SERVO INVERTER
 POSIDYN ${ }^{\circledR}$
 SDS 4000

Installation and Commissioning Instructions

It is essential to read and comply with these instructions prior to installation and commissioning.

POSIDYN ${ }^{\text {® }}$ SDS $4000 \underset{\text { ANTRESTECCHNK }}{\text { STÖBER }}$

Table of Contents

Table of contents

1. Notes on Safety

2. Technical Specifications

3. Physical Installation
3.1 Installation Site
4. Electrical Installation
4.1 EMC-Compatible Installation

4:3 EbCifquitBraunking
4.3.1 Direct coupling of devices
4.3.2 Coupling of devices with DC fuse
4.4 Electrical Installation
4.5 Motor Connection, Halting Brake, X13
4.6 Brake Resistor, X12
5. Connection Assignment
5.1 Terminal Overview
5.2 Terminal Assignments
5.2.1 Terminal X1 (I/O)
5.2.2 Terminal X2 (24 V)
5.2.3 Terminals: X3 (Service), X20 (Encoder), X40 (Resolver), X41 (Sin/Cos)
5.2.4 Terminals X11 and X12 ($\mathrm{R}_{\text {Ballast }}$)
5.2.5 Terminal X13 (Motor)
5.3 Control Portion, Terminal Strip X1
5.4 X3 Service Plug Connector (RS232, CAN)
5.5 X40 Resolver
5.6 X20 Encoder In/Out (TTL)
5.7 Encoder Input (External Encoder)
5.8 X41 Sin/Cos, Absolute Value Encoder
6. Multi-Motor Operation
7. Operator Control
7.1 Status Indication
7.2 Controlbox
7.2.1 Local Mode
7.2.2 Operation Indication
7.2.3 Parameter Memory
7.2.4 Parameterization
7.2.5 Password
8. Commissioning
8.1 Default Setting
8.2 Motor, Braking Resistor
8.3 Speed Specification
8.3.1 Speed Specification via Controlbox
8.3.2 External Speed Specification
8.3.3 Speed Spec. via Potentiometer
8.3.4 Characteristic Curve of Ref. Value
8.3.5 Speed Spec. via Fixed Ref. Value
8.3.6 Speed Spec. via CIk Pulse Generator
8.3.7 Motor Potentiometer
8.3.8 Frequency Reference Value
8.4 Speed Controller
8.5 Halt / Quick Stop
8.6 Brake Control
8.7 Binary Inputs BE1 to BE4 (Opt BE5
8.8 Pars (OL BE15) 18
8.8 Parameter Record Selection

Acknowledgment of Faults
8.10 Motor Startup
9. Torque Limits / Operating Range
9.1 Torque Limits
9.2 Operating Range

10. Positioning Control		19
10.1	Function Overview	9
10.2	Connections	19
10.3	Dest. Positions and Proc. Blocks	20
10.4	Absolute / Relative Positioning	20
10.5	Commissioning	21
10.5.1	Limited Position Range	21
10.5.2	Continuous Traversing Range (Rotary Axis)	11
10.6	Reference Point Traversing Position Controller	22
10.8	Process Block Chaining	3
10.9	Simple Examples	4
10.10	Emergency Off	25
10.11	Ext. Rot./Lin. Path Measurement	25
10.11.1	Position Encoder	25
10.11.2	Parameterization - Motor/Ext. Meas. Sys.	25
10.11.3	Special reactions with SSI encoders	25
10.12	Posi Switching Points	6
11. Synchronous Running, Elec. Gearbox		26
11.1	Function Overview	26
11.2	Connection of Pulse Source	27
11.3	Master - Slave	27
11.4	Commissioning	28
11.5	Angle Difference	28
11.6	Angle and Speed Sync. Running	28
11.7	Emergency Off	28
11.8	Reference Point Traversing - Slave	28
12. Technolpgy ${ }^{\text {12. }}$ - ${ }^{\text {a }}$		29
12.2	Winders	29
12.2.1	Diameter Sensor on AE1/AE2	29
11.2.2	Indirect Tension Control at M-Max Limit	30
11.2.3	Winding with Compensating Roller	30
11.2.4	Winding with Tension Sensor	30
11.2.5	Compensation of Fault Variables	30
13. Parameter Description		31
14. Option Boards		59
14.1	Option Board SEA 4000	59
14.2	Option Board SDP 4000	60
14.3	Opt. Board SEA+SDP 4000 (Combi Board)	
15. Result Table		1
16. Operating States		62
17. Faults / Events		3
STÖBER ANTRIEBSTECHNIK Deutschland		
STÖBER ANTRIEBSTECHNIK International 18. Block Circuit Diagram - Sync. Running		67 69
19. Block Circuit Diagrams		69
19.1	Fast Speed Ref. Value Active (D99=1)	69
19.2	Reference Value Processing	0
20. Parameter Table		71
21. Access	sories	74
21.1	Accessories Overview	74
21.2	Braking resistor	76
21.2.1	Allocation of braking resistor to SDS	76
21.2.2	Braking Resistor FZT/FZZT (Dimensions)	76
21.2.3	Braking Resistor VHPR (Dimensions)	77
21.3	Input Filter (Dimensions)	77
21.4	Output Derating (Dimensions)	77

10.1 Function Overview 19
$\begin{array}{lll}10.2 & \text { Connections } & 19 \\ 10.3 & \text { Dest. Positions and Proc. Blocks } & 20\end{array}$
10.4 Absolute / Relative Positioning 20
10.5 Commissioning 21
10.5.1 Limited Position Range 21
$10.6 \quad$ Reference Point Traversing 22
10.8 Process Block Chaining 23
10.9 Simple Examples 24
10.11 Ext. Rot/Lin. Path Measurement 25
10.11.1 Position Encoder 25
10.11.2 Parameterization - Motor/Ext. Meas. Sys. 25
10.12 Posi Switching Points 26
11. Synchronous Running, Elec. Gearbox 26
$\begin{array}{lll}11.1 & \text { Function Overview } & 26 \\ 11.2 & \text { Connection of Pulse Source } & 27\end{array}$
11.3 Master - Slave 27
11.4 Commissioning 28
11.5 Angle Difference 28
11.7 Angle 28
11.8 Reference Point Traversing - Slave 28
12. Technology 12. Pontroller 29
12.2 Winders 29
12.2.1 Diameter Sensor on AE1/AE2 29
11.2.2 Indirect Tension Control at M-Max Limit 30
11.2.3 Winding with Compensating Roller 30
11.2.5 Compensation of Fault Variables 30
13. Parameter Description 31
14. Option Boards 59

Option Board SDP 4000
14.3 Opt. Board SEA+SDP 4000 (Combi Board) 60
15. Result Table

61
16. Operating States 62
17. Faults / Events 63

STÖBER ANTRIEBSTECHNIK Deutschland 65

STOBER ANTRIEBSTECHNIK International
19. Block Circuit Diagrams 69
19.1 Fast Speed Ref. Value Active (D99=1) 69
19.2 Reference Value Processing 70
21. Accessories 74
21.1 Accessories Overview 74
21.2 Braking resistor 76
21.2.2 Braking Resistor FZT/FZZT (Dimensions) 76
21.2.3 Braking Resistor VHPR (Dimensions)
21.4 Output Derating (Dimensions)

77

1. Notes on Safety

1 NOTES ON SAFETY
To prevent avoidable problems from occurring during commissioning and/or operation, it is essential to read and comply with this entire instruction manual before starting installation and commissioning
Based on DIN EN 50178 (once VDE 0160), SDS-series servo inverters are defined as electronic power equipment (BLE) for the control of power flow in high-voltage systems. They are designed exclusively to powe servo machines. Handling, installation, operation and maintenance must be performed in accordance with valid and/or legal regulations, applicable standards and this technical documentation.
The servo inverter are products of the restricted sales class (in accordance with IEC 61800-3). Use of this products in residential areas may cause high-frequency interference in which case the user may be ordered to take suitable measures.

The user must ensure strict adherence to these standards.
The safety notes and specifications stated in additional sections (items) must be adhered to by the user.

Caution! High touch voltage! Danger of electric shock! Danger of death!

Never under any circumstances may the housing be left open or connections disconnected when the power is on. Disconnect the power plug of the servo inverter and wait at least 5 minutes after the power voltage has been switched off before opening the servo inverter to install or remove option boards. Correct configuration and installation of the inverter drive are prerequisites to correct operation of the servo inverter. Only appropriately qualified personnel may transport, install, commission and operate this device

> Pay particular attention to the following:
> - Permissible protection class: Protective ground; operation only permitted when protective conductor is correctly connected. The devices may not be operated directly on IT networks.
> - Installation work may only be performed in a voltage-free state. When work has to be done on the drive, inhibit the enable and disconnect the complete drive from the power network. Adhere to the 5 safety regulations.
> - Discharge time of the DC link capacitors > 5 minutes
> - Do not penetrate the interior of the device with any kind of object.
> - When performing installation or other work in the switching cabinet, protect the device against falling objects (e.g., pieces of wire, flexible leads, metal parts and so on). Conductive parts may cause short circuiting or device failure on the frequency inverter.
> - Before commissioning, remove all extra coverings to prevent the device from overheating.

The servo inverter must be installed in a switching cabinet which does not exceed the maximum ambient temperature (see technical data).
Only copper wiring may be used. For wire cross sections, see table $310-16$ of standard NEC at $60^{\circ} \mathrm{C}$ or $75^{\circ} \mathrm{C}$
STÖBER ANTRIEBSTECHNIK accepts no liability for damages caused by non-adherence to the instructions or applicable regulations.

The motor must have an integral temperature monitoring device or external motor overload protection must be used.

Either the motor itself must be equipped with temperature monitoring, or external protection against motor overload must be used.

Only suitable for use on power networks which cannot supply more than a symmetric, nominal short-circuit current of 5000 A at 480 Volt.

2. Technical Specifications

Model	Model 1				Model 2a	Model 2b
Type of device	SDS 4011	SDS 4021	SDS 4041	SDS 4071	SDS 4101	SDS 414
Nominal connected load	1 kVA	2 kVA	4 kVA	7 kVA	10 kVA	14 kVA
Nominal current (effective value, $\pm 3 \%$)	1.5 A	3 A	6 A	10 A	14 A	20 A
Max. output current (max. of approx. $5 \mathrm{sec}, \pm 3 \%)$	3 A	6 A	12 A	20 A	28 A	40 A
Connected voltage	(L1-L3) $3 \times 230 \mathrm{~V}-10 \%$ to $480 \mathrm{~V}+10 \%, 50$ to 60 Hz					
Power fuses ${ }^{1}$	3×6 AT		3×10 AT		3×20 AT	
Conductor cross section, power connection	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$4 \mathrm{~mm}^{2}$
Conductor cross section, motor connection	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	
Conductor cross section, halting brake	Min. of $0.75 \mathrm{~mm}^{2}$ (consider voltage loss)					
Conductor cross section, ext. 24 V/GND	Max. of $2.5 \mathrm{~mm}^{2}$ (consider voltage loss)					
Overvoltage source						
Clock pulse frequency	8 kHz					
Braking resistance, internal	$\begin{gathered} 66 \Omega / 80 \mathrm{~W} \\ \text { Max. of } 10.5 \mathrm{~kW} \text { for } 1 \mathrm{sec} \\ \hline \end{gathered}$		$33 \Omega / 200 \mathrm{~W}$Max. of 21 kW for 1 sec			
Braking resistance, external ${ }^{2}$ (limit data for brake chopper)	$\mu 30 \Omega / m a x .500 \mathrm{~W}$ const. Max. of 21 kW for 1 sec		$\mu 30 \Omega$ / max. 1500 W const. Max. of 21 kW for 1 sec			
Switch-on threshold, brake chopper	840 to 870 V					
Switch-off threshold, brake chopper	800 to 830 V					
RFI suppression	Integrated network filter in accordance with EN 55011, class A					
Permissible length of motor cable	25 m , shielded; 25 to 100 m , shielded with output derating					
Auxiliary voltage, 24 V without brake connection	18 to $36 \mathrm{~V}, 1 \mathrm{~A}$					
Auxiliary voltage, 24 V with brake connection	$24 \mathrm{~V}-0 \%$ to $24 \mathrm{~V}+10 \%, 3 \mathrm{~A}+0.5 \mathrm{~A}$ at $\mathrm{Sin} / \mathrm{Cos}$					
Fuses, 24 V	Internal: 3.15 AT, external: max. of 16 AF due to conductor cross section $2.5 \mathrm{~mm}^{2}$					
Max. output current, brake	2 A					
Protection rating/mounting position	IP20/always vertical					
Ambient temperature	0° to $45^{\circ} \mathrm{C}$ for nominal data Up to $55^{\circ} \mathrm{C}$ with power reduction of $2.5 \% /{ }^{\circ} \mathrm{C}$					
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, max. change, $20 \mathrm{~K} / \mathrm{h}$					
Humidity during operation	Relative humidity of 85%, no condensation					
Installation altitude	Up to 1000 m without restriction; 1000 to 2500 m with derating of $1.5 \% / 100 \mathrm{~m}$					
Degree of soil	Soiling degree of 2 in acc. w. EN 60204/EN 50178					
Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$, without plug (in mm)	$70 \times 318 \times 255$				100x318×255	$15 \times 318 \times 255$
Power loss	30 W	40 W	60 W	90 W	160 W	200 W
Storage capacity	1 year					
Weight (in kg) - without packing - with packing	$\begin{aligned} & 4,4 \\ & 5,8 \end{aligned}$				$\begin{aligned} & 5,6 \\ & 6,9 \end{aligned}$	$\begin{array}{r} 7,4 \\ 8,7 \end{array}$

[^0]3. Physical Installation
4. Electrical Installation

3 PHYSICAL INSTALLATION

3.1 Installation site

- Operate only in closed switching cabinet.
- Install inverter only in vertical position.
- Avoid installation over heat-producing devices
- Ensure sufficient air circulation in switching cabinet. (Minimum free space of 100 mm over and under the device!)

Keep installation site free of dust, corrosive fumes and all liquids (in accordance with soil degree 2 in acc. with EN 60204/EN 50178). - Avoid atmospheric humidity

- Avoid condensation (e.g., by anti-condensation heaters)
- Use unpainted mounting plates with conductive surface (e.g., unpainted) to conform with EMC regulations.

4

ELECTRICAL INSTALLATION

4.1 EMC-compatible installation

Basic rules

- Install control and power cables separately (> 20 cm)
- Install power, encoder and motor cables in separate spaces.
- Central grounding point in immediate vicinity of the inverter. All shields and protective conductors of motor and power cables are applied here over a large area.
- Reference value cables must be shielded and, if necessary, twisted in pairs.
- Connect shield of control lines on one side to the reference ground of the reference value source (PLC, controller, etc.).
Motor cable (see accessories, chap. 21)
- Use shielded cables. Apply shield on both sides.
- Use output derating when cables are longer than 25 m .

4.2 FI circuit breaker

Network phases and directly grounded conductor are connected to the protective conductor with Y capacitors. When voltage is present, a leakage current flows over these capacitors to the protective conductor. The greatest leakage current is created when a malfunction occurs (asymmetric feeding over only one phase) and power-on (sudden change in voltage). The maximum leakage current caused by asymmetric powering is 66 mA (power voltage of 400 V) for SDS inverters. If Fl circuit breakers must be used, the problem of power-on and power-off can be minimized by using selective FI circuit breakers (delayed switch-off) or Fl circuit breakers with greater triggering currents (e.g., 300 or 500 mA). Use of several devices on one FI circuit breaker is not recommended.

4.3 DC link coupling

4.3.1 Direct coupling of devices

All coupled devices must be connected to one common power fuse. The fuse may not exceed 20 AT. This limits maximum possible drive power to approx. 10 kW .

4.3.2 Coupling of devices with DC fuse

Each device has its own power fuse based on its technica specifications (chap. 2). In addition, each device must be protected on the DC link ($U+$ and $U-$) with the same current strength. The fuse must be suitable for a voltage of 500 V DC. Lines with lengths of 20 cm and longer must be shielded.

Brake resistance for DC link coupling:
Internal brake resistors may remain active since the braking power is distributed evenly. Important: Set type of resistor A20 correctly. Set A38=1 for a pure DC-link-coupling feed-in without power network connection.

4.4 Electrical installation

- Only connect inverter to three-phase, grounded, industrial power network.
- User must provide fuses for power network and 24 V supply (see technical specifications, chap. 2)
- Install power and control cables separately (> 20 cm).

Important: When installing the 24 V brake lines in the motor cable, shield the brake lines separately if the inverter addresses the brake directly.

Motor connector

Important: With direct brake control, a voltage of approx. 1.3 V occurs on the inverter (protection against pole reversal and EMC derating). However, since the halting brake requires at least $24 \mathrm{~V}-10 \%=21.6 \mathrm{~V}$, use an external contact (relay) for long brake lines. The same also applies to power packs which supply less than 24 V .

4. Electrical Installation

Caution: Important information on motor connector
With devices delivered up to March 1999, motor connector X 13 has a different orientation than the front power connectors X11 and X12.

The motor connector must be rewired when these older devices are replaced with newer ones. The old allocation is a mirror image of the new one and, if left as is, will damage inverter and motor!

Shielding for STÖBER power cables

Use the included clamp to connect the shielding with the HF reference potential (mounting plate and inverter's housing). If this is not possible, the shielding (red flexible lead) can be connected to the PE terminal of the device.

4.5 Motor connection, halting brake, X13

Together with any halting brake, the motor is connected to plug connector X13 (on the bottom of the device). The inverter can directly address the halting brake. The external 24 V supply must be designed for this.

- Only use shielded cable to connect motor.
- Apply shield on both sides.
- On the inverter side, apply shield with a clamp over a large surface to the bare mounting plate.
- If the motor cable also contains lines to the +24 V halting brake and this brake is addressed by the inverter, these lines must be shielded separately! Connect the shields on both sides.

4.6 Brake resistor, $\times 12$

SDS servo inverters are always equipped with a brake resistor. A jumper between R1 and R2 must be wired to activate the internal brake resistor. For technical details, see page 2. Greater brake performance requires connection of an external brake resistor. Connector X12 is used for the connection (on
the bottom of the device).
internal
Bottom of device
X12

Jumper between
R1 and R2 only for
int. brake resistor!!
external
Bottom of device $\times 12$

	Jumper Between	Connection Between
Int. brake resistor	R1 and R2	---
Ext. brake resistor	not applicable	R1 and U+

Lines to the external brake resistor which are longer than 30 cm must be shielded. The brake chopper triggers at a DC link voltage of 840 to 870 V . The internal brake resistors will remain active for all axes when a DC link coupling of several devices is used with the terminals U+ and U-. The brake chopper distributes the braking load evenly over all inverters (which may even have different current strengths).

The current of the internal brake resistor is monitored and protected against overload with a thermal i2t model. With the external brake resistor, we recommend using types with integrated overcurrent relays to prevent thermal damage caused by overload.

POSIDYN ${ }^{\circledR}$ SDS 4000	STÖBER
5. Connection Assignment	
ANTRIEBSTECHNIK	

5.1 Terminal overview

Bottom of device

5. Connection Assignment
5.2 Terminal assignments
5.2.1 Terminal X1 (I/O)

Analog ...

Digital ...

5.2.2 Terminal X2 (24 V)

\triangle
Pole reversal will damage the device.
5. Connection Assignment
5.2.3 Terminals: X3 (Service), X20 (Encoder), X40 (Resolver), X41 (Sin/Cos)

5.2.4 Terminals X11 and X12 (Rillas)

5.2.5 Terminal X13 (Motor)

Motor connection SDS 4000

connector ES motor

8

5. Connection Assignment

5.3 Control portion, terminal strip X1

	Terminal	Function	Circuiting		
	1	AGND: Reference ground for analog signals	Reference potential fo	terminals X1.4 to	1.9
	2 3	Relay $1 /$ ready for operation Max. of 24 V DC, $42 \mathrm{~V} \mathrm{AC}, 0.5 \mathrm{~A}$	Shows readiness of the servo inverter (i.e., relay closed) Function can be programmed under F10.		
	4 5	Analog input AE1 0 to $\pm 10 \mathrm{~V}, \mathrm{Ri}=20 \mathrm{k} \Omega$, 14-bit resolution $\mathrm{Ta}=1 \mathrm{msec}$	Function can be programmed under F25. Default setting: $\mathbf{F 2 5 = 1 0 : r e f . v a l u e ; ~}$$10 \mathrm{~V}=3000 \mathrm{rpm}(- \text { DO2 })$		
	6 7	Analog input AE2 0 to $\pm 10 \mathrm{~V}, \mathrm{Ri}=20 \mathrm{k} \Omega$, 12-bit resolution $\mathrm{Ta}=4 \mathrm{msec}$	Function can be programmed under F20. Default setting: $\mathbf{F 2 0}=0$:inactive		
	8	Analog output $1, \mathrm{Ta}=4 \mathrm{msec}$ $\pm 10 \mathrm{~V}, \mathrm{Ri}=2.2 \mathrm{k} \Omega, 10$-bit resolution Calibrated at the plant for a load $=20 \mathrm{k} \Omega$	Function can be programmed under F40. Default setting: $\mathbf{F 4 0}=4: n$-motor, $10 \mathrm{~V}=3000 \mathrm{rpm}$ ($\mathbf{C 0 1} \mathrm{n}-\mathrm{Max}$)		
	9	Analog output 2, Ta $=4 \mathrm{msec}$ $\pm 10 \mathrm{~V}, \mathrm{Ri}=2.2 \mathrm{k} \Omega, 10$-bit resolution Calibrated at the plant for load $=20 \mathrm{k} \Omega$	Function can be programmed under F45. Default setting: F45=1:l-motor, $10 \mathrm{~V}=2 \times \mathrm{I}_{\mathrm{Nom}(\mathrm{SDS})}$		
	10	AGND: Reference ground for analog signals	Reference potential for terminals X1.4 to X1.9, internally connected with X1.1		
	11	Binary input BE1 * 8:halt	Inputs which can be programmed as desired. Function is specified with parameters F31 to F34. Scanning time $\mathrm{Ta}=4 \mathrm{msec}$. When an HTL incremental encoder is connected to BE1 and BE2, the max. input frequency is 80 kHz . With the functions posi.next, posi.start and syncFreeRun, BE1 reacts without delays. * Default setting of the inverter		L level: 0 to $7 \mathrm{~V} / 0 \mathrm{~mA}$ H level: +12 to $30 \mathrm{~V} /$ 7 mA Interference immunity: EN 61000-4 $\mathrm{Ri}=3.3 \mathrm{k} \Omega$
	12	Binary input BE2 * 6:dirOfRotat			
	13	Binary input BE3 * 9:quick stop (with ramp)			
	14	Binary input BE4 * 0:inactive			
	15	Enable, $\mathrm{Ta}=4 \mathrm{msec}$	Enable power section. F38.		
	16	Binary output BA1 ${ }^{1}$ Open collector, 36 V (max.), 10 mA (max.), $\mathrm{Ta}=4 \mathrm{msec}$ Pülup resistance $\mu 3.3 \mathrm{k} \Omega$	Outputs which can be programmed as desired. Function is specified with parameters F80 (BA1) and F00 (BA2)		
	17	Binary output BA2 ${ }^{1}$ Open collector, 36 V (max.), 10 mA (max.), $\mathrm{Ta}=4 \mathrm{msec}$ Pullup resistance $\mu 3.3 \mathrm{k} \Omega$			
	18	DGND: Digital ground	Reference potential for terminals X 1.11 to X 1.17		

[^1]5. Connection Assignment
5.4 X3 Service plug connector (RS232, CAN)

Service plug connector X3 can be used to connect a PC or the external operator unit (i.e., Controlbox). When a PC is connected, the same G3 FDS cable (Id.-No. 41488) can be used as for the POSIDRIVE ${ }^{\circledR}$ FDS 4000 frequency inverter.

Pin	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Signal	+8 V	RxD	TxD	TxD	PGND^{1}	CANL	Internally connected	CANH	

1) PGND ground (I/O ground) is galvanically isolated from digital

DGND on plug connector X 1 .

FDS cable G3, cat. no. 41488
Connection cable between the serial interface of the PC
(Notebook) and serial interface X3 of the FDS. Only applies to FDSs with a sealed keyboard. Do NOT replace with a conventional serial connection cable. Such cables can only be used with a special adapter (cat. no. 41489).
The +10 V on pin 1 is exclusively to power a Kommubox and/or a Controlbox.
Caution: A brief short circuit against ground can cause a brief reset of the processor.

The RS 232 interface can be used to create a low-cost network of several inverters with an "RS 232 ring."

Networking with an RS 232 ring is supported by FDS Tool The RS232 ring can be used to control the inverters by communication via USS protocol.
For more information on the USS protocol, see the USS documentation (no. 441564).

5.5 $\times 40$ Resolver

The default setting specifies a 2-pin resolver as the motor encoder. For connection, adhere to the following points.

- Use fabricated STÖBER cables for optimum interference immunity.
- Use only resolver cables with cores which are twisted in pairs and shielded.
- Cross section: $0.14 \mathrm{~mm}^{2}$ [LIY (C) Y3 $\left.(2 \times 0.14)+(2 \times 0.25)\right]$
- Use 2 cores with $0.25 \mathrm{~mm}^{2}$ for positor line evaluation.
- Applifouter shield on both sides. Apply inner shield only on
- Use exclusively sub D plug connectors with shielded housing (e.g., Siemens V42254-A6000-G109).
- Apply shield over a large surface on the housing of the plug connector.

Signal	S3 Cos+	S1 Cos-	S4 Sin+						
S2 Sin-	PTC Thermistor	PTC	R2 Erreg+	R1 Erreg-	-				
Pin X40	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{2}$	$\mathbf{9}$	$\mathbf{5}$	
Motor 1	1	2	3	4	6	5	7	8	
Kabel 2	ge	gn	ws	br	bl	rt	gr	rs	

1) Pin number of the 12 -pin resolver connector for the STÖBER ES motor 2) Color when the STOOBER resolver cable is used

5.6 X20 Encoder IN/OUT (RS422)

Simulation of an incremental encoder on plug connector X20 is activated with $\mathbf{H 2 0}=1$: encoder sim. The number of pulses can be changed with the parameter $\mathbf{H} 21$. Adhere to the following points when using encoder simulation.

- Uspeanty suridatiteequable with cores which are twisted
- On the receiver side, the lines require low-ohmic termination and differential evaluation. Recommended termination impedance: 150Ω.
- Connect ground on pin 1 with the ground of the higher-level controller.
- Apply shield on both sides over a large surface to the housing of the plug connector.

5. Connection Assignment

Other possible configurations:
$\mathbf{H 2 0}=2$:encoder in; input for ext. incremental encoder (TTL)
$\mathbf{H 2 O}=3$:stepMot in; frequency + sign
(chap. 11.2)
$\mathbf{H 2 0}=4$:SSI sim; output of position in SSI format
$\mathbf{H 2 0}=5$:SSI master, connection of external SSI encoder

Pin	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{H 2 0}=0$	PGND	-	-	-	-	-	-
$\mathbf{H 2 0}=1$	PGND	Zero +	Zero-	A-	A +	B +	B-
$\mathbf{H 2 0}=2$	PGND	-	-	A-	A +	B +	B-
$\mathbf{H 2 0}=3$	PGND	-	-	Freq-	Freq +	Sign +	Sign-
$\mathbf{H 2 0}=4$	PGND	-	-	CLK +	CLK-	Data +	Data-
$\mathbf{H 2 0}=5$	PGND	-	-	CLK-	CLK +	Data +	Data-

1) PGND ground (I/O ground) is galvanically isolated from digital DGND on plug connector X 1.

5.7 Encoder input (external encoder)

Four versions are available to connect encoder or frequency / sign signals (stepper motor simulation).

- HTL signals on BE1 and BE2, fmax $=80 \mathrm{kHz}$
- TTL signals (differential, RS 422) on X20, fmax $=160 \mathrm{kHz}$
- $1 \mathrm{~V}_{\mathrm{SS}}$ and TTL signals on X41, fmax $=160 \mathrm{kHz}$.
- SSI signals from an external SSI encoder on X20

When an encoder is connected to BE1/BE2, F31=14 and F32=15 must be programmed.
Connector X20 is programmed with $\mathbf{H 2 0}=2$:encoder in to evaluate incremental encoders. External SSI encoders can also be connected to $\mathrm{X} 20(\mathbf{H 2 0}=5$:SSI master $)$.
Although, in contrast to X20, X41 does not offer galvanic isolation, it does provide a regulated voltage supply (10 V with sense lines, regulated to 5 V) for the external encoder. For connection assignment, see the beginning of chap. 5. Connector X41 is programmed with $\mathbf{H 4 0}=2$:encoder in to evaluate incremental encoders.

Voltage supply of $5 \mathbf{V}$ encoders

Adhere to the following points.

- Only track A and track B are evaluated but not the zero track.
- BE1/BE2, X20 and X41 may not be parameterized simultaneously as the encoder input (i.e., only one pulse counter exists!).
- When plug connector X20 is used as the encoder input and lines exceed 1 m , a terminating impedance of 150 Ohm must be provided externally between signals $A+$ and A - and $B+$ and B-. See figure.
- Since X41 does not offer galvanic isolation, only measuring connected there.
- Use double-shielded cable with cores twisted in pairs

X20 - Encoder input (incremental encoder)
SDS 4000

$\mathrm{H} 2 \mathrm{O}=2$

* Terminating resistor for cables longer than 1 m

BE1/BE2 encoder input

F31=14 F32=15

The external encoder is usually used as the signal source for synchronous operation (G27 reference value) or for position control (I02 posi.encoder, chap. 10.11). When stepper motor simulation is used, angle synchronous operation ($\mathbf{G 2 0}=2$, chap. 11) must be activated in operating mode $\mathbf{C} 60=1$.
$\mathbf{H 2 0}=4: S S I$ sim. simulates the signals of an SSI encoder on X 20 . This is particularly useful when the motor is controlled with an absolute encoder with sin/cos track. The absolute
angle and the multi-turn information can then be obtained from there. H60 can be used to switch the code between "0:gray" and "1:binary." The information is output in the following format: 12 bits multi-turn, 12 bits within one motor revolution the 25th bit is always 0 .

5. Connection Assignment

5.8 X41 SIN/COS, absolute encoder

Connector X41 is primarily used to connect multi-turn and single-turn absolute encoders with EnDat ${ }^{\circledR}$ or HIPERFACE ${ }^{\circledR}$ interface (sin/cos encoder). An extra sin/cos track gives an excellent speed resolution for maximum running smoothness and dynamics.

Pin	1	2	3	4	5	6	7	8
Signal	$\begin{array}{r} \mathrm{B}- \\ +\mathrm{Sin} \\ \hline \end{array}$	OV	$\begin{gathered} \text { A- } \\ +\mathrm{Cos} \end{gathered}$	Up	Data+	-	PTC	Clock+
Motorl3	10	16	7	14	-	6	8	
Cable ${ }^{2}$	orange	br/bl	yel	br/rd	gray	-	br/yel	wt/bk
Pin	9	10	11	12	13	14	15	
Signal	$\begin{array}{\|c\|} \mathrm{B}+ \\ \text { RefSin } \\ \hline \end{array}$		A+ RefCos	$\begin{array}{\|c\|} \hline \text { Up } \\ \text { Sense } \\ \hline \end{array}$	Data-	PTC	Clock-	
Motor ${ }^{1}$)	12	4	15	1	17	5	9	
Cable ${ }^{2}$	red	grn/bk	grn	grn/rd	bl	br/gra	wt/yel	

 via X 41 .

- The sin/cos encoder must be built onto the motor since it is also used for commutation.
- Use only srcinal STÖBER cables for ES motors!
- Enable connector X41 with H40=1: SinCos in.
- Activate motor control with B26=3:X41.
- The fault "37:n-feedback" may occur during parameterization. This fault can only be acknowledged by turning the power and 24 V off (save parameters before with $\mathbf{A 0 0}=1$!).
- Resolvers and $\sin /$ cos encoders cannot be used at the same time.
- Simultaneous use of sin/cos encoders with external incremental encoders is not possible.
- Simultaneous use of $\sin / c o s$ encoders with frequency specified externally (synchronous operation, stepper motor simulation) is not possible.
- Sin/cos and SSI encoders or SSI simulation on X20 can be
- USecort with $\sin /$ cos encoder on the motor is under preparation.
- SSI simulation on X20 is available with $\sin / c o s$ encoders.

A continuous zero-point setting is possible with all available reference traversing modes (e.g., mode $\mathbf{I} \mathbf{3 0}=3:$ def.home). The inverter is equipped with an electronic gearbox (safe against power failure) which permits absolute position acquisition over $4096 \times 64=262,144$ encoder revolutions for linear axes, or an unlimited traversing area for continuous axes with any gearbox. When this feature is used, the zero position only has to be re-referenced when the inverter is changed.
 ANTRIEBSTECHNIK

7. Operator Control

7 OPERATOR CONTROL

There are three ways to control and program the SDS servo inverter.

- External Controlbox operator unit
- FDS PC software
- Simubox Fieldbus communication

7.1 Status indication

operational status (e.g., "rdy" for ready) or
the flashing number of a fault which has occurred
(e.g., "E31" for fault 31:short/ground).
Controlbox offers a plain-text display with additional diagnostic capabilities (see chap. $16+17$).

Operational states	
dir	Illegal direction of rotation. Specified direction of rotation contradicts the permissible direction of rotation in C02.
EnA	Turned on. Only for control via fieldbus (DRIVECOM profile)
HLt	Halt signal active (e.g., during manual traversing)
inH.	Switch-on disable - Inverter is powered with +24 V but the network power is missing.
inH	Switch-on disable - Enable was active during power-on and Autostart
i2t	i2t message. Current limitation due to overload.
PoS	Positioning mode. Drive is stationary.
rEF	Reference point traversing
rdy	Ready for operation (not enabled)
run	Drive is enabled.
tSt	Self test and calibration after +24 V becomes available on X2. Standard devices show the software version after the 24 V power is turned on. Customized devices with modifications indicate $\mathbf{t S t}$. For complete version designation, see parameter E50.
OFF	FDS Tool has removed the enable so parameterization can be performed. Enable again with FDS Tool or turn 24 V OFF-ON to resume operation.
StP	Limit switch is active.

7.2 Controlbox

The Controlbox as portable housing or in DIN built-in housing ($96 \times 96 \mathrm{~mm}$) is connected with the X3 interface ($2-\mathrm{m}$ cable is included). It offers:

- Local mode (manual traversing) - see chap. 7.2.1
- Text indicator - see chap. 7.2.2
- Memory for seven parameterizations - see chap. 7.2.3
- Parametrization without PC - see chap. 7.2.4
- Locking with password - see chap. 7.2.5

If you do not have a Controlbox, you can use the
"Simubox.exe" program (also installed during installation of FDS Tool) to simulate a Controlbox.

7.2.1 Local mode

When manual tipping is used for the drive, Controlbox can be used to turn the motor shaft without having to address the binary inputs.
A. Switches to local mode and back. The drive stops . (internal enable = off). An L appears on the bottom right of the display. A55 (manual key function) must be active.
Enable = turn on with local mode. The drive is in the state 5:halt and can be controlled with the arrow keys and .
0
Enable = off with local mode
If not already active, local mode is activated (i.e., the drive stops).

7.2.2 Operation indication

In speed $(\mathbf{C 6 0}=0)$ mode, the layout of the operational display is shown below.

All possible operational states are listed in chap. 16. When is on the inverte is using parameter record $n 0_{0}^{2}$. No sgecial
indication is provided whern (default setting). The symbol ${ }^{{ }^{8} \mathrm{C}}$ appears when the brake chopper is running.

C51 is used to scale the speed (when a gearbox is installed on the motor, C51 can be used to indicate the output speed). The measured actual speed / C51 s indicated.

The first line of the display can also be customized. A variable selected via C50 (e.g., power) is divided by C51 and provided with the unit in C53 (e.g., "items/min"). The unit can only be specified via FDS Tool. The number of positions after the decimal point is provided by C52.
In position mode ($\mathbf{C 6 0}=2$), the first line shows the act. position. The second line shows the status.

Status \quad Proc. block no.
Regardless of the operating mode, events and alarms are indicated in the second line (e.g., "53:Stop"). All events and alarms are listed in chap. 17.

7. Operator Control

7.2.3 Parameter memory

Controlbox offers memory space for the parameters of up to 7 SDS servo inverters.
Store parameterization of the SDS on Controlbox

- Press \#key. Display shows " A.. inverter."
-Press \#key. Display shows " A00 save param."
- Press Δ key until "A03 write PBox" appears.
- Press \# key until the second line of the display flashes.
- Press the $\boldsymbol{\Delta}$ and keys to select the memory address number (1 to 7). If the memory address is already occupied this is indicated with the name of the data record on the
display.
- Press \#key to save the parameterization.

Read data from Controlbox
-Press \#key. Display shows" A.. inverter."

- Press \# key. Display shows "A00 save param."
- Press $\boldsymbol{\Delta}$ key. "A01 readBox\&save" appears.
- Press \#key. The second line of the display flashes.
\bullet Press the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys to select the memory address number (1 to 7). The data record names of the already stored parameterizations are indicated.
- Press \# key to read in the parameterization and store automatically, safe from power failures.
The data are not automatically stored with $\mathbf{A 4 0}$ (read Parabox).
The Controlbox Tool program makes it possible to directly transmit the parameters between Controlbox and a PC.

7.2.4 Parameterization

The following six keys are used for the parameterization with Controlbox.

- Return to prev. menu level
- Reject changes
- Acknowledgement of mal-
functions (A31=1)

To program, press the \# key (Enter). You are now in group selection. The menu is divided into groups which are identified as $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$. Select the groups with the arrow
keys (i.e., \square and \square) Press the $\#^{\#}$ key again to access the parameters of the selected group.
The parameters are designated with the group letters and a number (e.g., A10 or D02).

Parameters are selected with the $\boldsymbol{\Delta}$ and $\overline{\boldsymbol{Z}}$ keys. To change a parameter, press the, \# key again. The flashing value can now be changed with $\boldsymbol{\underline { \boldsymbol { Z } }}$. The changes take effect
immediately. The change value is accepted by pressing the \# key. The Esc key undoes the change. To return from parameter selection to the group letters, press Eso . To return to the status display, press Ess again.

Parameter changes must be saved with $\mathbf{A 0 0}=1$ (save parameters) before the device is turned off.
Status
123 rpm 1.3 A
display
囲 团

In the default setting (status on delivery), the inverter only displays the most important parameters required for commissioning. For complex drive tasks, the expanded menu is activated with $\mathbf{A 1 0}=1$.
With A10=2:service; Access to rarely used service parameters Both the normal menu and the expanded menu do not show parameters which are not related to the current task.
Example: When a predefined STÖBER motor (e.g., ES 44) is selected in parameter B00 (motor type), parameters $\mathbf{B 1 0}$ to $\mathbf{B 1 7}$ (poles to M0) are not shown.
Approximately 50 sec after the last key was pressed, the device returns automatically to the status display. This return can be switched off with A15=0 (auto return inactive)

Fieldbus: Most of the parameters pertaining to the fieldbus can only be set on the PC with FDS Tool.

7.2.5 Password

The parameters can be protected against unauthorized change. To do this, enter a password (a number between 1 and 9999) in parameter $\mathbf{A 1 4}$, and save it with $\mathbf{A 0 0}=1$. Password protection is inactive if A14=0. The Parameter A14 can only be accessed in the extended menu with $\mathbf{A 1 0}=1$.

On a protected device, the parameters can only be changed after the correct password has been entered in A13. ANTRIEBSTECHNIK

8. Commissioning

8 COMMISSIONING

8.1 Default setting

To obtain the default setting, set parameter $\mathbf{A 0 4}=1$. The default settings are listed below.

- Run mode: Speed
- Speed reference value via AE1 (fast reference value D99=1)
- $10 \mathrm{~V}=3000 \mathrm{rpm}$
- Encoder output X20: 1024 imp./U.

Rarps:

- Binary input 2 (F32): 2:Direction of rotation
- Binary input 3 (F33): 9:Quick stop
- Analog output 1 (F40): 4:E08 n-motor
- Analog output 2 (F45): 1:E00 I-motor
- Holding brake is not addressed.
\Rightarrow The expanded menu is activated with $\mathbf{A 1 0}=1$.

8.2 Motor, braking resistor

Before the drive is commissioned, the STÖBER ES servo motor must be identified on the SDS. Selection with B00 is performed from a motor database.

- In B00, select the motor type (e.g., 64:ES44).
- In B02, enter the "EMK" constant (standard = 110 V)
- In B26, enter the motor encoder (standard = resolver).
- When a holding brake is to be addressed, set F08=1, and enter the application and release time in F06 and F07.

- Torque limits C03 and C04 must be adjusted to the loadability of the mechanical parts (i.e., gear box). C03 and $\mathbf{C 0 4}$ are percentages relative to standstill torque M0 of the motor. Limit C04 is used for quick stop, for example. Usually

$$
\mathbf{C 0 3}=\mathbf{C 0 4} \leq \mathrm{M}_{2 B \text { _gearbox }} / \mathrm{M}_{0 _ \text {motor }} / \mathrm{i}
$$

must be set $\left(M_{2 B}=\right.$ max. acceleration torque of the gear box $\mathrm{i}=$ transmission). Starting with the 1999 edition, the SMS catalog lists in column $\mathrm{S}_{\mathrm{c} 03}$ the value (*) to be entered as a suggestion. For more information on torque limits, see chapter 9.2.

This can be monitored with a phase test using $\mathbf{B 4 0}=1$ (procedure: enable off; B40=1; enable on; enable off again when finished). Caution: The drive must be decoupled from the load since movement takes place. For details, see B40 in the parameter list.

With external motors, the selection "60:user defined" must be
made in $\mathbf{B 0 0}$ with input of the other motor parameters $\mathbf{B 0 2}$ to B17. This information can usually be found on the motor nameplate.
This procedure must be concluded with B40=1 (phase test).
Caution: Make sure that the load is decoupled from the drive!

8.3 Speed specification

There are many ways to specify the speed. However, remember that parameter D99 fast reference value restricts the possibilities.
D99=1: active Fast sampling (1 msec) of analog input AE1. Caution: Reference value options and fixed reference values are not shown.
D99=0:inactive Release the fixed reference values and access to all reference value parameters. Sample analog input AE1 = 4 msec

8.3.1 Speed specification via Controlbox

Controlbox offers a commissioning function without circuiting the control terminals. The tipping speed is determined by the following selection. It can be changed with the appropriate parameters.
Speed control C60=1: Tip speed / Tip ref. value (A51) Position control $\quad \mathbf{C 6 0}=\mathbf{2}$: Tip speed (112)

A Activation/deactivation of local operation is signaled by LED. LED.
 0 Motor becomes currentless.
 8.3.2 External speed specification
 - Connect speed reference value to analog input AE1.
 - Enter speed at 10 V in parameter D02.
 - When higher-level position control is being used, D02 must exceed the maximum speed actually required by at least 10% (i.e., control reserve).
 - Any offset for the analog input can be compensated for with D06.
 - If required, program ramps with D00 and D01.

8.3.3 Speed specification via potentiometer

When a potentiometer is used to specify the reference values,

- $\mathbf{F 4 0}=7:+100 \%$ for +10 V on analog output 1
- F45=8:-100\% for -10 V on analog output 2
- Set F47 (analog output 2 factor) = 100\%

8. Commissioning

8.3.4 Characteristic curve of ref. value

With fast reference value ($\mathbf{D} 99=1$) active, the reference value must be available on AE1. With $\mathbf{D} 99=0$, the (main) reference value can be available on either AE1 or AE2, but the AE function (i.e., either F25 or F20) must be 10:reference value (default setting for AE1). The speed is calibrated with the parameters D06 (RV offset) and D02 (speed at maximum reference value). Parameter D03 (maximum reference value) is helpful, for example, when the higher-level controller can output a maximum of 5 V (i.e., D03=50\% would then have to be entered).

8.3.5 Speed specification via fixed ref. value

With D99=0 (fast reference value inactive), 8 fixed ref. values (FSW) are available with the corresponding ramps in group \mathbf{D}. Binary coding via signals RV-select 0 to RV-select 2 (param. F31 to F34) is used for the selection. The combination "000" corresponds to the conventional analog reference value.

8.3.6 Speed specification via clock pulse generator

A clock pulse generator is available to optimize the speed controller.

- Enter desired speed in A51 (e.g., 50 rpm).
- Activate clock pulse generator with D93=1.
- Enter clock pulse cycle in D94 (e.g., 0.5 sec).
- Activate enable.

The drive switches the speed between + A51 and -A51 with cycle D94.

8.3.7 Motor potentiometer

The "motorpoti function" can be used to steplessly increase or
decrease the motor speed via two binary inputs.

- Two binary inputs are programmed to "4:motorpoti up" or
"5:motorpoti dwn" via F31 to F34.
- The "motorpoti function" is activated with $\mathbf{D} 90=1$.
 poti function" is active ($\mathbf{D} 90=1$), most of the parameters of group D (reference values) are not indicated.
- D90=2 causes the motor potentiometer to be added to the normal reference value.
- The reference value generated by the motor potentiometer is set to 0 if both binary inputs are high.
- With D91=1, the ref. value is saved in non-volatile memory.
- With D91=0, a low level on the enable deletes the motor potentiometer reference value.
\Rightarrow The motor potentiometer function is not available when D99=1 (fast reference value).

8.3.8 Frequency reference value

There are two ways to accept the frequency reference value - Incremental encoder, tracks A and B

- Stepper motor signal, frequency + sign

For connection, see chapters 4 and 5 . The software must be programmed to "el. gear," as described in chapter 11.

8.4 Speed controller

The speed controller is an ideal PI controller with reference value smoothing. With STÖBER ES motors, the optimum value smoothing. With STOBER ES motors, the optimum
function of the speed controller is ensured by the default function of the speed controller is ensured by the default C31, C32 and C33) is usually restricted to:

- Great external moments of inertia (C31 $\uparrow, \mathbf{C} 32 \downarrow, \mathbf{C 3 3} \uparrow$) - Mechanical parts with oscillation capability (C31 $\downarrow, \mathbf{C} 33 \uparrow$)

8.5 Halt / quick stop

In the default setting, binary input BE1 is programmed to
F31 $=8: h a l t . ~ b 0 t h e ~ d e f a u l t ~ s e t t i n g, ~ t h e ~ h a l t ~ i s ~ p e r f o r m e d ~ w i t h o u t ~$
ramp since can be implemented with the function "9:quick stop" (D81 Decel-S). In the default setting, BE3 is programmed to F33=9:quick stop.
With operational mode "position," the ramp function is always active. The process block Decel ramp takes effect with halt. Max. acceleration 111 takes effect with quick stop.

8.6 Brake control

The addressing of a +24 V motor halting brake is activated with F08=1. The connections are available on X13 (B+ and B-). The brake is released by the end stage enable and closed with falling enable. The set release time F06 and the application time F07 of the brake is considered.
The brake is applied again under the following conditions:

- Removal of the enable. Watch $\mathbf{F} 38=1$.
- Halt. One BE must be programmed to HALT (e.g., F31=8)
- Quick stop. One BE must be programmed to quick halt

- For process block for positioning, see group L..

The motor halting brake can be manually released. For this, parameter F08=0 must be set and one component must be assigned with the function "32: breakRelease" and addressed. Caution: Before this, ensure safe state for brake release. Even when $\mathbf{F 0 8}=0$, the brake output is addressed. The release and application times are not considered, however. This function is intended to prevent excess wear when the brake functionality is not configured (starting with SV 4.5B).

9. Torque Limits / Operating Range

8.7 Binary inputs BE1 to BE4 (Opt. BE5 to BE15)

With the default setting, the binary inputs which can be programmed as desired have the following meaning.

- BE1 = 8:Halt
- BE2 $=6$:Direction of rotation (left/right)
- BE3 = 9:Quick stop
- BE4 = 0:Inactive

Option board SEA-4000 offers 10 additional binary inputs. The function of the binary inputs is specified via the parameters F31 to $\mathbf{F 3 4}$, and $\mathbf{F 6 0}$ to $\mathbf{F 6 9}$ in the extended menu ($\mathbf{A 1 0}=1$).

When several inputs are connected to one function, the signals are either AND or OR-linked (F30 BE-logic). Functions without a connection to a BE signal are provided internally with an L-level signal

8.8 Parameter record selection

The SDS inverter supports two separate parameter records. Specification of the active parameter record is performed in one of the following ways

- Externally via a binary input (A41=0)
- Internally via a keyboard (A41=1 or 2)

The active parameter record is indicated in E84. To specify via a binary input, one of the parameters F31 to F35 must be set to "11:paraSet-selecf" in both parameter records. Selection never takes place unless the power section is deactivated.
The parameters of both parameter records can be indicated and programmed regardless of which parameter record is currently active. A11 (paraSet Edit) is used to specify the parameter record (1 or 2) to be edited. When parameters of the 2nd record are involved (A11=2), aE is indicated to the right of the parameter number.
Certain parameters (e.g., operation input, A30) are only available once, and a is then not indicated next to the parameter number. This applies to all parameters of group \mathbf{A}, the display parameters of group \mathbf{E} (e.g., torque, utilization and similar), and positioning (groups I, J, L and \mathbf{N}).
Example of time behavior with quick stop for enable-off (F38=1, for enable see also F31=11): Signals for

When autostart is active (A34=1), the switchover takes place immediately when the edge of the signal "11:Paraset" occurs Enabling is automatically deactivated internally.
Parameter records can be copied via A42 and A43 (copy paraSet). A42: copy paraSet $1>2$ to "1:active" overwrites parameter record 2 with the values of parameter record 1. \Rightarrow Usually, the first parameter record should be set up first. The parameters are then copied to parameter record 2 with $\mathbf{A 4 2}=1$ (active). A11=2 is then used to switch to parameter record 2 and edit the necessary values there.
After completion, all parameters are saved with $\mathbf{A 0 0}=1$.
Remember: When the mode ($\mathbf{C 6 0}$) is switched from position to speed, the actual position during $\mathbf{C 6 0 = 1}$ is only partially included. This means the reference position is lost when you switch back $(\mathbf{1 8 6} \rightarrow 0)$.
With electronic gear boxes, the internal variables like the current angle of deviation are retained when a parameter record is switched (prerequisite: C60 remains the same). However, the parameters of group G.. are switched.

8.9 Acknowledgment of faults

The table of possible faults is located on page 48. Faults are acknowledged in the following ways.

- Enable: Change from L to H level on the enable input, and then back to L. Always available.
- Binary input (F31 to F34=13)
- Esckey (only when A31=1) and only in the display)
- Auto reset (only when A32=1)
Δ
Caution! Drive starts up immediately.

Parameters E40 and E41 can be used to scan the last 10 faults. Value 1 represents the last fault. FDS Tool can be used to define the inverter reaction (e.g., fault, warning, message or nothing) to certain events (e.g., overload, excessive
temperature, and operating range) as desired.
The fault "37:n-feedback" can only be acknowledged by turning the 24 V supply off and on.

8.10 Motor startup

A34=0 (auto-start inactive) in the default setting prevents the motor from starting up by itself after the power is turned on. Cf. operation status "12:inhibited" on page 45. Before activating auto start (A34=1), check to determine whether safety requirements permit an automation restart.

9 TORQUE LIMITS / OPERATING RANGE

9.1 Torque limits

There are several methods of limiting motor torque.

- In the default setting, C03 (M-Max 1) is the current torque limit in \% of motor standstill torque M0.
- A binary input (assign BE funct. "10:torque select" via one of the param. F31 to F34) can be used to switch between the two torque limits C03 (M-Max 1) and C04 (M-Max 2).
- Analog input AE2 can also be used to limit torque. Set parameter $\mathbf{F 2 0}=2.10 \mathrm{~V}$ corresponds to 100% motor standstill torque M0. Other scaling is available via F22 (AE2 gain).
- With quick stop, C04 always takes effect.

10. Positioning Control

The actually effective torque limit is calculated from the minimum of the various limit values. It can be scanned in parameter E62. Maximum available torque is always limited by the maximum inverter current.

9.2 Operating range

Freely programmable comparators can be used to simultaneously monitor 3 measured values (i.e., "operating range"). The first 2 values (speed and torque) are fixed. The third value can be selected as desired with C47. The limit values are specified with the following parameters.

- C41, C42: n-Min, n-Max
- C43, C44: M-Min, M-Max
- C45, C46: Measured value " X " (specified in C47)

C48=1 monitors the absolute value of measured value " X " (C47). C48=0 also includes the sign. Parameter C49 specifies whether monitoring is also to be continued during acceleration phases and enable-off. When at least one of the limits is exceeded, this can be signaled on a binary output with the "6:operation range" function (e.g., $\mathbf{F 0 0}=6$). Another use is the control of process-block chaining (cf. J17=4).
If only one or two of these range monitoring options are used, the limits of the unused ranges must be set to their limit values (e.g., C43=0\% and C44=400\% when torque monitoring is not required).

10 POSITIONING CONTROL

The basic model of the SDS 4000 servo inverter offers integrated positioning control.

Since the capabilities of standard devices are limited by the number of inputs available, use of option board SEA-4000 or digital communication (e.g., RS 232, CAN bus and PROFIBUS-DP) is recommended for solving typical positioning tasks.

10.1 Function overview

- 32 positions can be programmed as 32 process blocks.
- Continuous position control with following error monitoring
- Parameterization in units (e.g., degrees, mm)
- Resumption of interrupted process blocks possible
- Change in destination possible during traversing
- Reference point travel with several modes
- Sequence programming possible via process block chaining (e.g., "Go to pos. 1, wait 2 sec , go on to pos. 2, wait for signal and return")
- Tip mode (inching)
-
- Spacerariovifitrationia analog input possible
- Any gear ratios are calculated with fractions without rounding errors. No drifting with continuous axes.
- Continuous referencing for continuous axes
- "Electrical cam" function switches digital output within programmed position range.
- Hardware and software limit switch
- Rotary attachment function
- Path specification via analog input possible
- Brake control for lifting systems
- Positioning with absolute value encoders (also continuous mode)

10.2 Connections

The standard device without option board is used for simple applications.
Applications with greater demands on binary inputs require the use of the SEA 4001 option board.
The SEA 4000 expansion board offers 10 binary inputs and 5 binary outputs.

An analog input can be used to adjust positioning speed steplessly. Called "speed override," this function is not only

Below is a typical configuration with option.

The following functions for binary inputs (parameters F31 to
F34 and F60 to F69) are important

- RV-select0 to 4: Binary coded position selection. Process block 1 is selected with "00000," and process block 32 is selected with "11111."
- 8:halt. Rising edge interrupts running motion with the current process block ramp. Since tip mode (i.e., inching) via binary inputs is not possible unless halt is active, halt switches between tip and automatic operation.
- 9:quick stop: Rising edge interrupts positioning with maximum acceleration I11.
- 16:posi.step: When a chain of process blocks is being used, posi.step starts the consecutive process blocks. A movement which is in progress is not interrupted.
- 19:posi.start: Starts the just selected process block. A
movement which is in progress is always interrupted.
- 20:posi.next: Only for chained process blocks. If programmed appropriately (cf. J17=3), immediately concludes the running process block, and starts the next one. A remaining path which is to be traveled after posi.next occurs can be defined. See chapter 10.8.

- 23:reference input: Reference switch connection
- 24:start reference: Starts reference point traversing
- 25:teach-in: Actual position is assumed in the just selected process block.
\Rightarrow The binary inputs can be inverted via F51 to F54 and F70 to F73. Removal of the enable always causes a quick stop with maximum acceleration I11.

Analog inputs AE2 and AE1 (par. F20 and F25)

- 1:additional RV: Relative traversing paths are multiplied by (100% + level). Example: $0 \mathrm{~V} \rightarrow$ no additional reference value (i.e., 100% of the traversing path).

10. Positioning Control

- 4:RV-factor: Relative traversing paths are multiplied by the level. Example: $0 \mathrm{~V} \rightarrow$ no movement (i.e., 0% of the traversing path).
- 5:override: The programmed positioning speed can be changed online via potentiometer ("speed override" function for CNC controllers), for example.
- 6:posi. offset: An offset can be added to the current position online via AE2. Cf. parameter 170.
Binary outputs (par. F00, F80, F81, ...)
- 3:Ref Val reached: Location in position window I22. Signal
appears when drive "in position."
- 8:electrical cam: Signal appears when the actual position is located between parameters I60 and I61. Signal is used as message to other modules, for example.
- 9:Following error: Signal appears when the maximum following error in $\mathbf{I 2 1}$ is exceeded.
- 10:Position active: Drive is in position control. No process block and no process block chain being processed.
- 13:referenced: Drive is referenced.
- 19:s-memory1 to 21:s-memory3: Output the memory locations set by the posi switching points during processblock movements (see chap. 10.12).
- 23:RV-ackn. 0 to 25:RV-ackn.4: Binary coded response message from the active $\mathbf{1 8 2}$ process block. Cf. diagram in chap. 10.3.

10.3 Destination positions and process blocks

Each position to be approached to is described by several parameters. Together these parameters make up a process
 process blocks can be accessed via Controlbox. Process block no. 1 is described by parameters $\mathbf{J 1 0}$ to $\mathbf{J 1 8}$, while the second process block is described by parameters $\mathbf{J 2 0}$ to $\mathbf{J 2 8}$, and so on.

Process blocks 9 to 32 can only be programmed via FDS Tool or via fieldbus.

A process block can be selected as shown below.

- Binary coded via binary inputs $R V$-select0 to $R V$-select4.

The binary combination "00000" selects process block no. 1,

- Parameter J02 if not equal zero here.

The response message of the current process block appears:

- In parameter 182 ("active process block")
- In the 2nd line of the operational indication
- It is binary-coded from binary outputs "23:RV-ackn.0" to "27:RV-ackn.4."
The selected process block is shown inverted until the movement starts.
When a process block starts, the active block is not shown inverted (binary-coded like RV-select signals) as long as posi.start, posi.step or posi.next is queued.

When a process block cannot be started (e.g., see
"51:refused"), the selected block continues to be shown inverted. This happens even when a movement is terminated.

\Rightarrow When the position is specified directly via fieldbus, process block $1(\mathbf{J 1 0})$ receives special treatment. The inverter does not acknowledge the write routine unti all internal conversions have been completed and the inverter is ready to start. The parameter E124 ("start.pos $1^{1 "}$) is also available from the fieldbus. $\mathbf{J 1 0}$ is written here and, after conversion, is immediately started automatically. The output signal "32:param.active"signals the completion of a parameter conversion.

10.4 Absolute/relative positioning

One of 4 possible traversing methods (parameters J11, J21, J31 and so on) can be assigned to each process block.

- Relative
- Absolute
- Continuous, positive
- Continuous, negative

A relative path always refers to the current location (chain dimensions).
An absolute position refers to a fixed reference point (i.e., machine zero point) which is determined with reference traversing. See chapter 10.6. For this reason, an absolute position always requires reference traversing. Any start commands given without reference traversing are answered by the inverter with " 51 :refused".
When a process block is defined as continuous and a start command is given, the axis moves in the specified direction until a signal arrives from the outside (e.g., posi.next or posi.start). The speed can be adjusted via analog input AE2. (Set the AE2 function $\mathbf{F 2 0}=5$:Override for this.)
Successful conclusion of a movement is signaled via the output signal "reference value-reached" ($\mathbf{F 0 0}=3$ and $\mathbf{F 8 0}=3$). This signal appears when the actual position lands in the position window (destination $\pm \mathbf{I 2 2}$) for the first time. The signal is not withdrawn until the next traversing command is given.

10.5 Commissioning

Before positioning control is activated, speed control must be commissioned and, if necessary, optimized with the FDS
Scope function.
Positioning control is activated with

$\mathbf{C 6 0}=2$:position

The status indicator ${ }^{1}$ changes and displays the actual position in the first line.

Important: If you want to change the location of the decimal point in the position display via $\mathbf{1 0 6}$ (I06=decimal point shift), do this at the beginning of commissioning since the significance of all positions is changed.
10.5.1 Limited position range

Limited traversing range means that the permissible area of movement is restricted by end stops or similar. Safety requires that limit switches be provided. If the inverter is not equipped with a sufficient number of free inputs (i.e., operation without an option board), the limit switches must be evaluated by a higher level controller. The primary parameters are listed below:

- 100=0 Limited traversing range
- 105: Unit of measurement (e.g., mm, degrees (${ }^{\circ}$, inch)
- 106: Number of decimal places
- 107: Distance per motor revolution (e.g., mm/U)
- 110: Maximum speed (e.g., mm/sec)
- I11: Maximum acceleration (e.g., mm/ sec^{2})
- I12: Tip mode speed

Important: Since some parameters in groups I and J (e.g paths or accelerations) may assume very large values, the 4 keys can be used to directly select (via Controlbox) the tens exponent to be changed. Only the individual digit flashes and not the entire number. The $\overline{\mathbf{\nabla}}$ keys can be used to increment/decrement the value by the selected tens exponent:

Single digit flashes
Change with $\boldsymbol{\square}$
Select digits with
\Rightarrow Before starting initial tests, check the limit switches, and decouple the drive from the machine if necessary.

The enable can now be activated as the first test. The display ${ }^{1}$ shows

> 17:posi.active

The position control loop functions, and the current position is maintained. During the next step, the drive is moved via tip mode (i.e., inching mode). Set parameter J03=1 for this. The \square keys can be used to traverse the drive.
\Rightarrow The speed can also be changed during traversing via analog input AE2 ($\mathbf{F 2 0}=5$).
The next step is the commissioning of reference traversing. See chapter 10.6. Software limit switches I50 and I51 can be programmed with a referenced axis ($186=1$). The software limit switches prevent movement to positions outside I50 and 151.

A short relative movement $(\mathbf{J 1 1}=0)$ can be specified in $\mathbf{J 1 0}$ (destination position process block 1) for testing purposes. The speed is entered in $\mathbf{J 1 2}$, while the ramps are entered in $\mathbf{J 1 3}$ and $\mathbf{J 1 4}$. $\mathbf{J 0 0}=1$ can be used to start and monitor the movement. Do not forget the enable.
10.5.2 Continuous traversing range (rotary axis)

The most important feature of a continuous traversing area is the cyclic repetition of certain positions during movement in one direction (e.g., hand on a clock).

Gear ratio: Parameters 107 and 108 permit precise specification of the gear ratio (i.e., based on the number of teeth). This prevents a path drift with relative positioning. Cf. examples in chapter 10.9.
Rotary axis function: Selection of $\mathbf{I O O}=1$:unlimited means that the actual position is only counted up to circular length $\mathbf{1 0 1}$ (e.g., 360°). After this value, counting begins again at zero. If both directions are permitted, the movement progresses from point A to point B (i.e., absolute destination specification) over the shortest path (i.e., path optimization).
Direction of rotation: If both directions are permitted ($\mathbf{I O 4}=0$), the movement from A to B is performed over the shortest path when absolute destination specification is used (103=1, path optimization active). However, with block changes on the fly, the srcinal direction of rotation is retained. Limitation of the permissible direction of rotation 104 affects all process blocks and manual traversing. An alternate method is to use $\mathbf{1 0 3}=0$ to deactivate path optimization. Remember, however, that, when you want to approach an absolute destination in the negative direction of rotation, you must enter the destination with a negative sign (in connection with the modulo calculation). Example: After you enter -270°, the drive moves to position 90° rotating counterclockwise.
A short relative movement $(\mathbf{J 1 1}=0)$ can be specified for testing purposes in $\mathbf{J 1 0}$ (destination position, process block 1). $\mathbf{J 0 0}=1$ can be used to start and monitor the movement.

[^2]
10. Positioning Control

10.6 Reference point traversing

When the 24 V supply voltage is turned on, the actual position is unknown. A defined preliminary position is achieved with reference traversing. Absolute movements can only be performed in referenced status. The referenced state is signaled with $\mathbf{1 8 6}=1$ and can be output on the binary output.

Reference point traversing is parameterized with $\mathbf{I 3 0}$ to $\mathbf{I 3 8}$.
The primary parameters are listed below.

- I30: Type of reference point traversing
- 131: Direction of reference point traversing
- 132: High-speed reference point traversing
- I33: Low-speed reference point traversing
- 135: Zero-pulse of the motor encoder
- I37: Automatic reference point traversing at power-on

There are three ways to start reference point traversing

- Automatically ($\mathbf{1 3 7}=1$ or 2)
- Signal on binary input (F31 to F34=24)
- Inching with J05=1

If only one direction $(\mathbf{1 0 4}>0)$ is permitted, reference point traversing is performed from the beginning with speed I33. Reference traversing type $\mathbf{I 3 0}$ specifies the required initiators or the functions for binary inputs. $\mathbf{1 3 1}$ is used to determine the (search) direction when reference point traversing is started. If the reference switch (or limit switch) is active, the direction is reversed. Cf. example 2 further down. The correct value for $\mathbf{I 3 1}$ can be tested by inching the axis (parameter J03), for example. The status of the binary inputs can be scanned in E19.
Specification of two speeds (i.e., $\mathbf{I} 32$ and $\mathbf{I} 33$) is primarily an advantage for long linear axes.
The acceleration during reference point traversing is $1 / 2$ of the maximum acceleration in I11. When the reference point is detected, the actual position is set to $\mathbf{I} 34$ (i.e., reference position), and the drive brakes until it is at a standstill. The distance required for reversal or braking is generally

$$
\text { Distance }=\frac{1 \mathrm{v}^{2}}{2 \mathrm{a}}
$$

With v: Speed
a: Acceleration (111/2 here)
After reference point traversing has been concluded, the drive remains where it is after the required braking distance ($\mathbf{1 3 3 ^ { 2 } / \mathbf { I 1 1 } \text {) and does not return to the reference position. Cf }}$ above. The AE2 "override" function ($\mathbf{F} \mathbf{2 0}=5$) changes the speed and also the braking distance.

The reference switch (i.e., cam) only reacts briefly.
Atimnit swititris used for the reversal.
Example 4: $\mathbf{I} \mathbf{3} \mathbf{=}=1$:limit.input $\mathbf{I} \mathbf{3 1}=0$:positive

A limit switch can be used for referencing instead of a reference switch
When the power or the external 24 V voltage supply fails, the information on the reference position is lost. After power returns, $\mathbf{I} 37=1$ is used to automatically trigger reference point traversing with the first start command (i.e., posi.start or posi.step).
After a reference point traversing procedure has been concluded, you can automatically move to any initial position by programming parameter $\mathbf{3} 38$ (ref. block) to the number of the parameter record to be approached.

10.7 Position controller

To minimize following error deviation (i.e., difference between reference value and actual position), the SDS uses speed precontrol (speed feed forward). The maximum permissible following error deviation specified in $\mathbf{1 2 1}$ is continuously monitored. The position controller is running continuously during the entire movement.

- H23 (X20 gear ratio): Example of position control using X20

The gain of position control $\mathbf{1 2 0}$ (i.e., the "stiffness" of control) is called the "Kv factor."
The parameter 116 (S-ramp) can be used to parameterize "joltless" traversing profiles and prevent high-frequency excitation due to a low pass. The time constant I16 corresponds to a low-pass limit frequency of $\mathrm{fg}=2 \pi / 116$.

10.8 Process block chaining

The "next block" parameters J16, J26, J36 and so on can be used to chain process blocks into sequences. For example, at the end of one process block, this can be used to automatically move to an additional position (i.e., next block). The following parameters apply to the 1st process block.

- J16 next block. If $\mathbf{J 1 6}=0$, then no chaining.
- J17 next start. Specifies how next block J16 is to be started.
- J18 delay. Applies when $\mathbf{J 1 7}=1$:with delay

For details on J17, see the parameter table.
Example 1: With a rotary attachment, 60° steps are performed in a continuous cycle with 1-sec pauses in between.
Solution:
$\mathrm{J} 10=60^{\circ}$
$\mathrm{J} 11=0$:relativ
J16=1
J17=1: with delay (Next block no. 1)
\Rightarrow Process block no. $\begin{aligned} \mathrm{J} 18=1.00 \mathrm{sec} \\ \text { starts itself. }\end{aligned}$ (delay of 1 sec)
Example 2: Three fixed positions are always traversed in the same order.
Solution: J10, J20, J30=Destination specification $\mathbf{J 1 1}=\mathbf{J} 21=\mathbf{J 3 1}=1$: $a b s o l u t e$
$\mathbf{J 1 6}=2, \mathbf{J} 26=3, \mathbf{J} \mathbf{3 6}=1$ (chaining)
$\mathbf{J 1 7}=\mathbf{J} \mathbf{2 7}=\mathbf{J} 37=0$:posi.step
\Rightarrow The movements are triggered by the rising edge of the posi.step signal.

Example 3: A conveyor belt is to stop after exactly 100 mm following a sensor signal.
Solution: J11=2: endless positive
J16=2 (Next block no. 2) $\begin{array}{ll}\mathbf{J 1 6}=2 & \quad \text { (Next bloct } \\ \mathbf{J 1 7}=3 \text { :posi.next } & \text { (Next start) }\end{array}$
$\mathbf{J 2 0}=100 \mathrm{~mm}$
J21=0:relative

\Rightarrow The posi.start signal starts process block no. 1. The drive continues to run until the rising edge of the posi.next signal after which a branch is made to process block no. 2. When posi.next is connected to BE1, the reaction occurs without a delay time. If the $\mathbf{J 1 7}=3$:posi.next setting is not made, posi.next is ignored! Cf. example 4.

Example 4: Positioning of a shelf handling device. The exact destination position is specified by a light barrier which is triggered briefly at each shelf. Until just before the destination, the signals of the light barrier must be ignored. We will assume that the destination is located between 5.1 m and 5.4 m .
Solution:
The approximate position is traveled to with block no. 1.
$J 10=5.1 \mathrm{~m} \quad$ (Approximate position)
J11=1:absolute
J16=2 (Next block no. 2)
J17=2:no stop (Next start)
Posi.next is activated in block 2 (J27). $\mathbf{J 2 0}=5.4 \mathrm{~m} \quad$ (Maximum position) J21=1: absolute J26=3
(Next block no. 3) J27=3:posi.next (Next start)
The braking distance is defined in block 3. $\mathbf{J 3 0}=0.05 \mathrm{~m}$
(Braking distance) J31=0:relative

\Rightarrow Process block no. 1 is started with posi.start. Just before the probable destination and without an intermediate stop, a switch is made to process block no. 2 where the posi.next signal is armed. Process block no. 3 is triggered with posi.next, and the braking distance specified in J30 is executed. If the posi.next signal fails to appear (e.g., light barrier is defective), the drive stops at position J20.
Tips:

- An operational status of 17:posi.active indicated on the display means that no process block and no chain of process blocks (i.e., sequential program) is being executed at the moment. The drive is under position control. The posi.start and posi.step signals have the same effect here.
- I82 indicates the number of the process block currently being processed. 182=0 means that no process block is being processed.

10. Positioning Control

- The inverter assumes the basic state "17:posi.active" when the enable is turned off and on
- The "17:posi.active" state can also be output on BA1 or BA2.

10.9 Simple examples

Without the option board, 4 digital inputs are available.
Example 1: Belt drive (i.e., endless movement). Four different feed lengths are traversed relatively.
Solution: BE1: RV-select0 (F31=1)

$$
\begin{aligned}
& \text { BE2: RV-select1 } \begin{array}{l}
(\mathbf{F 3 2}=2) \\
\text { BE3: } \\
\text { posi.start }
\end{array}(\mathbf{F 3 3}=19)
\end{aligned}
$$

BE1	BE2	Block	Process Block Parameter

0	0	1	$\mathbf{J 1 0 , J 1 2 , J 1 3 , J 1 4}$
1	0	2	$\mathbf{J 2 0 ,} \mathbf{J 2 2 , J 2 3}, \mathbf{J 2 4}$
0	1	3	$\mathbf{J 3 0 , J 3 2}, \mathbf{J 3 3}, \mathbf{J 3 4}$
1	1	4	$\mathbf{J 4 0 , J 4 2}, \mathbf{J 4 3}, \mathbf{J 4 4}$

\Rightarrow The traversing method (e.g., J11, J21, J31 and so on) remains set to "0:relative" for all blocks. The selected process block is indicated in 183.

Example 2: Linear axis with end stops. Two fixed positions are traversed absolutely.
Solution: BE1: RV-select0 ($\quad \mathbf{F} 31=1$) BE2: posi.start (F32=19) BE3: ref.input (F33=23)

BE1	Position	Process Block Parameter
0	1	$\mathbf{J 1 0 , J 1 2 , J 1 3 , J 1 4 ~}$
1	2	$\mathbf{J 1 0 , J 1 2 , J 1 3 , J 1 4}$

\Rightarrow The traversing method ($\mathbf{J} 11$ and $\mathbf{J} \mathbf{2 1}$) for both process blocks is "1:absolute." After power-on, reference point traversing is automatically executed by 137=1 with the first posi.start command. The reference switch must have the characteristics shown in example 1 of chapter 10.6.

Example3: Belt drive (endless movement) with stop at pulse (i.e., defined braking distance)
Solution: BE1: posi.start ($\quad \mathbf{F 3 1}=19$)
BE3: posi.next (F33=20)
J11=2:endless positive
J17=3:posi.next
$\mathbf{J 2 0}=$...(braking distance)
\Rightarrow We recommend applying the posi.next signal to BE1 ($\mathbf{F} 31=20$) so that the delay time of 4 msec is omitted. Evaluation of posi.next is activated with $\mathbf{J} 17=3$.
For additional details on posi.next, see chapter 10.8 (chaining of process blocks).
 A STÖBER K302 0170 with $i=16.939393 \ldots$ is to be used as the gearbox. The exact ratio is $\mathrm{i}=3354 / 198$.

Solution: \quad The rotary attachment rotates precisely $360^{\circ} \mathrm{x}$ 198 / 3354 per motor revolution. Thus, $198 / 3354$ per motor revolution. Thus,
$\mathbf{1 0 7}=71280$, and $\mathbf{I} \mathbf{0 8}=3354$. The path is $\mathbf{I O 7}=71280$, and $\mathbf{I 0 8}=3354$. The path is
programmed in degrees $\left(\mathbf{J 1 0}=60^{\circ}\right)$. The circular length $\mathbf{I 0 1}$ is 360°.

Example 5:
A toothed belt drive is to move continuously and without drift in fixed increments (41 catches per circular length). The toothed disk has 23 teeth, while the belt has 917 teeth. For gearbox, see

Solution: Tengletaintalkerciselselutiforf diftlaftetnosison)ar One unit of distance is exactly one catch. The belt drive rotates precisely 198 / $3354 \times 23 \times 41$ / 917 units of distance per motor revolution. Thus, $\mathbf{I O 7}=\mathbf{1 8 6 7 1 4}$, and $\mathbf{I 0 8 = 3 0 7 5 6 1 8}$. The path is programmed in units of distance $=1 / 41$ of the circular length. The circular length 101 is 41 units.
Example 6: A conveyor belt drive with slip is to move in fixed increments continuously and without drift. Exactly 41 catches are distributed over acircular length of 4 m .

Solution: The distance per motor revolution is $2 \pi \mathrm{R} / \mathrm{i}$. Thus $\mathbf{1 0 7}=37.09 \mathrm{~mm} /$ R. Drift is prevented by continuous referencing $(\mathbf{I} 36=1)$ or the posi.next signal. Important: The distance to be traveled (e.g. 1) must precisely equal the circular length IO1. If not, the drive will drift away even with continuous referencing. If necessary, $\mathbf{1 0 1}$ and $\mathbf{1 0 7}$ must be adjusted accordingly. The reference switch should be located between two catches. Important: When continuous referencing I36=1 is used, 107 must always be rounded off to the next higher number.
Example 7: Screw/press controller
Starting at a certain position, the torque is to be monitored. When a limit is exceeded, a return to the start position is made.
Solution:
The first part of the movement is handled by process block no. 1. Without stopping, the system switches to process block no. 2 before the end position $(\mathbf{J} 16=2)$ and $\mathbf{J 1 7}=2$). The speed remains the same (J12=J22). When the torque limit (working area) specified by C44 is exceeded, the systems
and
27
$=4$). limited by the maximum torque C44.

10.10 Emergency off

If the power is cut off from the inverter with the emergency off switch, all information on the position is lost. When the inverter goes on again, the power must be referenced again.
When 24 V is provided via an option board, a movement which is interrupted by an emergency off can be continued and completed under the following conditions.

- The HALT signal becomes active at least 4 msec before the enable is removed.

Another method of interrupting and continuing a process block is to use the following sequence of signals.

Parameter I19=1 can be used to specify that an enable-off will lead to "23:interrupted." The interrupted process block can then be completed with posi.step. With the default setting (119=0), removal of the enable causes sequence control to be reset (status "17:posi.active").
Process blocks with chaining "without a stop" (J17=2) can only be terminated (status "17:posi.active").

10.11 Ext. rotary / linear path measurement

When an "external" measuring system is mounted directly on the machine for positioning, this measuring system controls the position. The motor is controlled with its own encoder (standard procedure).
Example for linear path measurement:

Important: The external measuring system must be able to supply at least 30 measuring increments per revolution - as converted to the motor shaft.

10.11.1 Position encoder

The encoder for position control is selected with $\mathbf{I O 2}$ and the motor encoder for motor control is selected with B26. The following table lists the possible interfaces with the inverter's supply voltages U_{B} and the parameters for the number of increments (inc/R) and the gear ratios between motor and encoder (gear-i).

	Remarks	$\mathbf{U}_{\mathbf{B}}$ Inc/R	Gear-i	
X20	TTL incremental encoder, SSI encoder	-	H22	H23
BE	HTL incremental encoder	-	F36	F49
X41	TTL incremental encoder (no galv. isolation)	5 V	H41	H42

10.11.2 Parameterization - motor/ext. meas. system

The movement of the external measuring system (rotary or straight) must be defined with 107 and 108 . First, the increments of the encoder must be specified (for SSI encoder, the resolution is converted from bits to increments; 24 bits equal 1024 pulses). See table above. Then the physical implementation is defined with 107 and 108.

Examples:

1) A revolving table with a rotation angle of 360° is directly coupled with a pulse encoder (1024 pulses per revolution). H20 = 2:encoder ln
$\mathbf{H 2 2}=1024 \mathrm{I} / \mathrm{R}$
$105=2:^{\circ}$
$107=360$
$108=1$ R
2) A conveyor belt with a $100-\mathrm{mm}$ drive roller is combined with a pulse encoder (1024 pulses per rotation) which is mounted on the drive roller.
$\mathbf{H 2 0}=2:$ Encoder In
$\mathbf{H 2 2}=1024 \mathrm{I} / \mathrm{R}$
$105=3$:millimeter
$107=314 \quad(100 \mathrm{~mm}$ * $\pi)$ feed per roller revolution
$108=1$ R
3) A linear axis with position encoder (100 pulses per 1 mm)
$\mathbf{H 2 0}=$ 2:encoder In
$\mathbf{H 2 2}=100 \mathrm{I} / \mathrm{R}$
$105=3:$ millimeter
$107=1$
$\mathbf{I 0 8}=1 \mathrm{R}$
H23: The ratio of the motor speed to the encoder speed must be entered in $\mathbf{H} 23$ for speed precontrol. H23 has no effect on the positioning but speed precontrol is very important for system dynamics.
Block circuit diagram:

10.11.3 Special reactions with SSI encoders The connection of the encoder is made on interface X20 ($\mathrm{H} 2 \mathrm{O}=5$).

At a resolution of 24 or 25 bits (see H61), one revolution has 12 bits (i.e., one revolution is divided into 4096 positions). This corresponds to a resolution of a pulse encoder with 1024 lines (quadruple evaluation).
H20 must thus be set to 1024 .
Be sure that the coding (gray or binary) is set correctly in H62.

11. Synchronous Running, El. Gearbox

10.12 Posi switching points

Posi switching points can be used to generate signals on the binary outputs during the movement. In contrast to the "electric cam" which is always active between positions I60 and I61, posi switching points are only evaluated during the running process blocks (movement) in which they were activated (L11, L12).
There are 4 posi switching points - S1 to S4. Each of these switching points can be used in several process blocks. Up to two switching points can be selected in one process block.
Two switching points are selected for process block no. 1 with
the parameters L11 and L12, as shown below.

Parameter		Possible Selection Values
L11	Switch A	"0:inactive", "1:switch S1",
L12	Switch B	.. "4:switch S4"

The characteristics of the switching points are specified in group N.. . For instance, the first switching point (S1) is described with N10 ... N14.

Parameter		Possible Selection Values
$\mathbf{N} 10$	s1-position	Example: 113.00 mm
$\mathbf{N} 11$	s1-method	"0:absolute", "1:rel,to start" or "2:rel.to end"
N12	s1-memory1	Selection for each: "0:inactive", N13
s1-memory2	"1:set", "2:clear", "3:toggle"*	

* Toggle $=$ change state each time level changes
(i.e., "L" -> "H" -> "L" -> "H" and so on)
 process block (N10, N11). The position of the switching point must be outside the target window $\mathbf{I 2 2}$.
The switching points have no direct effect on the outputs. Instead, up to 3 switch memories can be set, cleared or toggled in each switching point. Each binary output can be programmed to one of these three switch memories. $\mathbf{F 8 0}=20$:s-memory2 outputs switch memory 2 to output BA1.

Example 1: Binary output 2 (relay 2) should be set in process block $2,150 \mathrm{~mm}$ before the target position and then reset just before the Posi window is reached.

Solution: Two switch points (S1 and S2) are required. Switch point S1 activates switch memory 1 (s-memory1). Switch point S2 deactivates the same memory.

Switch Point S1	Switch Point S2
$\mathbf{N 1 0}=150 \mathrm{~mm}$	$\mathbf{N} 20=5 \mathrm{~mm}$
N11=2:rel.to endpos	$\mathbf{N} 21=1:$ rel.to endpos
N12=1:set s-memory1	$\mathbf{N 2 2 = 2 : c l e a r ~ s - m e m o r y 1 ~}$

Switching points S1 and S2 are assigned to process block 2 in group L...
$\mathbf{L 2 1}=$ switch S1, $\quad \mathbf{L 2 2}=$ switch S2
Output BA2 is assigned to s-memory1 with $\mathbf{F 0 0}=19$
Examalle Forth bainteeist甲tis poquisg and is to be turned on and off by the inverter with binary output BA1. Since the pistol's reactions are slow, it must be turned on (after the start of the process block) in advance at distance \boldsymbol{a} and turned off at distance \boldsymbol{b} before the end of the process block.

Solution: Two process blocks
(position up, position down) and two switch points are required. The first switch point activates switch memory 1 ("smemory1"). The second switch point deactivates the same memory.

Switch Point S1	Switch Point S2
N10 $=\boldsymbol{a}$ (distance \mathbf{a})	$\mathbf{N} 20=\boldsymbol{b}$ (distance \boldsymbol{b})
N11=1:rel.to start	$\mathbf{N 2 1 = 2 : r e l . t o ~ e n d p o s ~}$
N12=1:set s-memory1	$\mathbf{N 2 2 = 2 : c l e a r (s - m e m o r y 1) ~}$

The same switching points are parameterized in both process

blocks.
Process Block 1
L11 $=$ Switch point S1
L12 $=$ Switch point S2

Output BA1 is assigned to s-memory-1 with $\mathbf{F 8 0}=19$.

11 SYNCHRONOUS RUNNING, EL. GEARBOX

Using the synchronous running functionality, you can precisely synchronize two shafts. Different gear ratios are calculated without rounding errors. An incremental encoder of a master drive is used as the master, for example, but frequency/sign signals (i.e., stepper motor simulation) can also be processed.

11.1 Function overview

- Precise speed and angle ratio
- Gear ratio can be set as fraction.
- Following error monitoring

- No stationary angle error
- Angle offset via binary inputs
- Fine adjustment of the gear ratio possible via AE2
- Master signals as incremental encoder (tracks A and B) or stepper motor (frequency and sign)
- SSI as master encoder

The block circuit diagram for synchronous running is shown in chapter 18.

11. Synchronous Running, El. Gearbox

11.2 Connection of pulse source

The reference value can be received in the form of impulses in one of the following ways.

- Track A + B of an incremental encoder
- Direction + frequency (stepper motor simulation) or
- Serial data interface SSI

Pulse processing is performed by the "electronic gear" function ($\mathbf{G 2 0}>0$) in mode $\mathbf{C 6 0}=1$:speed. The fast reference value must be off (D99=0).

Both HTL $(24 \mathrm{~V}$) and TTL (5 V differential in accordance with RS 422) signals are processed.

HTL signals:

- Use BE1 and BE2 (X1.11 and X1.12).
- Set F31=14, F32=15 for incremental encoder.
- Set F31=15, F32=14 for stepper motor simulation.
- Enter resolution (pulses/revolution) in F36.
- Set master encoder G27=0:BE encoder.
(Activate synchronous run with $\mathbf{G} 20$ before.)

ITL signals:

- Use plug connector X20. Remember terminal resistance for cables longer than 1 m .
- Set $\mathbf{H 2 0}=$ 2: encoder in for incremental encoder.
- Set $\mathbf{H 2 0}=3$:stepMot in for stepper motor simulation.
- Enter resolution (pulses/revolution) in H22.
- Set master encoder G27=1:X20
(Activate synchronous run with G20 before.)
- X41 can also be used instead of X20. See chap. 5.5.

A finished, cascadeable master slave connection (ID no. 42940) can be used to pass the pulses from one SDS to the next. The cable length has been optimized for inverters up to 20 A (SDS 4141).

Socket side
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

SSL interface:

- Use plug connector X20.
- Set H20 to SSI master (H20=5).
- Set H61 (SSI code) in accordance with encoder used.
- Set H62 (data bits) in accordance with the resolution of the encoder.
The parameter H60 (SSI-inverse) can be used to influence the direction of rotation.

11.3 Master - slave

When two SDS 4000 inverters are coupled as master-slave, signals of the encoder simulation on plug connector X20 are connected to the same plug connector of the next inverter.

Master:

- Set encoder simulation on X20 with $\mathbf{H 2 0}=1$.
- If necessary, change number of increments in H21.

Slave:

- Deactivate fast reference value with D99=0.
- Set H20=2: encoder in.
- Set the number of pulses/revolution in H22 for the master (i.e., H22 on slave = H21 on master).
- Activate angle synchronous run with G20=2.

- If necessary, change direction of revolution in D92.
- The primary functions are listed below.

Binary inputs (parameters F31 to F34)

- 12:ext fault;
- 17:tip +; The slave is shifted in the positive direction in relation to the master. The speed is the result of the current speed reference value (AE1 or fixed reference value).
- 18:tip -; Same as "17:tip +" but in the negative direction.
- 27:syncFreeRun; Switch off synchronous running to run the drive with the analog reference value, for example.
- 28:syncReset, Current synchronous difference G29 is reset.

11. Synchronous Running, El. Gearbox

Binary outputs (parameters F00 and F80, F81)

- 12:sync.diff.; The synchronous difference exceeds limit value G24.
Analog inputs AE2 (parameter F20, F25)
- 5:override.; The gear ratio is affected during operation (i.e., change every 250 msec).
- 13:Sync.offset, Slave position is changed via analog voltage (100% = G38)
- 14:Sync. $n-R V$; External speed feed forward with analog reference value

11.4 Commissioning

- Commission master and slave separately (speed control). Parameters F26, F36 and H22 are important.
- Configure the encoder input/master on the slave (F31=14 and $\mathbf{F 3 2}=15$ or $\mathbf{H 2 0}=2$).
- On the slave, speed synchronous running is activated with $\mathbf{G 2 0}=1$, and the angle synchronous running is activated with $\mathbf{G 2 0}=2$.
- On the slave, enter the number of encoder increments of the master (F36 or H22).
- On the slave, specify the speed ratio (G22/G21).
- Direction of rotation can be changed with D92

The master often requires no further parameterization.

11.5 Angle difference

The current difference between master and slave is indicated in G29. The angle of difference is reset when:

- When voltage is turned on (power and 24 V) if $\mathbf{G 2 0}<3$
- Always for BE function "28:SyncReset"
- For enable, halt and quick stop. See G25.
- For BE function "27:SyncFreeRun." See G25.

The angle controller multiplies angle difference $\mathbf{G 2 9}$ by $\mathbf{G 2 3}$ (Kp.). The resulting speed offset is limited to $\pm \mathbf{G} 26$ (n-correc-tion-Max).
A continuous angle shift between master and slave can be implemented with the BE functions Tip + and Tip -. The speed difference is the current speed reference value (i.e., analog input AE1 or the fixed reference value). Another way to shift the angle is the AE function "13:synchron-offset."

The dynamic angle difference during acceleration is reduced with speed feed foward.

- Usually, the master increments are differentiated and added as speed feed forward to the speed reference value.
Advantage: No extra wiring required
Disadvantage: The master must move first before the slave can react. The speed obtained by differentiation is smoothed with a low pass. ($T=\mathbf{G} 22 / \mathbf{G 2 1}$ * F36/H22*4 msec if G27=0:BE-encoder. Otherwise $T=\mathbf{G 2 2} / \mathbf{G 2 1}$ * H22/F36 *4 msec . In addition: $\mathrm{T} \geq 16 \mathrm{msec}$).
- The "14:Synchron reference value" function can be used to directly switch the speed reference value (post ramp) from the master to the analog input of the slave ($\mathbf{F 2 0}=14$). The function of the analog output $\mathbf{F 4 0}=11: E 07 n$-postRmp can be used for this with the master. No ramp can be parameterized on the slave for the external precontrol (speed feed forward). If the analog reference value is circuited in parallel on master and slave, no ramps may be active on the master.

11.6 Angle and speed synchronous running

With angle synchronous running $(\mathbf{G 2 0}=2)$, all angle deviations are acquired and adjusted. However, this is not always desired. In speed synchronous running mode (G20=1), the angle controller can be partially or completely deactivated

The following setting is used to limit angle difference G29 to the value $\mathbf{G 2 4}$.

G20=1:speed synchron run
G23>0 (Kp synchronous running)
Although the speed ratio is precisely adhered to, the slave never attempts to catch up with an angle difference over G24. This is similar to a mechanical safety notching coupling.

Make the following selection for pure speed synchronous running.

G24=0
The speed ratio is not mathematically precise.

11.7 Emergency off

The following measures are helpful in minimizing divergence of master and slave when the power goes off.

- Select master low voltage limit A35 higher than that of the slave.
- Set master quick stop to F38=2.
- Couple DC links between master and slave.
- Adapt master quick stop ramp (D81) and torque limits (C04) on the master and slave to the mass ratios.

Turning off the power while the enable is active causes the fault "46:Iow voltage." After power returns, a device initialization is performed which may take several seconds
\Rightarrow We recommend removing the enable at the same time the power is removed so that the inverter does not go into "fault mode".

11.8 Reference point traversing - slave

Reference point traversing permits you to automatically put the slave into a defined initial position.
Reference point traversing is specified with parameters G31 to G35. Reference point traversing is started with a binary input (function F31=24:Start ref.).

The drive moves at speed G32 in direction G31 until the reference switch (reference input) on a BE becomes active (function F31=23:Ref.input). The angle deviation is reset, and the drive halts.
If only one direction of revolution is permitted (CO2), the drive moves in direction C02 at speed G33 until the rising edge of the reference switch. The reference direction (G31) is ignored in this case.

12. Technology

12 TECHNOLOGY

12.1 PID controller

The PID controller on analog input AE2 can be used as a technology controller for compensating rollers, pressure, throughput and similar. It is activated with $\mathbf{G 0 0}=1$.

There are four ways to compare reference and actual values.

- Use of differential input AE2. The two signals are connected to "+" and "-" in relation to analog ground.
- A fixed reference value can be defined in F21 (AE2 offset).
- AE1 can be programmed to $\mathbf{F 2 5}=11:$ PID-reference.
- PID-reference via fieldbus (E121)

The low pass filter (smoothing, time constant F23) suppresses undesired high-frequency oscillations. The output of the PID controller is usually used as an additional reference value (F20=1). The binary input function "26:disable PID" (F31 to F35) deactivates the controller. The controller output (i.e., adjustment variable) can be limited by G04 and G05. Active limitation can be signaled on relay 2 ($\mathbf{F O O}=11$), for example. This can be used to indicate a malfunction in the process (e.g., tearing of wound material).

Important: Enable-off sets the output of the PID controller and the I portion to zero.

12.2 Winders

The standard inverter software contains functions for solving simple winding tasks (i.e., reel drives). The following tasks are supported.

	Task	
1	Winding with diameter sensor at constant speed v = const	
2	Winding with indirect tension control at the M-max. limit	

	Task	
3	Winding with compensating rollers via speed offset and PID controller on AE2	
4	Winding with direct tension control with tension sensor on AE2	

When a material is wound and unwound, the speed progresses in reverse proportion to the diameter ($n \sim 1 / D$). If there is no diameter sensor (tasks 2 to 4), the diameter is calculated by the inverter as $D \sim v$-master/n-motor ($\mathbf{G 1 1}=1$) or obtained by integration of the roller deviation $(\mathbf{G 1 1}=2)$. The maximum change in speed of the diameter is provided by $\mathbf{G 1 6}$. The current diameter is indicated in parameter $\mathbf{G 1 9}$ (actual winding diameter). This can be output on the monitor output with F40=5. Depending on the task, the winding drive uses the following modes.

- Speed-controlled, G10=1:n mode (tasks $1+3$)
- At the M-max. limit, G10=2:M-Max mode(tasks $2+4$)

12.2.1 Diameter sensor on AE1/AE2

Winders or unwinders with constant circumferential speed The diameter sensor is connected to the analog input. The primary parameters are listed below.

- F20=7:wind.diameter (for AE1: F25)
- G10=1:n mode
- G11=0:AE2-measured
- G12 winder D-Min., G13 winder D-Max.

Parameters F21 and F22 are used to assign the values D-Min. and D-Max. to the related sensor voltages U-Min. and U-Max.

- F21 = - U-Min. $10 \mathrm{~V} \times 100 \%$ (AE2 offset)
- F22 $=10 \mathrm{~V} \div$ (U-Max. - U-Min.) $\times 100 \%$ (AE2 gain)

Since the reference value decreases with increasing diameter in accordance with the reciprocal value $1 / D$, the master reference value is the highest possible speed with an empty roll.

ANTRIEBSTECHNIK

12. Technology

12.2.2 Indirect tension control at M-max limit

Winders or unwinders with constant tension without extra sensors. The winding speed is specified by a master drive The master reference value must be such that it precisely corresponds to the motor speed required there for $D-M i n$. (i.e. empty roll). The master reference value must always be positive. See E10 (AE1 level). If necessary, the direction of motor revolution must be adjusted with D92.
The winding drive calculates the diameter in accordance with $D \sim v$-master \div n-motor and affects the torque limit in
proportion to D. The torque limit on AE2 or C03 is the greatest possible torque with a full roll. The primary parameters are listed below:

- G10=2:M-Max mode
- G11=1:n-line/n-motor
- G12 Winding D-Min., G13 winding D-Max
- G14 Winding D-ini
- F20=2:torque-limit or C03
- D92 Reference value negation
- G15 Override reference value

The speed reference value of a winder must always be greater than the master reference value so that the drive runs at the torque limit. This is ensured with the override reference value $\mathbf{G 1 5}$ which is added to the master reference value. In contrast, an unwinder should never be allowed to start running automatically in the direction of unwinding. For this reason, the master reference value of AE1 is never provided unless it is positive. Override reference value $\mathbf{G 1 5}$ ensures that the material is tensed when the master reference value $=0$ (i.e., the unwinder
 binary input. Cf. $\mathbf{F 3 1}=6$. The following figure illustrates how this process functions.

Before the winding process starts, the initial diameter must be set to $\mathbf{G 1 4}$ via a binary input (e.g. F31=29 for BE1). When
the power is turned off, the current diameter (D-act) is saved in non-volatile memory.
Incorrect calibration of the master reference value will cause D-act to drift away. If the master reference value is too high (e.g., due to $\mathbf{D} 02$ being too high), D-act will also be too high! G17 can be used to parameterize tension reduction with increasing diameter.

12.2.3 Winding with compensating roller

Winders or unwinders with constant tension provided by a compensating roller. The position of the compensating roller is measured and controlled via a PID controller on AE2. The winding speed is specified by a master drive. The winding drive
calculates the diameter in accordance with $D \sim v$-master/nmotor and multiplies both the master reference value and the offset reference value by $1 / \mathrm{D}$. The primary parameters are listed below.

- G10=1: n mode
- G11=1:n-line/n-motor
- G12 Winding D-Min., G13 winding D-Max
- G14 Winding D-ini
- G00=1 (PID controller active)
- G01 PID controller Kp, G02 PID controller Ki
- F20=1:additional reference value Block circuit diagram:

Instead of using G11=1:n-line/n-motor to calculate the diameter, $\mathbf{G 1 1}=2$:roller can also be used for a compensating roller. The deviation of the roller is measured with an analog input (F20=12:wind.roller). A speed feedback is not required.
Integration of the diameter is controlled by the positive or
negative deviation of the roller.

12.2.4 Winding with tension sensor

Tasks similar to winding with compensating roller but with the following differences.

- G10=2:M-Max mode
- F20=2: torque-limit
- G15 Override reference value

When winding with tension sensors, it is often a good idea to use an external PID controller with integration and precontrol (speed feed forward) of the tension reference value.

12.2.5 Compensation of fault variables

The effects of friction and inertia on the traction can be compensated for. The torque limit is offset by the friction used with G40 and G41.
Compensation of inertia: The inertia torque of the full roll at D Max must be converted to the motor shaft and entered in C30 as a ratio of the inertia torque of the motor. The acceleration is obtained by differentiation of the encoder signal. The result can be smoothed with G42.
The variable diameter may also affect the gain of the speed controller. The gain between C31*C35 at D-Min and C31 at DMax changes in proportion to the square of the diameter. The I portion is affected in the same way.

13. Parameter Description

A.	erter	E
Para. No.	Description	
A00 ${ }^{1)}$	Save parameter: 0 : inactive; 1: The parameters of both parameter records are saved in non-volatile memory. Saving is triggered when the value changes from 0 to 1 . "A02 check parameter" is then performed automatically.	
A01•	Read parabox \& save: Read parameters from Controlbox and save in non-volatile memory. The inverter recognizes automatically what is connected to X3. With Controlbox: First select desired data record (1 to 7), and then press \square \#. "A02 check parameter" is started automatically. When read errors occur (e.g., Parabox disconnected while being read accessed), all parameters are rejected, and the settings last saved with $\mathbf{A 0 0}$ are restored. 0 : inactive; 1: active; 1 to 7 for Controlbox (number of the data record)	
A02 ${ }^{\text {1) }}$	Check parameter: Parameterization is checked for correctness. For possible results, see chap. 15. 0 : inactive; 1: active; Parameters of the parameter record to be edited (see A11) are checked for the following. - Adherence to the value range - Correct programming of the binary inputs (F31 to F35)	
A03 ${ }^{\text {1) }}$	Write to Parabox: Write data of the inverter to external data medium (Parabox, Controlbox) 0 : inactive; 1 to 7; The parameters of both parameter records are copied from the inverter to Parabox (Controlbox). For handling, see A01.	
A04. ${ }^{\text {) }}$	Default settings: All parameters are reset to their default settings. 0: inactive; 1: active; The procedure is triggered when the value changes from 0 to 1.	
A10	Menu level: Specifies the parameters which can be accessed by the user 0: standard; Parameters which can be accessed are highlighted in gray in the parameter table (see chap. 21). All parameters remain in effect including those in the "1:extended" menu level. 1: extended; Access to all parameters which can be set 2: service; Access to rarely used service parameters. Small print (e.g., A37).	
A11	be edited while the inverter continues operation with parameter record 2. See also chapter 9.4. 1: parameter set 1; Parameter record 1 is edited. 2: parameter set 2; Parameter record 2 is edited.	
A12	Language: When the language is changed, FDS-Tool-specific texts U22, U32, U42 and U52 are reset to the default setting. This also applies to C53 and $\mathbf{I 0 9 .}$ O: deutsch; 1: english; 2: french;	
A13	Set password: Password is requested. If a password is defined in A14, this must be entered here before parameters can be changed. See chapter 7.3.	
A14	Edit password: Definition and modification of the password. 0 means that no password has been set. All other values are valid passwords. See chapter 7.3. A defined password can only be read out via FDS Tool.	
A15	Auto-return: Permits automatic return from the menu to the status indication. In edit mode (i.e., the edited parameter is flashing), there is no automatic return to the status indication. 0 : inactive; 1: active; If 50 seconds pass without a key being pressed, the display jumps back to the status indication.	
A20	Braking resistor type: Specification of the braking resistor type 19:inactive; Brake transitor deactivated. Too much braking force causes fault "36:overcurrent." 20: Internal; Integrated braking resistor. See page 2 of technical data. 21: User defined; Any external braking resistor. See A21, A22 and A23. 22: 800hm0.3kW 23: 800hm0.6kW A thermal model monitors the max. permissible power which can be led off via the 24:300hm0.6kW braking resistor. This protects the braking resistor against thermal overload. A thermal 25:300hm1.0kW overload causes the fault "42:tempBrakeRes." 26:300hm1.2kW 27:300hm2.5kW	
A21	Brake resistor resist.: Only with $\mathbf{A 2 0}=1$ (user defined), resistance value of the braking resistor used. Value range in Ω :: Depends on type, up to 600	

[^3]
13. Parameter Description

A.. Inverter		E
Para. No.	Description	
A22	Braking resistor rating: Only with $\mathbf{A 2 0}=1$ (user defined), capacity of the braking resistor used. Value range in $\mathrm{kW}: 0$ to ..., depends on type	
A23	Braking resistor therm.: Only with A20=1 (user defined), thermal time constant of the braking resistor. Value range in sec: 0.1 to 40 to 100	
A30•	Operation input: Specifies the srcin of the control signals (i.e., enable, direction of rotation and ref. value) Q: control interface (X1); Control signals (e.g., enable and so on) are generated via the X1 terminals. All binary inputs must be programmed accordingly. Fieldbus operation without Drivecom profile. 1: serial (X3); Control signals (e.g., enable and so on) are generated from the PC (FDS Tool software). The inverter is connected to the PC via sub D plug connector X3 (RS 232-C interface). See chapter 9.9. Remote control via the PC requires that the enable input (X1.15) be high. 2: inactive; 3: SDP 4000; Control of the device via PROFIBUS-DP. This requires the PROFIBUS-DP option board. 4: CAN-bus; Control of the device via CANopen with the integrated CAN bus interface which is standard. The following applies to both settings (i.e., "3: Profibus-DP" and "4: CAN-bus"). The servo inverter is put into a drive-compatible mode for device control. This control is performed exclusively either via the selected fieldbus (requires that all parameters for the function of the binary and analog inputs F20, F31, F32, F33 and so on be set to inactive) or in mixed operation with these inputs. The high level must always be present on the enable input (X1.15).	
A31	Esc-reset: Use the Esc key to acknowledge faults while they are being indicated. 0: inactive; 1: active; Faults can be acknowledged with Esc.	
A32	Auto-reset: Faults which occur are acknowledged automatically. Q: inactive; 1: active; The inverter acknowledges some faults automatically. See chapter 17. Faults can be automatically acknowledged successfuly three times within a time period of 15 minutes (default setting). A fourth fault is not acknowledged automatically. Instead, relay 1 opens, and the fault must be acknowledged in some other way (i.e., enable, binary input F31 to $\mathbf{F 3 5}=13$, or Esc key A31). The automatic acknowledgment counter is reset. After three unsuccessful attempts at acknowedgment, the inverter ignores automatic acknowledgment and	
A33	Value range in min: 1 to 15 to 255	
A34	Auto-start: Before you activate auto-start A34=1, check to determine whether safety requirements permit an automatic restart. Use only permitted when the standards or regulations pertaining to the system or machine are adhered to. Q: inactive; After power-on, the enable must change from L level to H level to enable the drive $(\rightarrow$ message "12:inhibited"). This prevents the motor from starting up unintentionally (i.e., machine safety). 1: active; When auto-start is active, the drive can start running immediately (if enabled) after the power is turned on.	
A35	Low voltage limit: If the inverter is enabled and the DC-link voltage is less than the value set here, the inverter assumes fault " 46 :Iow voltage. " A35 should usually be approx. 85% of the power voltage present to offset possible failure of a power phase. Value range in V: 150 to 350 to 570	
A36	Mains voltage: Maximum voltage provided to the motor by the inverter. Usually the power voltage. Starting at this voltage, the motor runs in the field weakening range. Value range in V: 140 to 400 to 480	
A37	Reset memorized values: The six different following error counters E33 to E38 (e.g., maximum current, maximum temperature and so on) are reset.	
A38	DC power-input: Q: inactive; 1: active:	
A40. ${ }^{1)}$	Read parabox: Read parameters from a Controlbox without automatic storage. 0 : inactive; 1 to 13: active; For function, cf. A01.	
A41	Select parameter set: Two parameter records are available. These can be selected via the binary inputs or directly via A41. The selected parameter record does not become active until the enable has been removed and after a maximum of 300 msec have passed. Some parameters retain their validity in both parameter record 1 and parameter record 2 (e.g., the posi. parameters in I, J and L). Parameters which can be programmed separately in parameter record 2 are indicated by al between the coordinate and parameter name. See chap. 7.1.	

13. Parameter Description

A. Inverter		E
Para. No.	Description	
	0: external; The active parameter record is selected via binary inputs BE1 to BE5. At least one of the parameters F30 to F35 must be set to 11 (parameter set-select) in both parameter records. Parameter record 1 is active when a LOW signal is present on BE. Parameter rec. 2 is active when a HIGH signal is present on BE. 1: parameter set 1; The inverter uses parameter record 1. External selection is not possible. 2: parameter set 2; The inverter uses parameter record 2. External selection is not possible. Caution: Parameter A41 is only provided for testing purposes. It is not saved with $\mathbf{A 0 0}=1$. Use a BE or the E101 parameter (bus access) if you want to switch parameter records during operation.	
A42• ${ }^{\text {1) }}$	Copy parameter set 1>2: Copies parameter record 1 to parameter record 2. The old values of parameter record 2 are overwritten. The procedure is started when the value changes from 0 to 1 . The result is always " 0 :error free." The new parameter assignment must be stored in non-volatile memory with A00. 0: error free;	
A43. ${ }^{\text {1) }}$	Copy parameter set 2>1: Same as A42 except parameter record 2 is copied to parameter record 1 0 : error free;	
A50	Tip: Only if $\mathbf{C 6 0}=2$ (run mode \neq position). Permits commissioning with minimum circuiting of the control terminal as long as A51 is entered. 0 : inactive; Normal operation 1: active; The controller only requires a high signal on the "enable" input. All other binary control signals have no function when $\mathbf{C} 60<2$. The \square and \square keys can be used to accelerate the drive counterclockwise or clockwise to the speed set in A51. Since an enable is generated which has a higher priority than the additional enable, operation remains possible even when additional-enable = low via fieldbus.	
A51	Tip reference value: Only if $\mathbf{C 6 0} \neq 2$ (run mode \neq position). Reference value for speed for commissioning without external circuiting of the control inputs. The "enable" input must be high! The current actual speed is shown on the right of the display. When $\mathbf{A 5 0}=1$ and $\mathbf{A 5 1}$ is in input mode (value flashing), A51 becomes active as continuous reference value. For behavior of enable and BEs, see A50. Value range in rpm: -6000 to 300 to 6000	\checkmark
A55	Key hand function: Can be used to disable the MANUAL key on Controlbox for turning local operation on/off. For additional information, see Controlbox documentation (publ. no.: 441445). 0 : inactive; Q $_{\text {key }}$ has no function. 1: local; key activates local operation. Device enabling is then handled exclusively by the keys "green I" 1 ? and "red 0" 0 . The \leq and keys can be used to move backward and forward in the status display. Active local operation and active enable are indicated by LEDs on Controlbox. The reference speed value results from A51 for speed mode and from $\mathbf{I 1 2}$ for POSI. CAUTION: When local operation is disabled with the key (LED goes off), the drive immediately switches back to the queued control signals (i.e., danger of unintentional startup!).	
A80	Serial address: Only if A10=2. Address for communication via X3 with FDS Tool and with master via USS protocol (cf. documentation „USS link for POSIDRIVE and POSIDYN ${ }^{\text {4 }}$, pupl. no.:441564). Value range: 0 to 31	
A82	CAN-baudrate: Sets the baud rate for the CAN bus. Cf. CAN bus documentation publ. no.: 441562.0: $10 \mathrm{kBit} / \mathrm{s}$ 2: $50 \mathrm{kBit} / \mathrm{s}$ 4: $125 \mathrm{kBit} / \mathrm{s}$ 6: $500 \mathrm{kBit} / \mathrm{s}$ 1: $20 \mathrm{kBit} / \mathrm{s}$ 3: $100 \mathrm{kBit} / \mathrm{s}$ 5: $250 \mathrm{kBit} / \mathrm{s}$ 7: $800 \mathrm{kBit} / \mathrm{s}$	
A83	Busaddress: Specifies the device address for use with the fieldbus (i.e., Kommubox). For permissible value range, see documentation of the applicable Kommubox. A83 has no effect on device programming via PC with FDS Tool or the RS 232 interface with the USS protocol. Value range: 0 to 125	
A84	Profibus baudrate: When the SDS is used with the PROFIBUS-DP option board, the baud rate found on the bus is indicated (!) here. Cf. PROFIBUS documentation publ. no.: 441535.	

[^4]
13. Parameter Description

B.. Motor		E
Para. No.	Description	
B00•	Motor-type: Motor selection from the motor data base. The STÖBER system motor used is specified with $\mathbf{B 0 0}=61$ to $69 . \mathbf{B 0 0}=60$ (user defined) is used for special windings or motors of other manufacturers. 60: user defined 62: ES 33 64: ES 44 66: ES 54 68: ES 74 61: ES 32 63: ES 42 65: ES 52 67: ES 72 69: ES 76 The EMC voltage constant must be entered in B02. An "*" on the display means that at least one of the parameters (B53, B64 and B65) differs from the default setting of the STÖBER motor data base.	\checkmark
B02	EMC-constant: Specifies the peak value of inducted voltage between two phases at 1000 rpm . Value range in V: 5 to 110 to 3000	\checkmark
B03	Motor fan: Only if B00 > 60 (STÖBER motors). The thermally permissible motor torque is increased (i^{2} t model of the motor). B03=1 thus also increases the torque limits since M-Max limits C03 and C04 are specified relative to motor standstill torque M0. To prevent overloading a gearbox after installing a motor fan retroactively, C03/C04 must be adjusted to the new MO. See catalog or name plate. Q: inactive; 1: active;	\checkmark
B10•	Poles: Calculated from the nominal speed of the motor $\mathrm{p}=2 \times$ ($\mathrm{f} \times 60 / \mathrm{n}_{\text {Nom }}$). Internally, the controller works with frequencies. Correct speed indication requires entry of the number of poles. Value range: 2 to 6 to 16	\checkmark
B11•	P-nominal: Nominal power as per nameplate Value range in $k W$: 0.12 to (depends on type)	\checkmark
B12	I-nominal: Nominal current as per nameplate. Value range in $\mathrm{A}: 0$ to (depends on type)	\checkmark
B13	n-nominal: Nominal speed as per nameplate Value range in rpm: 0 to depends on type to 6000	\checkmark
B17	M0 (standstill): Standstill torque M0 as shown on name plate. Reference value for M-max limits C03 and C04. Value range in Nm: 0 to (depends on type) to 327.67	\checkmark
B26•	Motor-encoder: B26 specifies which encoder input will be used for motor control. The encoder increments are specified with $\mathbf{F 3 6}$ or $\mathbf{H 2 2}$. Regardless of $\mathbf{B 2 6}$, the master encoder is set for synchronous operation ($\mathbf{G 2 0}=1$) 3: X41 (SinCos); Single and multi-turn, absolute-value encoders with sin/cos track	\checkmark
B40. ${ }^{\text {1) }}$	Phase test: 0 : inactive; 1: active; Tests motor symmetry in increments of 60°. The following points are checked. - Connection of phases U, V and W - Motor and resolver pole number - Phase position of resolver or sin/cos encoder - Symmetry of the winding resistors of the phases U, V and W . If a winding resistor deviates by $\pm 10 \%$, the inverter reports "19:symmetry." The function is started when the level on the input enable (X1.9) changes from low to high. Exiting the parameter requires another low signal on the enable.	
B41. ${ }^{1}$	Autotuning: 0 : inactive; 1: active; Winding resistors of the motor are measured. The function is started when the level on the input enable (X1.9) changes from low to high. Exiting the parameter requires another low signal on the enable. A $00=1$ saves the measuring results in non-volatile memory. $\mathbf{B 0 0}=60$, autotuning of the motor is essential! Important for optimum coordination between inverter and motor. $\mathbf{B 0 0}=61$ to 69 , autotuning of the motor is not required.	
	L-motor: Inductivity Lu-v of the motor winding. Only enter for motors of other manufacturers.	\checkmark
$\begin{aligned} & B 52 \\ & B 53 \end{aligned}$	Value range in $\mathrm{mH}: 0.01$ to depend on to 327.67 R1-motor:Stator resistance (Ru-v) of the motor winding. Only entered for non STÖBER motors. Value range in $\Omega:: 0.01$ to depends on type to 327.67	\checkmark
B64	$\mathbf{K i}-\mathbf{I Q}$ (torque) Integral gain of the torque controller. Value range in \%: 0 to depends on type to 400	\checkmark
B65	Kp-IQ (torque)Proportional gain of the torque controller. Value range in \%: 0 to depends on type to 400	\checkmark

13. Parameter Description

C.. Machine		E
Para. No.	Description	
COO	n-Min: Only if $\mathbf{C 6 0} \neq 2$ (run mode \neq position). Minimum permissible speed. The speed refers to the motor shaft speed. Reference values less than n-Min are ignored and raised to $n-M i n$. Value range in rom: 0 to $\mathbf{C 0 1}$	\checkmark
C01	n-Max: Maximum permissible speed. The speed refers to the motor shaft speed. Reference values over n -Max are ignored and limited to n -Max. Value range in rpm: $\mathbf{C 0 0}$ to 3000 to 6000	\checkmark
C02*	Permitted. direction of rotat.: Only if $\mathbf{C 6 0}=2$ (run mode \neq position). Determines the permissible direction of 1: clockwise: 2. counter-clockwise:	\checkmark
C 03	M-Max 1: Maximum torque in \% of motor zero current. The active torque limit can be further reduced with an analog input (see $\mathbf{F 2 5}=2$). If the maximum torque is exceeded, the controller responds with the message "47:drive overload." See also remarks for C04. Value range in \%: 0 to 150 to 400 (and any M-Max signal present on analog input-AE function "2:Torque limit')	\checkmark
C04	M-Max 2: Additional torque limit. You can switch between C03 and C04 with a binary input (F3..= $=10$:torque select. See chap. 9.2. Remarks: Since C04 is always active for a quick stop, C04 $\geq \mathbf{C 0 3}$ should usually apply! Value range in \%:0 to 150 to 400	\checkmark
C30	J-mach/J-motor: Ratio of the inertia of load to motor. This factor is effective for all control modes and is important for optimization between inverter and motor (i.e., dynamics). Entry is not mandatory. Remarks:In winding mode, the effective inertia torque is calculated for C30 $\mathbf{1 . 5}$ to the fourth power with the winding diameter for compensation of the acceleration torque. The following applies: $\mathrm{J}(\mathrm{D}-\mathrm{Min})=1.5^{*} \mathrm{~J}$-motor, J ($\left.\mathrm{D}-\mathrm{Max}\right)=\mathbf{C 3 0}{ }^{*} \mathrm{~J}$-motor. The torque supplied by the drive is increased so that tension remains constant and extra torque is available for acceleration. Value range: 0 to 1000	\checkmark
C31	n-controller Kp: Proportional gain of the speed controller. Remarks:In winding mode ($\mathbf{G 1 0}>0$), the Kp gain with the winding diameter is quadratically reduced from C31 for D-Max down to C31*C35for D-Min. Value range in $\%$: 0 to $\underline{60}$ to 400	\checkmark
C32	n-controller Ki: Integral gain of the speed controller. Reduce C32 when overswinging occurs in the target position. Remarks:In winding mode ($\mathbf{G 1 0 > 0}$), the Ki gain with the winding diameter is quadratically reduced from C32*C31for D-Max down to $\mathbf{C 3 2}{ }^{*}$ C31* ${ }^{*}$ C35 for D-Min. Value range in $\%: 0$ to 30 to 400	\checkmark
C33	n-RefVal low pass: Reference value smoothing. C33 should be increased for reference value noise, physical oscillation or large foreign masses. Value range in msec: 0 to 2 to 3276.7	\checkmark
C34	n-motor low pass: Smoothing of the motor speed. Value range in msec: 0.3 to (depends on type) to 3276.7	\checkmark
C35	n-control. Kp standstill: Without winders: C31 and C32 are multiplied by C35 as soon as the motor speed drops below C40. With winders: The formulas described under C31 and C32 apply. Value range in \%:5 to 100	\checkmark
C40	n-window: If $\mathbf{F 0 0}=3$ (BA 2 as signal relay for "3:reference value-reached") or $\mathbf{F 0 0}=2$ (BA 2 as signal contact for speed "2:standstil'), the reference value is considered achieved in a window of reference value $\pm \mathbf{C 4 0}$. Also applies to the other binary inputs. A halting brake is not activated as long as [n$]>\mathbf{C 4 0}$.	\checkmark
C41	Yatur range in rpm: 0 to 3 to 300 . can be used to signal that these values have been exceeded. All area monitoring procedures are performed at the same time. If area monitoring is not required, the minimum parameters must be set to the lower-limit values, and the maximum parameters must be set to the upper-limit values. Cf. chapter 9.3 . When C49=0, operatingrange monitoring is suppressed when the motor is not powered and during acceleration/braking procedures. When C48=1, amount generation is activated. Value range in rom: 0 to $\mathbf{C 4 2}$	\checkmark
C42	Operating range n-Max: See C41. Value range in rpm: $\mathbf{C 4 1}$ to 6000	\checkmark

-

The power pack must be turned off before these parameters can be changed

1) These parameters are sometimes not shown depending on which parameters are set
See result table in chap 15.12 2) Only available when $\mathbf{D} 90 \neq 1$
Parameters which are included in the norma/menu scope ($\mathbf{A 1 0}=0$). For other parameters, select $\mathbf{A 1 0}=1$) Only available when $\mathbf{D 9 9}=0$
E Parameters marked with a " $\sqrt{ }$ " can be parameterized separately from each other in parameter record 1 and 2 .

13. Parameter Description

C.. Machine		E
${ }^{\text {Para }}$ No.		
C44	Operating range M M-Max. Seeo $\mathrm{C41}$	
C45		
C46		
C47		
C48	 	
C49	Operating range accel\&ena . V4.4).	
C50	Display function: Only if $\mathbf{C 6 0}=2$ (operating mode \neq position). Parameters $\mathbf{C 5 0}$ to $\mathbf{C 5 3}$ can be used to design the ters are availabl Q: n2 \& I-motor; motor power. 3: $E 02$ M-motor; As the raw value, the inverter supplies the actual motor torque as a percentage of the nominal 3: E02 M-motor; 4: E08 n-motor: The inverter supplies the actual speed in rpm as the raw value	
C51		
C52	Display decimals 5 Only if C60 2.2 Number of positions ater the decimal point tor the value in	
C53		
C60.		
D... Reference Value Group is not shown in un mode C60-2position.		
${ }^{\text {Parala }}$ No.	Description Reference value accel: Acceleration ramp for analog reference value inputs. Is only used for specification of - Voltage value via terminal strip X1 and motor potentiometer Frequency via binary input BE5 (X1.8 to 14) Motor potentiometer via the binary inputs (D90=1 Value range in $\mathrm{msec} / 3000 \mathrm{rpm}$: $\underline{0}$ to 30000	

- Parameters which are included in the normal menu scope (A10=0). For other parameters, select $\mathbf{A 1 0}=1$) Only available when D99=0

13. Parameter Description

Italics

13. Parameter Description

13. Parameter Description

D... Reference Value		E
Para. No.	Description	
D93	RV-generator: For commissioning and optimizing the speed controller. O: inactive; Normal reference value selection. 1: active; \pm A51 is specified cyclically as reference value. The time can be set in D94.	
D94	Ref. val. generator time: After this period of time, the sign of the reference value changes when D93=1:active. Value range in msec: 0 to 500 to 32767	\checkmark
D99	Fast reference value: Activates the speed-optimized speed specification via the analog input (use with a host position controller). 0:inactive; Reference value processing compatible with FDS 4000 with various functions such as fixed reference values, additional reference value, motor potentiometer and many others. Reference value processing is performed with 4 msec , and speed control with 0.5 msec . 1:active; The analog reference value (only of AE1) is forwarded with 1 msec to the speed controller. The speed controller uses 0.5 msec . The spec. manipulations along the reference-value path (offset reference value, technology function) have no effect.	\checkmark
E.. Display Values		E
Para. No.	Description	
E00	I-motor: Indicates the active motor current in amperes.	
E01	P-motor: Indicates the current power of the motor in kW and as a relative percentage in relation to nominal motor power.	
E02	M-motor: Indicates the current motor torque in Nm and as a relative percentage in relation to the motor zero torque M0.	
E03	DC-link-voltage: Indicates the current DC-link voltage. Value range for single-phase inverters: 0 to 500 V . Value range for three-phase inverters: 0 to 800 V .	
E06	n-reference value: Only if $\mathbf{C 6 0}=1$ (speed). Indicates the current reference value for speed in relation to the motor shaft.	
E07	n-post-ramp: Indicates the current speed in relation to the motor shaft after the ramp generator. In position mode ($\mathbf{C 6 0}=2$), the sum of "output controller position" + " n -speed feed forward" $=$ "speed controller reference	
E08	Kalmitios:\ndicieated frie chapent97otor speed.	
E09	Rotor position: Position of the motor shaft. With absolute-value encoders, the encoder position read from the encoder is entered when the device starts up. This position is available in all modes. The display shows whole motor revolutions with 3 positions after the decimal point. The full resolution of 20 bit/R is supplied via fieldbus.	
E10	AE1-level: Level of the signal present on analog input 1 (X 1.2 to 4). $\pm 10 \mathrm{~V}$ is 100%.	
E11	AE2-level: Level of the signal present on analog input 2 (X 1.6 to X 1.7). $\pm 10 \mathrm{~V}$ is 100%.	
E16	Analog-output1-level: Indicates the level on the analog output (X1.5 to 6). $\pm 10 \mathrm{~V}$ corresponds to $\pm 100 \%$.	
E17	Relay 1: Status of relay 1 (ready for operation). 0 : open; For meaning, see parameter $\mathbf{F 1 0}$. 1: closed; Ready for operation.	
E18	Relay 2: Status of BA 2. The function of BA 2 is specified with parameter $\mathbf{F 0 0}$. 0 : inactive; 1: active;	
E19	BE15...BE1 \& enable: The status of the binary inputs including the option board is shown as a binary word.	
E20	Device utilization: Indicates the current load of the inverter in \%. 100\% corresponds to the nominal capacity of the inverter.	
E21	Motor utilization: Indicates the current load of the motor in \%. Reference value is the nominal motor current	
E22	"39:tempDev.i2t" appears.	
E23	i2t-motor: Level of the thermal motor model (i.e., $i^{2} t$ model). 100% corresponds to full utilization. The thermal model is based on the design data specified under group \mathbf{B} (motor) (e.g., continuous operation (S1 operation)).	
E24	i2t-braking resistor: Level of the thermal braking resistor model (i.e., i^{2} t model). 100% corresponds to full utilization. The data of the braking resistor are specified with A20 to A23.	
E25	Device temperature: Current device temperature in ${ }^{\circ} \mathrm{C}$.	

[^5]
13. Parameter Description

E.. Display Values		E
Para. No.	Description	
E26	Binary output 1: Only present when an option board exists (E54=1 or 2).	
E27	BA15..1\&Rel1: Status of all binary outputs as binary word. BA15 to BA1 are indicated from left to right. Relay 1 is indicated to the far right.	
E28	Analog-output-level: See E16.	
E29	n-ref. value raw: Speed reference value before the offset reference values and the reference value limitation. This is the master reference value for the winder and the free-wheeling reference value for synchronous	
E30	Runitime:Indicates the current run time. Run time means that the inverter is connected to the power supply.	
E31	Enable time:Indicates the active time. Active time means that the motor is powered.	
E32	Energy counterdndicates the total power consumption in kWh.	
E33	Vi-max-memorized valueThe DC-link voltage is monitored continuously. The largest value measured is saved here in nonvolatile memory. This value can be reset with $\mathbf{A 3 7} \rightarrow 1$.	
E34	I-max-memorized valueThe motor current is continuously monitored. The largest value measured is stored here in nonvolatile memory. This value can be reset with $\mathbf{A 3 7} \rightarrow 1$.	
E35	Tmin-memorized valueThe temperature of the inverter is continuously monitored. The smallest value measured is stored here in non-volatile memory. This value can be reset with $\mathbf{A 3 7} \rightarrow 1$.	
E36	Tmax-memorized valueThe temperature of the inverter is continuously monitored. The greatest value measured is stored here in non-volatile memory. This value can be reset with $\mathbf{A} 37 \rightarrow 1$.	
E37	Pmin-memorized valueThe active power of the drive is continuously monitored. The smallest value measured is stored here in non-volatile memory. This value can be reset with $\mathbf{A 3 7} \rightarrow 1$.	
E38	Pmax-memorized valueThe active power of the drive is continuously monitored. The largest value measured is stored here in non-volatile memory. This value can be reset with $\mathbf{A 3 7} \rightarrow 1$.	
E40	Fault type:This parameter allows you to make a selection from archived faults. The inverter stores the last 10 faults in the order in which they occurred. The number of the fault is indicated at the top right. 1 indicates the latest fault, and 10 indicates the oldest fault. The type of fault is shown in plain text in the bottom line. Proceed as follows to select which of the 10 faults will be indicated. Press the $\#$ key. The number (1 to 10) of the indicated fault flashes in the top line. The type of fault is indicated in plain text in the bottom line (e.g., "31:short/ground"). The arrow keys can then be used to select the desired fault number.	
E41	Fault time:The run time at the time of the selected fault is indicated. Selection is the same as for E40.	
E42	Fault count:Number of faults of the type of fault selected. Proceed as follows to select the type of fault. Press the \# key. A fault code and the fault appear in plain text (e.g., "31:short/ground") in the bottom line. The arrow keys can then be used to select the desired type of fault. The number of faults of this event is shown in the top line (0 to 65,535).	
E45	Control word:Control of Drivecom device state machine during fieldbus operation with Kommubox.	
E46	Status word:Status of the device during fieldbus operation with Kommubox. See fieldbus documentation.	
E47	n-field-bus:Reference value speed during fieldbus operation with Kommubox.	
E50	Device: Indication of the exact device type (e.g., SDS 4041).	
E51	Software-version: Software version of the inverter (e.g., V4.5).	
E52	Device-numberNumber of the device from a manufactured series. Same as the number on the nameplate.	
E53	Variant-number	
E54	Option-board: Indication of the option board detected during initialization. 10: none; 11: SDP 4000 12: SEA 4000 13: $S E A+D P 4000$	
E55	Identity-numberNumber assigned by the user as desired from 0 to 65535 . Can only be write-accessed with FDS Tool or fieldbus.	
E56	 "J04 Tech-in" are executed. 0 : All values are default settings (A04=1). 1: Specified value during initialization by FDS Tool. 2 to 253: Customer specification/configuration with FDS Tool. Status without change. 253: When parameters are changed via fieldbus or via the USS protocol, E56 and E57 = 254 are set. 254: At least one parameter value was changed with the keyboard (Controlbox or device)!	
E57	Parameter set ident. 2Same as E56 but for parameter set 2.	

[^6]The power pack must be turned off before these parameters can be changed

13. Parameter Description

E.r Display Values								E
Para. No.	Description							
E60	Reference value selector: Indicates the result of the binary coding of the fixed reference values with specification via binary inputs. At least one binary input must be parameterized for the reference value selector (F3..=1 to 3). The result of the binary coding is indicated with the digits 0 to 7 . A fixed reference value/ramp record is assigned to this result. A fixed reference value can also be specified directly with D09. However, E60 is not affected by D09. In position mode ($\mathbf{C} 60=2$), $\mathbf{E} 60$ indicates the result of process block specification with binary inputs (E60 $=0 \rightarrow$ proc. block1).			0	E60	Reference Value	Proc. Block	
		0	0	0	0	Analog, freq,	1	
		0	0	1	1	Fix. ref. val. 1	2	
		0	1	0	2	Fix. ref. val. 2	3	
		0	1	1	3	Fix. ref. val. 3	4	
		1	0	0	4	Fix. ref. val. 4	5	
					5		6	
		1	1	0	6	Fix. ref. val.t 6	7	
		1	1	1	7	Fix. ref. val. 7	8	
E61	Additional ref. value: Current additional reference value to be added to the reference value being used. Can come from AE2 $(\mathbf{F 2 0}=1)$ or the fieldbus. See block circuit diagram in chap. 19.							
E62	Actual M-max: Currently effective M-Max as a minimum from M-Max 1 (C03), M-Max 2 (C04), and the torque resulting from the level on AE2, if the AE2 function is parameterized for torque limit (F20=2) or power limit $(\mathbf{F 2 O}=3)$ or is from the fieldbus.							
E63	PID-controller limit: Only if $\mathbf{G 0 0}=1$ (i.e., PID controller is active). 0: inactive; 1: active; The PID controller output is limited to G04 or G05.							
E64	Brake: 24 V voltage to brake control is output on plug connector X13. See also F08 (brake). 0: closed; 1: open;							
E65	PID control deviation: Difference of analog input 2 signal after smoothing, offset and factor and E121 PID reference.							
E71	AE1 scaled: AE1 signal after offset and factor. E71 = (E10 + F26) * F27. Cf. block circuit diagram in chap. 19.							
E72	AE2 scaled: AE2 signal after smoothing, offset and factor. E72= (E11 + F21) * F22.							
E73	AE2 scaled 2: AE2 signal after smoothing, offset and factor as well as PID controller and offset 2. $E 72=(\operatorname{PID}((\mathbf{E 1 1}+\mathbf{F} 21) *$ F22 $))+$ F24. Cf. block circuit diagram in chap. 19. Operating conditiontndicates the current operating state as shown by the operational display. Cf. chapter 16 (Operating States). Useful for fieldbus polling or serial remote control.							
E80								
E81	Event level:Indicates whether a current event is present. The type of event is indicated in E82. Useful for fieldbus polling or serial remote control. 0 : inactive; No event is present. message; warning; fault;							
E82	Event name:Indicates the current event/fault. Cf. table in chapter 17. Useful for fieldbus polling or serial remote control.							
E83	Warning time:The time remaining until the fault is triggered is indicated for the active warnings. This time can be changed via FDS Tool. Useful for fieldbus polling or serial remote control.							
E84	Active parameter set: Indicates the current parameter record. Cf. chapter 9.4. Useful for fieldbus polling or serial remote control. 1: parameter set 1; 2: parameter set 2;							
E100..	Parameters E100 and above are used to control and parameterize the inverters by fieldbus. For details, see the documentation of your fieldbus system.							

1) The power pack must be turned off before these parameters can be changed These parameters are sometimes not shown depending on which parameters are set
These parameters are sometimes not shown depending on which parameters are
See result table in chap 15
Parameters which are included in the normal menu scope ($\mathbf{A 1 0}=0$). For other parameters, select $\mathbf{A 1 0}=1:$ extended or $\mathbf{A 1 0}=2:$ service. Parameters marked with a " $\sqrt{ }$ " can be parameterized separately from each other in parameter record 1 and 2.

13. Parameter Description

F.. Control Interface		E
Para. No.	Description	
F00	BA2-function: Functions of binary output 2 (X1.17). 1: inactive; 2: standstill; Output active when speed $0 \mathrm{rpm} \pm \mathbf{C 4 0}$ is reached. 3: reference value-reached; When $\mathbf{C 6 0}=1$ (speed mode): output is active when speed reference value is within $\pm \mathbf{C 4 0}$. When $\mathbf{C 6 0}=2$ (position mode), refVal-reached means "in position." The signal appears when reference value specification is concluded (i.e., end of ramp) and the actual position is located within target window $\mathbf{\pm} \mathbf{I 2 2}$. The signal is not withdrawn until the next start command. When enable-off occurs, "RefValreached" is reset when window $\mathbf{I 2 2}$ is exited or $\mathbf{I} \mathbf{2 1}$ (following error) is exceeded. "RefVal-reached" then remains low. This function cannot be used with process block changes via chaining "no stop" ($\mathbf{J 1 7}=2$). 4: torque-limit; Output active when the active torque limit is reached. See E62. 5: warning; Output active when a warning occurs. 6: operation range; Output active when the defined operational range (C41 to $\mathbf{C 4 6}$) is exited. 7: active parameter set; Only works when $\mathrm{FOO}=7$ is parameterized in both parameter records. BA2 inactive = parameter record 1, BA2 active $=$ parameter record 2 . The signal arrives before the new parameter record takes effect and can be used, for example, for contacter control with a two-motor drive. Cf. chap. 9.4. 8: electronic cam 1; Only applicable when $\mathbf{C 6 0}=2$ (position mode). Signal appears when the actual position is located between the limits $\mathbf{1 6 0}$ and I61. Useful for starting actions on other drives or modules. 9: following error; Only applicable when $\mathbf{C 6 0}=2$. Maximum following error $\mathbf{I 2 1}$ was exceeded. The reaction to a following error (e.g., fault, warning, and so on) can be parameterized via FDS Tool. 10: posi.active; Only applicable when $\mathbf{C 6 0}=2$. Signal only appears when positioning control is in the basic status "17:posi.active" (i.e., no process block and no chaining being processed). This can be used to signal the end of a chaining sequence, for example. 11: PID-controller limit; Signals restriction of the output of the PID controller to the value G04. 12: synchron difference; Signals that the maximum synchronous angle difference $\mathbf{G} 24$ has been exceeded. 13: referenced; Only if $\mathbf{C 6 0}=2$ (position control). Output is high while the drive is being referenced (i.e., reference point traversing has been successfully concluded). 14: clockwise; Speed $n>0$. For zero crossing, hysteresis with $\mathbf{C 4 0}$. 15: fault; A fault has occurred. 16: inhibited; See "12:inhibited" mode in chap. 16. 17: BE1; Route binary input to binary output. In addition to galvanic isolation, also used to read binary inputs via ASi bus. 18: BE2; Cf. selection "17:BE1." 19: Switch-memory 1; Output switch memory S1. Each of the "posi switching points" defined in Group N.. can be used to control 3 switch memories (S1, S2 and S3) simultaneously. 20: Switch-memory 2; Output switch memory S2. 21: Switch-memory 3; Output switch memory S3. 22: ready for reference value; The drive is powered. Magnetization is established. Reference value can be specified. 23: reference value-ackn.0; In position rmode: When no posi.start, posi.step or posi.next signal is queued, the $R V$-select signals are output inverted (monitoring with wire break detection). Otherwise active process block $\mathbf{1 8 2}$ is output. Example for "32:parameters active" when writing parameters via fieldbus: See time diagram in chap. 10.3. 24: reference value-ackn.1; See "23:reference value-ackn.0." 25: reference value-ackn.2; See "23:reference value-ackn.0." 26: reference value-ackn.3; See "23:reference value-ackn.0." 27: reference value-ackn.4; See "23:reference value-ackn.0." 28: BE3; Cf. selection "17:BE1." 38: BE ${ }^{2}$; 31: BE6; 32: parameters active; Low signal means internal parameter conversions not completed. Useful for the handshake with a higher level controller when converting parameter records, and similar.	\checkmark
F03	BA2 t-on: Causes a delay in switch-on of BA2. Can be combined with all functions of BA2. The related function must be present for at least t-on so that the BA 2 becomes active. Value range in sec: 0 to 5.024	\checkmark
F04	BA2 t-off: Causes a delay in switch-off of BA2. Can be combined with all functions of BA2. Value range in sec: 0 to 5.024	\checkmark

13. Parameter Description

F.e	trol Interface	E
Para. No.	Description	
F05	BA2 invert: Only if $\mathbf{F 0 0}>0$. Permits the BA2 output to be inverted. Inversion occurs after the function switch-on/switch-off delay (F04/F03). Can be combined with all functions of BA2. Value range: 0 to 1	\checkmark
F06	t-brake release: Only if $\mathbf{F 0 8}=1$ (brake). Defines the amount of time the brake is released. F06 must be selected approximately 30 msec greater than the time t_{1} in section M of the STÖBER SMS catalog. When the enable is granted or the halt/quick stop signal is removed, startup is delayed by the time F06. Value range in sec:: 0 to 0.1 to 5.024	\checkmark
F07	t-brake set: Only if F08=1 (brake). Defines the time the brake is applied. F07 must be selected approximately 30 msec greater than the time t_{2} (SMS catalog). When the enable and halt/quick stop are removed, the drive still remains under control for the time F07. Time $\mathrm{t}_{1} \Rightarrow$ scanning time t_{21} \mathbf{t}_{21} varies with switching on AC or DC side! A Value range in sec: 0 to 0.052 to 5.024	\checkmark
F08	Brake: Activates the controller of the 24 V brake by the inverter ($\mathrm{B}+$ and B - terminals on the motor plug connector). 0: inactive; The brake is always open (24 V on X 13) and is not controlled by the inverter. 1: active; The brake is controlled by the inverter. After brake application time F07 expires, the motor is automatically depowered. For example, the brake is applied after the halt or quick-stop signal and when the enable is removed.	\checkmark
F10	Relay 1-function: Relay 1 is closed when the inverter is ready for operation (i.e., no malfunction and power-on). The opening of the relay can be controlled by scanning the status of relay 1 via parameter E17. 0 : fault; Relay is open when a fault is queued. 1: fault and warning; Relay open when a fault or warning is queued. 2: fault and warning and message; Relay open when a fault, warning or message is queued. If auto-reset (A32=1) is active, the switching of the relay is suppressed until all auto-acknowledgment attempts have been exhausted.	\checkmark
F19	Quick stop end: Only if $\mathbf{C 6 0}=1$. $\mathbf{F 1 9}$ is available starting with SV 4.5E. It specifies when the quick stop ramp can be concluded. 0: standstil; With the rising edge of the quick stop signal (or removal of the enable for $\mathbf{F 3 8}>0$), the drive brakes down to standstill ("zero reached" message) even when the quick stop signal (or enable off) was only briefly queued. 1: no stop; Whenthe quickentep vaianal disappears or the enable returns, the drive immediately accelerates	\checkmark
F20	AE2-function: Function of analog input 2 (X1.6-X1.7). Caution: F20 $=\mathbf{F 2 5}$ must be true. O: inactive; 1: additional reference value; Additional reference value input. Takes effect regardless of which operation input is selected. Is added to the running reference value (A30). 100\% control of AE2 is $100 \mathrm{~Hz}(3000 \mathrm{rpm}$ for 4 -pole motor). Can be scaled with F21 and F22. 2: torque-limit, Additional torque limit. $10 \mathrm{~V}=$ nominal motor torque. Active torque limit is the minimum from M-Max 1 (C03), M-Max 2 (C04) and the level on analog input 2. 3: inactive; 4: reference value-factor; The main reference value on AE1 is multiplied by the RV-factor ($10 \mathrm{~V}=100 \%$). Also applicable to relative movements in $\mathbf{C 6 0}=2$:Position mode. 5: override; In positioning mode ($\mathbf{C 6 0}=2$), the current positioning speed is changed via AE2 during traversing. $0 \mathrm{~V}=$ standstill! $10 \mathrm{~V}=$ programmed speed if $\mathbf{F 2 2}=100 \%$. During synchronous running $(\mathbf{G 2 0}>0)$, the speed ratio is changed via override. 6: posi.offset; Only effective in positioning mode ($\mathbf{C 6 0}=2$). An offset based on the voltage on AE2 is overlaid on the current reference value position. The ratio of path/voltage is specified with $\mathbf{I 7 0}$. 7: winding diameter; Only effective if G10=1 (winding operation active). 8: inactive; 9: n-Max; Limitation of the maximum speed via external voltage. 10: reference value; Ref. value for speed or torque (AE1 is typically parameterized to "10:reference value"). 11: PID-reference; Second input of the PID controller. This can be used to generate the standard deviation from two analog inputs. Cf. block circuit diagram in chap. 12.1. 12: winder roller; Only effective for winder software ($\mathbf{G 1 0}>0$) when the diameter is calculated by integration of the roller deviation (G11=2). 13: synchron offset; Only effective for synchronous running ($\mathbf{G 2 0}>0$). The current slave position is overlaid with an angle offset corresponding to the voltage on the analog input. The angle/voltage ratio is specified in G38. Cf. block circuit diagram in chap. 18. 14: synchron reference value; Speed precontrol during angle synchronous running ($\mathbf{G 2 0}>0$) via external analog voltage. The slave can be supplied with the same speed reference value as the master. This minimizes dynamic angle deviation. Cf. block circuit diagram in chap. 18.	\checkmark

13. Parameter Description

F.. Control Interface		E
Para. No.	Description	
F21	AE2-offset: An offset on analog input 2 (X1.6-X1.7) can be corrected. To do this, jumper terminals X1.6 and X1.7. Then observe the AE2 level in parameter E11, and enter it with the reverse sign in parameter F21. For example, if parameter E11 indicates 1.3\%, F21 must be parameterized to -1.3\%. Value range in \%: -100 to $\underline{0}$ to 100	\checkmark
F22	AE2-gain: The signal present on analog input 2 is added to the AE2 offset (F21) and then multiplied by this factor. Depending on F20, F22 is scaled as shown below. Example: If $\mathbf{F 2 0}=1$ and $\mathbf{F 2 2}=50 \%$, the offset is 1500 rpm with 10 V and AE 2. Note: Even higher gains can be obtained by connecting the PID controller (G00=1). Value range in \%: -400 to 100 to 400	\checkmark
F23	AE2-lowpass: Smoothing time constant. Useful for setting up control loops via AE2 (with or without a PID controller) to avoid high-frequency oscillation. Caution: High time constants will make the control loop unstable. Value range in msec: 0 to 10000	\checkmark
F24	AE2-offset2; An Adsitional offect after multiplication by F22. Used when the reference value is to be multiplied between exannil. Value range in \%: -400 to $\underline{0}$ to 400	\checkmark
F25	AE1-function: See F20 AE2 function. Caution: Parameters F25 and F20 may not be equal! F25 $=\mathbf{F 2 0}$. Value range: 0 to 10 to 14	\checkmark
F26	AE1-offset: Cf. F21. Value range in \%: - 400 to 0 to 400	\checkmark
F27	AE1-gain: Cf. F22. Value range in \%: -400 to 100 to 400	\checkmark
F30	BE-logic: Logical link when several BEs are programmed for the same function. O: OR; 1: AND;	\checkmark
F31	BE1-function: All binary inputs can be programmed as desired. Selection points 0 to 13 and those greater than 16 are identical for all binary inputs. If the same function is used by several BEs, F30 can be used to program a logical link. Inversion can be performed with F51 to F55 and F70 to F74. 0 : inactive; 1: reference value-select 0 ; Binary coded selection of fixed reference values or process blocks. The result of the reference value selection is indicated in E60. 2: reference value-select 1; See above. 3: reference value-select 2; See above. 4: motorpoti up; If $\mathbf{D 9 0}=1$, two binary inputs can be used to simulate a motor potentiometer. One BE must be programmed as "4:Motorpoti up," and another BE must be programmed as " 5 :Motorpoti dwn." See also D90. 5: motorpoti down; Same as "4:Motorpoti up." 6: direction of rotation; Negation of the current reference value. 7: additional enable; BE provides the function of an additional enable (i.e., a fault can also be acknowledged via this additional enable). The drive is not enabled unless a high signal is present on the "enable" input (X1.15) and the binary input. 8: halt; With high signal, drive is slowed with the selected deceleration ramp. If $\mathbf{F 0 8}=1$, the brake is then applied. Ramps: Analog RV specification/motor potentiometer: D01; fixed reference values: D12 to D72; Positioning: process block ramp.	\checkmark

- italics

13. Parameter Description

F.. Control Interface		E
Para. No.	Description	
F31•	9: quick stop; When a rising edge occurs, the drive is slowed with the selected decel-quick ramp (D81). The brake is then applied if $\mathbf{F 0 8}=1$. A brief high pulse (24 msec) on the binary input is sufficient to trigger the quick stop. The quick stop cannot be terminated until speed C40 is passed below. Cf. also F38. Caution: Torque limit C04 is always active for quick stop. 10: torque select; Switches between the torque limits M-Max 1 (C03) and M-Max 2 (C04). Low signal $=$ M-Max 1 . High signal $=$ M-Max 2. 11: parameter set-select; A parameter record can only be selected via BE if $\mathbf{A 4 1}=0$. This means that this binary input must be set to 11 in both parameter records. A low signal means that parameter record 1 is selected. A high signal means that parameter record 2 is selected. If $\mathbf{A 3 4}=0$ (autostart $=$ inactive), the selected parameter record is not switched until the enable is removed. Cf. chap. 9.4. 12: extern fault; Permits fault messages of the periphery to be evaluated. The inverter evaluates a rising edge on the binary input and assumes "44:ext.fault." If several binary inputs are programmed for external fault, the rising edge can only be evaluated when a low signal is present on the other binary inputs programmed for "12:ext.fault." 13: fault reset; A fault which is no longer queued can be acknowledged with a rising edge. If several binary inputs are programmed for acknowledgment, the rising edge can only be evaluated when a low signal is present on the other binary inputs programmed with "13:faultReset." 14: Encoder signal B; Signal B of the incremental encoder (HTL) connected to BE1. This incremental encoder can be used as the master for the "electronic gear" function, for example. 15: stepMot.sign; Sign (direction) for a stepper motor simulation. The direction and frequency are specified on BE1 and BE2. The "electr. gear" function ensures that pulse processing is synchronous with speed or angle. 16: posi.step; 1 pulse ($t \geq 4 \mathrm{msec}$) starts a movement without interrupting the positioning procedure in progress. (-> I40) Primarily used for manual next-block procedures with process-block chaining. Cf. J17=0 and J01. 17: tip +; Manual traversing in the positive direction (tipping). HALT (selection 8) must be active. For manual speed with posi, see I12. When synchronous running is active ($\mathbf{G 2 0}>0$), TIP+ or TIP- is used to add the current speed RV to the movement of the slave (angle offset). In speed operating mode ($\mathbf{C 6 0}=1$), the operational state "22:tip" appears on Controlbox and the motor stops as called for in "8:halt" ($\mathrm{n}=0$). 19: jiBsi.stantial pralsersingintbec)estifendirentiarent. Terminates any positioning procedure in progress, and proceeds to the new destination (i.e., changing destination on the fly). Process block selection via BEs (RVselect) or J02. 20: posi.next; (With chained process blocks) 1 pulse ($\mathrm{t} \geq 4 \mathrm{msec}$) interrupts the running process block and starts the next one. Important: A braking path may be defined there, for example. Evaluation of posi.next must be programmed specifically to the process blocks. Cf. $\mathbf{J 1 7}=3$:posi.next. Otherwise the drive will not react to posi.next! If posi.next is parameterized to BE1, the signal is recorded without a time delay (i.e., high repetition accuracy). 21: stop +; Limit switch at the positive end of the traversing area. In position mode, the limit switch causes a fault. 22: stop -; Limit switch at the negative end of the traversing area. In speed mode, the direction of rotation is disabled. 23: reference input; Input for reference switch $(\mathbf{I} 30=0)$. 24: start reference; Change in edge from low to high starts reference point traversing. See also $\mathbf{I 3 7}=0$. 25: teach-in; With a rising edge, the target position of the currently selected process block is overwritten with the present actual position and stored in non-volatile memory. See also J04. 26: disable PID-controller; PID controller on AE2 is disabled and the integrator is reset. Cf. chap. 12.1. 27: synchron free-run; The reference value for synchronous running is disconnected. The drive can be moved as desired via analog input AE1, for example. Speed adjustment is performed on the current reference value ramp (e.g., D00). 29: setifftianwesffinghanmetefeviation of synchronous-run control is reset. Cf. chap. 18. 30: RV-select 3; Binary-coded process block selection (5 bits = 1 to 32). Only for Posi. See also 1:RV-select0 to 3:RV-select2. 31: RV-select 4; Same as 30 but for Posi. 32: brake release; Manual brake control via a BE (higher priority than the internal brake function).	
F32•	BE2-function: 0 to 13 and greater than 16. See F31. 14: StepMot.sign; Frequency (impulses) for a stepper motor simulation. See also F31=15. 15: Encoder signal A: Signal A of the incremental encoder (HTL) connected to BE2. Value range: 0 to $\underline{6}$ to 32	\checkmark

[^7]
13. Parameter Description

F=.	trol Interface	E
Para. No.	Description	
F33-	BE3-function: 0 to 13 and greater than 16. See F31. 15:inactive 14:ccw V3.2; By programming F33=14 and F34=14, the direction of rotation of inverters can be simulated with software 3.2. Value range: 0 to 9 to 32	\checkmark
F34•	BE4-function: 0 to 13 and greater than 16. See F31, 14:cw V3.2 (see F33), 15:inactive. Value range: $\underline{0}$ to 32	\checkmark
F35*	BE5-function: Additional input only available with option board SEA-4000. Selection via F31: BE1 function (exception: selection values 14 and 15 are not available here). Value range: $\underline{0}$ to 32	\checkmark
F36•	BE-increments: When an incremental encoder is used on BE1 and BE2, the number of increments per revolution must be entered here. If the incremental encoder is not mounted on the motor shaft, the step-down ratios may have to be considered. When external encoders (i.e., not on the motor) are used, remember F49. Value range in I/R: 30 to 1024 to 4096	\checkmark
F38	Quick stop: Only if $\mathbf{C 6 0} \neq 2$ (mode \neq position). $\mathbf{F 3 8}$ controls the automatic triggering of quick stop under certain operating conditions (brake on quick stop ramp D81). O: inactive; Quick stop can only be triggered by the BE function "9:Quick stop." 1: enable and clockwise/counter-clockwise; Important for use of two direction-of-rotation inputs (i.e., clockwise and counterclockwise) on BE1 and BE2. Quick stop is triggered when BE1 is low and BE2 is low or when the enable is removed (also reference value enable D07 or additional enable via BE). 2: fault and enable; In addition to the BE function " 9 :Quick stop," removal of the enable and "non-dangerous" faults (e.g., "46:Low voltage") causes the quick stop. During positioning ($\mathbf{C 6 0}=2$), quick stop is always triggered with $\mathbf{F 3 8}=2$. When a quick stop is triggered by removing the enable, this ends after $\mathrm{t}=500 \mathrm{msec}+2.2$ * $\mathbf{C 0 1}$ * D81 (e.g.,	\checkmark
F40	 The resolution is 19.5 mV , and the scanning time is 4 msec . Q: inactive; 1: EOO I-motor; Indication of motor vector current, $10 \mathrm{~V}=$ nominal inverter current, bipolar (-10 V to +10 V). 2: E01 P-motor; Indication of motor active power, $10 \mathrm{~V}=$ nominal motor power (B11), bipolar. 3: E02 M-motor; Indication of motor torque, $10 \mathrm{~V}=$ nominal motor torque, bipolar. 4: E08 n-motor; Indication of motor speed, $10 \mathrm{~V}=\mathrm{n}$-max (C01), bipolar. 5: G19 D-actual.; Indication of the diameter (winder), $10 \mathrm{~V}=\operatorname{Dmax}(\mathbf{G 1 3})$. 6: winder actual tension; Output of current winder tension. F-tension $=(\mathrm{M}$-act./M0 x (D-max/D-act.) 100\%. 7: +10 V ; Fixed value (e.g., for powering a potentiometer). 8: -10V; Fixed value (e.g., for powering a potentiometer). 9: winder tension setpoint; Tension reference value for winding at torque limit ($\mathbf{G 1 0}=2$). 10: motor potent. value; $10 \mathrm{~V}=\mathrm{n}$-Max (C01), unipolar. 11: E07 n-post-ramp; $10 \mathrm{~V}=\mathrm{n}-\mathrm{Max}$ (C01), bipolar.	\checkmark
F41	Analog-output1-offset: Offset of analog output X1.8. Value range in \%: -400 to $\underline{0}$ to 400	\checkmark
F42	Analog-output1-gain: The raw value specified via F40 is offset with F41 and multiplied by factor F42. Example: If $\mathbf{F 4 0}=1$ and $\mathbf{F 4 2}=50 \%$, then 5 V on the analog output = nominal inverter current. Value range in \%: -400 to 100 to 400	\checkmark
F43	Analog-output1-absolute: An absolute value (amount) is generated for the output signal. θ : inactive; 1: active;	\checkmark
F45	Analog-output2-function: Function of analog output X1.9. For selection, see F40. Value range: 0 to 1 to 11	\checkmark
F46	Analog-output2-offset: Offset for output X1.9. Cf. F41. Value range in \%: -400 to 0 to 400	\checkmark
F47	Analog-output2-gain: Gain for output X1.9. Cf. F42. Value range in \%: -400 to 50 to 400	\checkmark

13. Parameter Description

- The power pack must be turned off before these parameters can be changed.

Italics These parameters are sometimes not shown depending on which parameters are set.
$\begin{array}{ll}\text { 1) See result table in chap } 15 & \text { 2) Only available when } \mathbf{D} 90=1\end{array}$
3) Only available when $\mathbf{D 9 9}=0$

E Parameters which are included in the normal menu scope ($\mathbf{A 1 0}=0$). For other parameters, select $\mathbf{A 1 0}=1$:extended or $\mathbf{A 1 0}=2$:service.
E Parameters marked with a " $\sqrt{ }$ " can be parameterized separately from each other in parameter record 1 and 2.

13. Parameter Description

C.: 1	hnology	E
Para. No.	Description	
G03	PID-controller Kd: Only if G00=1 (i.e., PID controller active). Gain of D share in msec. Value range in $\mathrm{msec}: 0$ to 1000	\checkmark
G04	PID-controller limit: Only if G00=1 (i.e., PID controller active). Adjuster-variable limit. For scaling, see F22. Asymmetric limits can be specified with G04 and G05 (e.g., from -10% to $+30 \%$). Upper and lower limit values are automatically (internally) sorted correctly. Value range in \%: -400 to 400	\checkmark
G05	PID-controller limit2: See G04. Value range in \%: -400 to 400	\checkmark
G06	PID-controller Kp2: Pure proportional gain of the PID controller. Effective parallel to I and D portion. Value range: 0 to 1 to 10	\checkmark
G10•	Winding operation: Activates the winding functions (speed reduction based on diameter). O: inactive; 1: n mode; Speed adjustment in accordance with $n \sim 1 / D$. No effect on torque limit M-Max. 2: M-Max mode;Maximum torque is reduced based on D-Act/D-Max.	\checkmark
G11	Diameter: Only if $\mathbf{G 1 0}=0$ (winding operation active). Specifies the type of diameter definition. Q: AE-measurement; Diameter sensor 0 to 10 V is connected to AE 2 . 1: n-line/n-motor; For traction or compensating roller controllers. The diameter is calculated from the ratio of control speed to motor speed. The control speed (i.e., speed reference value) always refers to an empty reel (i.e., the smallest diameter). 2: roller; The diameter is calculated with an overtravel ramp based on $\mathbf{E 1 2 2}$ (from fieldbus or via analog input function "12:winder roller"). If $\mathbf{E 1 2 2}>5 \%$, $\mathbf{G 1 9}$ is increased by ramp $\mathbf{G 1 6}$. If $\mathbf{E 1 2 2}<-5 \%, \mathbf{G 1 9}$ is decreased by ramp G16. Otherwise $\mathbf{G 1 9}$ remains constant.	\checkmark
G12	Min. winding diameter: Only if $\mathbf{G 1 0}=0$ (winding operation active). Diameter of an empty reel. Value range in mm: 10 to 3000	\checkmark
G13	Max. winding diameter: Only if $\mathbf{G 1 0} \neq 0$ (winding operation active). Diameter of a full reel. Value range in mm: 10 to 100 to 3000	\checkmark
G14	Begin. winding diameter: Only if $\mathbf{G 1 0}=0$ (winding operation active). Initial diameter. Must be set via a binary input with the function "29:wind.setD-ini" (F31 to F35).	\checkmark
G15	Overdrive ref. value: Only if $\mathbf{G 1 0} \neq 0$ (winding operation active). $\mathbf{G 1 5}$ is added to the control reference value while winding at the torque limit $(\mathbf{G 1 0}=2)$ so that M -limit is triggered and the winding material remains taunt. Value range in rpm: -6000 to $\underline{0}$ to 6000	\checkmark
G16	Diam.calculator ramp: Only when G10>0. Integration speed of the diameter calculation. G11=0: no function G11=1: limitation of the integration speed for $\mathbf{G 1 9}$ G11=2: ramp with which the diameter is changed when $-5 \%<\mathbf{E} 122<+5 \%$. Value range in $\mathrm{mm} / \mathrm{sec}: 0$ to 10 to 100	\checkmark
G17	Tension reduction: Only when G10>0. Reduction of tension as diameter increases. If min. diameter D-Min: winding with 100\% tension. Up to D-Max: tension reduced linearly up to (100% - G17). Value range in \%: $\underline{0}$ to 100	\checkmark
G19	Actual. winding diameter: Only if G10 $=0$ (winding operation active). Indication of the current diameter.	
G20•	Electronic gear: Only when $\mathbf{C 6 0}=1$:speed. Activates the "electronic gear/synchronous running" function (chap. 11). See block circuit diagram in chap. 18. 0 : inactive; 1: speed synchron run; $\mathbf{G 2 4}$ limits the effect of the angle controllers. Cf. chap. 11.6. 2: angle synchron run 3: angle + save; Same as $\mathbf{G 2 0}=2$. However, each time enable-off occurs, the angle deviation is stored nonvolatilely and thus remains available after power off and on. See also G25.	\checkmark
G21	Speed master: Only if G20>0 (electronic gear active). The slave speed is calculated from nSlave=G22/G21 x nMaster. The increments of the incremental encoders are specified with F36 and $\mathbf{H 2 2}$. If $\mathbf{G 2 1}=1$ and $\mathbf{G 2 2}=2$, the slave is twice as fast as the master. We recommend selecting the number of increments for the master encoder (in acc. w. G27) as a power of 2 (e.g., 1024). Value range: 1 to 2147483647	\checkmark
G22	Speed slave: Only if G20>0 (electronic gear active). See G21. At a speed ratio of 1:1, G21=G22=1 must be parameterized. The direction of rotation of the slave can be changed with D92. Value range: 1 to 2147483647	\checkmark

13. Parameter Description

C.: Technology		E
Para. No.	Description	
G23	Kp synchron: Only if G20>0 (electronic gear active). Gain of the angle controller in $1 / \mathrm{sec}$. Typical values are 10 to 60. G23=0 activates speed synchronous running. The slave then no longer attempts to catch up with the master (e.g., after a blockage). Instead, the mathematically precise speed ratio is only ensured within the window $\pm \mathbf{G 2 4}$. When $\mathbf{G 2 3}=0$ and $\mathbf{G 2 4}=0$, the master encoder is only used as a speed reference value, and the ratio set in G22/G21 is not precisely maintained mathematically. Cf. chapter 11.6. Value range in 1/sec: 0 to 30 to 100	\checkmark
G24	Max. synchron. difference: Only if $\mathbf{G 2 0}>0$ (electronic gear active). Maximum angle of deviation between master and slave (following error). When this value is exceeded, a signal is generated on the output (cf. F00 or $\mathbf{F 8 0}=12$:synch. diff.), but no fault is triggered. This can be performed with external wiring and the input function "12:ext.fault" (F31 to F35). In G20=1:speed sync. mode, G24 limits the effect of the angle controller. This smooths the transition between pure speed synchronous and angle synchronous running. Value range in ${ }^{\circ}: 0$ to 3600 to 30000	$\sqrt{ }$
G25	Synchron reset: Only if G20>0. Defines conditions for resetting the current synchronous deviation. 0 : with BE; Reset only possible with BE function "28:SyncReset"(always possible). 1: enable \& BE; Reset also with removal of the enable as well as with halt and quick stop. 2: free run \& BE; Reset only with BE functions "27:syncFreeRun" and "28:SyncReset." 3: enable \& free run \& BE; All methods above will cause a reset. The synchronous deviation is always set to zero when the device is turned on. (Exception: G20=3. Reset is only performed when the stored deviation exceeds 5°).	\checkmark
G26	n-correction-Max: Only if G20>0 (electronic gear active). G26 limits the output of the angle controller. Important when large angle deviations must be reduced (e.g., when the free-run function is used). Value range in rpm: 0 to 3000 to 6000	\checkmark
G27	Synchronous encoder: Only when $\mathbf{G 2 0}>0$. Signals of the master arrive over this interface. O: BE-encoder; Master signals are connected to binary inputs. 1: X20; Master signals arrive over plug connector X20. 2: X41;	\checkmark
G28	n-Master: Only when G20>0. For monitoring during commissioning. Speed of reference value encoder as per G27.	
G29	degrees as related to the slave motor. n -controller $\mathrm{Ki>0}$ is required for a synchronous deviation near 0 . Value range in ${ }^{\circ}$: -2147483648 to 0 to 2147483647	
G30	Speed feed forward: Speed precontrol for synchronous running. When G30 $=100 \%$, no following error is used when speed is constant (synchronous deviation is zero). With dynamic movements, G30 must be reduced (50 to $80 \%)$. Otherwise the slave will overswing. Value range in \%: 0 to 80 to 100	$\sqrt{ }$
G31	Reference direction: Only if $\mathbf{G 2 0}>0$. Starting direction to look for the reference point. Referencing searches for a reference cam. Cf. $\mathbf{I} 30=0$:Ref.input in positioning mode and the examples in chap. 10.6. Synchronous deviation is reset at the reference position. Other ways of resetting the synchronous deviation include the BE signal "28:Synchron Reset" or automatically with parameter G25. O: positive; 1: negative;	\checkmark
G32	Reference speed fast: Only if $\mathbf{G 2 0}>0$. Speed for first phase of referencing (rough traversing). Value range in rpm: 0 to 1000 to 6000	$\sqrt{ }$
G33	Reference speed slow: Only if $\mathbf{G 2 0}>0$. Speed for final phase of referencing. Value range in rpm: 0 to 300 to 6000	\checkmark
G35	Ref.encoder signal 0: Only if G20>0. Referencing to zero pulse of the motor encoder. Do not use for continuous mode with an odd-number gear ratio. Q: inactive; 1: Motor-encoder:	\checkmark
G38	Synchronous offset: Only if G20>0. An offset distance based on the voltage on an analog input can be added to the current slave position. 10 V corresponds to the angle entered in G38. Value range in ${ }^{\circ}$: -214748364.8 to $\underline{0}$ to 214748364.7	\checkmark
G40	Static friction torque: Only if $\mathbf{G 1 0}>0$. Offset of the static friction (i.e., the friction (coulomb) independent of the speed). Value is converted to the motor shaft. Value range in Nm: $\mathbf{0}$ to 327.67	\checkmark

- talics

1) The power pack must be turned off before these parameters can be changed These parameters are sometimes not shown depending on which parameters are set.
$\begin{array}{ll}\text { See result table in chap } 15 . & \text { 2) Only available when } \mathbf{D} 90 \neq 1\end{array}$
2) Only available when D99=0

Parameters which are included in the normal menu scope ($\mathbf{A 1 0}=0$). For other parameters, select $\mathbf{A 1 0}=1$:extended or $\mathbf{A 1 0}=2$:service. Parameters marked with a " $\sqrt{ }$ " can be parameterized separately from each other in parameter record 1 and 2 .

13. Parameter Description

C.: Technology		Е
Para. No.	Description	
G41	Dynamic friction torque: Only if G10>0. Offset of the speed-proportional friction. Value converted to the motor shaft at 1000 rpm . Value range in Nm/1000 rpm: 0 to 327.67	\checkmark
G42	T-dyn lowpass: Only if G10>0. Torque for acceleration/deceleration can be offset dynamically. The load/motor inertia ratio with a full reel (D-Max) must be entered for this in parameter C30. The acceleration portion to be 	\checkmark

H.. Encoder

Para. No.	Description

$\begin{array}{ll}\text { H2O• } & \begin{array}{l}\text { X20-function: See also description in chap. } 5.4 . \\ \text { 0: inactive; } \\ \text { 1: encoder simulation; Encoder simulation (TTL) output for a host controller. } \mathbf{H} 21 \text { specifies the number of } \\ \text { pulses. } \\ \text { 2: encoder In; Connection of an incremental encoder with ROD signals. Wire-break monitoring active. }\end{array}\end{array}$
2: encoder In; Connection of an incremental encoder with ROD signals. Wire-break monitoring active
3: stepmotor In ; Stepper motor input function. Track A is the sign (low = positive, high = negative). Track B is the counting frequency (chapters 11.2 and 14.1).
4: SSI simulation; Simulation of a multi-turn SSI encoder. Useful for an absolute-value encoder on X41 for motor control. The host controller can scan the absolute position in SSI format on X20.
5: SSI master; Connection of an SSI encoder (absolute value encoder). Note: SSI encoders can be used as external encoders for POSI. The absolute position for POSI can only be read from the encoder when the device starts up. If $\mathbf{H 2 0}$ is reparameterized and $\mathbf{H 2 0}$ was or is now $\mathbf{H 2 0}=5$, this triggers fault "37:n-feedback" which cannot be acknowledged. Save values with A00, and turn basic device off/on.

H21	Encodersim. increments: Only if $\mathbf{H 2 0}=1$. Specifies the number of pulses per motor revolution.	
121	0: 256; 1:512; 2: 1024; 3: 2048 ; 4096;	
	X20-increments: Number of increments for incremental encoders. With SSI encoders, the range of H23 (X20	

H22 gear ratio) can be expanded with H22. See chap. 10.11. H22=1024 is the neutral setting.

| H23 | X20ar ratio: Only if $\mathbf{C 6 0}=2$. Conversion of an external posi encoder to the motor shaft. | $\sqrt{ }$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Caution: Parameter has no effect on the speed calculation for motor control (vector control). It is only used to convert the position of an external encoder.
The following must apply: H23 = number of motor revolutions/number of encoder revolutions. If this formula results in values over 32.767, the number of encoder increments in $\mathbf{H 2 2}$ must be divided by a suitable factor (e.g., 2). The result of the above formula is then also divided and entered in H23. See also chapter 10.11.2. With SSI encoders, the gear ratio is expanded by setting $\mathbf{H 2 2}$ to a value other than 1024.
Value range: -32.768 to 1 to 32.767

H24	X20-zero-Pos.: Zero pulse shift during encoder simulation. Value range in $: \underline{0}$ to 360	$\sqrt{ }$
H31	Resolver poles: Number of poles of the connected resolver. Typical values are 2 (standard for STÖBER) and 6. Va	$\sqrt{ }$

H31	Resolver poles: Number of poles of the connected resolver. Typical values are 2 (standard for STOBER) and 6.
Value range: 2 to 16	

H32 Commutation-offset: Shifts the resolver zero position in comparison to the motor. Since STÖBER motors are set to H32=0 at the plant and tested, it is usually never necessary to change H32. If the B40 phase test results in an H 32 value >0, this probably indicates a problem with the plug connectors or wiring.

	Value range in ${ }^{\circ}: \underline{0}$ to 360
H 40	X41-function: See description in chapters 5.5 and 5.6.

	0: inactive; 1: SinCos in; 2: encoder in; 3: stepMot in;	
H41	X41-increments: The value is automatically determined with sin/cos encoders with EnDat ${ }^{\oplus}$ or Hiperface ${ }^{\circledR}$ interface. Value range in I/R: 30 to 1024 to 4096	$\sqrt{ }$
H42	X41-gear ratio: See H23. Value range: -32.768 to 1 to 32.767	$\sqrt{ }$
H60	SSI-invert: Reverse sign for external SSI encoders. Wrong sign \rightarrow unstable control loops. O: inactive; Clockwise revolution of motor shaft while facing the shaft (A side) counts as positive. 1: active; Clockwise revolution of motor shaft counts as negative.	$\sqrt{ }$

13. Parameter Description

M. Encoder		E
Para. No.	Description	
H61	SSI-coding: Entry as per encoder data sheet. O: gray; 1: binary;	\checkmark
H62	SSI-data bits: Entry as per encoder data sheet. Value range: 24 to 25	\checkmark
I.. Posi. Machine		E
Para. No.	Description	
Parameter record switchover cannot be used for the parameters of groups I, J, L and \mathbf{N}. To save memory space, they are only present once.		
100	Position range: 0 : limited; The area of movement is limited by end stops or similar mechanisms. Software limit switches $\mathbf{I 5 0}$ and 151 are active. 1: unlimited; Unlimited movement (e.g., roller feed, rotary attachment or belt drive). No physical end positions. The position values repeat themselves cyclically with the circular length $\mathbf{1 0 1}$ (e.g., with a rotary attachment, you start at 0° again after reaching 360°). When absolute positioning is used, the shortest path is selected unless only one direction of rotation is permitted. If a new destination is selected with posi.start while a movement is in progress, the old direction of rotation is retained. This function is known as the "rotary axis function."	
101	Circular length: Only if $\mathbf{1 0 0}=1$ (continuous axis). Maximum value for the actual position starting at which the position is counted from zero again (e.g., 360 degrees, modulo function). Value range in 105 : 0 to $\underline{360}$ to 31 bits ($=2^{31}$ encoder increments after quadruple evaluation)	
102	Posi.encoder: Position control is usually performed by the encoder mounted on the motor (I02=2). A second encoder (e.g., also linear measuring system) can be used to prevent slip or inaccuracies caused by the mechanics. Calibration of an external measuring system is described in chap. 10.11. 0 : BE-encoder; HTL encoder on binary inputs. 1: X20; Incremental or SSI encoder on input X20. 2:motorEncoder, The encoder selected with B26 (motor feedback). 3: X41; Encoder on connector X41 (\sin / \cos encoder for motor control or external TTL incremental encoder with regulated 5 V (voltage supply).	
103	Direction optimization: Only if $\mathbf{I O O}=1$. Activate/deactivate automatic direction optimization for absolute process blocks ("rotary axis" function). In contrast to the permissible direction of revolution I04>0, manual traversing is always permitted in both directions. Cf. chap. 10.5.2. 0 : inactive; The direction of rotation depends on the sign of the destination position (e.g., J10). When the circular length is $\mathbf{1 0 1}=360^{\circ}$, the same position is approached with $\mathbf{J 1 0}=90^{\circ}$ and $\mathbf{J 2 0}=-270^{\circ}$ as with 90°. In the latter case, however, the direction of rotation is negative. 1: active; Absolute process blocks are approached over the shortest path.	
104	Move direction: Only if $\mathbf{I O O = 1}$. For continuous axes with only one physically permissible direction of movement. Movements in the wrong direction are answered with the message "51:Refused." Reference point traversing is performed completely with the speed I33. A reverse in direction does not occur. O: positive \& negative; Both directions are permitted. 1: positive; Only the positive direction is permitted. (Also applies to manual traversing.) 2: negative;	
105	Measure unit selection: The unit of measure does not yet mean a conversion. The numerical relationship between the physical mechanics and the indicated position is provided by $\mathbf{I 0 7}$ and $\mathbf{I 0 8 .}$ 0: user (109); The unit (4 characters) can be programmed as desired with FDS Tool. See also I09. 1: increments; Encoder increment based on quadruple evaluation (i.e., quadrature pulses). 2: degrees; : millifmeter;	
106	Decimal digits: Number of decimal positions for the display and the entry of position reference values, speeds, accelerations and 107. Important: Since a change in 106 will cause a shift in the decimal point and thus a change in the affected values, $\mathbf{I 0 6}$ should be programmed at the very beginning of commissioning. Example: If $\mathbf{I 0 6}$ is reduced from 2 to 1 , values such as 12.27 mm are changed to 122.7 mm . The reason for this lies in the error-free rounding used by the positioning software. Value range: 0 to $\underline{2}$ to 3	

13. Parameter Description

P	si. Machine
Para	Descrifion
107	Way/revolution numerator: For consideration of the gear ratio between machine and encoder I02. For position measurement, cf. chap. 10.11. The number of decimal positions corresponds to I06. The posi.
	direction of rotation can be changed with negative values in $\mathbf{I O 7}$. Example: With a gear ratio of $\mathrm{i}=12.43$ and an angle specification on the drive shaft, then $\mathbf{I O 7}=360^{\circ} / 12$.
	$\mathrm{R}=28.96^{\circ} / \mathrm{R}$. For higher requirements, precision can be increased to almost any amount with Example: $12.34567 \mathrm{~mm} / \mathrm{R}$. $107=12345.67$ and $108=1000$. Cf also chap 10.9
	fang
108	thus also be calculated as a fraction (e.g., toothed gear b
	ant for external encoders that are not mounted on the motor shaft: One "encod
109	Measurement unit only filis
110	Max. spoed:
	Works simultaneously with the maximum motor speed in C01. The actual speed limit corresponds to the lower acol without causing he following error.
111	
	and
112	
	Nempe) Accalearation
115	
	100%. During ramps, changes in accel-override are only adjusted slowly in a background task.
	Amp iffuteslo ong and th
116	S-ramp: Reverse limitation through square sinus ramp. specified time constant. Positioning takes a little longer.
119	Heren
	emergency off or similar. I19=1 offers particularly simple process block interruption.
	.
120	Kv-factor: Gain of position controller (only P characteristic) with unit of $1 / \mathrm{sec}$. The Kv factor is also known as the speed gain. In actual practice, the Kv factor is sometimes specified with the unit $\mathrm{m} / \mathrm{min} / \mathrm{mm}$ which is exactly 0.06×120 See also block circuit diagram in chap 10.7
121	Max
122	Target winow:
	Value range in 105 : 00 to 5 50.31 3 bits
123	Dead band pos. control. "Dead zone" of the position controller. Useful to prevent idle-state oscillation particu larly when an external position encoder is used and there is reversal play in the mechanics. Cf. chap. 10.7. Caution: $\mathbf{I 2 3}$ Dead band must be smaller than target window $\mathbf{I 2 2 !}$

13. Parameter Description

l.. Posi. Machine		
125	Speed feed forward: Switches the calculated speed profile to the output of the position controller (chap. 10.7) there is overswinging in the destination position, $\mathbf{1 2 5}$ and $\mathbf{C 3 2}$ must be reduced Value range in \%: 0 to 80 to 100	
130		
131	If only one direction is permitted ($\mathbf{I O 4}>0$), the reference traversing direction depends on IO4 and not I31. 0 : positive; O: positive;	
132	Reference speed fast: Speed for the first phase of reference point traversing (i.e., determining the rough area) Omitted when only one direction of rotation (104) is permitted. Only the slow speed (I33) is then used for this type of reference point traversing. alue range in $105 / \mathrm{sec:} 0$ to 31 bit	
133	Reference speed slow: Speed for the final phase of reference point traversing. Switching between I32 and I33 is auto Value	
134	by brake rampl11/2. Cf. chapter 10.6 . Value range in $105:-31$ bits to 0 to 31 bits	
135		
136		
137	Power-on reference: Automatic reference point traversing after power-on. Q: inactive; 1: posisistart; After power-on, the inverter assumes operating mode "24:ref.wait." The first posi.start or posi.step 1: posi.start; After power-on, the inverter assumes oper signal starts the reference point traversing procedure 2: automatic; Reference point traversing is started automatically as soon as the enable appears.	

13. Parameter Description

1.. P0	I. Machine	E
Para. No.	Description	
138	Reference block: Number of the process block (i.e., 1 to 32) which is to be automatically started at the end of reference point traversing. This can be used to put the drive into a defined position after the reference points have been traversed. 0: standstill. No automatic start. 1 to 32: Number of the process block to be executed.	
140	Posi.-step memory: Helpful during relative positioning of continuous axes. O: inactive; Posi.step signals during a movement are ignored. 1: no stop; Posi.step signals which arrive during a movement cause the current destination position to be changed immediately. The process block specified by the reference block or, if no reference block is defined, the currently selected process block takes over. Example: Two additional posi.step signals arrive during a relative movement of 100 mm . The drive then moves precisely 300 mm without stopping.	
150	Software-stop :- Only if $\mathbf{I O O}=0$ (limited position range). Effective only when axis is referenced. Positioning control rejects traversing jobs outside the software limit switches (message "51:Refused"). Manual-traversing and continuous process blocks are stopped at the software stops. Caution: Software stops do nothing to compensate when the permissible position range is exceeded due to a change on the fly to a process block with slower ramps! Value range in 105: -31 bits to 10000000 to 31 bits	
151	Software-stop +: Only if $\mathbf{1 0 0}=0$ (limited position range). Effective only when axis is referenced. Value range in 105: -31 bits to 10000000 to 31 bits	
160	Electronic cam 1 begin: In the positioning area between $\mathbf{I 6 0}$ and $\mathbf{I 6 1}$, the el.cam signal ($\mathbf{F 0 0}=8$) becomes high. "Electronic cam" only functions in the referenced state. Cf. also the related function "operating range" in chapter 9.3. Value range in 105: -31 bits to 0 to 31 bits	
161	Electronic cam 1 end: See $\mathbf{I 6 0}$. Value range in 105: -31 bits to 100 to 31 bits	
170	Position-offset: A correction path corresponding to the voltage on AE2 can be added to the current reference value position ($\mathbf{F 2 0}=6$). 10 V corresponds to the path specified in $\mathbf{I 7 0}$. Useful, for example, for creating complicated $x(t)$ profiles which are generated by a PC as voltage. After activation of the inverter (i.e., enable), the current offset value is approached at the manual speed I12. The reference value from AE2 is then supplied without restrictiangeandot e oftzるlpwifass can be used for smoothing.	
180	Actual position: Read only. Indication of the actual position. Value range in 105: ± 31 bits	
181	Target position: Read only. Indication of the current reference value position. Value range in 105: ± 31 bits	
182	Active process block: Read only. Indication of the currently active block during block processing (traverse, wait) and during standstill at a process block position. The approached process block is indicated in $\mathbf{8 2}$ as long as the "RV reached" signal (i.e., in position) is present. When the drive in not in a process block position (e.g., after power on, manual traversing or termination of a movement), 182=0 applies. When $182>0$, the signals "23: reference value-ackn.0" to "27: reference value-ackn.4" can indicate the active process block in binary coded format ("000" for process block 1 - i.e., I82=1). Cf. chap. 10.3.	
183	Selected process block: Read only. Indication of the block selected via binary inputs or J02. This process block would be executed with the posi.start signal. Cf. also chap. 10.3 and $\mathbf{F 0 0}=23$.	
184	Following error: Read only. Indication of the current position deviation. Cf. $\mathbf{I 2 1}$ and $\mathbf{F 0 0}=9$. Value range in 105: ± 31 bits	
185	In position: Read only. Indication of output signal F00=3:refVal-reached. 0: inactive; Drive moving or destination position not reached. 1: active; See output signal $\mathbf{F 0 0}=3$:refVal-reached and $\mathbf{I} 22$ target window.	
186	Referenced: Read only. Indication of output signal "13:referenced." For reference point traversing, see chap. 10.6. 0 : inactive; Drive not referenced. No absolute positioning possible. 1: active; Drive referenced.	
187	Electronic cam 1: Read only. Indication of output signal "8:electronic cam 1." 0: inactive; Current position is outside $\mathbf{1 6 0}$ and $\mathbf{I 6 1}$. 1: active; Current position is within $\mathbf{I 6 0}$ and $\mathbf{I 6 1 .}$	
188	Speed: Read only. Indication of the current reference value of the positioning speed with unit. Cf. chap. 10.7. Value range in $105 / \mathrm{sec}: \pm 31$ bits	

13. Parameter Description

J.. Posi. Command (Process Blocks)		E
Para. No.	Description	
J00	Posi.start: $0 \rightarrow 1$. Starts the currently selected process block. The block is selected via binary inputs (RV-select 0 to 2) or J02. Since posi.start interrupts positioning procedures in progress, it has the highest priority. The J00 parameter corresponds to the BE function "19:posi.start."	
J01	Posi.step: $0 \rightarrow 1$. With process block chaining, posi.step is used to start the next programmed block if this is not started automatically (e.g., via $\mathbf{J 1 7}=1$:with delay). This is done without regard to the RV-select inputs, for example. In operating state "17:posi.active," (standstill, no process block being processed), posi.step starts the currently selected process block the same as posi.start (see above). Posi.step never interrupts a running move- 	
J02	Process block number: Selection of the process block which can be started at all times with posi.start. O: external selection via binary inputs and the BE functions $\mathbf{F 3 1}=R V$-select 0 to 4 . See also $\mathbf{I 8 3}$. 1 to 32: fixed selection of the process block. RV-select signals are ignored.	
J03	Tip-mode: Manual operation via the device keyboard. See also F31=17 and F31=18. 0: inactive; 1: active; The drive can be positioned with the \square and keys.	
J04	Teach-in: $0 \rightarrow 1$ starts the action (i.e., triggered manually). The current actual position is used as the destination of the currently selected process block and stored non-volatilely. Example: Normally, the desired position is approached manually and then accepted with teach-in. See also F31=25.	
J05	Start reference: $0 \rightarrow 1$ starts the action (i.e., triggered manually). Reference point traversing can also be started via a binary input or automatically after power-on. See I37 and chapter 10.6 and F31=24.	
J10	Position: Position specification. The value can also be changed during traversing, but the change does not take effect until the next posi.start command (if internal conversion has been concluded). Cf. $\mathbf{F 0 0}=32$. Value range in 105: -31 bits to 0 to 31 bits	
J11	Position mode: There are 4 modes. Cf. chapter 10.4. O: relative; 1: absolute; 2: endless positive; With "continuous" position modes, destination position J10 can be disregarded.	
J12	Spetedesfrestaticaution: If you enter a value greater than the maximum speed I10 in J12, the actual traveling speed is limited to $\mathbf{I 1 0}$. Value range in I05/sec: 0 to 1000 to 31 bits	
J13	Accel: Acceleration, unit/sec ${ }^{2}$. Caution: If the values $\mathbf{J 1 3}$ and $\mathbf{J 1 4}$ exceed the maximum acceleration I11, acceleration during movement is limited to $\mathbf{I 1 1}$. Up to software version 4.5: If the direction of rotation must be changed during a change in process blocks on the fly, the entire reversal procedure is performed with the Accel ramp (J13). Value range in $105 / \mathrm{sec}^{2}: 0$ to 1000 to 31 bits	
J14	Decel: Deceleration, unit/sec ${ }^{2}$. Value range in $105 / \mathrm{sec}^{2}: 0$ to 1000 to 31 bits	
$J 15$	Repeat number: Only available if $\mathbf{J 1 1 = 0}$:relative. If necessary, a relative movement can be repeated several times based on the value J15. With J17=0, posi.step is waited for after each partial movement. With $\mathbf{J 1 7}=1$, the partial movements are run through automatically. Delay $\mathbf{J 1 8}$ is inserted between the movements. J15=0 means no repetition (i.e., one single movement). Value range: 0 to 254	
J16	Next block: Chaining of process blocks. Specification of a process block to which a jump is to be made at the end of the movement or after a posi.next signal. O: stop; No process block chaining. 1 to 32: Number of the next process block. Cf. chapter 10.8.	
$J 17$	Next start: Only if $\mathbf{J 1 5} \neq 0$ or $\mathbf{J 1 6} \neq 0$. $\mathbf{J} \mathbf{1 7}$ defines when and how the branch is made to next block $\mathbf{J 1 6}$. 0: posi.step; Continued movement via posi.step function (rising edge). Cf. J01. 1: with delay; Automatic continued movement after delay J 18 expires. In contrast to $\mathrm{J} 17=2$, an intermediate stop is also always performed with $\mathbf{J 1 8}=0 \mathrm{sec}$. Delays between process blocks (J18) are prematurely concluded by posi.step. 2: no stop; When the reference position reaches the target position $\mathbf{J 1 0}$, the speed is adjusted without halting (on-the-fly process block change without intermediate stop!). Drive travels to $\mathbf{J 1 0}$ without braking and then changes to process block J16. Also useful for generating $n(x)$ speed profiles with support points in up to 8 positions. Cf. I15, chapter 10.8, example 4. When process blocks are terminated with HALT of enable off, resumption of the terminated movement is not possible with Posi.Step.	

13. Parameter Description

J.. Posi. Command (Process Blocks)		E
Para. No.	Description	
	3: Posi.next; The block change is performed on the fly with the posi.next function. If $\mathbf{J 1 7} \neq 3$, posi.next has no effect. See also example 3 in chap. 10.8. If the next block is reative, it refers to the actual position at the time the process block changed. 4: Operation range; The block change is performed on the fly when the operating range (C41 to C46) is exited. Compare example 7 (press/screw) in chapter 10.9. If the next block is reative, it refers to the actual position at the time the process block changed. When a block change is performed on the fly without intermediate stop ($\mathbf{J 1 7}=2,3,4$), no refVal-reached signal (in position) is generated.	
J18	Delay: Parameter only effective if $\mathbf{J 1 5} \neq 0$ or $\mathbf{J} \mathbf{1 6} \neq 0$ and $\mathbf{J} \mathbf{1 7}=1$. Otherwise not shown. Delay before the repetition of relative movements $(\mathbf{J 1 5}=0)$ or before automatic change to the next record ($\mathbf{J 1 7}=1$:with delay). After expiration of the delay time, movement is automatically resumed. A delay can be terminated (i.e., shortened) with the posi.step signal (rising edge). Value range in sec: $\mathbf{0}$ to 65.535	

\Rightarrow The layout of process block nos. 2 to 8 is identical. Process block no. 2 is located in $\mathbf{J 2 0} \mathbf{- J 2 8}$, process block no. 3 in $\mathbf{J 3 0} \mathbf{- J 3 8}$, etc.

La: Posi. Command 2 (Extended Process Block Parameters)	E				
Para. No.	Description	Brake: Definition for process block no. 1. Only if F08=1. Process block-related brake control (e.g., for lifting systems). After reaching destination position J10, you can apply the brake. o: inactive; Destination position is held by the motor (i.e., position control). Brake is only applied when enable, halt, quick stop or fault is missing. 1: active; After the destination position is reached, the brake is automatically applied. The next start command is delayed by the time F06 (brake release).			
L10	Switch A: Selection of the first switching point for process block no. 1. Up to two switching points ("switch A" and "switch B") can be used in each process block. Each of the four switching points defined in group N.. can be ysed intivarious process blocks. Cf. chap. 10.12.				
L1: switch S1;					
2: switch S2;					
3: switch S3;					
4: switch S4;					Switch B: Selection of the second switching point for process block no. 1. Cf. L11.
:---					
Value range: 0 to 4					

\Rightarrow The layout of extended process block parameters is identical for all process blocks. Process block no. 1 is located in L10 to L12, process block no. 2 in L20 to L22, and so on.

Man Men skip (Menu Jump destinations)	(
Para. No.	Description	
M50	F1-jump to: Parameter provided by the F1 function key for editing. Depending on the device function, some parameters may not be shown and cannot be selected. Value range: A00 to E50 to N44	
M51	F1-lower limit: Value range: depends on the parameter selected in M50.	
M52	F1-upper limit: Value range: depends on the parameter selected in M50.	

N52 Value range: depends on the parameter selected in M50
\Rightarrow The jump destinations F2 to F4 are designed identically. Jump destination F2 is in M60 to M62, and so on.
If several jump destinations (M50; M60; M70 or M80) are parameterized to the same coordinates (e.g., J10), the lower, upper limit of the lowest jump destination takes effect.

13. Parameter Description

N. Posi. Switches		E
Para. No.	Description	
N10	S1-position: Position of switching point S1. With relative specifications (N11>0), the absolute value is generated internally. Value range in 105: -31 bits to $\underline{0}$ to 31 bits	
N11	S1-method: Reference of position N10 Q: absolute; Switching point is triggered when position $\mathbf{N 1 0}$ is traveled over. 1: rel.to start; Switching point is triggered after a distance of $\mathbf{N} 10$ (absolute value) after the starting point. 2: rel.to endpos; Switching point is triggered at a distance of N10 before the destination position.	
N12	S1-memory1: When switch S1 is approached, switch memory 1 can be affected. 0: inactive; 1: set; Switch memory 1 is set to high. 2: clear; Switch memory 1 is set to low. 3: toggle; Switch memory 1 is inverted (low \rightarrow high \rightarrow low $\rightarrow \ldots$).	
N13	S1-memory2: Behavior of switch memory 2. Cf. N12. Value range: 0 to 3	
N14	S1-memory3: Behavior of switch memory 3. Cf. N12. Value range: 0 to 3	

\Rightarrow Posi switching points S2 to S4 are set up identically. Switching point S2 is located in N20 to N24, and so on.

U. Protective Functions		E
Para. No.	Description	
U00	Level low voltage: Is activated when the value U00 set in A35 is passed below. 2: warning; After expiration of the tolerance time in U01, the device assumes fault mode (for E46, see chap. 17). 3: fault; The device assumes malfunction mode (for E46, see chap. 17) immediately after the value in A35 is passed below.	
U01	Time low voltage: Can only be set with $\mathbf{U 0 0}=2$:warning. Defines the time during which triggering of undervoltage monitoring is tolerated. After expiration of this time, the device assumes fault mode.	
U02	function is offered via i^{2} t. The percentage of utilization of the device can be indicated via the E22 parameter. If the value in E22 is greater than 100\%, U02 is triggered. 0 : off; Device does not react when U02 is triggered. 1: message; Triggering of U02 is only indicated. The device continues to be ready for operation. 2: warning; After expiration of the tolerance time in U03, the device assumes fault mode (for E39, see chap. 17). 3: fault; The device immediately assumes fault mode (for E39, see chap. 17) after U02 is triggered.	
U03	Time temp. limit dev. i2t: Can only be set with U02=2:warning. Defines the time during which the triggering of $i^{2 t}$ monitoring is tolerated. After expiration of this time, the device assumes fault mode. Value range in sec: 1 to 10 to 120	
U10	Level temp. limit mot. i2t: Parallel to the monitoring of the positor line in the motor, the SDS simulates the motor temperature via an $i^{2} t$ model. The percentage of load of the motor is indicated in parameter E23. If the value in $\mathbf{E} 23$ is greater than $\mathbf{1 0 0 \%}$, $\mathbf{U 1 0}$ is triggered. 0 : off; Device does not react when $\mathbf{U 1 0}$ is triggered. 1: message; Triggering of $\mathbf{U 1 0}$ is only indicated. The device continues to be ready for operation. 2: warning; After expiration of the tolerance time in U11, the device assumes fault mode (for E45, see chap. 17).	
U11	Time temp. limit mo. i2t: Can only be set with U10=2:warning. Defines the time during which the triggering of $i^{2} \mathrm{t}$ monitoring is tolerated. After expiration of the set time, the device assumes fault mode. Value range in sec: 1 to 30 to 120	
U20	Level drive overload: If the calculated torque in static operation exceeds the current M-Max in E62, U20 is triggered. 0: ' off; Device does not react when U20 is triggered. 1: message; Triggering of U20 is only indicated. The device continues to be ready for operation. 2: warning; After expiration of the tolerance time in U21, the device assumes fault mode (for E47, see chap. 17). 3: fault; The device immediately assumes fault mode (for E47, see chap. 17) after U20 is triggered.	
U21	Time drive overload: Can only be set with U20=2:warning. Defines the time during which an overload of the drive is tolerated. After expiration of the set time, the device assumes fault mode. Value range in sec: 1 to 10 to 120	
U22	Text drive overload: The entry "drive overload" can be varied to suit user-specific requirements. Value range: 0 to "drive overload " to 11	

- The power pack must be turned off before these parameters can be changed.

13. Parameter Description

U.. Protective Functions		E
Para. No.	Description	
U30	Level acceleration overload: If the calculated torque exceeds the current M-Max in E62 during the acceleration ramp, U30 is triggered. 0 : off; Device does not react when U30 is triggered. 1: message; Triggering of $\mathbf{U 3 0}$ is only indicated. The device continues to be ready for operation. 2: warning; After expiration of the tolerance time in U31, the device assumes fault mode (for E48, see chap. 17). 3: fault; The device immediately assumes fault mode (for E48, see chap. 17) after U30 is triggered.	
U31	Time acceleration overload: Can only be set with $\mathbf{U} 30=2$:warning. Defines the time during which drive overload during acceleration is tolerated. After expiration of the set time, the device assumes fault mode. Value range in sec: 1 to 5 to 10	
U32	Text acceleration overload: The entry "acceleration overload" can be varied to suit user-specific requirements. Value range: 0 to "acceleration overload" to 11	
U40	Level break overload: 0 : off; Device does not react when $\mathbf{U 4 0}$ is triggered. 1: message; Triggering of U40 is only indicated. The device continues to be ready for operation. 2: warning; After expiration of the tolerance time in U41, the device assumes fault mode (for E49, see chap. 17). 3: fault; The device immediately assumes fault mode (for E49, see chap. 17) after U40 is triggered.	
U41	Time break overload: Can only be set with U40=2:warning. Defines the time during which an overload of the drive during deceleration is tolerated. After expiration of the set time, the device assumes fault mode. Value range in sec: 1 to $\underline{\underline{5}}$ to 10	
U42	Text break overload: The entry "break overload" can be varied to suit user-specific requirements. Value range: 0 to "break overload " to 11	
U50	Level operating range: If one or more of the parameters C41 to C46 are violated, U50 is triggered. 0 : off; Device does not react when U50 is triggered. 1: message; Triggering of U50 is only indicated. The device continues to be ready for operation. 2: warning; After expiration of the tolerance time in U51, the device assumes fault mode (for E50, see chap. 17). 3: fault; The device immediately assumes fault mode (for E50, see chap. 17) after U50 is triggered.	
U51	Time operating range: Can only be set with $\mathbf{U 5 0}=2$:warning. Defines the time tolerated outside the work area. After expiration of the set time, the device assumes fault mode.	
U52	łext opangein sec.ing range? The tentry "operating area" can be varied to suit user-specific requirements. Value range: 0 to "operating range" to 11	
U60	Level following error: If the value in $\mathbf{1 8 4}$ exceeds the value of I21, U60 is triggered. 0 : off; Device does not react when $\mathbf{U 1 0}$ is triggered. 1: message; Triggering of $\mathbf{U 6 0}$ is only indicated. The device continues to be ready for operation. 2: warning; After expiration of the tolerance time in U61, the device assumes fault mode (for E54, see chap. 17). 3: fault; The device immediately assumes fault mode (for E54, see chap. 17) after U60 is triggered.	
U61	Time following error: Can only be set with U60=2:warning. Defines the time during which the value in $\mathbf{I 2 1}$ is exceeded. After expiration of the set time, the devices assumes fault mode. Value range in msec: 0 to 500 to 32767	
U70	Level posi. refused: If the target position is located outside software stops $\mathbf{I 5 0}$ and $\mathbf{5 1}$ or an absolute process block is started in an unreferenced state ($\mathbf{I 8 6}=0$), $\mathbf{U 7 0}$ is triggered. 0 : off; Device does not react when U70 is triggered. 1: message; Triggering of U70 is only indicated. The device continues to be ready for operation. 2: warning; after expiration of the tolerance time of 1 sec , the device assumes fault mode (for E51, see chap. 17). 3: fault; The device immediately assumes fault mode (for E51, see chap. 17) after U70 is triggered.	

Italics
14. Option board
14.1 Option board SEA 4000
14.1 Option board SEA 4000

	Terminal	Function	Parameter	Circuiting
	1	Input BE5	F35	L- level: 0 to $7 \mathrm{~V} / 0 \mathrm{~mA}$ $\mathrm{H} \text { - level: +12 to } 30 \mathrm{~V} / 7 \mathrm{~mA}, \mathrm{Ri}=3,3 \mathrm{k} \Omega$ BE5 to BE14 $\text { X21.1 to } \times 21.10$ GND $\times 21.16$
	2	Input BE6	F60	
	3	Input BE7	F61	
	4	Input BE8	F62	
	5	Input BE9	F63	
	6	Input BE10	F64	
	7	Input BE11	F65	
	8	Input BE12	F66	
	9	Input BE13	F67	
	10	Input BE14	F68	
	11	Output BA3	F82	- External power must be available on terminal X21.17 and be between 15 and 29 V . - Maximum output current 50 mA with load against ground - Maximum output current 200 mA with load against 24 V
	12	Output BA4	F83	
	13	Output BA5	F84	
	14	Output BA6	F85	
	15	Output BA7	F86	
	16	GND		Reference ground galvanically isolated from inverter
	17	+24 V		Voltage for the output drivers (BA3 to BA7)

14.2 Option board SDP 4000

	Terminal	Function	Comment
	1	Not used	For correct function, use only suitable plug connectors for connection of the bus cable. The incoming and outgoing bus cable can be inserted in this plug connector and screwed down. The sliding switch on the plug connector must be set to "on" for the last station so that the bus terminal resistors are connected.
	2	Not used	
	3	TxD/RxD (P) = B	
	4	RTS	
	5	DGND	
	6	VP	
	7	Not used	
	8	TxD/RxD (N) = A	
	9	Not used	

14.3 Option board SEA 4000 and SDP 4000 (combi board)

For terminal allocation X21 and X32, see option boards SEA 4000 and SDP 4000.

15. Result Table

Result Table	
0: Error free	The data were transferred correctly.
1: Error!	General error
2: Wrong box	Controlbox's data memory has incompatible data structure (e.g., formatting for another memory size).
3: Invalid data	Controlbox's data memory contains invalid data. Write Controlbox again, and repeat the procedure.
5: OK (adjusted)	Software version of Controlbox data (or similar) and inverter differ in several parameters. Confirm with the \# key. Message does not affect functionality of the controller.
6: OK (adjusted)	Software version of Controlbox data (or similar) and inverter differ in several parameters. Confirm with the \# key. Message does not affect functionality of the controller.
9: BE encoder signal	- If synchronous reference value $\mathbf{G 2 7}=0: B E$ encoder or posi encoder I02=0:BE encoder, the following must apply: F31=14(15), F32=15(14). - If $\mathbf{G 2 7}=1$ (synchronous reference value $=\mathrm{X} 20$) or $\mathbf{1 0 2 = 1}$ (posi encoder $=\mathrm{X} 20$), the following must apply: $\mathbf{F 3 1} \neq 14$ (15), $\mathbf{F 3 2} \neq 15(14)$. Values in parentheses: Encoder (signal A, B) and stepper motor connection (frequency + sign) access the same counter.
10: Limit value	Value outside the value range
12: BE/X20/X41	Conflict while accessing the encoder pulse counter (there is only one) or error in parameterization of the sin / \cos encoder - X20 may not be simultaneously programmed as the pulse input with BE1/BE2 or X40 (F31, F31 $=14$, 15 and $\mathbf{H 4 0}=2$:encoder In when $\mathbf{H 2 0}=2,3$ and vice versa). - When motor encoder B26=3:SinCos, $\mathbf{H 4 0}=1$:Sincos must be programmed. - When motor encoder B26=3:SinCos, neither X20 nor BE1/BE2 may be programmed as the pulse input (encoder or stepper motor).
13: BE cw/ccw	Programming F31=14 and F32=14 can be used to simulate the direction of rotation of inverters with software SDS 3.2. The functions "direction of rotation," "halt," and "quick stop" may not be assigned to other BEs.
14: Canceled	- The B40/B41 actions could not be executed correctly. - Action canceled (e.g., due to removal of enable). - The current exceeded the permissible maximum value (e.g., short circuit or ground fault) during "autotuning" or "phase test" (B40, B41).
15: R1 too high	A stator resistance measured during "autotuning" (B41) was too high. Motor is circuited incorrectly. Motor cable is defective.
16: Phase fault U	Error in phase U
17: Phase fault V	Error in phase V
18: Phase fault W	Error in phase W
19: Symmetry	Error in symmetry of phases U, V and W. Deviation of a winding resistor by $\pm 10 \%$.
20: Motor connection	Resolver or motor pole number is not correct.
21: Enable?	The enable must be present for actions J00/J01/J05.
22: $\mathbf{F 2 0 = F 2 5 ~ ? ~}$?	Both analog inputs (AE1 and AE2) are programmed for the same function. $\mathbf{F 2 0} \neq \mathbf{F} \mathbf{2 5}$ must apply.
25: Phase order	Error in motor wiring (order of the phases, U, V, W incorrect). Is reported as the result of the B40 phase test. - Check motor wiring and, if necessary, resolver cable too.
26: Encoder offset	The zero offset of the motor encoder (resolver) is not correct. Is reported as the result of the B40 phase test. With STÖBER ES motors, the error is usually to be found in the wiring or in the plug connector. - Check motor and resolver wiring. Then start phase test (B40) again. - If no wiring error can be found, the measured offset is stored (non-volatile) via A00=1 in $\mathbf{H} 32$ with all other parameters.

16. Operating States

Operating States		
The operating state is indicated in the display of Controlbox with number and name and can be queried under E80 during fieldbus access. An abbreviation appears in the LED status display of the device.		
0 : Ready	$r d y$	Inverter is ready. Voltage is available.
1: Clockwise	cun	Fixed positive speed
2: Counter-clockwise	run	Fixed negative speed
3: Acceleration	run	Acceleration procedure in progress (Accel)
4: Deceleration	run	Deceleration procedure in progress (Decel)
5: Halt	HLP	Halt command present
7: $\mathrm{n}>\mathrm{n}-\mathrm{Max}$	run	Reference value is greater than minimum of C01 and E126 (via analog input or fieldbus).
8: Illegal direction	dir	Specified direction of rotation is not the permissible direction of rotation (C02).
11: Quick stop	HLP	Quick stop is being performed.
12: Inhibited	inH	This state prevents an undesired startup of the drive. Effective for: - Drive is turned on (power on) with enable $=$ high (only if $\mathbf{A} \mathbf{3 4}=0$). - A fault is acknowledged with a low-high change in enable. - Opened load relay (no power or no phase). - If A30=3:SDP 4000 or A30=4:CAN-bus and the fieldbus sends a "disable voltage" control command, or the enable terminal becomes low, or a quick stop is completed.
13: Serial (X3)	$\begin{aligned} & \text { run } \\ & \text { Not al- } \end{aligned}$	Parameter A30=1 parameterized. Inverter is controlled by the PC via serial interface.
14: Enabled	$E \cap A$	Only available with Drivecom profile. Bus connection.
15: Self test	- 51	Self-test is being performed on inverter.
16: Fault	Exy	Inverter's power pack is disabled. "xy" is the fault code (see chap. 17).
17: Positioning-active	PoS	Position control is active. Waiting for a start command. Basic state of positioning control.
18: Moving	Cun	Processing a traversing job. Drive is moving. Indicated instead of the states of the speed mode (i.e. accelerate, brake, left and right).
19: Delay	PoS	For process block chaining with defined delay or for repetition of relative movements. During a stop between two sequential jobs, the signal "in position" is generated, but the display shows "delay."
20: Wait	PoS	For process block chaining with defined manual start (i.e., wait for posi.step signal)
21: Referencing	$-E F$	During reference point traversing with posi or synchronous running
22: Tip	run	During manual traversing
23: Interrupted	PoS	After an interrupted process block (i.e., halt or quick stop) with the option of continuing with the posi.step signal. Posi.step is then used to move to the srcinal destination position regardless of whether the drive has been moved in the meantime. The " $23:$ Interrupted" state is retained when the enable is turned off and on while the halt signal is active. A change in enable without the halt signal and manual traversing cause the basic state "17:Posi.active."
24: Reference wait	$-E F$	Wait for posi.start or posi.step signal to trigger reference point traversing after power on ($137=1$).
25: Stop input	SFP	Drive is positioned on stop input and can only be moved out of this position with manual or reference point traversing.
26: Parameter inhibit	OFF	Enable was deactivated from the PC with software while data was being transferred from the PC to the inverter.

17. Fault / Events

When faults occur, the inverter is no longer able to control the drive and is disabled. An entry is made in the fault memory (E40/E41), and relay 1 (ready for operation) releases. If installed when the fault occurs, the Parabox is written automatically. Certain events (cf. last column of the table below) can be declared via FDS Tool as faults, messages, warnings or not effective			
		Auto Reset	FDS Tool*
31: Short/ground	The hardware overcurrent switch-off is active. - Motor requires too much current from the inverter (e.g., interwinding fault or overload).	\checkmark	
34: Hardw. fault	The non-volatile data memory is defective or software version is time-limited.		
35: Watchdog	Monitors the load and functions of the microprocessor This malfunction may also be caused by EMC problems (e.g., shield of the motor cable or PE conductor not connected at all or connected incorrectly).	\checkmark	
36: High voltage	DC-link voltage too high - Power too high - Reverse powering of the drive while braking (no brake resistor connected, brake chopper defective, brake chopper deactivated with A20). See chap. 4.6. - Braking resistor with too low resistance value (overcurrent protection). - Automatic ramp extension at $\mathrm{U}_{\text {max }}$ is possible with $\mathbf{A 2 0}=1$ and $\mathbf{A 2 2}=0$.	\checkmark	
37: n-feedback	Resolver: Wire break or signal level too low Fault can only be acknowledged by turning 24 V off and on! Sin/cos absolute-value encoder: - During device startup - Communication to the device is faulty. - Absolute-value encoder unknown - Communication protocol unknown (neither EnDat ${ }^{\circledR}$ nor HiperFace) - During operation - Wire break or signal level too low - Change in B26		
38: tempDev.sens	The heat dissipater temperature is over the limit value. Cf. E25. - Temperature of environment/switching cabinet is too high.		
39: TempDev.i2t	The inverter limits the output current to 99% of the nominal current. The i ${ }^{2}$ t model calculated for the inverter has reached 100% of the thermal load. - Inverter is overloaded. (inverter too small). - Temperature of the environment/switching cabinet is too high. - Closed brake - Motor connected incorrectly - Resolver connected incorrectly		
40: Invalid data	The data in non-volatile memory are incomplete. Reset non-volatile memory with "A00 save values." This loads the default values.		
41: Temp.motorTMP	Excessive temperature indicated by the motor temperature sensor. - Motor is overloaded. Use external ventilation. - Temperature sensor not connected (X40.2 to X40.6)		
42: Temp. brakeRes	Jhqio prodfernprtheriabakieatresistor reaches 100\% thermal load. - Permissible power loss of brake resistance is too high. - With internal brake resistance: No jumper on X12. $\boldsymbol{\rightarrow}$ chap. 5.2. - With external brake resistance: Brake resistor not connected.		
44: Ext.fault	Fault triggered by BE		
45: OTempMot.i ${ }^{2}$ t	- Motor overloaded - Cooling insufficient		\checkmark
46: Low voltage	DC-link voltage is below the limit value set in A35. - Drops in the power supply - Acceleration times are too short (ramps, D..).	\checkmark	\checkmark

* Events can be programmed with FDS Tool as messages, warnings or faults, or can be completely deactivated.

17. Fault / Events

Faults / Events When faults occur, the inverter is no longer able to control the drive and is disabled. An entry is made in the fault memory (E40/E41), and relay 1 (ready for operation) releases. Certain events (cf. last column of the table below) can be declared via						
FDS Tool as faults, messages, warnings or not effective.						

* The events checked in the "FDS Tool" column can be parameterized with FDS Tool as messages, warnings or faults in the group U.. protective functions.

Acknowledgment of faults:

- Enable: Change from low to high level on the enable input. Always available:
- Esc-key (only if A31=1).

Auto-reset (only if A32=1)
Auto-reset (only if A32=1).
Binary input (F31 to $F 34=13$)
A Caution!
Drive starts up
immediately!

Parameters E40 and E41 can be used to scan the last 10 faults (i.e., value 1 is the last fault). FDS Tool can then be used to assign the inverter's reaction (fault, warning, message or nothing) to certain events
18. Block Circuit Diagram Synchronous Running
19.1 Fast Reference Value active (D99=1)

19.1 Block circuit diagram: Fast reference value active (D99=1)

20. Parameter Table

Parameter		DS	Inpt.
A. Inverter			
A00	Save parameter [\%]		
A01	Read parabox \& save [\%]		
A02	Check parameter [\%]		
A03	Write to parabox [\%]		
A04	Default settings [\%]		
A10	Menu level	0	
A11	Parameter set edit		
A12	Language	0	
A13	Set password		
A14	Edit password		
A15	Auto-return	1	
A20	Braking resistor type	20	
A21	Brak. resistor resist. [Ω]	*	
A22	Brak. resistor rating [kW]	*	
A23	Brak. resistor therm [sec]	40	
A30	Operation input	0	
A31	Esc-reset	1	
A32	Auto-reset	0	
A33	Time auto-reset [min]	15	
A34	Auto-start	0	
A35	Low voltage limit [V]	350	
A36	Mains voltage [V]	400	
A37	Reset memorized values		
A38	DC power-input	0	
A40	Read parabox [\%]		
A41	Select parameter set		
A42	Copy para set $1>2$ [\%]		
A43	Copy para set 2>1 [\%]		
A50	Tip		
A51	Tip ref. value [rpm]	300	
A55	Key hand function	1	
A80	Serial address	0	
A82	CAN-baudrate	1	
A83	Busaddress	0	
A84	Profibus baudrate		
B.. Motor			
B00	Motor-type	*	
B02	EMC-constant [V]	110	
B03	Motor fan	0	
B10	Poles	6	
B11	P-nominal [kW]	*	
B12	I-nominal [A]	*	
B13	n-nominal [rpm]	*	
B17	M0 (standstill) [Nm]	*	
B26	Motor-encoder	2	
B40	Phase test [\%]		
B52	L-motor [mH]	*	
B53	R1-motor [${ }^{\text {] }}$	*	
B64	Ki-IQ (Moment) [\%]	*	
B65	Kp-IQ (moment) [\%]	*	
C.. Machine			
C00	n -Min $\quad[\mathrm{rpm}]$	0	
C01	n -Max [rpm]	3000	
C02	Perm. dir. of rotation	0	
C03	M-Max $1 \quad[\%]$	150	
C04	M-Max $2 \quad[\%]$	150	
C30	J-mach/J-motor	0	
C31	n-controller Kp [\%]	60	

Parameter		DS	Inpt.
C32	n-controller Ki [\%]	30	
C33	n-RefVallowpass [msec]	2	
C34	n-motorlowpass [msec]	*	
C35	n-control. Kp standstill [\%]	100	
C40	n-window [rpm]	3	
C41	Oper. range $\mathrm{n}-\mathrm{Min}$ [rpm]	0	
C42	Oper. range n-Max [rpm]	6000	
C43	Operat. range M-Min [\%]	0	
C44	Operat. range M-Max [\%]	400	
C45	Operat. rangex-Min [\%]	0	
C46	Operat. range x-Max [\%]	400	
C47	Operat. range C45/C46	0	
C48	Operat. range C47 abs	0	
C49	Operat. range accel\&ena	0	
C50	Display function	0	
C51	Display factor	1	
C52	Display decimals	0	
C53	Displaytext		
C60	Run mode	1	
D.. Reference value			
D00	RV accel [[msec/3000rpm]	0	
D01	RV decel [msec/3000rpm]	0	
D02	Speed (max. ref. value)[rpm]	3000	
D03	Reference value -Max [\%]	100	
D04	Speed (min. ref. value)[rpm]	0	
D05	Ref.value-Min [\%]	1	
D06	Ref.value offset [\%]	0	
D07	Ref. value enable	0	
D08	Monitor ref. value	0	
D09	Fix reference value no.	0	
D10	Accel 1 [msec/3000rpm]	60	
D11	Decel 1 [msec/3000rpm]	60	
D12	Fix ref. value $1 \quad[\mathrm{rpm}]$	750	
D20	Accel2 [msec/3000rpm]	90	
D21	Decel 2 [msec/3000rpm]	90	
D22	Fix ref. value $2 \quad[\mathrm{rpm}]$	1500	
D30	Accel3 [msec/3000rpm]	120	
D31	Decel 3 [msec/3000rpm]	120	
D32	Fix ref. value 3 [rpm]	3000	
D40	Accel 4 [msec/3000rpm]	5	
D41	Decel4 [msec/3000rpm]	5	
D42	Fix ref. value 4 [rpm]	500	
D50	Accel 5 [msec/3000rpm]	10	
D51	Decel 5 [msec/3000rpm]	10	
D52	Fix ref. value 5 [rpm]	1000	
D60	Accel 6 [msec/3000rpm]	20	
D61	Decel6 [msec/3000rpm]	20	
D62	Fix ref. value 6 [rpm]	2000	
D70	Accel 7 [msec/3000rpm]	25	
D71	Decel 7 [msec/3000rpm]	25	
D72	Fix ref. value $7 \quad[\mathrm{rpm}]$	2500	
D81	Decel-quick[msec/3000rpm]	2	
D90	Reference value source	0	
D91	Motorpoti function	0	
D92	Negate reference value	0	
D93	RV-generator		
D94	Ref. val. generator time [msec]	500	
D99	Fast reference value	1	

Parameter		DS	Inpt.
E.. Display values			
E00	I-motor [A]		
E01	P-motor [kW]		
E02	M-motor [Nm$]$		
E03	DC-link-voltage [V]		
E06	n-reference value [rpm]		
E07	n-post-ramp [rpm]		
E08	n-motor [rpm]		
E09	Rotor position [r]		
E10	AE1-level [\%]		
E11	AE2-level [\%]		
E16	Analog-output1-level [\%]		
E17	Relay 1		
E18	BA 2		
E19	BE15...BE1 \& enable		
E20	Device utilization [\%]		
E21	Motor utilization [\%]		
E22	i2t-device [\%]		
E23	i2t-motor [\%]		
E24	i2t-braking resistor [\%]		
E25	Device temperature [$\left.{ }^{\circ} \mathrm{C}\right]$		
E26	Binary output 1		
E27	BA15..1\&Rel1		
E28	Analog-output2-level [\%]		
E29	n-ref. value raw [rpm]		
E30	Run time [$\mathrm{h}, \mathrm{m}, \mathrm{sec}]$		
E31	Enable time [$[\mathrm{h}, \mathrm{m}, \mathrm{sec}]$		
$\begin{gathered} \mathrm{E} 32 \\ \mathrm{E} 33 \end{gathered}$	Energyeounter Vi-max-memo value $[\mathrm{kW} / \mathrm{h}]$ $[\mathrm{V}]$		
E34	I-max-memo value [A]		
E35	Tmin-memo value [$\left.{ }^{\circ} \mathrm{C}\right]$		
E36	Tmax-memovalue [$\left.{ }^{\circ} \mathrm{C}\right]$		
E37	Pmin-memo value [kW]		
E38	Pmax-memo value [kW]		
E40	Fault type		
E41	Fault time		
E42	Fault count		
E45	Control word		
E46	Status word		
E47	n-field-bus [rpm]		
E50	Device		
E51	Software-version		
E52	Device-number		
E53	Variant-number		
E54	Option-board		
E55	Identity-number		
E56	Parameter set ident. 1		
E57	Parameter set ident. 2		
E58	Kommubox		
E60	Reference value selector		
E61	Additional ref. value [rpm]		
E62	Actual M-max [\%]		
E63	PID-controller limit		
E64	Brake		
E65	PID-error [\%]		
E71	AE1 scaled [\%]		
E72	AE2 scaled [\%]		
E73	AE2 scaled 2 [\%]		
E80	Operating condition		

20. Parameter Table

Parameter		DS	Inpt.
E81	Event level		
E82	Event name		
E83	Warning time		
E84	Active parameter set		
F.. Control interface			
F00	BA2-function	1	
F03	Relay2 t-on [sec]	0	
F04	Relay2 t-off [sec]	0	
F05	Relay2 invert	0	
F06	t-brake release [sec]	0.1	
F07	t-brake set [sec]	0.052	
F08	Brake	0	
F10	Relay1-function	0	
F19	Quick stop end	0	
F20	AE2-function	0	
F21	AE2-offset [\%]	0	
F22	AE2-gain [\%]	100	
F23	AE2-lowpass [msec]	0	
F24	AE2-offset2 [\%]	0	
F25	AE1-function	10	
F26	AE1-offset [\%]	0	
F27	AE1-gain [\%]	100	
F30	BE-logic	0	
F31	BE1-function	8	
F32	BE2-function	6	
F33	BE3-function	9	
F34	BE4-function	0	
F35	BE5-funetion	0	
F36	BE increment [I/R]	1024	
F38	Quick stop	0	
F40	Analog-output1-function	4	
F41	Analog-output1-offset [\%]	0	
F42	Analog-output1-gain [\%]	100	
F43	Analog-output1-absolut	0	
F45	Analog-output2-function	1	
F46	Analog-output2-offset [\%]	0	
F47	Analog-output2-gain [\%]	50	
F49	BE-gear ratio	1	
F51	BE1-invert	0	
F52	BE2-invert	0	
F53	BE3-invert	0	
F54	BE4-invert	0	
F55	BE5-invert	0	
F60	BE6-function	0	
F61	BE7-function	0	
F62	BE8-function	0	
F63	BE9-function	0	
F64	BE10-function	0	
F65	BE11-function	0	
F66	BE12-function	0	
F67	BE13-function	0	
F68	BE14-function	0	
F70	BE6-invert	0	
F71	BE7-invert	0	
F72	BE8-invert	0	
F73	BE9-invert	0	
F74	BE10-invert	0	
F75	BE11-invert	0	
F76	BE12-invert	0	

Parameter		DS	Inpt.
F77	BE13-invert	0	
F78	BE14-invert	0	
F80	BA1-function	1	
F81	BA2-function	1	
F82	BA3-function	1	
F83	BA4-function	1	
F84	BA5-function	1	
F85	BA6-function	1	
F86	BA7-function	1	
G.. Technology			
G00	PID-controller	0	
G01	PID-controller Kp	0.3	
G02	PID-controller $\mathrm{Ki} \quad[1 / \mathrm{sec}]$	0	
G03	PID-controller Kd [msec]	0	
G04	PID-controller limit [\%]	400	
G05	PID-controller limit2 [\%]	-400	
G06	PID-controller Kp2	1	
G10	Winding operation	0	
G11	Diameter	0	
G12	Min. winding diam. [mm]	10	
G13	Max. winding diam. [mm]	100	
G14	Beg.winding diam. [mm]	10	
G15	Overdrive ref. value [rpm]	0	
G16	Diam. calculator ramp [$\mathrm{mm} / \mathrm{sec}$]	10	
G17	Tension reduction [\%]	0	
G19	Winding act. diam. [mm]		
G20	Electronic gear	0	
621	Speed master	1	
G22	Drehzahl Slave	1	
G23	Kp synchron [1/sec]	30	
G24	Max. sync. difference [$\left.{ }^{\circ}\right]$	3600	
G25	Synchron reset	3	
G26	n-correction-Max. [rpm]	3000	
G27	Synchronous encoder	0	
G28	n-Master [rpm]		
G29	Synchron difference $\quad\left[{ }^{\circ}\right]$	0	
G30	Speed feed forward [\%]	80	
G31	Reference direction	0	
G32	Reference speed fast [rpm]	1000	
G33	Reference speed slow [rpm]	300	
G35	Ref.encoder signal 0	0	
G38	Synchronous offset [$\left.{ }^{\circ}\right]$	0	
G40	Static friction torque [Nm$]$	0	
G41	Dyn. friction torque [$\mathrm{Nm} / 100 \mathrm{rpm}$]	0	
G42	T-dyn lowpass [msec]	50	
H.. Encoder			
H20	X20-function	1	
H21	Encodersim. increments	2	
H22	X20-increments [I/R]	1024	
H23	X20-gear ratio	1	
H24	X20-zeroPos. [$\left.{ }^{\circ}\right]$	0	
H31	Resolver poles	2	
H32	Commutation-offset [$\left.{ }^{\circ}\right]$	0	
H40	X41-function	0	
H41	X41-increments [I/R]	1024	
H42	X41-gear-ratio	1	
H60	SSI-invert	0	
H61	SSI-Code	0	
H62	SSI-databits	25	

Parameter		DS	Inpt.
I.. Posi.Machine			
100	Position range	1	
101	Circular length [105]	360	
102	Posi-encoder	2	
103	Direction optimization	1	
104	Move direction	0	
105	Measure unit selection	2	
106	Decimal digits	2	
107	Way/rev. numerator [105]	360	
108	Way/rev. denominator [R]	1	
109	Measurement unit		
110	Max. speed [105/sec]	10	
111	Max. accel. [105/ $\left./ \mathrm{sec}^{2}\right]$	10	
112	Tip speed [105/sec]	180	
115	Accel-override	0	
116	S-ramp [msec]	0	
119	ENA-interrupting	0	
120	Kv-factor [1/sec]	30	
121	Max. following error [105]	90	
122	Target window [105]	5	
123	Dead band pos. control [105]	0	
125	Speed feed forward [\%]	80	
130	Reference mode	0	
131	Reference direction	0	
132	Ref. speed fast [105/sec]	90	
133	Ref. speed slow [105/sec]	4,5	
134	Reference position [105]	0	
135	Ref.eneoder signalo	0	
136	Continuous reference	0	
137	Power-on reference	0	
138	Reference block	0	
140	Posi.-step memory	0	
150	Software-stop- [105]	-10000000	
151	Software-stop + [105]	10000000	
160	Electr. cam1 begin [105]	0	
161	Electronic cam1 end [105]	100	
170	Position-offset [105]	0	
180	Actual position [105]		
181	Target position [105]		
182	Active process block		
183	Selected process block		
184	Following error [105]		
185	In position		
186	Referenced		
187	Electronic cam 1		
188	Speed [105/sec]		
J.. Posi.Command			
J00	Posi.start		
J01	Posi.step		
J02	Process block number	0	
J03	Tip-mode		
J04	Teach-in		
J05	Start reference		

[^8]
20. Parametertabelle

Parameter			DS	Entry of Process Blocks 1 to 8 (Process blocks 9 to 32 can onlybe programmed with FDS-Tool)							
				Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7	Block ${ }^{\text {B }}$
				J10 to J18	J20 to J28	J30 to J38	J40 to J48	J50 to J58	J60 to J68	J70 to J78	J80 to J88
J. 0	Positio	[105]	0								
J.. 1	Positio		0								
J. 2	Speed	[$105 / \mathrm{sec}$]	1000								
J. 3	Accel	[105/sec ${ }^{2}$]	1000								
J.. 4	Decel	[105/sec ${ }^{2}$]	1000								
J. 5	Repeat		0								
J.. 6	Next block		0								
J. 7	Next st		0								
J. 8	Delay	[sec]	0								

Parameter	DS	Entry

L.. Posi.Command 2 (Extended Process Block Parameters)

			L10 to L12	L20 to L22	L30 to L32	L40 to L42	L50 to L52	L60 to L62	L70 to L72	L80 to L82
L.. 0	Brake	0								
L.. 1	Switch A	0								
L.. 2	Switch B	0								

Parameter		DS	Entry			
M.. Menu skip (Menüsprungziele)						
			Jump to F1 M50 to M52	Jump to F2 M60 to M62	Jump to F3 M70 to M72	Jump to F4 M80 to M82
M50	F1-jump to					
M51	F1-lower limit					
M52	F1-upper limit					

21. Accessories

21.1 Accessories overview

21. Accessories

| Id. No. Designation | | Remark | |
| :--- | :--- | :--- | :--- | :--- |

21.2 Braking resistor

21.2.1Allocation of braking resistor to SDS

Type		FZT			FZZT		FZDT	VHPRc ${ }^{\text {I }}$	VHPR
		300×45 300 W 80Ω	400×65 600 W $>30 \Omega$	400×65 600 W 20Ω	400×65 1200 W 30Ω	400×65 1200 W 20Ω	500×65 2500 W 20Ω	$\begin{gathered} \hline \text { VHPR150V } \\ 150 \mathrm{~W} \\ 100 \Omega \\ \hline \end{gathered}$	$\begin{gathered} \text { VHPR600V } \\ 600 \mathrm{~W} \\ 100 \Omega \\ \hline \end{gathered}$
	Id. No.	41730	41641	41648	41643	41651	41653	45973	44316
SDS 4011	42227	X	-	-	-	-	-	X	-
SDS 4021	42228	X	-	-	-	-	-	X	-
SDS 4041	42229	X	X	-	X	-	-	-	X
SDS 4071	42230	X	X	-	X	-	-	-	X
SDS 4101	42961	X	X	-	X	-	-	-	X
SDS 4141	42231	X	X	-	X	-	-	-	X
SDS 4281	43481	-	-	X	-	X	X	-	-
SDS 4481	43482	-	-	X	-	X	X	-	-

21.2.2Braking resistor FZT / FZZT (dimensions)

21.2.3Braking resistor VHPR (dimensions)

Type	VHPR150V $\mathbf{1 5 0} \mathbf{W , 1 0 0} \boldsymbol{\Omega}$	VHPR600V $\mathbf{6 0 0} \mathbf{~ W , 1 0 0 ~} \boldsymbol{\Omega}$
L	212	420
C	193	400
B	40	60
A	21	31
D	4,3	5,3
E	8	11,5
F	13	19.5
Weight [g]	approx. 310	approx. 1300

[dimensions in mm]
21.3 Input filter (dimensions)

21.4 Output derating (dimensions)

Output derating AD 320 (complete)	
Id. No.	99860
Rated current	$\max .3 \times 20 \mathrm{~A}$
Frequency	8.3 kHz
Inductance	1.2 mH

Additional information under:

http://www.stoeber.de

STÖBER . . . The Drive for Your Automation

[^0]: ${ }^{1}$ Line circuit breaker - tripping characteristic D in accordance with EN 60898
 ${ }^{2}$ External braking resistors with thermal monitoring are recommended. Mandatory for UL use!

[^1]: ${ }^{1}$ Evaluation of the outputs via inverting interface terminals (e.g., Phönix DEK-REL-24//1)

[^2]: ${ }^{1}$ Only in connection with a Controlbox

[^3]: Italics
 The power pack must be turned off before these parameters can be changed
 Italics These parameters are sometimes not shown depending on which parameters are set
 Tee result table in chap 15.
 3) Only available when $\mathbf{D 9 9}=0$

 E Parameters which are included in the normal menu scope $(\mathbf{A 1 0}=0)$. For other parameters, select $\mathbf{A 1 0}=1$:extended or $\mathbf{A 1 0}=2$:service. Parameters marked with a " $\sqrt{ }$ " can be parameterized separately from each other in parameter record 1 and 2 .

[^4]: Italics
 The power pack must be turned off before these parameters can be changed.
 Italics These parameters are sometimes not shown depending on which parameters are set
 $\begin{array}{ll}\text { See result table in chap } 15 . & \text { 2) Only available when } \mathbf{D 9 0} \neq 1\end{array}$
 3) Only available when $\mathbf{D} 99=0$

 E
 Parameters which are included in the normal menu scope ($\mathbf{A 1 0}=0$). For other parameters, select $\mathbf{A 1 0}=1$:extended or $\mathbf{A 1 0}=2$:service. Parameters marked with a " $\sqrt{ }$ " can be parameterized separately from each other in parameter record 1 and 2.

[^5]: Italics
 The power pack must be turned off before these parameters can be changed. These parameters are sometimes not shown depending on which parameters are set
 $\begin{array}{ll}\text { See result table in chap } 15 . & \text { 2) Only available when } \mathbf{D} 9 \mathbf{0} \neq 1\end{array}$
 3) Only available when D99=0

[^6]: Italics

[^7]: Italics
 The power pack must be turned off before these parameters can be changed

[^8]: \square = Standard menu level. Cf. par. A10 Extended menu level: A10=1
 WE = Default setting

 * = Depends on type

