SIEMENS

Programming instructions

SINUMERIK 8M/8MC/ Sprint 8M

Programming instructions

Edition 9.84

Program Format	Chapter 1
Path Information	Chapter 2
Preparatory Functions	Chapter 3
Miscellaneous and Auxillary	Chapter 4
Parameter	Chapter 5
Blue Print Programming	Chapter 6
Sprint 8M	Chapter 7
Appendix Intersectional Cutter Radius Compensation Input System, Diagrams, Tables Program Keys Chapter 8.1	Chapter 8.2 Chapter 8.3

```
SINUMERIK - Documentation
```

Key to editions

Up to the present edition, the editions below have been issued.
In the column "alterations" the chapters are listed which have been altered with respect to the preceeding edition.

Edition	Order Number	Alterations
E. 3.80	E321/1737-101	First edition
E. 9.80	E321/1753-101	Revised edition
E. 3.81	E321/1795-101	Revised edition
E. 11.81	E321/1883-101	Revised edition including 8 M
E. 4.82	E321/1883-101	$\begin{aligned} & 5.1-10,3-24,3-34,3-38 \\ & 3-56,4-2,5-9,7-15, \\ & 7-17,8-26,8-27,8-28 \end{aligned}$
E. 4.83	E321/2028-101	Revised edition
E.9.83	E321/2106-101	Revised edition
E.9.84	E80210-T6-X-A8-7600	S. $0-1,1-7,1-8,1-9$, 2-2, 3-60,bis 3-66, 4-4, 6-1, Chapter 7-6 canceld

Table of Contents Page

1.

Program Format

1-1
1.1 Perforated Tape Coding 1-1
1.2 Address Characters 1-2
1.3 Word Address System 1-4
1.4 Variable Block Format 1-6
1.5 Leader 1-8
1.6 Comments 1-8
1.7 Part Program 1-9
1.8 Subroutines 1-10
1.9 Subroutine Call, Subroutine Nesting 1-12
1.10 Perforated Tape Format 1-13
1.11 Tape format for program deletion 1-14
2. Path Information 2-1
2.1 Motion Dimension 2-1
2.2 Mirror Image 2-3
3. Preparatory Functions 3-1
3.1 G90/G91 Absolute and Incremental

Dimension Programming 3-2
3.2 G00 Rapid Traverse 3-3
3.3 G01 Linear Interpolation (Reset state 1st G-group)3-4

3.4 G10/G11 Polar Ccordinate Programming*

3-5
3.5 G02/G03 Circular Interpolation 3-7
3.5.1 Circular Interpolation Using Interpolation Parameters

3-9
$\begin{array}{lll}\text { 3.5.2 Example: Circular Interpolation Using } & \\ & \text { Interpolation Parameters } & 3-10\end{array}$
3.5.3 Circular Interpolation by Specifying
the Radius (P$)^{*}$
3.5.4 Example: Circular Interpolation by Specifying the Radius 3-11
3.5.5 Helical Interpolation* 3-12
3.6 G33 Thread Cutting * 3-14
3.6.1 Constant Lead Tapered Threads 3-15
3.6.2 Feed Direction 3-17
3.6.3 Variable Lead Thread 3-18
3.6.4 Multiple Thread 3-18
3.6.5 Thread Cutting With a Boring Bar 3-19
3.7 Feed Acceleration Ramp Time for Thread Cutting

3-21
3.8 G09 Deceleration

G60 Exact Positioning (Reset state 10th G-group)

3-22
3.9 G63 Tapping with a Flnating Tap Holder 3-23
3.10 G64 Contour Machining 3-23
G92P, Normalized Diameter for the
Unit Circle * 3-24
3.11.1 Milling Cylindrical Contours * 3-25
3.12 G04 Dwell Time 3-26
3.13 G70/G71 Input System 3-27
3.14 G25/G26 Programmable Safe Zone 3-28
3.15 Zero Point Offset (ZO) 3-29
3.15.1 G54/G55/G56/G57 Settable Zero Point Offset 3-30
3.15.2 G59 Programmable Additive zero Offset 3-32
3.15.3 G53 Cancelling the zero offset 3-34
$3.15 .4 \quad$ G53 Cancelling the ZO from software
stand 02.
3.16 G92 Position Register Preload 3-37
3.17 G94/G95/G96/G97 Feed F; M36/M37 3-40
3.18 G96 S... Constant Surface Speed (V=const.) * 3-44
3.19 G92 S... Programmable max. Spindle speed 3-45
3.20 G26 S... Actual Spindle Speed Monitor $\quad 3-45$
3.21 Machining Plane Selection

3-46
3.22 G40/G41/G42 Intersectional (look ahead)

Cutter Radius Compensation
3-47
Tool Offset 3-49
3.23

G40/G43/G44 Tool Length Offset and
Axis Parallel Cutter Radius Compensation
$3-52$
3.25 G43/G44 Tool Length Compensation on an incline 3-55
3.25.1 G43/G44 tool length compensation with arcs 3-57
3.26 Cutter Radius and Tool Length Offset Used Together in a Proqram

3-58
3.27 G36/G37 Coordinate transformation*, 3-59 TRANSMIT (from software stand 02)
4. Miscellaneous and Auxillary Functions M, T, S, H
4.1 Function S
4.2 Auxillary Function H 4-2
4.3 Tool Function T 4-2
4.4 Miscellaneous Function M 4-3
5. Parameter 5-1
5.1 Parameter Definition 5-2
5.2 Assigning Parameters in a Program 5-2
5.3 Parametric Operations 5-3
5.4 Parameter Chaining 5-4
5.5 R-Parameter Assignment Under Address "L" 5-7
5.6 An Example of a Subroutine Using Parameters 5-8
5.7 Buffer Store Empty, L999, for intended influences on the Program

Page
6. Canned Cycles 6-1
6.1 Boring Cycles G81 - G89 6-1
6.2 Examples of Limitations in Cycle Call-Up 6-8
6.3 Subroutine Pattern L900 to L905, Switchable Axes in X, Y, Z * 6-18
6.4 Subroutine Boring Pattern L905, Machining $\begin{aligned} & \text { Axis } Z^{*}\end{aligned}$ 6-19
$6.5 \quad$ Subroutine Milling Pattern "Groove" L901, \quad Machining Axis Z ${ }^{2}$, 19
6.6 Subroutine Milling Pattern "Groove" L902 * 6-21
$6.7 \quad$ Subroutine Milling Pattern "Elongated \quad Hole" L903, Machining Axis $Z^{*} \quad 6-22$
Subroutine Milling Pattern "Elongated
Hole" L904, Axes Switchable in X, Y, Z *
7. Sprint 8M 7-1
7.1 Word Address System 7-1
7.2 Motion Dimension, 4th Axis 7-1
$\begin{array}{ll}7.3 & \text { Circular Interpolation with Interpolation } \\ & \text { Parameters }\end{array}$
7.4 Helical Interpolation * 7-3
7.5 Constant Lead Tapered Threads 7-4
7.6 G54/G55/G56/G57 Settable Zero Point Offset 7-5
7.7 G17/G18/G19 Machining Plane Selection 7-7
7.8 G40/G41/G42 Intersectional Cutter Radius Comp. 7-8
7.8.1 Imtersect. CRC with simult.TL-ZO G43/44 7-8
7.9 Tool Offset 7-11
7.10 Tool Function T 7-15
7.11 Blue Print Programming 7-17
7.11.1 Geometric Path Programming 7-18
7.11.2 $\quad \begin{aligned} & \text { Geometric Path Programming with GO9, F, S, } \\ & \\ & \mathrm{T}, \mathrm{H} \text { or } \mathrm{M}\end{aligned}$
7.11.3 Linking Geometric Path Blocks 7-23
7.11.4 Examples 7-24
7.11.5 $\quad \begin{aligned} & \text { Miscellaneous and Auxillary Functions in } \\ & \text { Linked Blocks }\end{aligned}$
8. Appendix 8-1
8.1 Intersectional Cutter Radius Compenstion (CRC) 8-2
8.1.1 Selecting the CRC 8-2
8.1.2 CRC Used in a Program 8-3
8.1.3 Repeating the Already Selected G-Code (G41/G42) with the same Offset Number 8-7
8.1.4 CRC Cancellation 8-8
8.1.5 MOO, MO1, MO2, M30 with CRC selected 8-10
8.1.6 Combination of Different Types of Blocks 8-11
8.1.7 Special cases when Using the CRC 8-16

Table of Contents (continued) Page

8.2	Input Systems, Diagrams, and Tables	8-19
8.2.1	Inaccurately Specifying the Interpolation	
	Parameters or the Arc Radius	8-19
8.2.2	Reference Point Definitions	8-20
8.2 .3	Path Departure Calculation	8-21
8.2 .4	Limit Data for Rotational Feedrate	8-22
8.2 .5	Spindle Speed as a Function of the Turning Radius for $V=$ Constant	8-23
8.2 .6	Input Formats	8-24
8.2 .7	Axis Numbers	8-25
8.2 .8	Drilling Cycles 8M/8MC, - Axes Switchable	8-26
8.2 .9	Special case with carncel distance to	go 8-29
8.2.10	Block peparation time	8-30
8.3	Programming Keys	8-31
8.3 .1	Programming Key for 8M.	8-31
8.3 .2	Programming Key for 8MC	8-33
8.3 .3	Programming Key for Sprint 8M	8-35

0.1 System of the programming instructions and general notes on them

The chapters 0 to 6 describe those functions which the controls $8 \mathrm{M}, 8 \mathrm{MC}$, and Sprint 8 M have in common. Deviations and additional functions are there with Sprint 8M.
These characteristics are summarized in chapter 7/8. Special applications and notes see chapter 8.

The examples in chapter $0-6$ have been programmed for $8 \mathrm{M} / 8 \mathrm{MC}$ with notes concerning the deviations with Sprint 8M.

The following assumptions are made in the programs used for these programming instructions.

1. The user datum decimal point input is set.
2. The decimal point is written even when it is automatically generated.
3. Block construction is in accordance to DIN 66024, DIN 66217, ISO R 1056, ISO R l057, and ISO R 1058.
4. The programming examples are written in ISo code.
5. All geometric values are metric. For conversion into inch see chapter 8.
6. The maximum values given are limit values for the control. They can be limited in practice by the machine, interface and input/output devices.
7. These programming instructions are designed for the maximum functional range of the control. Functions to be realized by options may be gathered from the catalogues and technical description.
8. For better understanding preparatory functions are even programmed, if these are commands with reset position.
9. The contents of these programming instructions can be found in the fold-out program key.
10. Functions not included in this manual may be available in the control. However, this does not guarantee that these functions will be available with new equipment or in the case of service. We reserve the right to amend these instructions for technical reasons without prior notice.
11. Functions marked with "*" are not included in the basic model of the control.

1. Program Format

1.1 Perforated Tape Coding

The data on the perforated tape is coded according to strictly defined guidelines. Each hole combination defines a unique character. Two perforated tape codes are permissible.
(DIN66025, ASCII)
EIA RS 244B
The control automatically recognizes the perforated tape format. The coding format is determined on reading the first resp. EOR or LF resp. EOB (setting data) Individual perforated tapes must be coded in one of the allowable codes. It is not permissible to change codes within the same tape nor is it permissible to splice tapes together using different codes. Failure to observe the aforementioned will cause the control to signal a character parity alarm.

The characters in each code are defined to have even or odd parity:

EIA RS 358B even number of holes
EIA RS 244B odd number of holes
The even/odd criterion is used as a simple program check following the first character read. The block parity monitors for an even number of characters within a block of data. A block with an odd number of characters is made even by writing the characters "HT", "SP", or "DEL". Block parity checking can be selected.

As an additional tape read check, a double tape read is performed by the control. The control reads the program into memory then performs a second read while making a character by
activated with a machine parameter.
If a character mismatch occurs tape read is halted and a read error is displayed on the control operator panel. The word address tape format is defined by DIN66025 (ISO R1056) and is in general agreement with EIA RS 274C.

1.2 Address Characters

All characters are read by the control. However, an executable block is assembled using only legal address characters.

EIA RS 358B (ISO code)

LF is displayed as an *

EIA RS 244B

Address Words	$\begin{aligned} & a, b, c, d, e, f, g, h, i, j, k, \\ & l, m, n, o, p, q, x, s, t, u, v, w, \\ & x, y, z \end{aligned}$
Digits	$1,2,3,4,5,6,7,8,9,0$
Reserved Characters	EOR, (,), +, -, /, ., e
Non Printable Characters	Tab Space Delete CR Carriage Return EOB End of Block

INPUT READ	OUTPUT TO PRINTER/PUNCA
Ignored Characters	
The following characters are	The following characters are
neither processed nor stored	generated.
Tab	
Space (Except within a com- ment)	Space (following every word but not
within a coment)	
Delete	
EOB	CR (is generated and output twice

NOTE: (,), @ are GN defined character codes, see appendix 8.2.7 CR/EOB is displayed as an *

1.3 word Address System

(Word address system with Sprint 8 M see 7.1)

Explanations:

1st address character	address	
2nd address character	L	absolute, incremental
2nd address character	D	incremental
Sign	\pm	absolute dimension value, signed negative (+ not required)
1st digit	0	leading zeros can be omitted: variable word length
2nd digit	decades	adjust digit sequence
2nd and 3rd digit	decades	adjust digit sequence before and after the comma (coordinate values X, Y, Z, I, J, K in mm)
Sign	*	End of block

A word consists of an address followed vy a signed or unsigned digit sequence.
The word address format and thereby the input format is defined by EIA RS 274-C and DIN 66025.

8M: Inch
\%04 N04 G02 XL+044 YL+044 ZL+044 UL+044 ID044 JD044 KD044
AL+035 PD044 F05 S04 H06 DO3 T04 L5 R2 RL+08 MO2 *
Metric
q04 N04 G02 XL +053 YL +053 ZL +053 UL +053 ID053 JD053 KD053
AL+035 PD053 F05 S04 H06 DOB T04 L5 R2 RL+08 M02 *
8MC: Inch
\%04 N04 G02 XL+044 YL+044 ZL+044 EL+044 BL+044 CL+044 UL+044 VL+044 WL+044 QL+044 ID044 JD044 L5 PD044 AL+035 F05 S04 T06 H06 D03 R2 RL+08 MO2 *

Metric
\%04 N04 G02 XL+053 YL+053 ZL+053 EL+053 BL+053 CL+053 UL+053 VL+053 WL +053 QL+053 ID053 JD053 L5 PD053 AL+035 F05 S04 T06 H06 D03 R2 RL+08 MO2 *

Example:

Word			Using Decimal Point Pro- gramming		Without Decimal Point Pro- gramming	

Decimal point programming is possible with the following addresses: X, Y, Z, U, V, W, I, J, K, A, B, C, (D), E, F, R.

If the input system is modified (decimal point input or input without decim 1 point) it is important to observe that the zero offsets and tool offsets etc. arc modificd accordingly. There is no automatic updating of these values.

1.4 Variable Block Format

A block consists of several words terminated by the "End of Block" character.

Block length is variable and can have a max. of 120 characters.
An example of a block:

Two types of blocks exist

Main block

Subordinate block

Main block (:)
Subordinate Block (N)
A main block contains all necessary information required to start the muchining sequence at that point. Contains all functions that may change from block to block

The block scquence numbers are not necessarily sequentially
numbered (N 1 to N 9999). A numbering sequence can be interrupted arbitrarily, e. g. an edited or inserted block may have a sequence number several orders of magnitude higher than the preceeding sequence number.

At times it is desirable not to execute an entire program, but instead to delete certain program operations. An example would be a part gaging sequence not necessary for every program run. By using the block delete symbol "/" (slash), those program sections not executed every run will be ignored by the control when the skip key (Block delete) has been activated.

The block deleter "/" is placed in front of the block sequence number:
/: Main block deletion
\mathbb{N} Subordinate block deletion
The block preceding the deleted block must agree with the block succeeding the deleted block. If the blocks (preceding and succeeding) do not agree, the program will execute incorrectly when activating and deactivating the block deletion button"skip".

If $L 999$ is programmed in the block preceeding the deleted block, the block deletion button "skip" is active during machining.

Note:

Because of a quick block changeover, several blocks are temporarily stored. When the machine stops because of M00, the following blocks are already stored. The use of "Block delete", however, is only effective with blocks which are not temporarily stored. The temporary storing can be prevented by programming $L 999$ after the MOO-block (see also chapter 5.7).

1.5. Leader

The leader is used to differentiate between different tapes. All tape characters are allowed in the leader, with the exception of $\%$ if $\%$ is used for automatic code recognition or LF if LF is used. The leader is ignored by the control and is not stored.

1.6. Comments

Program blocks can be clarified by using comments. It is possible for the operator to view comments on the display (in the p.p.-picture).

Within a comment all characters except $\%$ or LF are legal. A comment between M02/M30 and a further M-function is not allowed. N...M30 (comments) M40 LF is therefore not allowed.
A comment may contain up to a maximum of 29 characters, if more are required then several comments may be programmed consecutively.

Within a comment, there should also be no statement N followed by a number since during block advance the expression in brackets will be read and then N 1234, e.g. would be read as block number.

Example:
N20 ... M00 L999 LF
N25 G26 X 10.25 Y 15.305 (MAX. SAFE ZONE)
(MANUAL CHANGE POSSIBLE)
Incorrect Correct

A comment cannot be placed between a word and its associated parameter or between address and number.

1.7. Part Programm

A part program describes the execution of a work process and contains the part program itself with possible subroutine and/or stored cycle calls.

The program memory may contain a maximum of 199 user programms.

The separation in part programs and subroutines is arbitrary. Stored'cycles and user defined cycles provided by the machine tool builder are stored in a protected memory area.

qLF			
N5 G91	G01	X50. F100.	LF
N10	Z100.	LF	
N15	X-30.	LF	
N20	Z-10.	LF	
N25.M30		LF	

\% 1357

LF
Program start when only program is stored in the program memory.

If the program is enterd from the operator's panel, sequence numbers are automatically generated by the control in intervals of five, after the first block has been entered. By pressing the "CANCEL" key, the control generated sequence number is cleared and a different sequence number can be entered.

1.8. Subroutines

Repetitive patterns and function cycles can be stored as subroutines which can be called arbitrarily by the part program and other subroutines. It is possible to store 199 user programs at the same time in the program memory.

The separation into part programs and subroutines can be made arbitrarily. The numbers L080 to L099 and L900 to L999 can be inhibited.

Subroutine definition:

The definition is designated

- under address L with either 2 or 3 digits and 2 trailing zeros. When entering manually the zeros are automatically generated they must be entered though, from tape.
- optionally either alone without block number or together with other functions in the first block.

The end of the subroutine is defined

- with M17, either alone in an own block or together with other functions except the L-address - in the last block.

The following definitions are possible:

1. Recommended standard version
Ll2300 N5 G00 X. LF

N10..
-
-
N. . G00 G90 X. . M17 LF
2. Another permissible possibility

L12300
N5 G00 X. LF
N10 ..
-
N. G00 G90 X. IF
N. M17 LF
3. Smallest subroutine possible

Ll2300 N5 G00 G91 X... LF
N10 M17 LF
or
L12300 LF
N5 G00 G91 X.. M17 LF
4. Path-line machining program with calculation of intermediate points without intermediate stop.
(Machine datum "M17"' without 'Auxiliary function output' is set.)
L12300 N5 GO1 XR.. YR.. LF
N10 M17 LF

Presupposition: interface signal "cycle inhibit" set.

Subroutine-call

The subroutine-call is made by a part program with an L-address. Nesting up to three deep (4 levels) is permitted, when the call is made from the part program.

Call with 2 to 5 digits
Number of complete sweeps has to be set with 2 digits. No definition means only one complete sweep.

The number of the subroutine has to have 2 to 3 digits (01.. 999)
A subroutine call is not permitted in a block containing $\operatorname{MO} 2, \mathrm{M} 30$, or M17. If a subroutine call is made when the CRC ($G 41 / G 42$) is selected, the CRC is active according to the traverse information programmed in the first and last subroutine block (according to chapter 8.1.6 - "Block without traverse information").

1.9 Subroutine Call, Subroutine Nesting

Part program $\% 9534 \mathrm{LF}$	Subroutine L12300	Subroutine L12400	Subroutine L12500

Subroutine Call

2 Deep Nesting

3 Deep Nesting

1.10 Perforated Tape Format

\{ \} characters between braces may be ommitted
SR Subroutine
The input sequence for the above tape is arbitrary.

The classification of the memory in part programs and subroutines takes place automatically.

Zero offset and tool offset are inserted in the corresponding memory zones under the code TO (Tool Offset) and 20 (Zero Offset).

1.11 Tape format for program deletion

Using this function it is possible to delete main programs and subroutines in any particular order from the universal input/output interface.

PROGRAM DELETION	- Leader
$\%$ CL LF	- Identification (CLEAR)
$\% 1234 \mathrm{LF}$	- Delete part program \%1234
$\% 1 \% \% 1200 \mathrm{LF}$	- Delete part programs \%1 to \%1200
L10 LF	- Delete subroutine L10
L11 L99 LF	- Delete subroutines L11 to L99
L81 LF	- Delete subroutine L81
M30 or M02 LF	- End of program identification M30 or M02

Example:

| $\% \mathrm{CL} \mathrm{LF}$ | $\% 1 \mathrm{LF}$ | L 55 LF | $\% 1 \% 1200 \mathrm{LF}$ | L 11 | L 99 LF |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Program	Delete	Delete	Delete part	Delete subroutines
deletion	program \%1	subroutine	programs	L11 to L99
		L55		\%1 to \%1200

L89 LF	M30 or MO2 LF

Attention:

Subroutines L80-L99 and L900-L999 may not be deleted with cycle lock active !

2. Path Information

2.1 Motion Dimension

Rotary_Axes

- Are axes set as rotary axes, they must be specified as such with a machine parameter.
- The dimension value for a rotary axis must always be programmed three positions to the right of the decimal point, when decimal point programming is active, even though the rest of the dimension input is in the 10^{-4} inch system.
- Rotary axes can be programmed to ± 256 revolutions. This represents a range of $\pm 92159.999^{\circ}$.

A dimension word consists of an axes specific address and a dimension value. The dimension value is stored under an axis address.

8M:
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and for the fourth axis addresses $\mathrm{A}, \mathrm{B}, \mathrm{C}$, E, Q, U, V, and W can be used.

8MC:

X, Y, Z, U, V, W, B, C, E, Q
(Motion dimension with Sprint 8 M - see chapter 7.2)

2.2 Mirror Image

Input signals are used to designate which of the primary motion axes (eg. XYZ or any combination thereof) will be mirrored. The primary motion axes are defined by machine parameters. The mirroring of axes results in the sign reversal of the dimension values. (or exchange)

For the Primary Motion Axes the Following Holds True

- Sign reversal of the dimension values (including G92 actual position register store)
- Rotation direction GO2 - G03; G03 - GO2 Changed from G02-G03
- Single axis mirrored in the CRC plane ; to GO3-G02 $\mathrm{G} 41 \rightarrow \mathrm{G} 42$ changed to $\mathrm{G} 42 \rightarrow \mathrm{G} 41$.
- Dual axis mirrored in the CRC plane: G41 \rightarrow G41, G42 \rightarrow G42, GO2 \rightarrow GO2, GO3 \rightarrow GO3
- Length offset values with slected CRC

The Following Values are not Mirrored:

- Length offset dimensions with selected CRC
- Zero offset dimensions
- DRF - offset
- Preset offset

Mirroring the primary motion axis also mirrors the part contour.
Note:

Because of a quick block changeover, up to 11 blocks are temporarily stored. If the control is to react to the "mirror image" input signal (e.g. selected by a M-function) in the following block, then care must be taken that the intermediate memory is cleared. The intermediate storing can be prevented by programming L999 immediately after the block selecting mirror image (see also chapter 5.7).

```
    Mirrored Part
    Programmed Part
```



```
M = machine zero point
W = work piece zero point
P = cutter radius
z0 = zero offset
```


3. Preparatory Functions

The preparatory functions describe the manner in which the machine slide is to move, the method of interpolation, the dimensioning mode, the timed delay of program execution, and the activation of specific operational modes in the control.

The preparatory functions are categorized into groups Gl thru G14 (see the programming key).

A programmed block contains only one preparatory function from each of the 14 groups. When more than one preparatory function of the same group is programmed, the last programmed function is valid, the others are ignored.

On control turn on, reset, or end of program, the control returns to its default state. It is not necessary to program the default preparatory functions.

Modal preparatory functions can only be altered by programming other preparatory functions from the same function group.

3.1 G90/G91 Absolute and Incremental Dimension Programming

Absolute Dimensioning G90

In absolute dimensioning all dimensions are in reference to the part zero dimension. Absolute dimensioning simplifies entry and exit from a program and also makes part geometry program corrections easier.

Incremental Dimensioning G91
An incremental dimension defines the path departure with respect to the present position. Incremental dimensioning is advantageous in subroutine programing.

Note:
A zero offset is always active with absolute and incremental programming.
With incremental programming the settable zero offset must be cleared.

It is suggested that the first program block be programmed using absolute dimensioning.
(See also section 8.2.3)

3.2 G00 Rapid Traverse

A block programmed with G00 will traverse in a straight line at the highest possible rate to the programmed position. The control monitors each axis traverse rate so that the maximum allowable rate (machine parameter) is not exceeded.
When programming more than 3 axes, the three axes programmed first determine the traversed path speed. If one of these three axes has a zero movement then alarm 306 results. Basically in order to ensure optimum acceleration the axes with the largest distances to move should be programmed first.
The preparatory function, rapid traverse (GOO), automatically causes a controlled velocity decrease (G09) near the programmed endpoint for precise positioning. Programming G00 will not cancel the feed function. The feed function will still be active when programing a GOl following a GOO.

W - Part zero point

Absolute Dimensioning
N . . . G00 G90 X60. Y40. LF Tool traverses from Pl to P2
Incremental Dimensioning
N . . . G00 G91 X40. Y30. LF Tool traverses from P1 to P2

3.3 G01 Iinear Interpolation (Reset state 1st G-group)

The tool traverses with the stored feed rate in a straight line to the programmed end point. The vectorial velocity is held constant.
If more than 3 axes are programmed then the feedrate is calculated from the first three programmed axes and the path feedrate held to this. In order to maintain optimum acceleration characteristics the axes with the largest distances to move should be programmed first.
A straight line path movement at any angle is possible.
With linear interpolation 4 out of 4 axes ($8 \mathrm{M} /$ Sprint 8 A - presupposition:
3D-Interpolation - ; not $8 \mathrm{ME} /$ Sprint 8 ME) and 5 out of 10 axes (8 MC presupposition: 3D-Interpolation -; not 8MCE) can be simultaneously traversed. G01 remains modal.

Incremental Dimensioning

Absolute Dimensioning

| N3 | G90 G94 | G01 | X50. Y25. F1000 | LF | (P1-P2) | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N4 | | | | X25. Y35. | LF | (P2-P3) |

3.4 G10/G11 Polar Coordinate Programming*

G10 Linear Interpolation Rapid Traverse
G11 Linear Interpolation Feed (F)

Milling of a hexagon head
Tracing of boring positions

N12 G90G11X50.Y35.P20.A0 LF (P1)
N1 3
N14
N15
N16
N17
N18

A60. LF	(P2)
A120.LF	(P3)
A180.LF	(P4)
A240.LF	$(P 5)$
A300.LF	$(P 6)$
A 0.LF	(P1)

N11 G81		
N12	G90G1UX50.Y35.P20.AO.	LF
N13	G10 X50. Y35. P20. A60. LF	
N14	G10	A120.LF
N15	G10	A180. LF
N16	G10	A240. LF
N17	G10	A300. LF
N18	G80	LF

G81: Boring cycle see chapter 7, Cancellation with G80.
Block 13: X.. Y.. Centre point in the polar coordinate system
P.. A.. Position in the polar coordinate system Radius and angle

The angle refers always to the positive axis which is programmed first (X-axis here). The positive direction of the first programmed axis is
equivalent to an angle of 0°, whereas for the second is 90°.

- The angles are defined in absolute and positive decimal degrees. Resolution: 0,00001。
- When fist programming the polar coordinates, both centre point coordinates must be programmed in the datum dimension. It is recommended to program both centre point coordinates.
- The centre point is modal and can be reprogrammed. On "End of Program" (MO2/M03), the centre point dimension is cleared.
- The first time polar coordinate programming is used, both centre point coordinates in absolute dimensions must be defined. The incremental departure of the centre point (with G91) is always referenced to the previously programmed centre point.

Using polar coordinate programming for multiple hole drilling where all hole dimensions are with respect to a common center point

Program:

Program Execution: - move to hole location Bl

- preform the desired operation
- move to hole location B2
- preform the desired operation
- etc.
- G10 must be programmed in each block as G81 terminates with rapid.

3.5 G02/G03 Circular interpolation

The interpolation parameters together with axis commands determine the circle or arc. The starting point "CS" is determined by the previous block. The end point "CE" is fixed by the axis values of the plane in which the circular interpolation is programmed. The circle centre point is determined by the interpolation parameters "CC".
a)either through theI, Jand K vectors, sign dependant, from a range of 0 to 360°. I in X-direction, J in Y-direction, K in the Z-direction. The sign results from the coordinate direction from the start point to the centre point.

b) or directly through the radius P (option)

$$
\begin{aligned}
& \text { +P Angle less than or equal to } 180^{\circ} \\
& -P \text { Angle greater than } 180^{\circ}
\end{aligned}
$$

Radii should not be programmed when the angle to be traversed is 0° or 360°. In these cases the full circles must be programmed using the interpolation parameters I, J, and K. Circular interpolation is possible in 2 out of n axes !

The direction in which the arc is traversed is determined by G02 or G03.

Note:
Because of the plane selection (chapter 3.21) follows: In order to obtain a right hand system in the 3 primary axes, they must be programmed in the following order:
X... Y...
Z... X...
and
Y... Z...

3.5.1 Circular Interpolation using Interpolation Parameters

(Circular Interpolation using Interpolation Parameters with Sprint 8M - see chapter 7.3)

The starting point of the circle or arc is determined by the previous block. The end point is given by both end point coordinates.
The circle centre is determined by the interpolation parameters.
When selecting the plane for the circular interpolation the sequence of both programmed coordinates for the end point of the circle is evaluated. In order to obtain a right-handed coordinate system, the end point coordinates of the circle have to be programmed in a fixed sequence.

Right-handed coordinate system

Note:
The axis which is programmed first is always pointing towards the right; the axis which is programmed second is perpendicular to the axis which is programmed first and points upwards in positive direction. The axis which is programmed third is perpendicular to the first and second axis and points out of the plane that is selected by the first and second axis in positive direction.
(see also Figure SP 00127.1)
Examples:

The interpolation parameters I, J, K are equivalent to one another. I,I,I may be written to the same effect. The assignment of the interpolation parameters to the indivual axes is determined only through the order in which they. are written. If one particular value is zero, e.g. IO, it must nevertheless be written in order to ensure the correct assignment.
3.5.2 Example for circular interpolation using interpolation parameters

Input in absolute dimension N5 G02 G90 X45. Y30. IO. J15. LF

- The tool moves from point 2 to point 1.

Input in incremental_dimension
N10 G02 G91 X-15. Y15. I0. J15. LF

- The tool moves from point 2 to point 1.

N5 G03 X60. Y15. I15. J0. LF

- The tool moves from point 1 to point 2.

N10 G03 X15. $\mathrm{Y}-15 . \mathrm{I}$. 5 . J0. LF

- The tool moves from point 1 to point 2.

The starting point of the circle or arc is determinded by the previous block. The end point is given by both of the axis values (e.g. X and Y). The circle centre is defined by the signed radius.

The sign of the radius value is given according to the size of the traversing angle.

smaller, equal 180°	$\mathrm{P}+$	
bigger	180°	P^{-}

No radii may be programmed, when the distance between the circle end point and circle start point is less than $10 \mu \mathrm{~m}$. A complete circle must be programmed using the interpolation parameters I , J or K.

3.5.4 Example: Circular Interpolation by specifying the radius

The circle centre point is determined by the signed radius.

N5 G03 G90 X60. Y15. P15. LF
The tool moves from point 1 to point 2.
N10 G02 X45. Y30. P15. LF
The tool moves from point 2 to point 1.

Presupposition: 3D-Interpolation*
(Helical Interpolation with Sprint 8M - see chapter 7.4)

Helical interpolation is possible between any three perpendicular axes. A block is programmed with one arc path and one linear path. The linear departure must be perpendicular to the plane in which the arc motion is generated. The programmed feed is maintained for the arc motion.

Note:
The helical interpolation is not possible with 8ME and 8MCE.

3.6 G33 Threading

For special programming features with Sprint 8 M see section 7.5 With boring and milling machines, threads may be cut by using a boring tool or a facing head.

G33 realises a relationship between the main spindle speed and the feedrate. A spindle encoder generates 1024 pulses per spindle revolution. These pulses dre evaluated by the control which in turn influences the feedrate which it delivers to the servo drives. In such a way the spindle speed dictates the feedrate, so that feedrate is no longer applicable. Nevertheless the feedrate previously programmed under address F is stored for subsequent use.

In order to produce a thread in several passes the axis will feed when the zero marker pulse initiates the thread cutting cycle. This ensures that threading commences always with the same workpiece-tool angular displacement. All passes must be carried out at the same feedrate (spindle speed) in order to avoid variance in the following error.

The spindle speed and direction need to be programmed prior to the threading in order to allow the spindle to reach speed.

The programmed thread lead should take into account the required acceleration time of the axis drive. Similarly a run out should also be considered to allow for axis deceleration. A sequence of several G33 threading blocks is generally allowable. In order to ensure that all spindle pulses may be evaluated there is a minimum thread length per block "Smin": this is calculated as follows:

```
\(S_{\text {min }}(\mathrm{mm})=1 \cdot 7 \cdot 10^{-5} \cdot \mathrm{n}(\mathrm{rpm}) \cdot \mathrm{K}(\mathrm{mm} / \mathrm{rev}) \cdot \mathrm{t}_{\mathrm{A}}(\mathrm{msec})\)
\(\mathrm{n}=\) spindle speed, \(\mathrm{K}=\) thread pitch ,
\(t_{A}=\underset{\text { function of auxiliary }}{ } \quad\) (eutput (e.g. 20msec)
```

- If deceleration is wanted at the end of the block, G09 has to be programmed.
- Thread length plus acceleration and deceleration length are programmed under the corresponding position data whereby the tool width has to be taken into consideration as well.
- The thread lead is specified under addresses I, J, K.
- There is no fixed relationship between threading pitch addresses I, J,K and axes addresses.
- The address pairing for thread cutting: the 1 st thread lead correlates to the 1 st axis value, the 2 nd thread lead correlates to the 2 nd axis value.
- I, J, K parameters are incremental dimensions which specify the lead in feed per revolution. The dimension value is unsigned. The programming resolution for the thread lead is $0.001 \mathrm{~mm} / \mathrm{rev}$. ($0.0001 \mathrm{in} / \mathrm{rev}$.).
- When thread cutting the feed override, feed hold, spindle speed override, and single block switches are disabled. (from 02-mach. datal)
- Pairing of thread lead and spindle speed - see chapter 8.2.4.

3.6.1 Constant lead tapered threads

(Constant lead tapered threads with Sprint 8M - see chapter 7.5)
For constant lead tapered threads, the thread lead is programmed for the leading axis.

- The leading axis is defined as the axis traversing the longest distance.
With similar distances the first programmed axis is the leading axis.
- Only if the second programmed axis is leading should two interpolation parameters be programmed. In such cases the value of the first interpolation parameter could be zero.

Example: (incremental dimensioning)
G33 X20. 210. I0.2 Thread lead $=0.2 \mathrm{~mm} / \mathrm{rev}$.

G33 x10. 220. I0.2 Incorrect programming; both interpolation
G33 x10. 220. K0.2 parameters must be programmed, since the second programmed axis is leading.

```
= 0.2 mm/rev.
= 0.2 mm/rev.
    = 0.2 mm/rev. 
```


3.6..2 Feed Direction

Two methods can be used to thread cut. The tool can feed perpendicular to the cutting direction or parallel to the cutting direction.

"Perpendicular to the Cutting Direction"
When only one edge of the cutting tool is to cut both axis must feed. The tool is fed in the direction of cut and perpendicular to the cutting direction before the start of the next threading pass.

[^0]$$
\Delta Z=\Delta X \cdot \tan \overline{2}
$$

3.6. 3 Variable Lead Thread

The thread lead can be modified by programming several contiguous thread cutting blocks. Within a block, the thread lead is constant. The region of constant thread lead can, if desired, be less than a single revolution. Subsequent thread cutting blocks will execute without waiting for the next zero marker pulse of the pulse encoder.

3.6.4 Multiple Thread

A multiple thread is programmed in the same manner as a single thread. After the first thread is cut, the threading start point is displaced by an amount equal to the pitch circle before the thread cut sequence is repeated.

3.6. 5 Thread Cutting With a Boring Bar

With the work piece stationary, a thread can be cut by simultaneously rotating and feeding the boring tool. It is necessary to program the bar to retract to the start point:

Before the bar is retracted, the spindle must be stopped in an oriented position (M19S). The bar is moved out of the cut and with the stopped spindle is retracted to the start position.

Example: Threading a Blind Hole with a Boring Bar

Blocks 20, 25: The boring bar is centered over the drilled hole. The spindle is turned on.

Block 30: The first threading cut is made. The thread end position (eg. in absolute dimensions) is programmed under address Z. The thread lead is programmed under address K .

Block 35: The spindle is brought to an oriented stop.
Block 40: The boring bar is moved out of the cut in the X direction.

Block 45: The boring bar is moved out of the hole in the Z direction. It is possible with a programmed stop (MOO) to feed the boring bar (eg. manual feed) and take a second cut.

Block 50: The boring bar is centered over the drilled hole at the same time the spindle is turned on.

Block 55: In the event the positioning time in block 50 is shorter than the time it takes the spindle to accelerate to the correct speed, a dwell time of sufficient length must be programmed in block 55. This insures that the spindle has reached the desired speed before beginning the next threading pass.

Block 60: A second threading cut begins.

3.7 Feed acceleration ramp time for thread cutting

For threading it is possible to define a damping time and therefore a feed acceleration ramp during which time the feed axis accelerates to the required feedrate prior to synchonisation with the already rotating spindle. This value. programmed through G92 T... , in effect averages the actual spindle speed over this period. The ramp up time of the drive should be matched to this lead in distance. The smaller the available lead in distance the smaller the ramp up time needs to be. For parts with a greater lead in distance available it is recoomended to program an appropriately longer ramp up time in order to protect the machine from stress due to rapid acceleration.
The ramp up time is programmed in a self contained block or may alternatively be input by the operator: N.. G92 T. LF

One of six values may be chosen:

Programmed value with G92 T LF	0	1	2	3	4	5
Damping time/ ramp up time		10	30	70	150	310
to the threading feedrate(msec)			20 MC			
$\leqslant 5$ axes						

For normal operation $T=3$ is reccomended.
In a G92 T.. block no other characters may be written.

3.8 G09 Deceleration G60 Exact Positioning (Reset state 10th G-group)

With the preparatory functions G09/G60 it is possible to
 position exactly to a target position (within the "in position band tolerance"). The feed velocity is reduced to zero. The following error is worked to zero.

The preparatory functions G09/G60 are used, for example, to machine sharp corners, for plunge cutting, or when reversing direction. Blocks with G00 need not be programmed with G09. A G09 is automatically preformed with G00. G09 is not modal. G60 is modal and is cancelled with G64 (contour machining). The example shows direction reversal with and without G09/G60.

3.9 G63 Tapping with a Floating Tap Holder

The preparatory function $G 63$ is programmed when tapping drilled holes with a floating holder. The feed axis and spindle rotation are not synchronized.

Spindle speed is programmed under address S with the appropriate feed function programed under address F. The floating tap must take up length variations resulting from the difference between the tap lead and the lead deviations due to feed rate and spindle speed fluctuations. Sufficient length compensation must be provided on reaching the programmed position to allow for overshoot due to spindle speed run down.

G63 inhibits the feed rate override switch and dependent on the interface design will shut the spindle down when "feed hold" is signalled. The spindle override switch is inhibited. G63 may only be used with linear interpolation G01. A G60 will cancel G63.

3.10 G64 Contour Machining

To prevent dwell marks, the preparatory function G64 is programmed. G64 assures smooth path transitions between contiguous blocks containing path movements, however, a tangential direction change will result in a rounded corner.
3.11 Milling of.cylindrical contours G92 P: *
(Function is not possible with Spxint 8M)

	Input System	
Unit Circle Diameter for	Metric	115 mm
Unit Circle Diameter for	Inc (0.0001)	11.5 in.
Unit Circle Diameter for	Inch (0.00001)	1.15 in.

The unit circle diameter is defined by the equation

$$
360^{\circ}=\pi \cdot \text { diameter }
$$

$d=$ unit circle diameter $=\frac{360^{\circ}}{\pi}$ in mm (inch)

Normalized diameter $=$ part diameter
unit circle diameter

Rotary axis (eg. C)
associated with the normalized diameter
The normalized diameter is modal but can be redefined in subsequent blocks (Resolution: 0.00001). The value is reset with M02/M30.

An axis whose normalized diameter is not equal to one cannot be used to interpolate with more than 2 axes. eg. linear interpolation with more than 2 axes is possible only after the normalized diameter is set equal to one.

Apart from the names of the axes, no other signs may be written in a block with G92 P.. .

With cylindrical interpolation it is possible to machine cylindrical contours by coordinating the motion of a rotary axis with a linear axis while the rotary axis diameter is held constant. Straight contour paths as well as arc contour paths using intersectional cutter compensation can be programmed.

The rotary axis angle is dimensioned in degrees:
The circumferential dimension is calculated by the control using the previously programmed normalized diameter.

The normalized diameter is defined as
$P=\frac{\text { part contour diameter }}{\text { unit circle diameter }}$
and programmed with G92P . . .
The programmed feed function is maintained at the contour surface.

N10	G92	P3	B	LF	Cylindrical interpolation
N11	G01	G42	B40. Y200	LF	mode is selected
N12	G03	B60	Y0.85	P+60.	LF

The dwell duration time is programed under address F, but can be programmed under address X.
for F address programing: Range 1 msec - 99999 msec
for X address programming: Range $1 \mathrm{msec}-99999999 \mathrm{msec}$
A block programmed with G04 may not contain other functions.
eg.
$\mathrm{N} \cdot \mathrm{G04F11.5LF}$
Dwell time 11.5 sec
always an unsigned number
When necessary, several contiguous blocks containing dwell functions may be programmed.

Dwell times are programmed when a tool is to cut free of the part and may be used for speed change and machine switching functions. G04 is not modal.

3.13 G70/G71 Input System

G70: Input dimensioning system is in inch
G71: Input dimensioning system is in metric
The default mode is defined by a machine parameter. It is not permissible to change the input system in a running program. A change may be programmed in the first program block. The dimensional field width for individual systems is shown in section 8.2. The display format is always with respect to the currently selected dimensioning system (see operator manual pg 2-4).

When a change is made from G70 to G71 or G71 to G70, the operator or programmer must insure that all relative user data (see operations manual pg. 4-17 and 4-18) is set correctly for the desired input systems.

3.14 G25/G26 Programmable Safe Zone

A programmable safe zone protects the machine from programming and operator error. When the safe zone envelope is reached, the feed is cancelled (program stop and alarm) and the following error is worked to zero.

The programmable safe zone works only in automatic mode and is treated by the NC as if a software limit switch had been actuated. The safe zone is defined with respect to the machine zero point. A block programmed with G25/G26 may not contain other functions.

G25 Lower safe zone limit G26 Upper safe zone limit

Coordinate dimension for the limit
 (l to n axes)

The point F (tool centre point) is allowed to traverse within the dotted zone. As soon as the tool leaves the set working zone or happens to be outside of this zone at the program start, an alarm is indicated and all machines are set still.

```
ZO = set. ZO (G54-57) + add. ZO (G59) + ext. ZO (PC) + ext. suppl. Z0
```

The zero point offset is the difference between the workpiece zero point (to which the measurements are related) and the machine zero point.

Attention: With CRC selected the zero offset must not be modified.
(G54 is the reset statc of the eighth G-group)
(Settable zero point offset with Sprint 8M - see chapter 7.6)

Values for the zero point offset for each axis can be entered into the control manually, via the operator's panel or using tape. Absolute data blocks (G90) are used to calculate the final block point, when the associated axis is programmed. With incremental data blocks (G91) any change in zero point offsets is taken into account.
Example:
Change from G54 to G55 in an incremental data block. The resulting difference between $Z O$ (G55) and $Z O$ (G54) is included in the calculation (see block increment calculation, chapter 8.2).

Four or twelve * adjustable zero point offsets per axis can be selected.

When a zero point offset (e.g. G54) is included in the calculation, the external zero point offset originating in the interface control for the corresponding axis is also taken into account (additive ZO plus supplementary offset).

A zero offset is called with G54 thru G57 or with interface generated signals for groups 1 thru 3 *.

ZO per axis	8M/8MC	$12 *$		
Group	1	2	3	
Input	N1 - N4	N5 - N8	N9 - N12	
ZO 1	G54	G54	G54	
Z0 2	G55	G55	G55	
Z0 3	G56	G56	G56	
Z0 4	G57	G57	G57	

Activation of the interface signals e.g. through an M-function. For clarity it is necessary to clear the buffer with L999 (see interface description) and also cancel the cutter radius compensation.

```
N10 G40 X.... LF
N15 M.. LF Selection of the zero offset group 1 to 3
    with an M-function
N20 L999 .....LNF Clear the buffer (see section 5.7)
N25 G56 ......LF Zero offset is called Lp
Loading a Settable Zero Offset
```

From tape
O ZOLF
G59 N1 X (ZERO OFFSET)
G59 N LF When more than 5 axes,
must be loaded a second
block must be used.
G59 N12 X . . . Y • . Z • . . LF
M02.(M30) LF M02/M30 in a separate
block.
Loading a Settable Zero Offset (G54-G57, Group 1-3) in the program
N100 G59
N110 G59 N1 X... Y... Z... LF max. 5 axes per block programmable
N120 G59 N2 LF When more than 5 axes must be loaded
N220 G59 N12 X.. Y... Z... LF
N230

```
    N1 - N12 designates the zero offsct and group division (1 thru 3)
    The zero offset input is done by the operator.
    (See programming instruction).
```

 N110 - N220 designate the block number of the blocks that
 are used for loading the settable zero offset.
 An additional zero offset can be programmed with G59 under addresses X, Y, Z etc. The programmed value is added to the settable zero offsets.

Settable Zero Offset:
Input Value:

$$
\begin{aligned}
& X M W_{1}=0 \\
& Z M W_{1}=5.0
\end{aligned}
$$

Progranmed Additive Zero Offset:

Input Value:	$\mathrm{XMW}_{2}=3.0$
	$\mathrm{ZMW}_{2}=6.0$
Resultant Zero Offset	$\mathrm{XMW}=3.0$
	$\mathrm{ZMW}=11.0$

No other information may be programmed in the G59 block.

Example

The contour is programmed in absolute dimensions. To allow for finishing stock, the entire contour can be displaced in X with a programmable (additive) zero offset.

With M02/M30 or on a program exit, the programmable zero offset is automatically cleared since a new program start will reload the offset value.

G53 suppresses blockwise the coordinate displacement achieved by

- settable ZO (G54 - G57)
- programmable additive $Z 0$ (59)
- external zo
- external additive zo

The tool offset and setting of the actual value store using G92 must be cancelled in separate blocks.
Further, any DRF-offset present will remain active.
Atter.tion with CRC selected:
If only one ax.is of the CRC plane is programmed in the G53 block then $G 53$ is active also for axis that is not programmed. In such cases CRC should be cancelled previously through G40. In the next block after G53 all the zero offsets are again active.

In the block following $G 53$ all zero offsets are again active.
Example: referred to machine zero point
N1232 G40 D00 ... - cancellation of tool offset N 1233 G92 - cancellation of any G92 offsets
N1234 G53 X.. Y.. - cancellation of all Zo's and traverse to position in machine system

If the actual value store has to be reset after reference to the machine zero point, a G53 must be written in this block. This ensures that the ' $Z 0$ is ignored.

Example: setting actual value store after reference to machine zero point as for previous example plus:

N1235 G53 G92 X... Y... - setting actual value store

The sequence G53 G92 has to be kept.
3.15.4 G53 Cancelling the zo from software stand C 2

G53 has two different effects which are selectable through mackine parameter:

Machine data N424 bit $2=1$
Reference to machine zero point

Blockwise suppression of:
-settable ZO (G54-G57)
-programmable adciitive Zo (G59)
-external zo
-external additive Zo
-PRESET shift
-G92 shift

- DRF shift (handwheel offset)

Remain active:
-selected tocl offset

Machine data N424 bit $2=0$
Reference to control zero point

Blockwise suppression of:
-settable ZO (G54-G55)
-programmable additive Z0 (G59)
-external $z 0$
-external adcitive zo

```
Remain active:
-selected tool offset
-G92 shift
-PRESET shift
-DRF shift (handwheel offset)
```

*

After programming G53 the DRF shift reamins inactive until reset or end of program.

The pcsiton display refers always to the control zero point.

Example:

Reference to machine zero point

N1232 G40 D00 X... Deselect TO N123 G53 X... Y..

Cancel all ZO and move to position in mackine position system.

Reference to control zero point.

N1232 G4C DOC X... Deselect TO N1234 G53 X. Y. . Cancel Zo

Move to point in control position system.
ditto. with cancellation of G92 shift
N1232 G4C DuO X.. Deselect TO N1233 G92 cance1 G92 shift N1234 G53 X... Y... Move to point in control position system (PRESET/DRF)

The position actual value G53 X... is active in diameter with machine data "diameter programming" set. It is meaningful to cancel the CRC as with programming G $53 \mathrm{X} .$. or G53 Y... the offsets are taken out in both axes.

For G92 Set actual value stores, the following applies:

Set actual stores with reference to machine zero point

N1232 G40 DOC
N1234 G53 X... Y...
N1235 G53 G92 X...Y...

Set actual value stores with reference to control zero point

N1232 G40 100
N1233 G92
N1234 G53 X...Y...
N1235 G53 G92 X...Y...

The sequence $G 53$ G92 is important.

The function G92 should only be used for special applications. For normal applications it is recommended to use the settable zero point offset G54/57, the programmable zero point offset G59 and the tool preset D... (separately adjustable from tool wear). (See section 3.24).

No additional character may be written in a block with G92 X... Y...
Exception: Setting of actual value stores after referring to the machine
zero (3.15.3): G53 G92 X... Y...
Without $G 92$ the control zero point (S) and machine zero point (M) coincide. The control zero point is the reference point for all internal control calculations. Using G92 X... Y... the control zero point can be displaced with reference to the machine zero point. This function is particularly advantageous, when no program interrupt and restart within the program is anticipated, e. g. machining of batch components with short program cycle times.

Resetting all G92 offsets:
If $G 92$ is programmed alone, i. e. without X and Y address, all sumnated G92 offsets for each axis are reset.

Example: N... G92 LF

Note: Using constant cutting speed, the spindle speed is derived from the machine actual value which corresponds to "zero" in the turning axis, and not from the actual value reset by G92 X...

Example:

The position of the shoulder on each milled component of a series varies more in the longitudinal axis due to automatic chucking than the available machining offset. To prevent the operator from having to continually adjust the zero point offset, a guage is moved in until it touches the shoulder and the operative block is interrupted. Using G92 and taking guage length into account, this position referred to the workpiece is set as a tool offset and the workpiece length set as the X-position. Only then does the actual machining program start (all dimensions in mm).

Programming:

N...			D05	LF
N...	G54	X-9999.		LF
N...	G92	X200.		LF

Block interrupt via guage
Calculation of the actual position with register preload
N... (MACHINING PROGRAM)

The control loads the actual position referred to the machine zero by the following calculation:

Calculation of zo and/or tool offsets via machine parameter	Example (see fig.)	Example without ZO with TO	Example without 70 without TO
G54 zero offset	10.0	0.0	0.0
+X preload position	20.0	20.0	20.0
+ TO length compen-		6.0	0.0
sation of the feeler guage	6.0	36.0	26.0

The actual position register is loaded with G92 and is reset to the original position at the end of program (M02/M30).

The programmed feed rate when using cutter radius compensation is maintained on the contour surface. If more than 3 axes are programmed per block, then the first three determine the path speed.
With a rotary axis the feed function is programmed under address F as an angular velocity in degrees/minute. The feed can be programmed in feed/minute instead of degrees/minute, however, the angular velocity and the part radius must be used to calculate circumferential velocity. For the unit circle diameter
Do $=(1 \mathrm{~mm}) \frac{(360)}{\pi} ;$ Do $=(1 \mathrm{in}) \frac{(360)}{11.5 \mathrm{in}}$

The resultant vectorial tangential velocity at $1^{\circ} / \mathrm{min}$ equals $1 \mathrm{in} / \mathrm{min}$ ($1 \mathrm{~mm} / \mathrm{min}$).

If a rotating axis is only moving and the stationary tool tip contacts the part surface at a diameter equal to D, then the surface velocity of the tool tip relative to the part surface equals:
$V_{\text {tool }}$ inch/min (or mm/min) $=\frac{D}{\text { Do }} \cdot V_{\text {programmed }}^{\text {minutes }}$
$V_{\text {programmed }} \frac{\text { degrees }}{\text { minutes }}=\frac{\text { dogrees }}{D} \cdot V_{\text {tool }}$ in inch $/ \mathrm{min}$ (or $\mathrm{mm} / \mathrm{min}$)

The feed rate override switch located on the operator panel can modify the programmed feed from 1% to 120%. The 100% setting corresponds to the programmed value.

The feedrate programmed under " F " has several meanings dependant upon botr G - and M-functions. For this reason refer to the program key on pages $8=29$ to 8-34.

Velocity Transitions

-

-

N100
N105
N110
N115
N125

```
N120 G02 X G
G91 G42 G00 Xl0.
G01 XlO. F2000
X10. F3000
X10. F2000
X20. Y20.
G01 X . . . Y . . .
```


In block N120 a velocity transition or change occurs with respect to the tool center path in relation to the two radii (cutter radius, contour radius).

The following holds true when simultaneously moving a linear and rotary axis:

Whenever the distance between the tool tip contact point and rotary axis remains constant, the magnitude of the surface tangential velocity will also be constant. A constant path velocity also results when linearly interpolating a rotary and linear axis in a path parallel to the axis of rotation (helical cutting on a cylinder). The resultant path velocity of the tool tip relative to the cylinder surface is a function of the programmed velocity, the cylinder diameter on the slope of the helix.

$V_{\text {tool }}=V_{\text {programmed }} \sqrt{1+\frac{D^{2}-D O^{2}}{D o^{2}} \cos ^{2} \alpha}$
Vprogrammed $=$ programmed path velocity in deg. $/ \mathrm{min}$.
$D=$ helix diameter in inches
Do $=$ unit circle diameter $=11.5$ in
$\alpha=\operatorname{arc} \tan \frac{Z}{C}$ (slope angle of the helix)
$Z=$ programmed departure (in/mm)
$C=$ programed angle in degrees

If the distance between tool tip, work surface, and the rotary axis is not held constant (eg. spiral in a plane), then the path velocity will not be constant. The path velocity will continuely change as a function of the variable machining diameter.

A constant path velocity can be simulated by splitting the programmed block into several contiguous blocks in which the feed function is changed to approximate the desired velocity. A subroutine program using parameter chaining is a useful technique for velocity approximation.

When interpolating helically, the programmed feed is maintained on the arc path.

The programmed feed can be down rated 1:100 by programming M37. M36 will restore the feed to it's programmed value (default setting).

The format for feed per rev and spindle speed programming is shown in section 8.2.
8M/8MC/sprint 8M (P) 3-44 E.4.83
3.18 G96 S.. Constant surface speed $\left(V=\right.$ constant) ${ }^{*}$

Typical application: facing attachment Dependant on the programmed surface speed, the control derives the appropriate spindle speed as a function of the part diameter.
N5 G01 G96 W.. S.. F.. LF
constant surface speed
in $\mathrm{m} / \mathrm{min}$
The relationship and interdependancy of the part diameter, sfindle speed and the feedrate motion enable an optimum matching of the program to the muchine, the material and the tool. The zero point of the W-axis is normally the turning centre. If this is not the case then this difference may be reflected in the zero offset (G54 to G57, G59). For the calculation of the spindle speed with constant surface speed the following variables are taken into account in the control:

- Machine position
- Tool offset
- Zero offset in the W-direction
- Posi.tional shift through G92 W...
- Preset shift

A DRF shift is not taken into account. The displayed position is referred to the radius. In the block in which G96 is selected, the W-axis should be programmed alongside.
The G97 function freezes the constant surf ce speed and the last calculated spindle is stored. G97 is selected in order to avoid undesirable speed fluctuations in intermediate blocks in the W-direction without machining. The constant surface speed is reactivated through programming G96.

Gear changing : With constant surface specd programming, machining is executed at one particular gear range. A gear change is possible at all times at appropriate places in the program.

It may become necessary (e.g. with constant surface speed G96)
to limit the spindle speed to a constant maximum value. Prior to the block in which a spindle speed limitation is required, a block is programmed with the limiting value under address S in rpm. The preparatory function G92 S . . . can be reprogrammed throughout the program.
No other characters may be programmed within the G92 block.

Neither G94 nor G95 will cancel G92 S, it remains in effect throughout the program. An automatic cancellation through G94 or G95 is in preparation.

G92 S . . . is cancelled by programming a new G92 S . . . corresponding to the selected gear range. G92 $s 0$ reduces the spindle speed to zero.
3.20 G 26 S. . Actual Spindle Speed Monitor

The speed monitor G26 S . . . serves as a tool or chuck dependent maximum safe speed limit. It is independent of the G94-G97 function. The function is primarily intended to protect the operator.

With constant surface speed G92 S . . . is also in effect.
To input G26 S see operator's manual.

3.21 Machining Plane Selection

(Machining Plane Selection with Sprint 8M - see chapter 7.7)

The plane in which the cutter radius compensation is preformed and also the plane in which circular interpolation is preformed is implicit from the programmed axis words following G02/G03 or following G41/G42 D To select the plane, two axis words are necessary even though one dimension may be zero (also see section 3.5).

No more than 2 axes may be programmed.
The order of the axes programming is evaluated by the plane selection (also see section 3.5.)

In order to obtain a right hand coordinate system, the axis must be programmed in the following order:

$$
\begin{array}{lll}
& \text { X... } & \text { Y... } \\
& \text { Z... } & \text { X... } \\
\text { and } & Y \ldots & Z \ldots
\end{array}
$$

(Intersectional (look ahead) Cutter Compensation with Sprint 8M

- see Chapter 7.8)

G40 Cutter compensation off
G41 Tool to the left of the part
G42 Tool to the right of the part
When mirror imaging is used and the sign is considered, the traversed path is as follows:

```Both axis are mirrored or Neither axis is morrored```			one ax
Sign for the radius compensation value of the cutter			
$+$	-	+	-
G41 left	right	right	left
G42 right	left	left	right

G40, G41 and G42 may be programmed in blocks without axis moves. The compensation of the cutter radius is active in the plane of the two programmed axts. Length compensation may be selected for any axis with G43/G44.
The selection is only possible, when GOO or GO1 are active. Two axes have to be programmed when selecting. With this the plane is selected once. Afterwards max. 5 axes can be programmed. The intersectional cutter compensation is only effective in the selected plane.
N10 G01 G41 D07 X... Y... LF At the end of this block, the compensated path is reached. The plane is fixed through $X$ and $Y$.
N25 DOO X... LF Cancellation of the CRC
or
N25 G40 X... LF Cancellation of the CRC and
length compensation. in $X$
With G40, the compensations G41/G42 are cancelled. However, at least one axis' motion must be programmed in order to restore the tool to its uncompensated path.
Length and radius compensation can both be cancelled, when
DOO and the respective axis are programmed.
Exception: without any previous selection, G41, G42 D00 may only be Switching_from G41 to g42 programmed with both axes.
N10 G01 G41 D12 X... Y... LF
N15 G42 X.... LF
N20 X...Y... LF
Calling_a_different tool offset function
The G-functions (G41/G42) must be reprogrammed.
N10 G̣01 G41 D12 X... Y... LF
N15 G41 D10 X... LF
N2O X... Y... LF

```

\subsection*{3.23 Tool Offset}
(Tool offset with Sprint 8 M - see chapter 7.9)
The tool data are stored under a tool offset number.
Wear compensation
\begin{tabular}{ll}
Length & \(\pm 9.999 \mathrm{~mm}\) \\
Radius & \(\pm 9.999 \mathrm{~mm}\) \\
Length & \(\pm 9999.999 \mathrm{~mm}\) \\
Radius & \(\pm 999.999 \mathrm{~mm}\)
\end{tabular}

A total of 199 *offsets is available.

Under the tool offset number the length or radius dimensions are stored. The wear compensation values are input via the operator's panel. They are stored according to the offset number (designator).

Tool offset call and input (geometry)
A tool offset is called via a two digit designator D01 ... D199 (length or radius)
- Input via tape
\% TO LF
G92 D01 D... LF
-
G92 D199 D... LF
M02 or M30 LF
- Input via program

N11 ... LF
G92 D01 D... LF
-
G92 D199 D... LF
N12 ... LF

Example: Straight Milling

\subsection*{3.24 G40/G43/G44 Tool Length Offset and Axis Parallel Cutter Radius Compensation}
(Function not possible with Sprint 8M)
G40 Cancel tool offset
G43 Positive tool length offset
G44 Negative tool length offset

Axes are parallel
arcs may be contained within
the contour from software stand 01

With the help of a tool length offset, the difference between actual tool dimension and the programmed assumed dimension can be compensated. The preparatory functions G43 and G44 inform the control in which direction the offset must be made.

If an offset in an axis is desired, the preparatory function and the \(D\) tool offset word must precede the dimension word in the program block.

The preparatory functions and the offset value are modal and are effective for the axis in which the offset was programmed. The offset can be modified by a new G43/G44 and a new tool offset word when properly formatted.

\section*{Sign Convention}

A positive dimension is input, when the actual dimension of the tool is greater than the programmed value has taken into account. A minus dimension is input, when the actual dimension of the tool is smaller than the programmed value has taken into account.

For example:
\begin{tabular}{|l|c|}
\hline \begin{tabular}{l}
The actual drill length is langer than \\
the programmed drill length
\end{tabular} & + offset \\
\begin{tabular}{l}
The actual cutter has a smaller radius \\
than the programmed radius
\end{tabular} & - offset \\
\hline
\end{tabular}

G43 positive tool length offset
The offset called by the \(D\) word is calculated with its sign to the associated axis.

G44 négative tool length offset
The offset called by the \(D\) word is calculated with its sign to the associated axis.
(

External Machining Operation
Positive axial motion G43
Negative axial motion G44

\section*{Internal Machining Operation}

Positive axial motion G44
Negative axial motion G43

```

(Function not possible with Sprint 8M)

```

In addition to parallel axis milling with offsets an inclined plane can also be milled using tool length offsets. The operator, however, must calculate the axial offset for each axis associated with the incline. The values are calculated using the trigonometric relations that define a line and slope.

The above equations are valid when the cutter is located to the left of the part. If the cutter is situated to the right of the part, then the signs of the equations must be reversed.

Parts which contain several inclines of varying slope will have offsets that vary accordingly. For these operations intersectional cutter radius compensation (G41/G42) is a more advantageous programming technique.

See example on page 3-58, blocks N2 and N3.

\subsection*{3.25.1 G43/G44 Tool length compensation with arcs with}
tangential transitions
In addition to the inclined compensation, \(G 43 / G 44\) may also be used to compensate for full arc quadrants, multiples thereof (from one quadrant to another) and arc sections (with tangential block transitions). Compensation may be deselected/selected by the use of an intermediate block (without movement on the programmed contour); see the example on the next page; blocks N4,N5,N6 and N7. (Blocks N4 and N8 may also be inclined).

\section*{Attention:}

The compensations must only be defined for the path information and not for the interpolation parameters. The parameters are automatically compensated for from the path information compensation. With blocks with G43/G44 without G41/G42 cutter radius compensation, the \(G 43 / G 44\) acts as a simple cutter radius compensation by adding the length compensation to the interpolation parameters in the case of arcs. Furthermore the length compensation is takon into account with mirror image.

There are clearly two resulting cases:
1. The centre point of a programmed arc is not shifted by the length compensation -
- Program length compensation with G43/G44 do not program cutter radius compensation
2. The centre point of a programmed arc is shifted by the length compensation (if CRC and LC are programmed) -
- Program length compensation with G43/G44 program cutter radius compensation with G41/G42

Attention: This function does not work in conjunction with "Cylindrical interpolation function(B73)".

An example using axis parallel tool offsets

\(\qquad\) part contour
offset cutter centre path
Programming:

Description:
The part contour is programmed. The cutter radius is 10.000 mm . The operator must enter the following offsets:
```

D01 : 10 000
D02 : 2 678 ( (10 • tan << ; ; < <
D03 : 5 774
(10\cdot\operatorname{cot}\mp@subsup{\alpha}{2}{\prime}<<<2}=6\mp@subsup{0}{}{\circ}=\mathrm{ half angle)

```
```

For Sprint 8M see section 7.8.1

```

The tool offsets stored under DO1 thru D199 are used in conjunction with G43 and G44. The length offset (L0) is programmed individually for each axis and is independent of the plane.

It is possible to use CRC and LO Together. The first two axes programmed select the CRC plane.
N10 G41 D10 X.. Y.. G43 D11 Z.. LF
X-Y is the CRC plane
Length offset is active in \(Z\)
Where logical CRC and LO may be programmed in the same block
e.g. a facing head or with an angular milling head.

N12 G41 D10 G43 D11 X.. Y.. Z.. LF
\(X-Y\) is the CRC plane
Length offset is active in \(X\)

\subsection*{3.27. G36/G47 Coordinate transformation "TRANSMIT"}

With 8M/Sprint 8M from SW02, from SW03 also with 8MC, (activation through machine data).

For milling of turned parts on rotary tables when the desired contour should be obtained by interpolation of the rotary axis with one linear axis (application for special purpose machines). The coordinate transformation function enables programming a fictional cartesian coordinate system whilst the machine motion is in reality in polar coordinates.

The fictional cartesian coordinate system is constructed from the first axis, \(X\) and the corresponding rotary axis which is defined in machine parameter through machine data 465 bits \(0-3\). Thereafter the rotary axis is labelled the "C" axis and the fictional axis, "Cf".

Selection and cancelling the transformation is through G-functions in the program.

G36 Coordinate transformation cancelled
(reset state)
Programming is as normal in the polar coordinate system (the machine coordinate system).
Rotary axis \(C\) in degrees, speed in degrees/min.

Programming is in the fictional cartesian coordinate system. \(C\) is in mm, the speed is given in \(\mathrm{mm} / \mathrm{min}\).

The peculiarities concerning programming resulting from the turning/milling operation by software switching \(8 T /\) Sprint \(8 T\) after Sprint 8 M are detailed in the printed matter "SINUMERIK \(8 T /\) Sprint \(8 T\), turning/milling operation".

\section*{Programming with Sprint 8 M}

With G17/G18/G19 the missing axis of the current fictional plane is modified if only one of the two axes forming the fictional plane is programmed in a block. (examples a and b).

If one of the fictional axis pair is programmed along with another axis not belonging to this pair, then the control generates alarm 504 (example c).

If axes must be programmed together with the fictional plane axes together in a block, then both the fictional pair must be programmed (example d).

Example: G37 active, \(X-C f=f i c t i o n a l p l a n e=G 17-p l a n e\)
a) G17 X.. LF \(=\mathrm{Cf}\) is modified
b) G17 Cf.. LF \(=X\) is modified
c) G17 X.. Z..LF= alarm 504
d) G17 X.. Cf.. Z.. LF = no axis modification - no alarm
e) G17 Z..LF \(=\) " " " "

\section*{Programming with 8M}

Both axes of the fictional plane must always be programmed. Example: G37 active, X-Cf = fictional plane
a.) X.. LF
= not allowed
b) Cf..LF
= not allowed
c) X..Z.. LF = not allowed
d) X..Cf.. LF = allowed
e) X..Cf..Z.. LF
= allowed
f) \(\mathrm{Z} . \mathrm{LF}\)
= allowed

\section*{Notes:}
- The workpiece zero point lies in the middle of the facing axis.
- Rapid traverse movement must be programmed using GOl or Gll with the appropriate \(F\) value.
- Any shift in Cf direction may not be compensated for in the control.
- When changing from G36 to G37, the actual value of the \(C\) axis is set to zero and the actual value of the \(X\) axis is set to the machine actual value independently of existing offsets (zero offset, preset, G92). The zero offsets are accounted for in cartesian coordinate values.
- The continuous path velocity is programmed and kept in the X-CF coordinate system. In a circle around the middle of the facing axis only those \(X-C F\) velocities are permitted which result in permissible \(C\) axes rotation speeds. If this limit is exceeded, the movement is stopped.
- At selected cutter radius compensation \(G 41 / G 42\), the transformation may not be switched on or off. (Change of G36/G37)
- Block advance via G37 blocks is not permitted.
- Within a contouring cycle train, the transformation may not be switched off or on. (Change of G36/G37)
- Conversion of inch/metric in the \(X-C F\) system is not permitted. All dimensions must be programmed in metric.
- The accuracies achievable on the part when using the \(C\) axis are dependent upon the instantaneous working radius. (Control in degree)

The peculiarities that apply to turning/milling through the \(8 T /\) Sprint \(8 T\) to Sprint 8 M software conversion are more fully detailed in: "SINUMERIK 8T/Sprint 8T, turning/milling operation".

Program example: Milling of a"face contour"with TRANSMIT

\% 1234
N5 X.. C.. Z..
*
real coordinate syetiem
N50 X.. C.. Z..
N55 GO X 120 CO Z100 D50

N60 G37 G01 F200 Z90

N65 G42 X90 CO

N70 X40 C40
N75 X-60
N80 G02 C-40 J-40
Half circle
N85 G01 X40
N90 X90 C0
N95 G40 X120
N100 Z 100
N105 G36
N110 X.. C.. Z..

The miscellaneous and auxillary functions are output when the program block is executed. A maximum of three \(M\), one \(S\), one \(T\), and one \(H\) function may be programmed in one block. The functions are output to the interface in the following sequence:
- All functions are output simultaneously except when a 2nd and or 3 rd \(M\) function is programmed.
- 2nd M-function is output
- 3rd M-function is output

A machine parameter is used to define whether the function is output before or while the programmed axis is in motion. See the machine tool builders manual.

If the functions are output while the axis is in motion, the following will hold true:

If a new function is to be in effect while an axis is in motion, then the function must be programmed in the preceeding block.

\subsection*{4.1 S-Function}

The S-function is selected to specify:
Spindle speed as a coded number Spindle speed in rpm or 0.1 rpm (defined by machine parameter) constant surface speed in: in/min (\(\mathrm{m} / \mathrm{min}\))
or
\(0.1 \mathrm{in} / \mathrm{min}(0.1 \mathrm{~m} / \mathrm{min})\)
(defined by machine parameter)
further definitions refer to the program key; pages 8-29 to 8-34.
For further definitions refer to the program key; pages 8-29 60 8-34. the same input format used for feedrate programming is also used for constant surface speed programming.
4.2 Auxillary Function H

A switch function or auxillary function of the machine not under NC control can be programmed as an H-function word. One auxillary function (H-function) can be programmed per block under address \(H\). The \(H\) address has a maximum field width of six digits. For the H-function definition, see the machine tool builders manual.
4.3 Tool Function \(T\)
(Tool Function with Sprint 8 M - see chapter 7.10)
The tool function (T-function) designates the tool necessary for a machining operation.

6 decades

\subsection*{4.4 Miscellaneous Function M}

MOO Programmed Stop (unconditional)
MOO enables an executing program to stop. An operation may be performed and when completed, program execution can commence by pressing the "cycle start" key. Stored information is not affected. The miscellaneous function MOO functions in all automatic modes. Whether or not the spindle is stopped depends on the machine tool builder and is specified in the machine programming manual.

MOO is effective in blocks programmed with or without axis dimension words. MO and \(M\) are recognized as an MOO.

MO1_Optional_Stop_(conditional)
M01 functions similar to M00, however, the optional stop key must be activated in order to enable an M01. M00 and M01 function in the same manner as the "single" block mode.

M1 is recognized as an M01.

MO2 End of program
MO2 is programmed in the last program block. An MO2 will reset the control to the first program block. The control will revert to its default state (see the program key). M02 may be programmed alone or together with other functions in a block. M2 is recognized as an M02.

\section*{M17 End of Subroutine}

M17 may be programmed alone or together in a block. M17 signals a subroutine return to the calling program. A subroutine call and M17 may not be programmed in the same block.

\section*{M30 End of program with rewind}

M30 acts like M02, except that in automatic mode from tape reader it initiates tape rewind to rewind stop "\%" (only with reader with reels).

M03, M04, M05, M19 Main spindle control
If the \(N C\) is equipped with analogue spindle speed output (option), certain M words are used for spindle control:

M03 Direction of spindle rotation clockwise
M04 Direction of spindle rotation counter-clockwise
M05 Spindle stop
M19 Oriented spindle stop (only with encoder).
Using M19 S it is possible to stop the spindle in a pre-defined position. The angle is programmed using \(S\) in degrees (distance from the marker pulse in the M03 direction). The angle programmed using address \(S\) is modal. When M19 is programmed without \(S\) the stored value becomes effective for the angle. A block containing M19 is only finished when the signal "Spindle Stop" is received from the interface. M3, M4, M5 may also be written. M19 or M19 S... must be programmed in its own in a separate block. The spindle positioning occurs in parallel to axis movement, independent to block boundaries, even from a stop state (SW02). From SW03, M19 is possible from the stop state after switching on without previous spindle rotation.

M36, M37 Decreasing the feedrate
The feedrate programmed under \(F\) in \(\mathrm{mm} / \mathrm{min}\) or \(\mathrm{mm} / \mathrm{rcv}\) can be reduced by the ratio l:l00 using a further function.
- M36 Feedrate remains as programmed under F
- M37 Feedrate is reduped by a ratio 1:100

\section*{Unassigned miscellaneous functions}

All miscellaneous functions except M00, M01, M02, M03, M04, M05, M17, M19, M30, M36, and M37 are unassigned. Exact information regarding the application of the individual functions is given in the program key specific to the machine. A partial definition of this function is given in DIN 66025.

\section*{5. Parameter}

Parameters ROO to R 49 may be assigned to all addresses with the only exceptions of \(N\) and @ , throughout the part programs and subroutines.
A parameter is set equal to a numerical value in the part program or in the subroutine. The R-parameter dimension takes on the characteristics of the address under which it is programmed. A maximum of 10 parameters are allowed in a program block.

Example:
```

L51000 LF Parameters R01, R05 and R49 are
N1 Y-R49 SR05 LF used in subroutine.
N2 X300. -R01 LF
-
N50 M17 LF
% 4081 LF
N37 R01 10. R49-20.05 R05 500 LF
N38 L51002 LF Subroutine L510 is called, it will
run twice
R01 = 10.
R05 = 500
R49 = -20.05

```

\subsection*{5.1 Parametcr Definition}

During parameter definition, individual R-parameters are set equal to signed numerical values. The parameters are assigned in part programs or subroutines. Up to 10 parameter definitions may be programmed in one block. A total number of 120 characters may thereby not be exceeded.
\begin{tabular}{|l|l|l|}
\hline Program statement & Operation & Result \\
\hline R01 1.078 & R01 +1.078 & R01 \(=+1.078\) \\
R02 9.534 & R02 +9.534 & R02 \(=+9.534\) \\
R03 -55.51 & R03 -55.51 & R03 \(=-55.51\) \\
\hline
\end{tabular}

\subsection*{5.2 Assigning parameters in a program}

Direct Assignment (except address N). An address is given
the value defined by the R -parameter.
\begin{tabular}{|c|c|c|}
\hline Program Statement & Operation & Resuit \\
\hline FR01 & FR01 & \(\mathrm{F}=+1.078\) \\
YR03 & YR03 & \(\mathrm{Y}=-55.51\) \\
Y-R03 & XR03 & \(\mathrm{X}=+55.51\) \\
\hline
\end{tabular}

\section*{Arithmetic Assignment}

To the numerical value of an address, the control performs a signed addition or subtraction with the parameter value.
\begin{tabular}{|l|l|l|}
\hline Program Statement & Operation & Result \\
\hline\(X 20.78-\mathrm{R01}\) & \(\mathrm{X}=20.78-10.78\) & \(\mathrm{X}=10\) \\
\(\mathrm{Z} 44: 9-\mathrm{R03}\) & \(\mathrm{Z}=44.9-(-55.61)\) & \(\mathrm{Z}=100.41\) \\
\(\mathrm{~F} 10.1 \mathrm{R02}\) & \(\mathrm{~F}=+10.1+9.534\) & \(\mathrm{~F}=19.634\) \\
\hline
\end{tabular}

The sequence address, numerical value, parameter must
be maintained.
An unsigned parameter or number is assumed positive. (+)
5.3 Parametric Operations
\begin{tabular}{|c|c|c|c|}
\hline Function & Program Statement & Operation & Result is stored in \\
\hline Addition & R01 R02 & R01 + R02 & R01 \\
\hline Subtraction & R01 - R02 & R01 - R02 & R01 \\
\hline Multiplication & R01 - R02 & R01 . R02 & R01 \\
\hline Division & R01/R02 & R01 : R02 & R01 \\
\hline Square Root & © \(10 \mathrm{R01}\) & \(\sqrt{\text { R01 }}\) & R01 \\
\hline Sine & C 15 R 01 & Sin (R01) & R01 \\
\hline Parameter Definition and Addition & R01 10 R02 & \[
\begin{aligned}
& \mathrm{R} 01=10 \\
& \mathrm{R} 01+\mathrm{R} 02
\end{aligned}
\] & R01 \\
\hline Parametcr Definition and Subtraction & R01-10-R02 & \[
\begin{aligned}
& \mathrm{RO1}=-10 \\
& \mathrm{RO1}=\mathrm{R} 02
\end{aligned}
\] & R01 \\
\hline Arctan * & (a) \(18 \mathrm{RO1}\) & \(\arctan \frac{\mathrm{RO1}}{\mathrm{RO2}}\) & R01 \\
\hline
\end{tabular}

Only R-parameters may be multiplied or divided with one another; i.e. a parameter and a number may not be multiplied or divided together. The decimal point defines the operation as multiplication. The block skip character "/" defines the operation as division. The sequence determines the order in which the expression is evaluated.

The argument of the sine is
an angle whose value is limited to \(\pm 360^{\circ}\). The control calculating time is approx. \(10 \mathrm{~m} / \mathrm{sec}\) per operation. Only one operation per block may be programmed.

Range: \(\left(1 \times 10^{-8}\right)\) to \(\left(2^{27}-1\right)=134217728\)
Display: floating decimal point (+.8) to +8.).
(key zero offset from N100)

For examples, see "Freely programmable cycles"
+ Only from software stand 02

\subsection*{5.4 Parameter Chaining}

Through parameter chaining a parameter value is altered continually as it loops through a section of program or a subroutine. A calculation is preformed whenever chaining parameters are encountered in a running program.
The last parameter of the chain remains unchanged. A maximum of 4 parameters may be chained.

\section*{Conventions for Evaluating an Expression}

A new parameter is calculated from the chaining of two parameters and the sign between them.

An example of 2 parameter chaining
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{R} 01+\mathrm{R} 02\) & R01 \({ }_{\text {new }}\) & \(=\mathrm{RO1}+\mathrm{R} 02\) \\
\hline \(-\mathrm{RO1}+\mathrm{RO2}\) & R01 new & \(=\mathrm{RO1}+\mathrm{R} 02\) \\
\hline R01 - R02 & R01 new & \(=\mathrm{RO1}-\mathrm{RO2}\) \\
\hline -R01-R02 & R01 \({ }_{\text {new }}\) & = R01-R02 \\
\hline R01 . R02 & R01 \({ }_{\text {new }}\) & \(=\mathrm{R} 01 . \mathrm{R} 02\) \\
\hline R01 / R02 & R01 new & \(=\mathrm{R} 01 / \mathrm{R} 02\) \\
\hline
\end{tabular}

\section*{An example of 4 parameter chaining}
\[
\begin{aligned}
-\mathrm{R01}+\mathrm{R02.R03-R04} \mathrm{RO1}_{\text {new }} & =\mathrm{RO1}+\mathrm{R} 02 \\
\mathrm{RO}_{\text {new }} & =\mathrm{RO2} \times \mathrm{R} 03 \\
\mathrm{RO}_{\text {new }} & =\mathrm{RO3}-\mathrm{R} 04 \\
\mathrm{RO4}_{\text {new }} & =\mathrm{RO4}
\end{aligned}
\]

The parameters as well as the parameter value may be a signed number.

N1 L0105 R01-10.R02 81. R03 3. LF N6 L0206 R04-1. R05 4. R06-1. LF N100 M30 LF

A subroutine call to loop 5 times
and 6 times respectively. Parameters are defined prior to subroutine entry as: \(\mathrm{RO1}=-10 . \mathrm{R} 02=81 . \mathrm{R} 03=3\). R04 \(=-1\). R05 \(=\) 4. R06 \(=-1\).

Parameter used in called subroutines

\section*{L00100}

N5 X 1000. - RO1 +R02/R03 LF
N10 M17 LF
L00200
N1 Yl00. +R04. R05 + R06 LF
N20 M17 LF
The following numerical values are taken by the motion axes and the parameters.

L00100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Subroutine repetition /pass} & Operation & for 1 st & X & R01 & R02 & R03 \\
\hline & Address and & pass & U & -10. & 81. & 3. \\
\hline & Parameter & & & & & \\
\hline & Definition & & & & & \\
\hline aitecl & value for & 2nd pass & 1010. & 1 & 27. & 3. \\
\hline after2 & value for & \(\mid 3 x d\) pass & 929. & 98. & 9. & 3. \\
\hline after3 & value for & | 4 th pass & 902. & 107. & 3. & 3. \\
\hline after4 & value for & 5 th pass & 893. & 110. & 1. & 3. \\
\hline after5 & value for & 16 th pass & 890. & 111. & 0.333 & 3. \\
\hline
\end{tabular}

LU0200

At the end of a program; the parameters take on the values defined to them by the last performed parameter manipulation. This value remains stored until the parameter is redefined or a parameter manipulation is done resulting in a new value.

\subsection*{5.5 R-Parameter Assignment Under Address "L"}

An R-Parameter can be used to define a subroutine number under address \(L\), a looping value under address \(L\) or both.

Example:
\begin{tabular}{|c|c|c|}
\hline S.R. Call & S.R. Number & Looping Index Value \\
\hline N13 L123 & 123 & 1 \\
\hline \[
\begin{array}{lllr}
\hline \text { L12 } & \text {. } & \text { R010 } \\
\text { N13 } & \text { L123 } & \text { R01 }
\end{array}
\] & 123 & 0 \\
\hline \[
\begin{array}{lll}
\text { L12 } \\
\text { N13 } & \text { L123 } & \text { R0199 } \\
\text { R01 }
\end{array}
\] & 123 & 99 \\
\hline \begin{tabular}{lllll}
N12 & L & R01 & R01 & 150 \\
N13 & L123 & R01 &
\end{tabular} & 124 & 50 \\
\hline \[
\begin{aligned}
& \text { N12 . . . R01 } 12365 * \\
& \text { N13 }
\end{aligned}
\] & 123 & 65 \\
\hline \[
\begin{array}{|lllll}
\hline \text { N12 } & & \text { RO1 } & 1236 & * \\
\text { N13 } & \text { LR01 } & &
\end{array}
\] & 12 & 36 \\
\hline \[
\begin{array}{|llll}
\hline \text { N12 } & & \text { R01 } & 1312.36 \\
\text { N13 } & \text { TRO1 }
\end{array}
\] & 13 & 12 \\
\hline
\end{tabular}

\footnotetext{
* Note: In this case the R-Parameter value must be 4 or 5 digits. (LR01)
}

That is a number of repetitions of 1 must still be programmed.

\subsection*{5.6 An Example of a Subroutine Using Parameters}

Example: A Rectangle
The following subroutine illustrates the machining of a rectangle whose sides vary dimensionally. The rectangle sides are assumed parallel to the machine axes.

Subroutine
\begin{tabular}{llllllll}
L4600 & & & & & & LF \\
N5 & G01 & G91 & Z-R02 & & & & LF \\
N10 & & & X R00 & & & & LF \\
N15 & G02 & & X R03 & Y-R03 & IO & J-R03 & LF \\
N20 & G01 & & & Y-R01 & & & LF \\
N25 & G02 & & X-R03 & Y-R03 & I-R03 & J0 & LF \\
N30 & G01 & X-R00 & & & & & LF \\
N35 & G02 & X-R03 & Y R03 & IO & J R03 & LF \\
N40 & G01 & & & Y R01 & & & LF \\
N45 & G02 & X R03 & Y R03 & I R03 & J0 & LF \\
N50 & G01 & Z R02 & & & & & LF \\
N55 & M17 & & & & & & LF
\end{tabular}

Subroutine call:

\section*{Example: Machining an Internal Semi-Circle Surface}

The following subroutine illustrates a stock removal and finishing operation for a semi-circle. The contour radius and the cutter entry radius are written as parameter variables. Each time the subroutine is run, the actual part dimension can be compared to the programmed dimension by enabling the optional stop button (MO1). The resulting difference can be stored as an additive tool wear offset.

\% SP
LOO 100
N1 R02 0 R01
N2 R02 R01
N3 R01-RO9
N4 G00 G64 G91 G41 D R08 X -R01 Y R09
N5 R01 R09
N6 G03 X -R09 Y -R09 P R09
N7 X R02 YO P R01
N8 X-R09 Y R09 P R09
N9 RO1-RO9
N10 G00 G40 X -R01 Y -R09
N11 R01 R09
N12 M17
M02
Subroutine call
\% 5873
N1 G00 G90 X... Y...
N2 L0101 R01 30. R08 1. R09 15 F1000́ S1000 M03 LF
N3 . . .
LF
LF (semi-circle centre)
LF
LF

Example: Straight Milling
The path transitions are programmed with radii to avoid a reduction in the feed rate. In this manner dwell marks are avoided during a path direction change.

L34 is Called by another Program:

N15 L3409 R00 40. RO1 10. R02 480. F200 LF

Subroutine:
L3400
\begin{tabular}{|c|c|c|c|c|c|}
\hline N1 & G01 G64 G91 & XR00 & & & LF \\
\hline N2 & G03 & XRO1 & YR01 & IO. JRO1 & LF \\
\hline N3 & G01 & & YR02 & & LF \\
\hline N4 & G02 & XR01 & YRO1 & IRO1 J0. & LF \\
\hline N5 & G01 & XR00 & & & LF \\
\hline N6 & G02 & XROI & Y-R01 & IO J-R01 & LF \\
\hline N7 & GO1 & & Y-R02 & & LF \\
\hline N8 & G03 & XR01 & Y-RO1 & IRO1 JO. & LF \\
\hline & M17 & & & & LF \\
\hline
\end{tabular}

\subsection*{5.7 Buffer store empty, L999; for intended influences on the program (further read in of NC-blocks is inhibited)}

A series of influences through the control or from the interface control (parallel interface or PC) are registered in the active store of the NC indirectly via buffer stores. Associated with these influences are:
- external additive zo
- mirror image
- external zero offset group (8M/8MC)
- external zo
- external \(R\) parameter input
- synchronous machining (8MC)
- external tool offset
- block delete (switch on the operator's panel)
- text in clear for the user after programmed stop MOO

These influences may be activated (e.g. using M-functions).
If these functions which are actuated in the active program are to be effective in the block following their selection, the block buffer store must be emptied. Alternatively the selected control signal only becomes active several blocks later.

In each program the buffer store can be emptied by a single call-up of the subroutine L999. The subroutine \(L 999\) must be defined as follows:
\begin{tabular}{ccc}
L999 & 00 & LF \\
aj31 & & LF \\
M17 & & LF
\end{tabular}

The control registers the status "buffer store empty" in the interface control and the selected control signal or the required external data input can be enabled.

First example:
Activation of external tool offset, e.g. after a measurement of the tool.
N15 M... Read in activation of external TO
N20 L999 Empty buffer store. Pefore block N15 is not carried out, no further calculations are made.
N25 ... The new TO is calculated
Second example:
Text in clear for the user after MOO
N. . MOO L999 LF
(operational instruction) readable in the p.p.-figure
N. .

Attention: @ 31 must be alone in its own block
6. Canned Cycles

\subsection*{6.1 Boring Cycles G81-G89}

A boring cycle (working cycle) defines a series of machine and motion events (acc. to DIN 66025) necessary to drill, bore, tap, or preform some other task.
The boring cycles G81 thru G89 are stored in the control as subroutines L81 to L89.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Canned Cycle} & Traverse Rate into & At Hol & 1 e Bottom| & Retract to & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { User } \\
& \text { Example }
\end{aligned}
\]} \\
\hline \multirow[t]{3}{*}{} & Subroutine & the Part After & Dwell| & Spindle & The Reference & \\
\hline & & |Positioning to the & & & |Plane & \\
\hline & & |Reference Plane & & & & \\
\hline 0 & L8000 & & - & - & & Cancels L81-L89 \\
\hline 1 & L8100 & lin feed & - & 1-1 & | in rapid & |Drilling, centering \\
\hline 2 & L8200 & lin feed & yes 1 & \(1-1\) & |in rapid & |Drilling, counter sinking \\
\hline 3 & L8300 & I in feed, start-up & - 1 & \(1-1\) & I in rapid & |Deep hole drilling \\
\hline 4 & L8400 & |feed per revolution| & - 1 & |reversal| & lin feed & Tapping \\
\hline 5 & L8500 & |with rapid traverse| & - 1 & - & |with rapid verst & tBoring 1 \\
\hline 6 & L8600 & |Spindle on, in feed| & - 1 & stop & |in rapid & Boring 2 \\
\hline 7 & L8700 & |Spindle on, in feed| & - & - stop & |manual retract| & |Boring 3 \\
\hline 8 & L8800 & ISpindle on, in feedl & yes & 1 stop & |manual retract| & |Boring 4 \\
\hline 9 & L8900 & In feed & yes & 1 - & I in feed & |Boring 5 \\
\hline
\end{tabular}

The user may deviate from a standard fixed cycle and redefine it to suit his specific machine or tooling requirements. The parameters ROO thru R11 are used by the subroutine to define the variable values necessary to correctly execute a fixed cycle (e.g. reference plane coordinates, the hole depth, feed rate, dwell time, etc.). Proir to a subroutine call, all the necessary parameters must be defined.

A fixed cycle call is initiated with G80 to G89. G81 to G89 are modal fixed cycles that are cancelled with G80. A fixed cycle can be called with L81-L89, however, L81 to L89 are not modal. A \(G 81\) to \(G 89\) fixed cycle is executed at the end of every positioning move L81-L89 is performed only once, in the block in which,it is programmed. At the end of a fixed cycle the tool is positioned to exit.
The cycles G81 to \(G 89\) end all in the same way with the preparatory functions G00, G60, and G90. When continueing the program G-functions that are different from these have to be programmed anew.

ROO Dwell time at the start point (deburr hole)
R01 First depth advance (incremental) stored as an unsigned dimension
R02 Reference plane (absolute)
R03 Final depth (absolute)
R04 Dwell time length at hole bottom (break chips)
R05 Depth advance modifier stored as an unsigned dimension
R06 Reverse spindle rotation direction
R07 Return to the original spindle rotation direction used in the calling program (after R06 or M05)

R09 Depth advance or thread lead modifier. \(S R\) number and \(S R\) run for hole positions
R10 Retract position
R11 Drilling axis (Axis numbers from 1 to 10 selectable, e.g. \(X=1, Y=2, Z=3,10 t h\) axis \(=10\))

The cutter must be positioned to the correct location in the plane prior to the subroutine call. The appropriate feed, spindle speed, and rotation direction must be programmed in the calling routine. The fixed cycles are programmed for absolute dimensioning. After a return from a fixed cycle care must be exercied to insure that the correct dimensioning mode is again programmed.

Subroutine L80: (cancels G81-G89)
G80 is an internal control function call. No parameter definitions are required.

\section*{Subroutine L81: (Drilling, Centering)}

The following parameters must be defined:
R02 Reference plane (retract position)
R03 Final hole depth
Rll Drilling axis

Subroutine L82: (Drilling, Counter Sinking)
The following parameters must be defined:
R02 Reference plane (retract plane)
R03 Final hole depth
R04 Dwell time
Rll Drilling axis

The following R-parameters must be defined prior to calling canned cycle L83.

R00 = Dwell is preformed at the start position. (To deburr hole.)
ROl \(=\) First depth advance (incremental) stored as an unsigned dimension.
R02 \(=\) Reference plane \(=\) retract plane (absolute) "A"
R03 = Final hole depth (absolute)
RO4 = Dwell time length (break chips)
R05 = Incremental depth advance modifier stored as an unsigned dimension.
Rll = Drilling axis

R03 Final Hole Depth: The incremental depth diminishes with each successive drill amount till the final hole depth R03 is reached. If the incremental depth advance modifier exceeds the actual drill advance, succeeding drill advances will be held constant. At the end of the drilling cycle the drill is brought to point A.

If the remaining depth is greater than \(R 05\) and less than 2 times R05, it is divided into 2 drilling strokes.
\[
\mathrm{R} 05<\mathrm{a}<2 \mathrm{R} 05
\]
\(\mathrm{a}=\) remaining depth

The following R-parameters must be defined
RO2 Reference plane (retract position)
R03 Final depth
R06 Spindle rotation reversal
R07 Original spindle rotation direction.
R09 Thread lead dimension
Rll Drilling axis

Subroutine L84: (Tapping without Spindle Encoder)
The following R-parameters must be defined
RO2 Reference plane (retract position)
R03 Final depth
R06 Spindle rotation reversal
R07 Original spindle rotation direction.
Rll Drilling axis

Subroutine L85: (Boring 1)
The following R-parameters must be defined.
R02 Reference plane
RO3 Final depth
Rl0 Retract plane
Rll Drilling axis
---- Rapid traverse
___ Feed rate

The following R-parameters must be defined:
R02 Reference plane
R03 Final depth
R07 Spindle on (after M05)
Rl0 Retract plane
Rll Boring axis

Subroutine L87: (Boring 3)
The following R-parameters must be defined:
R02 Reference plane (retract position)
R03 Final depth
R07 Spindle on (after MO5)
Rll Boring axis

Subroutine L88: (Boring 4)
The following R-parameters must be defined:
R02 Reference plane (retract position)
R03 Final depth
R04 Dwell time length
R07 Spindle on (after M05)
Rll Boring axis
Fixed cycle L88 (G88) is similar to L87 (G87), however, a dwell is preformed at the bottom of the hole.

Feed rate

The following R-parameters must be defined:
R02 Reference plane (retract position)
R03 Final depth
R04 Dwell time length
Rll Boring axis

```

Rapid traverse m - -
Feed rate

```

\subsection*{6.2 Examples of Limitations in Cycle Call-up}

The drill cycle for every hole to be machined is called up only after the drill position has been reached.

The preparatory functions 681 through 689 can call up the subroutines L8100 through \(L 8900\) for a cycle run. At every drill position a called up drilling cycle is activated; and is active only in the called up subroutine plane. This modal drilling is cancelled with G80,

If the cycles G81 - G89 are run with any remarks
written in the program these remarks have to be given in blocks with departure data. If one of these remarks is written alone
between 2 LF characters a drill cycle will also be executed. Call-up G81 (drilling, centering)

Call-up with L81
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N8101 & G90 & 548 M03 & F460. & & LF & \\
\hline N8102 & G00 & D01 2500 & & & LF & \\
\hline N8103 & X100. & . Y150 & & & LF & \\
\hline N8104 & L81 & R02 360. & R03 250. & R11 03 & LF & - Call-up drill cycle 1st hole \\
\hline N8105 & X250. & Y300. & & & LF & \\
\hline N8106 & L81 & RO2 & & & & - Call-up drill cycle \\
\hline - & & & & & & 2nd hole \\
\hline N81. . & Z500 & & & & LF & \\
\hline
\end{tabular}

As opposed to the call-up with G81, here the drill cycle must be called up anew at every new drill position.

Call-up G82 (drilling, counter sinking)
```

N8210 ... M03 F460 LF
N8202 G00 D01 Z500. LF
N8203 X100. Y150. LF
N8204 G82 R02 360. R03 250. R04 1. R11 n3 LF
N8205 X250. Y300.
•
N82 .. G80 Z500. LF

```


First drilling depth
Reference level = retract level
Final drilling depth
Dwell at starting point
Dwell at drilling depth
Degression value
Drilling axis (here Z)
\begin{tabular}{rll}
50 mm & R01 & 50. \\
146 mm & R02 & 146. \\
5 mm & R03 & 5. \\
5 s & R00 & 5. \\
1 s & R04 & 1. \\
20 mm & R05 & 20. \\
& R11 & 03.
\end{tabular}

At the rapid traverse advance repective to the new drilling depth, a safety distance of 1 mm will be kept (taking care of the chips still remaining in the hole).

Call-up G84 (Tapping for machines with spindle encoder)
N8401 ... S48 M03 F460. LF
N8402 G00 D01 Z500. LF
N8403 X100. Y150. LF
N8404 G84 R02 360. R03 250. R06 04 R07 03 R09 5. R11 \(03 \quad \mathrm{LF}\)
N8405 X250. Y300.
-
N84. G80 Z500.

Call-up G84 (Tapping for machines without spindle encoder)
\begin{tabular}{lllllllllll}
N8401 & \(\ldots\) & S48 & M03 & F460 & & & & LF \\
N8402 & G00 & D01 & Z500. & & & & LF \\
N8403 & X100. Y150. & & & & & & & LF \\
N8404 & G84 & R02 360. & R03 & 250. & R06 04 & R07 03 & R11 & 03 & LF \\
N8405 & X250. Y300. & & & & & & & & LF
\end{tabular}

N84.. G80 Z500.
LF

Call-up G85 (Boring 1)
```

N8501 ... S48 M03 F460.
LF
N8502 G00 D01 Z500. LF
N8503 X100. Y150. LF
N8504 G85 R02 360 R03 250. R10 380 R11 03 LF
N8505 X250. Y300.
LF
N85.. 680 Z500
LF

```

```

N8601 ... S48 M03 F460.
N8602 G00 D01 Z500.
N8603 X100. Y150. LF
N8604 G86 R02 360. R03 250. R07 03 R10 380. R11 03 LF
N8605 X250. Y300. LF

```
N86.. G80 Z500.
LF

```

N8701 ... S48 M03 F460.
LF
N8702 G00 D01 2500. LF
N8703 X100. Y150. LF
N8704 G87 R02 360. R03 250. R07 03 R11 03 LF
N8705 X250. Y300. LF
•
N87.. G80 Z500.
LF

```

```

N8801 ... S48 M03 F460. LF

```
N8802 G00 D01 Z500. LF
N8803 X100. Y150. LF
N8804 G88 R02 360. R03 250. R04 1. R07 03 R11 03 LF
N8805 X250. Y300.
LF
N88. G80 2500.
LF

\section*{Call-up G89 (Boring 5)}

N8901 ... S48 M03 F460. LF
N8902 G00 D01 Z500. LF
N8903 X100. Y150. LF
N8904 G89 R02 360. R03 250. R04 1. R11 03 IF
N8905 X250. Y300.
LF

N89. G80 z500.
LF

6.3 Subroutine Pattern L900, switchable axis in \(X, Y, Z, 4 *\)

\section*{Note:}

The milling and boring patterns L900 - L905 are programmed in absolute dimensioning. The radius is programmed with address the angle is programmed with address \(A\).
The boring and milling patterns 1900 - L905 will all together be finished with the G-functions G00, G60, G90 as well as with the cancelled cutter radius compensation 640 . The tool length compensation remains selected.
Before the call of the cycles the cutter radius compensation. must be cancelled, the length offsets must however be active. According to requirement either the axis switchable cycles L900,L902,L904 or the Z-advance cycles L905,L901,L903 may be used.
When programming, only the subroutine "drilling pattern" is called up, and the following parameters are to be supplied with their respective values.

R11 Drilling axis \((X=1, Y=2, Z=3,4=4)\)
R22, R23 MP - centre point of the hole pattern, given in reference to the part's zero point
R24 Radius
R25 Initial angle (in reference to the horizontal axis)
R26 Incremental angle If incremental angle programmed is 0 , the number of holes will be divided from 360 .
R27. Number of holes
R28 The number for the desired drill cycle (81-89)
Example: XY-plane
Drilling axis Z is selected through R11 03

*(Presupposition: programming of radius and polar coordinates)

\section*{Subroutine call-up:}
```

N1900 L90001 R11... R22... R23... R24... R25... R26...
R27... R28... _... LF
N1901
The necessary parameters for the dxill cycle must also be defined,
e.g. in the preceeding block of the call-up for L900.

```

\subsection*{6.4 Subroutine, boring pattern L905, boring axis Z *}

While the subroutine L 900 is axis switchable in \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\), the \(Z\) axis is obligatory for the boring pattern. The parameter R11 is therefore inapplicable.

Subroutine call:
-
N10 R22.. R23. R24.. R25.. R26.. R27.. R28.. L90501 LF
6.5 Milling Pattern "Groove" L901, machining axis Z *

When programming, only the subroutine "groove" is called up, and the following parameters should be supplied with their respective values. Subroutine 4901 functions only in the XY-plane.

R01 First depth advance (inremental, without sign)
RO2 Reference level (absolute)
R03 Depth of groove (absolute)
R22, R23 MP - centre point of the groove pattern, in reference to the part's zero point
R24 Radius (distance MP to groove edge)
R25 Initial angle (in reference to the horizontal axis)
R26 Incremental angle If the incremental angle programmed is 0 , the number of grooves will be devided from \(360^{\circ}\)
R27 Number of grooves
R12 R13 "Groove" parameters; R12 groove width,R13 groove length (both R14 (8MC only) Tool offset no. of the milling tool (radius) incremental)

* taken into account in the \(S R\)

Before calling up the milling pattern "groove", the tool length compensation has to be selected with D.. (\(\neq{ }^{\prime \prime} 0\)).
-
N10 R01 R02.. R03.. R22.. R23..
N25 R24.. R25.. R26.. R27.. R12.. R13.. LF
N20
D05 L90101 LF

While subroutine \(L 901\) can only be used in the XY-plane, the milling pattern \(L 902\) can be applied dynamically to other planes. The boring axis has to be defined in a parameter additional to the parameters defined for 4901.

R11 advance axis \((X=1, Y=2, Z=3)\)
Subroutine_call-up:
-
N10 R01 R02.. R03.. R22.. R23.. R24.. R25..
N15 R26.. R27.. R12.. R13.. LF
N20 D05 R11.. L90201 LF
-
-
1) (Presupposition: programming of radius and polar coordinates)

The "elongated hole" subroutine \(L 903\) functions only in the XY-plane. The following parameters must be defined before call-up.
\begin{tabular}{ll}
R01 & First depth advance \\
R02 & Plane of reference \\
R03 & Depth of the elongated hole \\
R22, R23 & MP - centre point of the milling pattern, in reference \\
R24 & to the part's zero point \\
R25 & Radius \\
R26 & Initial angle (in reference to the horizontal axis) \\
& Incremental angle \\
R27 & \begin{tabular}{l}
If the incremental angle programmed is zero, the number \\
R12
\end{tabular} \\
of elongated holes will be divided accordingly \\
R13 & Number of elongated holes
\end{tabular}

* is taken into account in the SR

\section*{Cal1-up_I903}
```

N10 R01 R02.. R03 LF
N15 R22.. R23.. R24.. R25.. R26.. R27.. R12.. R13.. LF
N20 D05 L90201 LF

```
.
-

\subsection*{6.8 Subroutine Milling Pattern "Elongated Hole" L904, axes switchable in \(X, Y, Z\) *}

Subroutine \(L 904\) can be applied to other planes than the XY-plane. Additional to L903, the following must be defined:

R11
Boring axis (\(\mathrm{X}=1, \mathrm{Y}=2, \mathrm{Z}=3\))

Subroutine call-up
-
-
N10 R01 R02.. R03..
LF
N15 R22.. R23.. R24.. R25.. R26.. R27.. R12.. R13.. LF
N20 D05 R11 L90401 LF
* (presupposition: programming of radius and polar coordinates).

\section*{7. Sprint 8 M}
7.1 Word Address System

The word address format and thereby the input format is defined by EIA RS 274-C and DIN 66025.

\section*{Sprint 8M: Metric}
```

%04 N04 G02 XL+053 YL+053 ZL+053 UL+053 ID053 JD053 KD053
AL+035 PD053 F05 S04 H06 D02 T04 L5 R2 RL+08 M02 *

```

Inch
```

804 NO4 G02 XL+044 YL+044 ZL+044 UL+044 ID044 JD044 KD044
AL+035 PD044 F05 S04 H06 D02 T04 L5 R2 RL+08 M02 *

```
7.2 Motion Dimension, fourth axis

\section*{Sprint 8M}
\(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) and for the fourth axis addresses \(A, B, C, E, Q, U, V\), and \(W\) can be used.

\section*{Fourth axis:}
- The fourth axis only can be used als rotary axis.
- The fourth axis can be defined parallel to one of the primary motion axes \(X, Y, Z\) with a machine parameter.
- Which of the parallel axes is the secondary motion axes (e.g. \(Z\) or 4th axis) is determined by a signal from the interface. The signal may not change state after the start of the program.
- Circular interpolation between two parallel axes is not permitted. A secondary axis can be used in place of the primary axis to perform circular interpolation.
- Cutter radius compensation with the secondary motion is not possible.
- With constant surface speed and a zero point shift a tool length compensation for a facing head can be simulated.

\subsection*{7.3 Circular Interpolation with Interpolation Parameters}

The start point of the circle or the circle arc is defined by the preceeding block. The end point is defined by the corresponding axes' values. The circle centre point is defined by the corresponding interpolation parameters.
\begin{tabular}{|l|l|l|}
\hline I & \begin{tabular}{l}
Increment (signed) \\
from circle start \\
point to circle \\
centre point
\end{tabular} & Parallel to X-axis \\
\hline J & & Parallel to Y-axis \\
\hline K & & Parallel to z-axis \\
\hline
\end{tabular}
- When only one axis dimension is programmed, the missing dimension address is assumed to be from the plane selected by G17, G18 or G19. The last programmed value of this axis is used.
- The missing primary motion axis is always determined.
- The 4th axis may be defined as parallel to the \(X, Y\) or \(Z\) axis with machine parameters.
- The address of the circular interpolqtion parameter of the 4 th axis is equal to the associated parallel primary axis.
- If an interpolation parameter is not programmed, zero is assumed.

\section*{Example:}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline N5 & G17 & G42 & D03 & & & LF & Plane and tool offset selection \\
\hline N10 & G03 & X17. & Y 30. & I-9. & J8. & LF & \begin{tabular}{l}
Complete definition \\
of the circle with direction, circle end point coordinates and interpolation parameters.
\end{tabular} \\
\hline N25 & G03 & X17. & I-9. & & & LF & \begin{tabular}{l}
Circle programming with missing addresses. \\
If no other plane or traverse distance in the Y-axis has been programmed between N10 and N25, the control generates the following:
\end{tabular} \\
\hline
\end{tabular}

N25 G17 GO3 X17. Y30. I-9. J0. LF
(Presupposition: 3D-Intexpolation)
Helical interpolation is possible between any three perpendicular axes. A block is programmed with one arc path and one linear path. The linear departure must be perpendicular to the plane in which the arc motion is generated. The programmed feed is maintained for the arc motion.

Example: Semi-circle with radius \(=100 \mathrm{~mm}\)

Circular interpolation plane
(given by G17, G18 or G19)
(both axes must be programmed)
The motion dimension for linear interpolation may be written before or after the \({ }^{\text {P-word. }}\)

Interpolation parameter or radius word
For example, if the 4 th motion axis is declared parallel to the \(X\) primary motion axis, the following circular motion planes are valid for helical interpolation.
\begin{tabular}{|c|cc|cc|}
\hline Linear & Circular & Interpolation Parameters \\
\hline X & Y & Z & J & K \\
Y & X & Z & I & K \\
Z & X & Y & I & J \\
4 & Y & Z & J & K \\
Y & 4 & Z & I & K \\
Z & 4 & Y & I & J \\
\hline
\end{tabular}

The 4 th motion axis uses the interpolation parameter assiciated with the parallel primary motion axis.

Note: Helical interpolation is not possible with Sprint 8ME.

\subsection*{7.5 Constant lead tapered threads}
- For constant lead tapered threads, the thread lead is programmed for the leading axis.
- The leading axis is defined as the axis traversing the longest distance.
- For equidistant traverse in all axes, the leading axis is defined by the first axis programmed.
- The address pairing for thread cutting is. Ito \(X, J\) to \(Y, K\) to \(Z\).
- I,J and \(K\) should always be entered in incremental without a sign. The input increment is equivalent to 1 or \(0.001 \mathrm{~mm} / \mathrm{rev}\). (. \(0001 \mathrm{in} / \mathrm{rev}\))
- The 4 th axis may be used to cut threads irrespective of the 4 th axis \(=\) main axis signal.
- The thread pitch of the 4 th axis muy be programmed using either \(J\) (!) or K.
- G09 has to be programmed, if velocity reduction is desired at the end of the block.
- The thread length including acceleration and deceleration distance is programmed under the appropriate dimension address. In addition, the tool width must be taken into consideration.
- When thread cutting, tre feea override, feed hold, spindle speed override, and single block switches are disabled.
- Pairing of thread lead and spindle speed - see chapter 8.2.4.
- The interpolation parameter of the non leading axis is not tested for validity: it may also be zero.
Example: Incremental Dimensioning (G91)
G91
\begin{tabular}{|c|c|c|c|c|c|}
\hline G33 & X20. & 210. & IO. 2 & & Thread lead \(=0.2\) \\
\hline G33 & X10. & Z20. & IO. 2 & & Incorrect programming \\
\hline G33 & X10. & z20. & J0. 2 & & \multirow[t]{2}{*}{2 is the leading axis The thread lead must be programmed using \(K\)} \\
\hline & & & & & \\
\hline G33 & x 10. & 210. & 10.2 & & \(=0.2\) \\
\hline G33 & x10. & 210. & K0. 2 & & \(=0.2\) \\
\hline G33 & \(\times 10\). & 210. & Iq. 2 & K0. 2 & \(=0.2-1\) \\
\hline & & & - - & & Permissible \\
\hline G33 & & X10. & \[
-\mathrm{IO}^{2}
\] & \[
{ }_{-}^{K 0} i^{2}
\] & \(=0.2{ }^{-1}\) \\
\hline
\end{tabular}

By programming G17 thru G19, the plane is defined in which cutter radius compensation is available. If a plane has not been selected at the start of the program, the default plane will be defined by Gl7 (default setting).

With a 4th axis the cutter compensation plane is defined as follows:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Parallel } \\
\text { to } \\
\mathrm{x}
\end{gathered}
\] & ```
Parallel
 to
 Y
``` & 1 & \begin{tabular}{l}
Parallel \\
to \\
Z
\end{tabular} & 1 & \begin{tabular}{l}
Machine without \\
a 4 th axis
\end{tabular} \\
\hline \multirow{5}{*}{G17} & & & 1 & & 1 & \\
\hline & X-Y & X-Y & , & & 1 & \\
\hline & 4-Y & X-4 & 1 & X-Y & 1 & \(X-Y\) \\
\hline & Z-X & & 1 & Z-X & & \\
\hline & & & 1 & & 1 & \\
\hline G18 I & Z-4 & Z-X & 1 & 4-X & 1 & Z-X \\
\hline \multirow[t]{3}{*}{G19 I} & & & 1 & & 1 & \\
\hline & & Y-Z & & Y-Z & , & \\
\hline & \(Y-Z\) & 4-z & & Y-4 & 1 & Y-Z \\
\hline
\end{tabular}
(4th axis - see chapter 7.2)

G40 Cutter compensation off
G41 Tool to the left of the part
G42 Tool to the right of the part
When mirror imaging is used and the sign is considered, the traversed path is as follows:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Both axis are mirrored or \\
Neither axis is morrored
\end{tabular}} & & one ax \\
\hline \multicolumn{4}{|l|}{Sign for the radius compensation value of the cutter} \\
\hline G41 left & - & +
right & left \\
\hline G42 right & left & left & right \\
\hline
\end{tabular}

G40, G41 and G42 may be programmed in blocks programmed without motion preparatory functions. However, the function is. not active until axis motion is programmed in at least one axis.

Fromsoftware stand 2 possible:
7.8.1 Intersection. CRC with simultaneous tool length offset G43/G44

G43 Jool length compensation positive (reset statc)
G44 Tool length compensation negative
Cancelling CRC Cancelling of the length offset
with G40 or DOU only with DOO

When selecting tool length compensation with D.. ,
G43 is active providing that 644 has not previously been. programmed.

With G41 G17 D.. X.. Y.. Z.. the length compensation is active in \(Z\) and the CRC in the \(X-Y\) plane.
The selection is only possible, when G00 or G01 are active.
N10 G01 G17 G41 D07 X. . Y . . LF

N10 G01 G17 G41 D12 X... Y... Z... LF Length and radius compensated
N15 G42 X... UF Only the direction of the radius compensation is changed

N20
X... Z... LF

Length is not changed.

Calling a different tool offset function
The G-function (G41, G42) has not to be programmed.

N10 G01 G17 G41 D12 X... Y... LF
N15 D10 z... LF Change in the length compensation
N20 X...Y... LF

\subsection*{7.8 Tool Offset}

Under the tool offset number the tool offset dimensions are stored.

The tool offset consists of:

Tool wear compensation:

Tool offset geometry:
\[
\begin{aligned}
& \text { Length } \pm 0,9999 \text { in } \quad( \pm 9.999 \mathrm{~mm}) \\
& \text { Radius } \pm 0,9999 \text { in }( \pm 9,999 \mathrm{~mm}) \\
& \text { Length } \pm 9999.9999 \text { in }( \pm 9999.999 \mathrm{~mm}) \\
& \text { Radius } \pm 99.9999 \text { in }( \pm 999.999 \mathrm{~mm})
\end{aligned}
\]

A total of 99 offsets \(1 s\) available


Under the tool offset number the length and radius dimensions are stored. The wear compensation values for the length and and radius dimensions are input via the operator's panel.

Tool offset call and input (geometry)

A tool offset is called via a two digit designator D01 ..... D99 (length and radius pair).


The length dimension is stored under \(D\), the radius dimension under \(P\).

Selecting and cancelling the length compensation
The selection is only possible, when GOO or GO1 are active. At least one plane perpendicular to the plane in which the compensation should act, must be selected.


Only the length compensation is used from the store D... . The compensation value contained in the \(D\) word is always taken, in the calculation according to the programmed axis.

The cancellation of the length compensation is done via D00. The uncompensated position is reached when the respective axis is programmed.
1. Length compensation without CRC
\begin{tabular}{llllll} 
N5 G90 G00 G17 DO1 & Z500. & \begin{tabular}{l} 
Selection of the length \\
compensation (e.g. Boring
\end{tabular} \\
tool)
\end{tabular}
2. Length compensation with CRC




The cutter being used has a radius of 1 inch. The radius dimension is stored under address DO1.

Example: 4 Quadrant Arc Programming with CRC


Cutter center path
part contour
\begin{tabular}{lllllllllll} 
N1 & G90 & G00 & G17 & G41 & D01 & X80. & Y30. & & & LF \\
N2 & G03 & & & & & X130. Y80. & & J50. & \\
N3 & G91 & G02 & & & & X0. & Y0. & I50. & J0. & LF \\
N4 & G90 & G03 & & & & X80. & Y130. & I-50 & J0. & LF \\
N5 & G00 & G40 & & & & X70. & Y80. & & & LF
\end{tabular}

\subsection*{7.9 Tool Function T}

The tool function (T-function) designates the tool necessary for a machine operation.

Address for the tool fuction
Tool Designation (Position)

\subsection*{7.10 Blue Print Programming}

The contour is described by multipoint paths programmed directly from the part drawing. The intersection point of two straight lines is determined from the coordinate values or an angle.

The transition between two straight lines may be abrupt when a sharp corner is desired. A radius or chamfer may be inserted at the intersection point. The chamfer and the radius are defined by a length dimension value. The geometric calculation is performed by the control. Absolute or incremental dimensioning may be used to define the end point coordinate.

Angle (A): Input resolution \(0.00001^{\circ}\)
The given angle (maximum 359,999990 ) is always positive and measured with respect to the positive axis of the highest axis address.

Axis address value \(Z-Y-X\)


\section*{Caution:}

Blue print programming works only in the selected plane. 3D machining is not possible.

The examples 1) thru 8) illustrate the basic elements in geometric path programming. The basic patterns can be combined in various other ways (see pg. 7-20 and 7-21).

5) Radius

\(\mathrm{N} \cdot \ldots \mathrm{X}_{2} \ldots \mathrm{Y}, \ldots \mathrm{P} \cdot \ldots\)
N. \(-X_{3} \cdot Y_{3} \cdots-\)

The insert radius may not be smaller than the shortest line segment length \(\left(\mathrm{X}_{2} \mathrm{Y}_{2}, \mathrm{X}_{3} \mathrm{Y}_{3}\right.\) or \(\mathrm{X}_{1} \mathrm{Y}_{1}, \mathrm{X}_{2} \mathrm{Y}_{2}\) )
6) A Straight-Tangential to an Arc Path

7) A Arc Tangential to a Straight Line path

8) Arc-Arc (Tangential) Path

\(\mathrm{N} \cdot \mathrm{GO2}\) (or G03) P. A. A. \(\mathrm{X}_{3} \ldots \mathrm{Y}_{3}\)
The sequence \(P\) (radius) and \(A\) (angle) must be maintained. A radius cannot be inserted at \(Y_{3} Y_{3}\). The arc must have a subtended angle less than \(180^{\circ}\)

1) \& 4)

2 Point Connected Path \(\pm\) Chamfer
1) \& 4)

2 Point Connected Path \(\pm\) Chamfer
3) \& 4)

3 Point Connected Path \(\pm\) Chamfer

\(\mathrm{N} \cdot \mathrm{A}_{2} \cdot \mathrm{X}_{2} \cdot\left(\mathrm{Or} \mathrm{Y}_{2}\right) \mathrm{P} \cdot\)
 shortest line segment.

3) \& 5)

3 Point Connected Path + Radius
\(\mathrm{N} \cdot \mathrm{A}_{1} \cdot \mathrm{~A}_{2} \cdot \mathrm{X}_{3} \cdot \mathrm{Y}_{3} \cdot \mathrm{P}_{2} \cdot \mathrm{~B}^{\circ}\)

3) \& 4) \& 5)

3 Point Connected Path +2 Chamfer

3) \& 5) \& 5)

3 Point Connected Path +2 Radii

3) \& 4) \& 5

3 Point Connected Path
\(\pm\) Chamfer + Radius

3) \& 4) \& 5

3 Point Connected Path
\(\pm\) Radius + Chamfer

\(\mathrm{N} 15 \quad \mathrm{~A}_{1} \cdot \cdot \mathrm{~A}_{2} \cdot \mathrm{X}_{3} \cdot \cdot \mathrm{Y}_{3} \cdot \cdot \mathrm{P}_{1} \cdot \cdot \mathrm{P}_{2}-\)
N16 \(\mathrm{X}_{4} \cdot\). \(\mathrm{Y}_{4}\). .
Inserting a 2nd chamfer at the end point \(\left(X_{3}, Y_{3}\right)\).

N15 \(A_{1} \cdot A_{2} \ldots X_{3} \ldots Y_{3} \ldots \mathrm{P}_{1} \ldots \mathrm{P}_{2} \ldots{ }^{\circ}\)
N16 X4••• \(\mathrm{Y}_{4} \cdot \cdot\). Inserting a 2nd radius at the end point \(\left(X_{3}, Y_{3}\right)\).
\(N_{15} A_{1} \cdot A_{2} \cdot X_{3} \cdot Y_{3} \cdot P_{1} \cdot \ldots P_{2} \ldots\)
N16 \(X_{4} \cdot Y_{4} \cdot \cdots \cdot\) The next path movement is automatically taken into consideration.
\(\mathrm{N}_{15} \mathrm{~A}_{1} \cdot \mathrm{~A}_{2} \cdot \mathrm{X}_{3} \cdot \mathrm{Y}_{3} \cdot \mathrm{P}_{1} \cdot \mathrm{P}_{2} \cdot\)
 Inserting a chamfer \(\dot{(\mathrm{P}-)}\) at the end point
* The second block may also be programmed as a contour path

When a sharp corner without radius or chamfer is desired, address \(P\) is programmed as PO.* A radius or chamfer may be inserted, if the next programmed block describes an arc path.

Angles and radii must be written in the previously described sequence (first angle before second angle, first radius before second radius - in the direction of machining).
7.10.2 Geometric Path Programming with G09, F, S, T, H or M

When a G09 is programmed in a contour path, the function is not in effect until the end of the block ie. when the end position is approached.

Within the contour path G09 is generated automatically by the control at transition points (corners and edges).

If \(\mathrm{F}, \mathrm{S}, \mathrm{T}\), or H is programed within a contour path, then they act at the start of the block.

Within a contour path a programmed M00, M01, M02, M17 or M30 will be output at the end of the block.
* Attention: With this type of programming a block with a movement \(=0\) will be generated from the description of the contour. This must be noted together with the application and effect of the cutter radius compensation.(see section 8.1.6)

\subsection*{7.10.3 Linking Geometric Path Blocks}

Several contiguous blocks using the blue print programming (geometric path) method may be linked arbitrarily.

All combinations linking straight line paths with or without radii and chamfers are possible.

\(\begin{array}{llllllll}\text { N10 } & \text {. . . P5. LF } & & & & \\ \text { N11 A... X . . . P7. LF } \\ \text { N12 A . . . A . . . X . . . Y . . . P9. Pll. LF }\end{array}\)

\subsection*{7.10.4 Examples}

The angle \(\alpha\) is associated with the start point and the angle \(\beta\) with the as yet undetermined intersection point.

The end point may be programmed in absolute dimensions G90 or in incremental dimensions G91. Both end point coordinates must be known. The control calculates the intersecton point knowing the start point, the end point, and the two angles.

Example:


N10 G00 G90 X125. Y50. LF N11 G01 A280. A260. X47. Y58. F . . . LF

The following subroutine describes a rectangular pattern. The rectangle sides, corner radii as well as the depth advance is variable. The radius parameter R 03 must be smaller than R01, i.e. one half of ROO.


Example for 8M.

\section*{Subroutine:}
```

L46100
NO G01 G91 Z-R02 LF (A)
N1 G02 X-R04 Y R04 P R04 LF (PI)
N2 G01 A0. A270. Y R01 X-R00 P R03 P R03 LF (P2)
N3 Y-R01 LF
(P3)
N4 Al80. A90. Y-R01 X R00 P R03 P R03 LF (P4)
N5 Y R01 LF
N6 G02 X R04 Y R04 P R04 LF (E)
(P1)
N7 G01 Z R02 LF
(E)
N8 M17 LF

```

Subroutine Call:
```

N25 G90 G42 D18 X... Y...
N30 L46101 R00 60. R0120. R025. R0310. R0410. LF

```

\section*{Example: Geometric Path Programming}

In the following example, geometric path programming is used to program: an arc to arc path, a straight to arc path, and a three point connected path + chamfer + radius.

```

L16800

```

N1 G90 G03 I-10. J0. IO. J15. X105. Y25
\(\mathrm{N} 2 \mathrm{G} 03 \mathrm{~A} 315 . \mathrm{P} 18 . \mathrm{X} 40 . \mathrm{Y} 50\).
N3 G01 A180. A90. X140. Y10. P-20. P10.

N4 Y40.
N5 M17
LF (P1)
LF

In block N2 GO3 must be programmed. With an arc to arc path the second arc direction is opposite to the first. See "Geometric path programming", example 8.

A block is considered linked to an adjacent block when a radius or chamfer is used to connect the two blocks.

Example:


A block containing miscellaneous and auxillary functions may be written between linked blocks.

Example: See above figure and page 7-26.
N3 Al80. A90. X140. Y10. P-20. P10. LF (geometric path P3 - p4)
N4 M . . H . . . . . LF
N5 Y40.
LF
The miscellaneous and auxillary functions become effective
at point \(P 4\). A dwell mark will result at point p 41 .

\section*{8. Appendix}
8.1 Intersectional Cutter Radius Compenstion (CRC)
8.1.1 Selecting the CRC
8.1.2 CRC Usage in a Program
8.1.3 Repeating the Already Selected G-Code (G41/G42) with the same offset Number
8.1.4 CRC Cancellation
8.1.5 MOO, MO1, MO2, M30 with CRC selected
8.1.6 Combination of Different Types of Blocks
8.2 Input Systems, Diagrams, and Tables
8.2.1 Inaccurately Specifying the Interpolation Parameters or the Arc Radius
8.2.2 Reference Point Definitions
8.2.3 Path Departure Calculation
8.2.4 Limit Data for Rotational Feedrate
8.2.5 Spindle Speed as a Function of the Turning Radius for \(\mathrm{V}=\) Constant
8.2.6 Input Formats
8.2.7 Axis Numbers
8.2.8 Driziling Cycles 8M/8MC - Axes Switchable
8.2.9 Special case with "cancel distance to go
8.2.10 Blook preparation time
8.3 Programming Keys
8.3. Programming Key for 8M
8.3.2 Programming Key for 8MC
8.3.3 Programming Key for Sprint 8M

\subsection*{8.1 Intersectional Cutter Radius Compensation}

In the following all stop points are designated by an \(S\).
8.1.1 Selecting the CRC
- Inside contours (the included angle formed by blocks N10 and N11 is less than \(180^{\circ}\) ).


In a block following a block which selects the CRC, a vector of length \(R\) perpendicular to the programmed path is calculated.
- Outside contours (the included angle formed by blocks N10 and N11 is less than \(270^{\circ}\) and greater than \(180^{\circ}\) ).

- Outside contours (the included angle formed by blocks N10 and N11 is greater than \(270^{\circ}\) ).


\subsection*{8.1.2 CRC Used in a Program}
- Inside contour (the included angle formed by two blocks < 1800)

Linear to linear


The intersectional
point is calculated for the compensated path

Circular to circular

- Outer contour (the included angle formed by two blocks is less than \(270^{\circ}\) and greater than 180 )

Linear to linear


The intersection point of the cutter compensation path is calculated.


At the arc end point \(A\) (or arc start point), a normal of length \(R\) is calculated. The intersection point is calculated from the tangent at point \(B\) and the cutter compensated path of N11 (or N10).

Circular to circular


At the arc end point (or the arc start point), a normal vector of length \(R\) is created for both arcs. The tangent to point B2 and the tangent to point Bl is determined and the tangenttangent intersection point calculated.


At the end point and start point respectively
greater
than \(270^{\circ}\) ) of blocks N1O and N1l,a normal vector of length \(R\) is calculated for each path. The cutter will traverse a path that results when the two path endpoint tangents of length R are connected. The traversed path is the point connected path. The part contour is machined exactlv.

\section*{Changing the Cutter Compensation Direction}

At the block end point the old compensation direction (G41,G42)
is changed to start the next block. The compensation direction
is switched in the following manner:

Normal vectors of length \(R\) are calculatied at the end point and start point of the new blocks respectively.


When the tool offset number is changed, the following control
action results:
No block start intersection point calculation is performed using the old compensation.
A nominal vector of length \(R 1\) is erected at the end point of the block containing the old offset.
The block end intersection point is calculated using the new offset.


The tool offset dimensions can be changed from the operators panel, with a perforated tape, with the external tool offset or in the part program. The new offset is active in the next block.


\subsection*{8.1.3 Repeating the already selected G-code (G41,G42) with the same offset number (incorrect programming)}

When an already programmed G41 or G42 is repeated, a normal vector of length \(R\) will be erected on the programmed path at the end of the previous block.


The block start intersection point is calculated for the following block:
\begin{tabular}{lllllll} 
N4 & G91 & D10 & G41 & X. ... & & LF \\
N5 & & & & X.... & & LF \\
N6 & & & & Y.... & & LF \\
N7 & G41 & & & X.... & Y.... & LF \\
N8 & & & & Y.... & & LF
\end{tabular}

\subsection*{8.1.4 Cancelling CRC}
- Inside contour (angle formed by block N10 and N11 is less than \(180^{\circ}\) )

Linear to linear


Circular to circular


Circular to linear


The last block in which CRC is active, a normal vector of length \(R\) is erected for the programmed path.

When a transition is made to a linear path, the programmed end point is approached directly.

When a transition is made to a circular path, a displaced arc path is traversed to the perpendicular intersectional point. The remaining distance is traversed along the perpendicular to the end point.
- Outside contours (angle formed by blocks N1O and N11 is less than \(270^{\circ}\) and greater than \(180^{\circ}\) )

(The included angle formed by blocks N10 and N11 is greater than \(270^{\circ}\) )


The compensated path is calculated, the tool traverses to the next calculated intersection point of the new block. CRC is cancelled.



\subsection*{8.1.6 Combination of different types of blocks}

The examples refer to the \(X-Y-p l a n e\).
Type: - Distances in the CRC-plane Example:
N... G91 X1000 LF
- "Distance = O" Preparatory functions are programmed in the CRC plane, no movemnets take place, because the distance is zero. Example:
N. . G91 X0 LF
- "Block without traverse information (auxillary block)

There are only movement addresses outside the CRC plane programmed , or only miscellaneous functions, dwell and block functions, subroutine definition, subroutine program, used alone in a block. Example:
\begin{tabular}{llrl} 
N. . & Y1000 & LF \\
N. . & M08 & LF \\
N... & G04 & X1000 & LF \\
& & & \\
N. . & T0101 & LF
\end{tabular}
- Not in the CRC-plane

Blocks that do not lie in the CRC-plane. Example:
\[
\text { N... GO2 X1000 Z1000 IO I } 1000 \quad \text { LF }
\]


One "miscellaneous block" between distances in the CRC-plane


Two "miscellaneous blocks" between distances in the CRC-plane

\begin{tabular}{llll} 
N5 & G91 & X10000 & LF \\
N6 & M08 & & LF \\
N7 & M09 & & LF \\
N8 & & Y-10000 & LF \\
N9 & & X1000 & LF
\end{tabular}

The blocks N6 and N7 are executed at point \(S\).
With the exception of tangential transitions, contour adulterations result.

One block "distance \(=0\) " between distances in the CRC-plane

\begin{tabular}{lll} 
N5 & G91 & X10000 \\
N6 & LF \\
N0 & Y-10000 & LF \\
NF
\end{tabular}

With the exception of tangential transitions, contour adulterations result.

Two blocks "distance \(=0\) " between distances in the CRC-plane

\begin{tabular}{lll} 
N5 & G91 & X10000 \\
N6 & LF \\
N0 & X0 & LF \\
N8 & Y-10000 & LF
\end{tabular}

With the exception of tangential transitions, contour adulterations result.

One block "distance \(=0\) " and one "miscellaneous block" between distances in the CRC-plane

\begin{tabular}{llll} 
N5 & G91 & X10000 & LF \\
N6 & X0 & LF \\
N7 M08 & & LF \\
N8 & & Y-10000 & LF
\end{tabular}

The block N7 is executed at point \(P\).
With the exception of tangetial transitions, contour adulterations result.

One "miscellaneous block" and one block "distance \(=0\) " between distances in the CRC-plane

\begin{tabular}{llll} 
N5 & G91 & X10000 & LF \\
N6 & M08 & & LF \\
N7 & & X0 & LF \\
N8 & Y-10000 & LF
\end{tabular}

The block N6 is executed at point S .
With the exception of tangential transitions, contour adulteration results.

Selection of \(C R C\) in one block "distance \(=0 "\)


Deletion of \(C R C\) in one block "distance \(=0 "\)


\section*{One block "not in the CRC-plane" between distances in the CRC-plane}


The figures are projections on the CRC-plane.
Two blocks "not in the CRC-plane" between distances in the CRC-plane

\(\frac{\text { Talid for SP8M }}{\text { No G17 G41 D1 G91 }} \times 10000\) F10000 N1 X 50000
* N2 G \(18^{1)} \mathrm{G} 03 \times 50000 \mathrm{Z} 50000 \mathrm{I} 50000 \mathrm{~K} 0\)
* N21 X50000 Z-50000 IO K-50000

N3 G17 G01 Y-50000
N4 X100000 Y-60000
Valid for \(8 \mathrm{M} / 8 \mathrm{mC}\)
N0 G41 D1 G91 X10000 Y0 F10000
N1 \(\times 50000\)
*N2 G03 Z50000 X50000 KO 50000 I50000
* N21 Z50000 X-50000 K50000 IO-50000

N3 G01-Y-50000
N4 X100000 Y-60000
* Block not in the CRC plane
1) If G18 is missing then alarm 504 is displayed. With the exception of tangential transitions, contour adulteration results.

Since the control always uses the information of the next block to calculate the intersectional path, a contour distortion will result under the following circumstances.


The tool offset dimension is larger than the distance between two paths. Machining is not interrupted, however, an alarm is signaled 506 and again cancelled at the end of the program.

For external contours with an obtuse angle the following applies:


To avoid transition paths, generated by the control, that are of such short time duration that axis motion. is temporarily halted, the distances \(A B\) and \(B C\) may be omitted by the NC. The path that results depends upon the tolerance set into machine parameter (maximum 32000 um ) \(=d\), during commissioning.

With X 1 and Y 1 less than d , the control moves directly from \(A\) to \(C\).

With \(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2\) and Y 2 smaller than d, there is no compensation movement generated.
From point A machining continues with the new radius.

There are resultant exchanging of block numbers observable in the display when mackining inside contours with acute angular contour transitions (programmed) and intermediate lying axis movements that do not lie in the CRC plane. In order that the workpiece is not damaged the following procedurer should be observed.


N5 G00 Z100.
N10 X0. Y10.
N15 G41 D01 X20. Y20.
N20 G03 X0. Y40. I-20. JO.
N25 X0. Y40. IO. J-40.
N30 G01 Z0.
N35 G40 X80. Y60.
The points \(\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4\) belong logically to block N25. The machining sequence (observable in single block) is : ..., N20, N25 (S1), N30 (withdrawal of the tool from the workpiece), N25 (S2), N25 (S3), N25 (S4), N35... .
The same procedure applies when \(N 25\) is a linear block.

\subsection*{8.2 Input System, Diagrams, and Tables}

\subsection*{8.2.1 Inaccurately specifying the interpolation parameters or the arc radius}

An arc end point programming error is recognized by the control (assuming the tolerance window is exceeded). Circular interpolation will not begin, instead, an alarm is signaled.

If the programming error lies within the arc tolerance window, the control will position accurately to the end point, however, the path will deviate from the desired arc as shown:

Interpolation Parameter or Radius
too large
too small


The tolerance window \(T\) about the arc end point \(C E\) is adjustable from \(\pm 0.0001\) to \(\pm 3.2\) ( \(\pm 1 \mu \mathrm{~m}\) to \(\pm 32000 \mu \mathrm{~m}\) ).

The monitor can be suppressed by setting a large dimensional value. The tolerance window is input as an unsigned dimension stored under a machine parameter address.

\(M=\) Machine zero point
\(W=\) Part zero point
\(\mathrm{R}=\) Machine home position
WR \(=\) Part reference point
XMR, ZMR etc. \(=\) Reference point coordinates for each axis
\(X M W, ~ Z M W\) etc. \(=\) Sum of all null offsets for each axis

Total Null offset \(=\) settable offset \((\) G54..G57) + additive null offset (G59) + ext. null offset + additive ext. null offset.
8.2.3 Path calculation

\section*{G91 in the first block with motion}

Path \(=\) Incremental dim. \(+20+T 0\)
G91 from the second block with a motion


When the 20 and \(T O\) are not changed, the formula is simply:
```

Path = Incremental dimension

```


G90 in any block with a motion
```

Path $=$ Absolute dim. (new $^{\text {-absolute }}$ dim. $(\text { old })^{+20(n e w)}{ }^{-20}(\text { old })^{+}$
${ }^{+\mathrm{TO}}$ (new $^{-\mathrm{TO}}$ (old)

```



Relationship between rotational feedrate and spindle speed
Relationship between pitch and spindle speed (thread cutting G33)
n max. 1 can be achieved with ROD encoder connected 1:1
N max. \({ }_{2}\) can be achieved with ROD encoder connected 1:2
*)
exactly 159.164 mm

\subsection*{8.2.6 Input Formats}


Using inch input (G70) the smallest input increment can be changed from \(10^{-4}\) inch to \(10^{-5}\) inch by modification of setting datum.

The parameters (R00-R99) and special functions @ \(00-@ 99\) are always written as 2 decades. For all other functions ( except address \(L\) ) the leading zeros can be omitted.

\subsection*{9.2.7 Axis Numbers}

Axis Number
\begin{tabular}{|l|c|c|}
\hline & 8M/Sprint 8M & 8 MC \\
\hline X-Axis & 1 & 1 \\
Y-Axis & 2 & 2 \\
Z-Axis & 3 & 3 \\
4th Axis & 4 & 4 \\
5th Axis & - & 5 \\
6th Axis & - & 7 \\
7 th Axis & - & 8 \\
8th Axis & - & 9 \\
9th Axis & - & 10 \\
\hline
\end{tabular}

\section*{8．2．8 Boring cycles －axis switchable}
\(\%\) e\％

名 \(2 ?\)
か00 F゙ァ＂
N0 स゙অ988
N1 FG8 Fid


日．（ay\％Kios


0）
（a）0 Fiヲ7
NO F゙ت゙987


；660 6\％0 \(09 \%\) F02
Gil ag\％Fios
04 FFO4



000 に゙ンク

N1．FiEC Fill

स゙ 67 －FOE
F63 … FO

Fior－－it

F76－Fi6o
6 660 690 69\％F02．
小゙
（003 4 Fig：Fib 3
F63－F66 F6\％ 0 F03
F6？F6． 3
GI 692 F6\％
64 FF゙04
G ac\％Fo\％
\(64 F F \mathrm{FO}\)


下゙ \(6:\) ド
（03 \＆FOE F6
F64－－F0\％

※64 0 に0
003－ 3 Fis Fiby

Fi64／Fi62
（00）－－3
N4 Bll
641 FCO
G（2ヶ2．FO2 MLZ

Address parameter，dependent on the stage of development of the software
Rapid traverse on the reference plane Boring on reaching programmed depth Rapid traverse back

Rapid traverse on reference plane Boring on reaching programmed depth
Dwe 11 on programmed depth
Rapid traverse back
Starting preparations

R67 \(=2 \mathrm{x}\) Degression
Call－up of boring direction
R66＝sign

Driving reference plane
Recognition of end R63 \(\Leftarrow=0\)
R62＝Boring depth absolute

Driving on security
For next boring
R63 \(\Leftarrow=\) degression \(\Rightarrow\) end
Calculate next move
Bisection necessary ？
Bisection of move
Boring last move

End
```

1.8400 F%% 0 W6%%0
%?:%
000 F%%
N0 F!%% %%
NL remy li|!
\#20 09% F%%9
800 6%0 09% FO%
\#% E%% E%% FOS
MFO6
09% R0%
GG60 MF:0% MI%Y

```

```

%"
000 F%%
NO FW% 8%

```


```

% 660 690 69% FNO2
6% E%% F゙03

```

```

1.0600 F゙%7% 0 F%%%
@%:%
\#00 F゙%%
NO F゙5% 8%

```

```

(%20) %%% ジツ%
MEOY
6 660'080 092 F0%
@1. 9%" FiO%
M:
G (%az rilo 14%
1..8700 に゙77 0 NGG0
@":%
000 K%%
N0 FW%j% 8%
NL F゙W%%%%%
\#%0 (og% ド心%
M隹0%
% 660 690 09% k0%
G1. [ac% ROS
\1 ME
G (%O2 FO% 保%

```

Rapid traverse on reference plane
Thread cutting on reaching programmed depth G63
Spindle reverse
Back with G63
Basic position

Rapid traverse on reference plane Boring on reaching programmed depth Rapid traverse on retract R10

Direction of spindle rotation R 07
Rapid traverse on reference plane Boring on reaching programmed depth Spindle stop
Rapid traverse back on retract R10

Direction of spindle rotation R07
Rapid traverse on reference plane Boring on reaching programmed depth Spindle stop and program stop MOO Rapid traverse back on reference plane

\％＂：
1000 F゙ック
N0 以
ivl Kएs Ful
（220 892 Fixy
M－07
G 660 690 08\％F0\％
G1（9G2 FOB
34 FFiO4
M ME
G og＊Fo：M17
1.8900 Fサ7 O स゙世す 0
a،！
〔00 ドブワ

N1 『゙F゙の F゙11
W20（97\％Fiwo
6660690 692 F02
Gil o9\％ド03
©4 FF゙04
（agn Fix
（3）MIT
1．．9000
（220
（a） 0 Fiン7
NO FホEC E\％




（20）R1．1．
N1． 033 （292？F03 ximos

0005


（200 ：


NS M MKO\％MAY
保？

Direction of spindle rotation R07
Rapid traverse on reference plane Boring on reaching programmed depth Dwell before spindle stop Spindle stop and program stop Rapid traverse back on reference plane

Rapid traverse on reference plane Boring on reaching programmed dep．th Dwell
Feedrate back
Basic position

Rapid traverse on zeference plane

Thread cutting on reaching programmed depth G33 Spindle reverse，back with G33

Basic position

Cancelling the distance to go and then continuing with incremental programming leads to incorrect positioning since the programmed incremental movement is added to the old programmed value and is thereby active. That means that the the approached actual position is incorrect by the amount of the cancelled distance to move.

\section*{Error case:}

G90 G01 X1 10
- Cancel distance to go with X60

G00 G91 X60
- New actual position X160

Remedy:

> @ 24 X - load actual position into R93 using @ 24
> G90 X R93 - move to actual position
e.g.:

G90 G01 X100
- Cancel distance to go with X60
(a) 24 X

G90 XR93
G00 G91 X60 new position X120

After "cancel distance to go" a G90 or G92 (set actual value) block mast be written for the "cancelled axis"!

\subsection*{8.2.10 Block preparation time}

The blook preparation time is that time that the contol requires in order to declare the block the current working blook. With the \(8 \mathrm{M} / 8 \mathrm{MC}\) and sprint 8 M the block preparation times are approximately: 80 ms without CRC 100 ms with CRC
working from memory

When working from the tape reader, one shoild add a maximum of 4 ms per character additionally.

In order to avoid free cutting (i.e. feedrate interruptions on the contour), the distance to be travelled per block must be so selected that the block preparation time is always exceeded. The following applies:


Since the control always works some \(4-8\) blocks in advance, then individual blooks should also be less than the block preparation time.

1) Punch pattern
* No other functions can be written in this block
- Reset state
- Blockwise, all others self-retaining
+) Otner addresses selectable ( \(A, B, C, U, V, V, Q, E, P, \ldots\),


\subsection*{8.3.2 programming Key - 8MC}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Group & EIA & [50 & Code & Chapter & Function and description \\
\hline \multirow[t]{3}{*}{} & EOR & \% & & 1. & Rewind stop, program start for tape read-in \\
\hline & \[
\begin{gathered}
\text { EOR } \\
\text {.. } E O B
\end{gathered}
\] & \(\stackrel{\stackrel{L}{4} \mathrm{~F}}{ }\) & O to 9999 & 1.7 & Program number \\
\hline & \[
\begin{aligned}
& 0 \\
& n \\
& \text { io } \\
& 1 n
\end{aligned}
\] & \[
\begin{aligned}
& \dot{\vdots} \\
& N \\
& /: \\
& / N
\end{aligned}
\] & 1 to 9999 & 1.4 & \begin{tabular}{l}
Main block \\
Subordinate block Deletable main block \\
Deletable subordinate block
\end{tabular} \\
\hline 61 & 9 & G & \[
\begin{aligned}
& 00 \\
& 01 \\
& 10 \\
& 11 \\
& 02 \\
& 03 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& 3.2 \\
& 3.3 \\
& 3.4 \\
& 3.4 \\
& 3.5 \\
& 3.5 \\
& 3.6
\end{aligned}
\] & \begin{tabular}{l}
Rapid traverse \\
Linear interpolation \\
Polar coordinate progranming rapid traverse \\
Polar coordinate programing linear interpolation \\
Circular interpalation clockwise \\
Circular interpolation counter clockwise \\
Thread cutting
\end{tabular} \\
\hline 62 & 9 & G & - 04 * & 3.12 & Owell mode, time duration is specified under address \(X\) or \(F\) written in an own block \\
\hline 63 & 9 & 6 & - 09 & 3.8 & Feed deceleration \\
\hline G5 & 9 & G & \[
\begin{aligned}
& =25 \text { * } \\
& =26 \text { * }
\end{aligned}
\] & \[
\begin{aligned}
& 3.14 \\
& 3.14 \\
& 3.20
\end{aligned}
\] & Setting min. value; machining area \(X, Y, z, 4\) th. .. 10th. Setting max. value; machining area \(X, Y, Z, 4 t h\). .. 10 th. spindle speed supervision S \\
\hline & & & \[
\begin{aligned}
& 40^{\circ} \\
& 41 \\
& 42 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3.22 \\
3.22 \\
3.22 \\
\hline
\end{array}
\] & \begin{tabular}{l}
No cutter radius compensation \\
Cutter radius compensation lefthand-side Cutter radius compensation righthand-side
\end{tabular} \\
\hline G6 & \(g\) & G & 40
43
44 & \[
\begin{gathered}
3.24 \\
3.24 / 3.25 \\
3.24 / 3.25
\end{gathered}
\] & \begin{tabular}{l}
No tool offset compensation \\
Positive tool offset .\} Axis parallel compensation Negative tool offset \(\}\) linear path only
\end{tabular} \\
\hline G7 & g & G & - 53 & 3.15 & \begin{tabular}{l}
No zero offset: \\
G54, G55, G56, G57 remain stored
\end{tabular} \\
\hline G8 & g & G & 54
55
56
57 & \[
\begin{aligned}
& 3.15 \\
& 3.15 \\
& 3.15 \\
& 3.15
\end{aligned}
\] &  \\
\hline 69 & 9 & G & - 59 * & 3.15 & Programable additive zero offset \\
\hline & & & & 3.15.1 & Loading the zero ofiset G59 N... \\
\hline 610 & 9 & G & \[
\begin{aligned}
& 60^{\bullet} \\
& 63 \\
& 64
\end{aligned}
\] & \[
\begin{aligned}
& 3.8 \\
& 3.9 \\
& 3.10
\end{aligned}
\] & \begin{tabular}{l}
Exact stop \\
Tapping with compensating chuck Contouring operation, continuous transitions
\end{tabular} \\
\hline G11 & 9 & \(G\) & 70
71 & \[
\begin{aligned}
& 3.13 \\
& 3.13
\end{aligned}
\] & \(\left.\begin{array}{l}\text { Inch input system } \\ \text { Metric input system }\end{array}\right\}\) Reset state via machine data \\
\hline GI 2 & 9 & G & \[
\begin{aligned}
& 90^{\circ} \\
& 91^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 3.1 \\
& 3.1
\end{aligned}
\] & Absolut position data input Incremtal position data input \\
\hline 613 & 9 & G & - 92 * & \[
\begin{aligned}
& 3.16 \\
& 3.16 \\
& 3.19 \\
& 3.7 \\
& 3.11 \\
& 3.23
\end{aligned}
\] & \begin{tabular}{l}
Setting of actual value stores \(X, Y, Z, 4\) th. .. 10 th. \\
Resetting of actual value stores without \(X, Y, Z, 4\) th. .. 10 th. \\
Spindle speed limitation under address \(S\) in rpm \\
Acceleration ramp time \(T\) for thread cutting \\
Normalized diameter \(P\) \\
Loading the tool offset G92 D... L
\end{tabular} \\
\hline 614 & 9 & G & \[
\begin{aligned}
& 94 \bullet \\
& 95 \\
& 96 \\
& 97
\end{aligned}
\] & \[
\begin{aligned}
& 3.17 \\
& 3.17 \\
& 3.17 \\
& 3.18 \\
& 3.17
\end{aligned}
\] & \begin{tabular}{l}
Feed rate under address \(F\) in \(\mathrm{mm} / \mathrm{min}\) \\
Feed rate under address \(F\) in \(\mathrm{mm} / \mathrm{rev}\). \\
Feed rate under address \(F\) in \(\mathrm{mm} / \mathrm{rev}\). and constant surface speed ( \(\$ \equiv \mathrm{~m} / \mathrm{min}\) ) \\
Freezing G96, store last speed command irom sis:
\end{tabular} \\
\hline 615 & \(\pm\) & G & 80
81
82
83
83
84
95
85
87
88
89 & \[
\begin{gathered}
6.1 \\
6.1 / 6.2 \\
5.16 .2 \\
6.16 .2 \\
6.1 / 6.2 \\
6.1 / 6.2 \\
6.1 / 6.2 \\
6.1 / 6.2 \\
8.1 / 6.2 \\
6.1 / 6.2
\end{gathered}
\] & \begin{tabular}{l}
Cancel 681 to C89 Boring, centering Boring, counter sinking Deep hole drilling, chip breaking Tapping \\
Goring ! \\
soring 2 \\
Boring 3 \\
Boring 4 \\
Borina 5
\end{tabular} \\
\hline
\end{tabular}

Programming Key - 8MC (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Group & EIA & ISO & Code & Chapter & Function and description \\
\hline & \multirow[b]{2}{*}{X} & \multirow[b]{2}{*}{X} & 0.001 to \(\pm 99999.999\) & 2.1 & Position data in mm \\
\hline & & & 0.001 to +99999.999 & 3.12 & Dwell in sec. \\
\hline & y & Y & 0.001 to \(\pm 99999.999\) & 2.1 & Position data in mm \\
\hline & 2 & Z & 0.001 to \(\pm 99999.999\) & 2.1 & Position data in mm \\
\hline & 4.th to 10.th axis & 4.th to 10.th axis & 0.001 to \(\pm 99999.999\) & 2.1 & Position data in mm or degrees; possible addresses \(A, B, C, U, V, W, Q, E, P, H\) \\
\hline & a & \(A^{+}\) & 0 to 359.99999 & 3.4 & Angle in degrees for polar coordinates \\
\hline & \(p\) & \(p^{+}\) & \[
\begin{array}{lll}
+0.001 & \text { to } & +99999.999 \\
\pm 0.001 & \text { to } & \pm 99999.999
\end{array}
\] & \[
\begin{aligned}
& 3.4 \\
& 3.5
\end{aligned}
\] & Radius at polar coordinates in mm Radius for circular interpolation in mm \\
\hline & \multirow[b]{2}{*}{i} & \multirow[b]{2}{*}{!} & 0.001 to \(\pm 99999.999\) & 2.2 & Interpolation parameter for X -axis in mm \\
\hline & & & 1 to 2000.000 & 3.6 & Thread lead in mm \\
\hline & \multirow[b]{2}{*}{j} & \multirow[b]{2}{*}{J} & 0.001 to \(\pm 99999.999\) & 2.2 & Interpolation parameter for \(Y\)-axis in mm \\
\hline & & & 1 to 2000.000 & 3.6 & Thread lead in mm \\
\hline & \multirow[b]{2}{*}{\(k\)} & \multirow[b]{2}{*}{K} & 0.001 to \(\pm 99999.999\) & 2.2 & Interpolation parameter for Z -axis in mm \\
\hline & & & 1 to 2000.000 & 3.6 & Thread lead in mun \\
\hline & d & D & \[
1 \text { to } \quad 199
\] & \[
\begin{aligned}
& 3.23 \\
& 3.24
\end{aligned}
\] & Cancellation of tool compensation Tool compensation number \\
\hline & \(r\) & R & 00 to 49 & 5.0 & Parameter \\
\hline & \multirow{3}{*}{\(f\)} & \multirow{3}{*}{F} & 0.001 to 15.000 & 3.17 & Feed \(\mathrm{mm} / \mathrm{min}\) (Inch/min see 8.2.6) \\
\hline & & & 0.001 to 99.999 & 3.12 & Uwell in sec. \\
\hline & & & 0.001 to 50.000 & 3.17 & Feed in mm/rev. (Inch/mi:n see.8.2.6) \\
\hline & \multirow{3}{*}{\(s\)} & \multirow{3}{*}{S} & 1 to 9999 & \[
\begin{aligned}
& 4.1 \\
& 3.18
\end{aligned}
\] & Spindle speed in rev. \(/ \mathrm{min}\) or \(0.1 \mathrm{rev} . / \mathrm{min}\) or constant surface speed in \(\mathrm{m} / \mathrm{min}\) or \(0.1 \mathrm{~m} / \mathrm{min}\) \\
\hline & & & 1 to 9999 & 3.19/3.20 & Spindle speed limitation in rev./min or \(0.1 \mathrm{rev} . / \mathrm{min}\) \\
\hline & & & 0 to 359 & 4.4 & Spindle stop in degrees, distance from zero mark \\
\hline & \multirow[b]{2}{*}{t} & \multirow[b]{2}{*}{T} & 1 to 999999 & 4.3 & Tool number (tool position) \\
\hline & & & 0,1,2,3,4,5 & 3.7 & Time constants \\
\hline & h & \(\mathrm{H}^{+}\) & 1 to 999999 & 4.2 & Auxiliary function \\
\hline & \multirow{3}{*}{1} & \multirow{3}{*}{L} & 001.. to 999.. & 1.8 & Sub-routine number \\
\hline & & & \(\ldots 01\) to ... 99 & 1.9/5.5 & Number of runs of sub-routine \\
\hline & & & 999 & \(5 \cdot 7\) & Lock buffer read in \\
\hline M1 & m & M & \[
\begin{array}{r}
00 \\
01
\end{array}
\] & \[
\begin{aligned}
& 4.4 \\
& 4.4
\end{aligned}
\] & Programmed stop, unconditional Programmed stop, optional \\
\hline M2 & m & M & \[
\begin{aligned}
& 02 \\
& 17 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 4.4 \\
& 4.4 \\
& 4.4
\end{aligned}
\] & End of program without rewind, is written into the last program block End of sub-routine, is written into the last sub-routine block End of program with rewind to rewind stop, is written into the last program block \\
\hline M3 & m & M & \[
\begin{aligned}
& 03 \\
& 04 \\
& 05 \\
& 19 *
\end{aligned}
\] & 4.4
4.4
4.4
4.4 & \begin{tabular}{l}
Direction of spindle rotation CW Direction of spindle rotation ccw Spindle stop \\
Exact spindle stop, angle under \(S\) in degrees
\end{tabular} \\
\hline M4 & m & M & 36
37 & \[
\begin{aligned}
& 3.17 / 4.4 \\
& 3.17 / 4.4
\end{aligned}
\] & \(\left.\begin{array}{l}\text { Feed rate as programmed under F } \\ \text { Feed rate downrated by } 1: 100\end{array}\right\}\) also active at G33 \\
\hline M5 & m & 1 & 00 to 99 & 4.4 & Miscellaneous functions, unassigned (except groups M1 to M4) \\
\hline \multirow[t]{2}{*}{} & \[
\begin{array}{|c|}
\hline 5-4-2 \\
7-4-21) \\
\hline
\end{array}
\] & \(\}\) & & \[
\begin{aligned}
& 1.6 \\
& 1.6 \\
& \hline
\end{aligned}
\] & Start of remark End of remark \\
\hline & EOB & LF & & 1.4 & End of block \\
\hline
\end{tabular}

\footnotetext{
1) Punch pattern
}
* No other functions can be written in this block
- Reset state
- Blockwise, all others self-retaining
+) Otner addresses selectable ( \(A, B, C, U, V, W, Q, E, P, H\) )

\subsection*{8.3.3 Programming Key - Sprint 8 M}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Group & EIA & ISO & code & Chapter & Function and description \\
\hline & EOR & \% & & 1. & Rewind stop, program start \\
\hline & \[
\begin{gathered}
\text { EOR } \\
. . E O B
\end{gathered}
\] & \[
\stackrel{\Delta}{. . \mathrm{LF}}
\] & 0 to 9999 & 1.7 & Program number \\
\hline & \[
\begin{aligned}
& 0 \\
& n \\
& 10 \\
& 10
\end{aligned}
\] & ̇
M
IN & 1 to 9999 & 1.4 & \begin{tabular}{l}
Main block \\
Sub-ordinate block \\
Deletable main block \\
Deletable sub-ordinate block
\end{tabular} \\
\hline G1 & g & 6 & \[
\begin{aligned}
& 00 \\
& 01 \\
& 10 \\
& 11 \\
& 02 \\
& 03 \\
& 33
\end{aligned}
\] & \[
\begin{array}{|c|}
3.2 \\
3.3 \\
3.4 \\
3.4 \\
3.5 / 7.47 .4 \\
3.5 / 7.377 .4 \\
3.6 / 7.5 \\
\hline
\end{array}
\] & \begin{tabular}{l}
Rapid traverse \\
Linear interpolation \\
Rapid traverse at polar coordinates programing \\
Linear interpolation at polar coordinates programming \\
Circular interpolation cw \\
Circular interpolation ccw \\
Thread cutting
\end{tabular} \\
\hline 62 & g & G & - 04 * & 3.12 & Dwell, predetermined addresses \(X\) or \(F\) in ms, written in anown block \\
\hline 63 & 9 & G & - 09 & 3.8 & Feed rate reduction \\
\hline G4 & g & G & \[
\begin{aligned}
& 17{ }^{\circ} \\
& 18 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 7.7 / 7.9 \\
& 7.7 / 7.9 \\
& 7.7 / 7.9
\end{aligned}
\] & \(\left.\begin{array}{ll}\text { Selection of plane } x-y & \begin{array}{l}x-4 \text { th } \\
\text { Selection of plane } x-z \\
\text { Selection of plane } y-Z\end{array} \\
z-4 \text { th }\end{array}\right\}\)\begin{tabular}{l} 
Length compensation always \\
in the main axis outs \\
the selected
\end{tabular} \\
\hline 65 & g & \(G\) & \[
\begin{aligned}
& =25 * \\
& -26 *
\end{aligned}
\] & \[
\begin{aligned}
& 3.14 \\
& 3.14 \\
& 3.20
\end{aligned}
\] & \begin{tabular}{l}
Setting min. value; machining area \(X, Y, Z, 4\) th \\
Setting max. value; machining area \(X, Y, Z, 4\) th; spindle speed supervision \(S\)
\end{tabular} \\
\hline G6 & 9 & G & \[
\begin{aligned}
& 40 \\
& 41 \\
& 42 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.8 / 7.9 \\
& 7.8 / 7.9 \\
& 7.8 / 7.9
\end{aligned}
\] & No cutter radius compensation Cutter radius compensation lefthand-side Cutter radius compensation righthand-side \\
\hline 67 & g & G & - 53 & 3.15/7.6 & No zero offset; G54, G55, G56, G57 remain stored \\
\hline 68 & 9 & G & \[
\begin{aligned}
& 54 \bullet \\
& 55 \\
& 56 \\
& 57
\end{aligned}
\] & \[
\begin{aligned}
& 7.6 \\
& 7.6 \\
& 7.6 \\
& 7.6
\end{aligned}
\] & \begin{tabular}{l}
Zero offset 1 \\
Zero offset 2 \\
Zero offset 3 \\
Zero offset 4
\end{tabular} \\
\hline 69 & g & G & - 59 * & \[
\begin{aligned}
& 3.15 \\
& 7.6 . \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Programmable additive zero offset \\
Loading the zero offset G59 N...
\end{tabular} \\
\hline 610 & 9 & \(G\) & \[
\begin{aligned}
& 60 \bullet \\
& 63 \\
& 64
\end{aligned}
\] & \[
\begin{aligned}
& 3.8 \\
& 3.9 \\
& 3.10
\end{aligned}
\] & \begin{tabular}{l}
Exact stop \\
Tapping with compensating chuck \\
Contouring operation, continuous transitions
\end{tabular} \\
\hline G11 & 9 & G & \[
\begin{aligned}
& 70 \\
& 71
\end{aligned}
\] & \[
\begin{aligned}
& 3.13 \\
& 3.13
\end{aligned}
\] & \(\left.\begin{array}{l}\text { Inch input system } \\ \text { Metric input system }\end{array}\right\}\) Reset state via machine data \\
\hline 612 & 9 & \(G\) & \[
\begin{aligned}
& 90^{\circ} \\
& 91^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 3.1 \\
& 3.1
\end{aligned}
\] & Absolute position data input Incremental position data input \\
\hline G13 & 9 & G & - 92 * & \[
\begin{aligned}
& 3.16 \\
& 3.16 \\
& 3.19 \\
& 3.7 \\
& \\
& 7.9 .
\end{aligned}
\] & \begin{tabular}{l}
Setting of actual value stores \(X, Y, 2,4\) th; Resetting of actual value stores without \(X, Y, Z, 4\) th; Spindle speed limitation under address S in rpm ; Acceleration ramp time \(T\) for thread cutting; Normalized diameter \(P\) \\
Loading the tool oftset G92 D...
\end{tabular} \\
\hline 614 & g & \(G\) & \[
\begin{aligned}
& 94 \\
& 95 \\
& 96 \\
& 97
\end{aligned}
\] & \[
\begin{aligned}
& 3.17 \\
& 3.17 \\
& 3.17 \\
& 3.18 \\
& 3.17
\end{aligned}
\] & \begin{tabular}{l}
Feed rate under address \(F\) in \(\mathrm{m} / \mathrm{min}\) \\
Feed rate under address \(F\) in \(\pi m / r e v\). \\
Feed rate under address \(F\) in \(\mathrm{mm} / \mathrm{rev}\). and constant surface speed ( \(5 \overline{\mathrm{~m}} / \mathrm{min}\) ) \\
Freezing G96, store last speed command from G96
\end{tabular} \\
\hline Gi5 & 9 & \(\vdots\) & \[
\begin{aligned}
& 80 \\
& 31 \\
& 82 \\
& 83 \\
& 84 \\
& 85 \\
& 86 \\
& 87 \\
& 87 \\
& 88 \\
& 89
\end{aligned}
\] & \[
\begin{array}{r}
6.1 \\
6.16 .2 \\
6.16 .2 \\
5.16 .2 \\
6.16 .2 \\
0.16 .2 \\
6.16 .2 \\
5.16 .2 \\
6.16 .2 \\
6.16 .2 \\
\hline
\end{array}
\] & \begin{tabular}{l}
Cancel Gal to 689 \\
3aring, centering \\
Gerin3, counter sinking \\
dees hole drilling, chip breaxing \\
tapping \\
Guring \\
boring ? \\
Boring 3 \\
Boring 4 \\
Baring 5
\end{tabular} \\
\hline 616 & 9 & \(G\) & \[
\begin{aligned}
& \text { G36 } \\
& \text { G37 }
\end{aligned}
\] & 3.27 & \begin{tabular}{l}
Coordinate transformation OFF \\
Coordinate transformation \(O N\)
\end{tabular} \\
\hline
\end{tabular}
```

Programming Key - Sprint 8M (continued)

```

1) Punch pattern
* No other functions can be written in this block
- Reset state
- Blockwise, all others self-retaining
+) Other addresses selectable ( \(A, B, C, U, V, Y!, Q, E, P, H\) )

Issued by Siemens AG,
Numerical Controls and
Machine Tool Drives Department Postfach 4848, D-8500 Nürnberg 1```


[^0]:    "Cutter Edge Feed"

