arc tangent 4-9
- Arithemetic functions 4-7
- ASCII character set 6-10
- ASCII control characters 1-7 6-3
- Automatic2-9
B
- Battery1-5
- BEQ / BGE / BGT / BLE / BLT / BNE 4-15
- Block number 3-3- Block selection- Boring
2-4
- Boring cycles3-61
- BRA4-12
- Branching conditinal 4-13
- Branching unconditional 4-12
- BSR 4-12
- Buffer battery 1-5

- Calculation cycles	3-76	
- Calculation end point - straight line	3-85	
- Calculation end point - arc	3-83	
- Cancelling compensation	3-41	5-11
- Chamfering	3-81	
- Change compensation	5-12	
- Checksum	1-22	
- Circular interpolation	3-22	
- Commands	2-3	
- Component parts	1-2	
- Conditional jump	3-34	4-13
- Conditional subroutine call	3-31	
- Condition register	4-13	
- Contour cycles	3-76	
- Contour transitions	3-46	5-8
- Control signals	1-6	
- Control characters	6-3	
- Copy tool data	4-10	
- COR	4-10	
- Corner rounding	3-81	
- Cosine	4-9	
- CPC programming	4-1	
- CP/MEM	1-5	
- Cursor function	2-4	
- Cutter centre path	3-45	
- Cutting path	3-45	
- Cutting speed	5-1	
- Cutting speed calculation	3-72	
- Cycles	2-21	3-2
- Cycles, MTB fixed	3-87	

D			
- Data interfaces	$1-5$	$2-20$	
- Data interfaces V.24	$1-6$		
- Data interfaces 20 mA	$1-6$		
- Data lines	$1-9$		
- Decrement	$4-8$		
- Deep hole drilling	$3-51$		
- Delete	$2-4$	$2-14$	$2-23$
- DFS hearder	$1-19$		
- Dimensional units	$2-3$	$2-5$	$2-15$
- Dimensioning	$3-67$		
- Division	$4-7$		
- Drilling	$3-55$		
- Drip feeding	$3-9$		
- Dwell time	$3-27$		

E

- Edit
- Editor
- Effect of feedrate
- End point calculations

2-3
2-4

- Entry into contour
- Error messages - display
- Error message listing

3-45

- Error messages - output

6-9
6-8

- External VDU monitor

1-5

F			
- F-address	$3-14$		
- Feed, linear interpolation	$3-21$		
- Feedrates	$3-70$	$5-1$	
- Feedrate 100\%	$3-44$		
- Field limitation	$3-36$		
- File header	$6-3$		
- Fixed cycles	$3-49$,	$3-75$,	$3-87$
- Fixed MTB cycles	$3-87$		
- Fixed machining cycles	$3-49$		
- Forms	$4-3$		
G			
- G-functions	$3-20$		
- G-code, three digit	$3-75$		
- Gear ranges	$3-16$		
H			
Header			

-1-address	3-22	
- Increment	4-8	
- Information	2-13	
- Inch/metric switching	2-18	
- In position logic	3-43	
- Insert	2-4	
- Interface V. 24	1-5	
- Interface 20 mA	1-5	
- Interpolation in feed	3-21	
- Interpolation in rapid	3-20	
- Intersection circle / circle	3-78	
- Intersection line / circle	3-79	
- Intersection line / line	3-86	
- J-address	3-22	
- Joining	3-80	
- Jump after comparison	4-16	
- Jump conditional	3-34	4-13
- Jump instructions	3-5	3-32
- Jump unconditional	3-35	4-12
K		
- K-address	3-24	
- Keys, programmable	3-87	

L	
L	
- L-address	$3-32$
- Linear interpolation in feed	$3-21$
- Linear interpolation in rapid	$3-20$
- Linear interpolation in rapid with	
extended in position range	$3-28$
- Load functions	$4-6$
- Load tool store	$4-10$
M	
- M-address	$3-15$
- Machine	$2-5$
- Machine status display	$2-14$
- Main modes	$2-1$
- Manual machine operation	$2-5$
- Manual panel	$1-4$
- Measuring probe input	$3-48$
- Memory	$2-3$
- Memory allocation	$3-2$
- Messages	$6-9$
- Minicass operation	$1-15$
- Mirroring	$3-39$
- Modify	$2-4$
- MTB cycles	$3-87$
- MTB service	$2-13$
- Multiplication	$4-7$

N/O			
- N -address	3-3		
- Operating panel	1-3		
- Operating panel connection	1-5		
- Operating program	1-5		
- Operator instruction programming	3-18		
- Outside corners	5-15		
P / Q			
- P-address	3-31	4-12	$4=15$
- Panel	1-3		
- Part programs	2-20	3-2	
- Plane selection	3-28		
- Polar coordinates	3-30		
- Position stores	3-68		
- Priority routine	3-87		
- Program header in DFS format	1-19		
- Programming code	6-1		
- Programming key	6-1		
- Program planning	4-2		
- Program production	3-1		
- Program transfer	2-20		
- Programs	2-21	3-2	

R

- R-address
- Radius compensation
- Rapid, linear interpolation
- Reaming
- Reentry
- Reference axes
- Reference cycle
- Registering time
- Reset
- Reset conditions
- Rounding corners

S

- S-address

3-16

- Setting a pole

3-30

- Setting condition register

4-13

- Setting position stores

3-68

- Sine

4-9

- Spindle speed

3-72

- Spindle speed 100%
- Square root

3-44

- Start conditions
- Status display
- Subdlvision of VDU display
- Subroutine call
- Subroutine call, conditional

4-7
2-2
2-13
2-2

3-32

- Subroutine end

3-74

- Subtraction

4-7

- Suppression of contour elements

5-14
3-23

3-20
3-63
2-10

4-8
2-13
2-2
3-79

3-5

3-41 5-2 5-5

2-5 3-47
2-5 3-87

3-33

- T-address	3-14	5-4	
- Tangential entry	3-26		
- Tapping	3-59		
- Teach In	2-7		
- Terminal V. 24	1-5		
- Terminal 20 mA	1-5		
- Thread milling	3-65		
- Three digit G-codes	3-75		
- TIM	4-8		
- TRF	4-11		
- Time programming	3-27	3-70	4-8
- Time registering	4-8		
- Tool compensation	3-41	5-1	
- Tool data transmission	2-25	3-19	
- Tool length com.	5-3		
- Tools	3-19	4-10	5-1
- Tool store loading	4-10		
- Tool technology	5-1		
- Transition point arc/arc	3-84		
- Trigonometric functions	4-9		
U			
- Unconditional branching	4-12		
- Unconditional jump	3-35		
- User programmable keys	3-87		
V			
- Variables	2-12	2-25	3-19
- Variable transmission	2-25	3-19	
- VDU monitor	2-2		
- V. 24 interface	1-5		

W/X/Y/Z

- X-address
 3-3

- Y-address 3-3

[^0]: Reset Conditions

 Note
 Immediately after switch-on the following modal conditions are active:

 G1 linear interpolation
 G17 plane X / Y
 G39 programmed mirror image off
 G40 radius compensation off
 G53 no zero offset
 G62 in position operation off
 G65 programmed feedrate applies to cutter centre path
 G66 feedrate and spindle speed can be modified
 G68/ G69 contour transition as arc/intersection (dependent on machine parameter)
 G80 no fixed cycle active
 G90 absolute dimensions
 G94 feedrate in $\mathrm{mm} / \mathrm{min}$
 G97 direct spindle speed programming
 scale for factor 1
 no feedrate effective

 These modal conditions are active in all main modes.

 The G-codes which become active on switch-on are denoted with an " A " in the following descriptions, i.e. G39A.

 When working in AUTOMATIC or MACHINE mode the control will output the following types of messages, as and when appropriate:

 MESSAGE xxX - further operation possible

 ERROR $x x x$ - further operation is inhibited

 The content of the message can be displayed in INFO mode.

[^1]: Example G17
 Setting a pole in plane $X Y$ (polar plane) at position $X=100 \quad Y=200$

[^2]: Note When the values are mirrored for just one axis the control converts
 G41 into G42 and G3 into G2 etc. internally. See also examples II and IV.
 This is not the case when the values for 2 axes are mirrored.

